Errata

Digital Communications

John G. Proakis and Masoud Salehi

Fifth Edition, McGraw-Hill, 2008
(This is a cumulative errata, many of these have been corrected in recent printings
Revised December 13, 2015
Please report errors to salehi@ece.neu.edu

Page	Location	Incorrect	Correct
25	Eq. 2.1-19	$\int_{-\infty}^{\infty}\|X(f)\|^{2} d t$	$\int_{-\infty}^{\infty}\|X(f)\|^{2} d f$
31	line 12	Equation 2.2-23	Equation 2.2-24
32	Eq. 2.2-34	Change x_{n} to s_{n}	
32	last line	Change $x(t)$ to $s(t)$ and	
35	Fig. 2.2-1	Change the label of the	right from $s_{2}(t)$ to $s_{4}(t)$
41	Eq. 2.3-6	$\frac{b-a}{2}$	$\frac{b+a}{2}$
52	line 6	where	where $m=n / 2$ and
58	line 3	$\alpha \int_{\alpha}^{\infty} x p(x) d x$	$\alpha \int_{\alpha}^{\infty} p(x) d x$
66	Eq. 2.6.29	$(\boldsymbol{z - m})^{\dagger}$	$(\boldsymbol{z}-\boldsymbol{m})^{H}$
69	line 18	38×10^{-23}	1.38×10^{-23}
71	Eq. 2.7-35	$E\left[Z(t+\tau) Z^{*}(t)\right]$	$\begin{gathered} E[(Z(t+\tau)-E[Z(t+\tau)]) \times \\ \left.\left(Z^{*}(t)-E\left[Z^{*}(t)\right]\right)\right] \end{gathered}$
71	Eq. 2.7-35	$E[Z(t+\tau) Z(t)]$	$\begin{aligned} & E[(Z(t+\tau)-E[Z(t+\tau)]) \times \\ & \quad(Z(t)-E[Z(t)])] \end{aligned}$
80	line 7 from bottom	$\|f\|<0$	$\|f\|<f_{0}$
104	Eq. 3.2-36	Substitute r_{m} with $r_{m} \mathcal{g}(t)$ in both lines	
110	line 8 from bottom	Note that $\Delta f=\frac{1}{2 T} \ldots$	Note that $\Delta f=\frac{1}{T} \ldots$
117	Eq. 3.3-10 line 1	$2 \pi f_{d} q(t-n T) I_{n}$	$4 \pi f_{d} T I_{n} q(t-n T)$
124	line 8 from bottom	with a duration $2 T_{b}$,	with a duration $2 T$,
124	line 7 from bottom	again of duration $2 T_{b}$.	again of duration $2 T$, where T is the bit interval.
124	lines 2, 3, 5 from bottom	T_{b}	T
125	Fig. 3.3-12	Change all T_{b} 's to T^{\prime} 's.	

