5/3/2005
Benchmark Project
Page 5

Benchmark Project
Due: 5/4/2005 (25%)

The Benchmark Project provides experience with implementing a simple benchmark. You need to write a data generation procedure and create an SQL script file to create the benchmark table and execute the benchmark queries. This is an individual project. If you want a group project, you should choose the case study project.
 Project Details

The benchmark project involves the Set Query Benchmark described in Chapter 6 of the Benchmark Handbook (http://www.benchmarkresources.com/handbook/). For your reference, this chapter is available in the class website. The Set Query Benchmark involves a single table database (the Bench table) and 76 queries in 10 categories
. Table 1 lists the number of queries per query class. The comments refer to Chapter 6 of the Benchmark Handbook.
Table 1: Summary of Query Classes

	Class
	Queries
	Comments

	 Q1
	11
	Table 2.2.1 omits the query with K40K

	 Q2A
	10
	Table 2.2.2A omits the query with K40K

	 Q2B
	10
	Table 2.2.2B omits the query with K40K

	 Q3A
	9
	Table 2.2.3A omits the queries with K40K and K1K

	 Q3B
	9
	Table 2.2.3B omits the queries with K40K and K1K

	 Q4A
	8
	Each query contains 3 conditions.

	 Q4B
	7
	Each query contains 5 conditions.

	 Q5
	3
	Error on page 8. Table 2.2.5 is correct.

	 Q6A
	5
	

	 Q6B
	4
	

You need to implement the benchmark but you do not need to analyze the benchmark results. To help in your implementation, the class website (look in the Reading Material folder in the Course Documents section) has a zip file containing a C language implementation of the benchmark. Even though the benchmark is simple and completely specified, there is a fair amount of work to implement it.

Data Generation Procedure

Write a data generation stored procedure (not an anonymous block) in PL/SQL. Specifications for the data generation procedure are given in Chapter 6 of the Benchmark Handbook (available in the Reading Material folder in the Course Documents section of the class website). Here are additional specifications that you should follow in your implementation of the data generation procedure:

· The number of rows in the benchmark table should be a parameter to your data generation program.

· Your data generation procedure should insert the data directly into the benchmark table rather than generate a data file for later insertion. Direct insertion simplifies the benchmark execution procedure.
· For the KSEQ column, you should use a sequence or another technique to ensure that the values are unique.
· The values for the remaining numeric columns should be randomly generated. You can use the dbms_random package (or another package) to generate random numbers.
· For the columns K500K, K250K, K100K, and K40K, the range of values should depend on the number of rows. These columns are designed for a table of one million rows. Due to processing limitations on the COBCU2 server, I will execute your benchmark with much less than one million rows. You should set the maximum value for these columns using the following formula: minimum(SpecificationValue, NumRows) where SpecificationValue is the maximum value specified in Chapter 6 of the Benchmark Handbook and NumRows is the value of the number of rows parameter. For example, the maximum value for the K500K column is the minimum of 500,000 and the number of rows.
· For the text columns, you can use constant values or randomly generated values. If using constant values, you can use the DEFAULT clause to generate the values.
· To help me in grading your result, display a message at the end of the data generation procedure. The message should indicate the number of rows inserted in the Bench table.

For your reference, the C language implementation of the benchmark contains a data generation program. Feel free to draw on the details of the C language data generation program in creating your own data generation procedure.
Query Binding

You should bind the queries to increase the execution speed of the benchmark. To bind the queries, you should place the queries in procedures. When a procedure is created, the queries inside the procedure are bound. Binding means that the SQL compiler creates an access plan and stores the access plan in dictionary tables so that the plan does not need to be regenerated each time that the procedure is executed.

I suggest that you create one procedure for each query class. For queries that return single values, you should use the SELECT INTO statement. For queries that return multiple rows, you should define the query with a cursor and execute the query using the OPEN statement for cursors. You should close the cursors before the end of the procedure.
To help me in grading your result, display a message at the end of procedure. The message should indicate that the procedure executed successfully.

For each query, you should enable the ALL_ROWS optimization. Since your queries are compiled as part of creating the data generation procedure, you cannot use an ALTER SESSION statement in SQL Plus to enable ALL_ROWS optimization. You need to use a hint in each query as explained in the Oracle Performance Tuning Guide. For example, the following statement uses a hint to set the ALL_ROWS optimization:

SELECT /*+ all_rows */ KSEQ, K500K FROM Bench WHERE K10 = 7;
Due to space limitations on the COBCU2 server, you will not create the Bench table with 1,000,000 rows. You should not create the Bench table with more than 10,000 rows on the COBCU2 server. Query categories 3A and 3B specify constant values for the KSEQ column that depend on the Bench table with 1,000,000 rows. You should change the search values in the query 3A and 3B categories as follows:

· Query 3A: KSEQ BETWEEN 4000 and 5000

· Query 3B: (KSEQ BETWEEN 4000 and 4100) OR (KSEQ BETWEEN 4200 to 4300) OR (KSEQ BETWEEN 4400 to 4500) OR (KSEQ BETWEEN 4600 to 4700) OR (KSEQ BETWEEN 4800 to 5000)

Benchmark Script

You need to create a file containing SQL statements that will create the benchmark table, populate the table using the data generation procedure, create the optimizer statistics, execute the benchmark queries, and capture statistics about query execution. Here are some additional details about the benchmark script file:

· You should create the benchmark table in the first part of the script file. After the benchmark table is created, you should populate the table and create the indexes. You can choose the indexes to create. You should not create an index for the KSEQ column because Oracle already creates the index as a result of the primary key constraint for KSEQ. To verify your benchmark procedure, write a SELECT COUNT(*) FROM Bench query to display the number of rows created.