Continued from previous page

Page	Location	Incorrect	Correct				
125	Fig. 3.3-12	$d_{l}(t)$	$d_{I}(t)$				
125	line 11 from bottom	misaligned by T_{b}.	misaligned by T.				
131	3rd line after (3.4-1)	I_{n} is stationary ...	I_{n} is a stationary ...				
172	Eq. 4.4-21	$\boldsymbol{r} \cdot\left(\boldsymbol{s}_{m}-\boldsymbol{s}_{m^{\prime}}\right)>\eta_{m}-\eta_{m^{\prime}}$	$\boldsymbol{r} \cdot\left(\boldsymbol{s}_{m}-\boldsymbol{s}_{m^{\prime}}\right)=\eta_{m^{\prime}}-\eta_{m}$				
172	Eq. 4.2.23	$\\|\boldsymbol{s}\\|^{2}$	$\left\\|\boldsymbol{s}_{m}\right\\|^{2}$				
180	Eq. 4.2-51	$\int_{-\infty}^{\infty} H(f) S(f) e^{j 2 \pi f t} d t$	$\int_{-\infty}^{\infty} H(f) S(f) e^{j 2 \pi f T} d f$				
181	Eq. 4.2-54	Change the first line to $y_{s}^{2}(T)=\left(\int_{-\infty}^{\infty} H(f) S(f) e^{j 2 \pi f T} d f\right)^{2}$					
188	line 10	from $d_{\text {min }}$ from	$d_{\text {min }}$ from				
197	line 9	Change to: This signal constellation is known to be approximately within 0.4 dB of the best eight-point (hexagonal) QAM constellation, which requires the least average power for a given minimum distance between signal points. For more details see Section 4.7.					
207	line 5	$P_{e} \rightarrow \infty$	$P_{e} \rightarrow 0$				
220	line 5	$\sigma_{2}=2 \mathscr{E}_{s} N_{0}$	$\sigma^{2}=2 \mathscr{E}_{S} N_{0}$				
229	line 8	$P_{M}=10^{-5}$	$P_{e}=10^{-5}$				
229	Figure 4.6-1	$P_{M}=10^{-5}$	$P_{e}=10^{-5}$				
236	last line	Change all n 's to 2's.					
237	line 2	Change all n 's to 2's.					
237	line 6	$d_{\text {min }}\left(\boldsymbol{D}_{4}\right)=\sqrt{2}$, and and	$d_{\text {min }}\left(\boldsymbol{D}_{4}\right)=\sqrt{2}, B_{4}=\frac{\pi^{2}}{2}$, and				
237	Equation 4.7-20	$\Delta\left(\boldsymbol{A}_{2}\right)=\frac{B_{n}}{V(\Lambda)}\left(\frac{d_{\min }(\Lambda)}{2}\right)^{n}=$	$\Delta\left(\boldsymbol{D}_{4}\right)=\frac{B_{4}}{V(\Lambda)}\left(\frac{d_{\min }(\Lambda)}{2}\right)^{4}=$				
239	line 8 from bottom	$2 \ell+2$	2ℓ				
268	Figure P4.7	$\frac{1}{\sqrt{2} \sigma} e^{-\|n\| \sqrt{2} / \sigma}$	$\frac{1}{\sqrt{2} \sigma} e^{-\|n\| \sqrt{2} / \sigma}$				
276	line 10	$c_{l} p\left(t-i T_{c}\right)$	$c_{i} p\left(t-i T_{c}\right)$				
283	line 6 from bottom	E_{b}	\mathscr{E}_{b}				
287	line 5	$p(\boldsymbol{y})$	$p(\boldsymbol{R})$				
287	line 9 from bottom	the boundary of this lattice	a boundary for this lattice				
287	line 5 from bottom	$\beta=2 \ell+2$	$\beta=2 \ell$				
287	last line	$\gamma_{s}(\mathcal{R})=1$	$\gamma_{s}(\mathcal{R}) \approx 1$				
333	Property 3 (line 12)	$I(X ; Y) \leq \min \{\|\mathscr{X}\|,\|\mathscr{Y}\|\}$	$I(X ; Y) \leq \min \left\{\log _{2}\|\mathscr{X}\|, \log _{2}\|\mathscr{Y}\|\right\}$				