· After the Bench table is populated, you should create the optimizer statistics. In Oracle, you can gather statistics using the ANALYZE statement or the DBMS_STATS
 package. You should create statistics for the table, each numeric column, and each index. You have been given ANALYZE ANY permission to enable usage of the ANALYZE statement on the COBCU2 server.
· To provide evidence that your statistics are created correctly, you should query the dictionary tables (All_Tables, All_Tab_Columns, All_Tab_Histograms, and All_Indexes or User_Tables, User_Tab_Columns, User_Histograms, and User_Indexes). These queries should execute in your script file before the queries to benchmark. You have permission to query these dictionary tables. See the Oracle document Oracle10g Database Performance Tuning Guide for details about the dictionary tables.
· After creating the statistics, you should execute the queries and capture execution statistics and access plans. To capture statistics and access plans, you should use the SQL Trace facility. You have been given ALTER SESSION permission to enable usage of the trace facility on the COBCU2 server. You will want to capture statistics for each query execution. The SQL Trace facility automatically captures the access plans. In addition, you have been given the SHOW ANY DICTIONARY permission to see the results of parameter settings using the SQL Plus SHOW command. Unfortunately, the trace file is captured on the server so you cannot use it to view the benchmark results unless you execute the benchmark script on your own PC with Personal Oracle. If you execute the benchmark on Personal Oracle, you can use the tkprof program to review the trace results. See the document Oracle10g Database Performance Tuning Guide for details about the SQL Trace Facility.
· To view trace output, you should use the SQL*Plus Autotrace feature. The Autotrace feature generates the same kind of data as the SQL Trace facility, but it only captures trace information for one SQL statement at a time. The Autotrace facility does not capture statistics for SQL statements in stored procedures. Thus, you cannot use the Autotrace feature as an alternative to the SQL Trace Facility. The Autotrace feature displays the statistics and the access plans in the SQL*Plus window while the SQL Trace facility captures the statistics to a file on the server. You have been given the PlusTrace permission to enable you to use the AutoTrace feature. See the document Oracle10g SQL* Plus User’s Guide and Reference for details about the AutoTrace feature.
· Include DROP statements for your table, indexes, sequence, and procedures. It is easiest for me if the DROP statements are in the beginning of your script file.
Grading

Your grade will be determined by the implementation of the benchmark. Here are my grading guidelines:

· I will execute your SQL script or stored procedure on the COBCU2 server. If your benchmark script executes with errors, you will receive at least a 20 point penalty depending on the errors encountered.

· You should test your data generation procedure to make sure that it creates the correct number of values. The values should appear randomly generated for all numeric columns except KSEQ. For the KSEQ column, you should use a sequence or another technique to ensure that the values are unique. For the text columns, you can use constant values or randomly generated values.
· You should make sure that the optimizer statistics are created by querying the Oracle dictionary tables. See the Oracle document Oracle10g Database Performance Tuning Guide for details about verifying your table, column, and index statistics.

· Your data generation procedure should be a stored procedure with a parameter for the number of rows.

· Your queries should be contained inside stored procedures. Use the ALL_ROWS mode in optimizing the queries.
· If your benchmark executes correctly, you will receive full credit if all required elements are present.

· Include DROP statements for your table, indexes, sequence, and procedures. It is easiest for me if the DROP statements are in the beginning of your script file.
· If your benchmark is missing required elements, you will lose points. Here are the breakdown of points:

· Data generation stored procedure with number of rows parameter: 30 points

· CREATE TABLE statement: 10 points

· CREATE INDEX statements: 10 points

· Stored procedures containing queries: 20 points

· Optimizer statistic statements and dictionary queries to verify statistics: 10 points

· Benchmark statistic collection and query execution: 20 points

Completion

Upload a file containing your SQL statements, script statements, and PL/SQL code to the Digital Drop Box part of the Blackboard website Use the following naming scheme for your project file: LastNameFirstNameBenchProject. Try to neatly format your code with some comments so that I can clearly see the different parts of your SQL script and procedures. If there is anything unusual that I need to know to test your benchmark script, please instructions in your script file.
� Chapter 6 of the Benchmark Handbook provides two contradictory specifications of the number of queries. The text specification includes 76 queries in 10 categories. The specification contained in the query results is 69 queries in 10 categories.

� When using the Gather procedures, do not place commas as the first character on a line in a value for the method_opt parameter. The Oracle parser may reject the parameter value with a syntax error. Insert explicit line breaks so that commas do not appear as the first character of a new line.