Continued from previous page

Page	Location	Incorrect	Correct
335	Eq. 6.2-12, second line	$\ldots, X_{n}=x_{n-1}$	$\ldots, X_{n}=x_{n}$
360	Eq. 6.5-21	$2 \frac{P}{W}$	$\frac{P}{2 W}$
360	line 16	a discrete-memoryless	a binary symmetric
362	Eqn. 6.5-29	$1+p \log 2 p+(1-p) \log 2(1-p)$	$1+p \log _{2} p+(1-p) \log _{2}(1-p)$
363	Eqn. 6.5-31	$C=\frac{1}{2} g\left(\frac{A}{\sigma}\right)+\frac{1}{2}\left(-\frac{A}{\sigma}\right)$	$C=\frac{1}{2} g\left(\frac{A}{\sigma}\right)+\frac{1}{2} g\left(-\frac{A}{\sigma}\right)=g\left(\frac{A}{\sigma}\right)$
363	Figure 6.5-5	Substitute the figure with the one shown following the errata table.	
366	Figure 6.5-7	Substitute the figure with the one shown following the errata table.	
396	Problem 6.69	$C \leq \frac{1}{2}\left(C_{1}+C_{2}\right)$	$C<\frac{1}{2}\left(C_{1}+C_{2}\right)$
373	Eq. 6.8-13 line 2	$\sqrt{p(1-p)+(1-p) p}$	$(\sqrt{p(1-p)}+\sqrt{(1-p) p})$
374	Eq. 6.8-15, first line	$\sum_{\boldsymbol{x}_{m} \in \mathscr{X}^{n}} \sum_{\boldsymbol{x}_{m^{\prime} \in \mathscr{X}}{ }^{\text {a }} \text { P } P_{m \rightarrow m^{\prime}} \text { }}$	$\sum_{\boldsymbol{x}_{m} \in \mathscr{X}^{n}} \sum_{\boldsymbol{x}_{m^{\prime} \in \mathscr{X}}} p\left(\boldsymbol{x}_{m}\right) p\left(\boldsymbol{x}_{m^{\prime}}\right) P_{m \rightarrow m^{\prime}}$
376	line 5	Change to: In addition, in these channels the PDF...	
378	lines 8 and 10	$Q\left(\sqrt{R_{0} \gamma_{b}}\right)$	$Q\left(\sqrt{2 R_{0} \gamma_{b}}\right)$
378	line 13	$Q\left(\sqrt{R_{0} \gamma_{b}}\right)$	$Q\left(\sqrt{2 C \gamma_{b}}\right)$
388	Problem 6.38	$R(D)=\log M+\cdots$	$\begin{aligned} & R(D)=\log M-H_{b}(D)-D \log (M-1) \text { for } \\ & 0 \leq D \leq \frac{M-1}{M} \text { and } R(D)=0 \text { otherwise. } \end{aligned}$
390	line 3 from bottom	1.585.	1.585
394	line 13 from bottom	E_{b}	\mathscr{E}_{b}
396	last line	$\epsilon=0.57$	$\epsilon=0.5$
399	line 4 from bottom	$\left(\int_{-\infty}^{\infty} p_{n}(y-\sqrt{\mathscr{E}}) p_{n}(y) d y\right)^{2}$	$\left(\int_{-\infty}^{\infty} \sqrt{p_{n}(y-\sqrt{\mathscr{E}}) p_{n}(y)} d y\right)^{2}$
399	last line	$e^{-\mathscr{E} / N_{0}}$	$e^{-\mathscr{E} / 2 N_{0}}$
406	Table 7.1-3, row 7, col. 7	$X+2+X+1$	$X^{2}+X+1$
414	line 9 from bottom	\boldsymbol{H} has dimension $d_{\text {min }}-1$	\boldsymbol{H} has dimension at least $d_{\text {min }}-1$
421	Eq. 7.3-4	Z^{m-1}	$Z^{2^{m-1}}$
422	line before Ex. 7.3-2	r rows of \boldsymbol{G}_{2} at a time	r rows of \boldsymbol{G}_{1} at a time
430	line before standard array	$n \times(n-k)$	$2^{n-k} \times 2^{k}$
439	line 5	we obtain the result	we obtain the result (see Figure 6.5-5)
440	two lines before Eq. 7.7-1	is equal to $d_{\text {min }}-1$	is at least equal to $d_{\text {min }}-1$
473	line 2	$14 \times 8+2=114$ bits	$15 \times 8+1=121$ bits

Continued on next page

Continued from previous page

Page	Location	Incorrect	Correct
483	line 2	is an Abelian group and	has distinct elements and
487	lines 3, 5 from bottom	$\sum_{i=0}^{n}$	$\sum_{i=0}^{t}$
490	Prob. 7.60 and 7.61	n	N
493	line 15	The Convolutional operation	The convolution operation
508	line 1	nonrecursive systematic codes	nonrecursive nonsystematic codes
508	line 9 from bottom	An (n, k) convolutional code	An ($n, 1$) convolutional code
508	Eq. 8.1-37	$1 \leq i \leq k$	$1 \leq i \leq n$
511	Eq. 8.2-5	$r_{j m c}$	$r_{j m}$
514	Eq. 8.2-16	$(1-p)^{n-k}$	$(1-p)^{d-k}$
515	Eq. 8.2-17	$(1-p)^{n-k}$	$(1-p)^{d-k}$
527	Figure 8.5-1 (caption)	1996	1966
538	last two line	Change D to Z and N to Y	
560	line 2	\ldots. the each codeword each codeword ...
562	line 1	where \boldsymbol{x}_{m}	where each \boldsymbol{x}_{m}
562	line 10	of a M nodes	of M nodes
565	Fig. 8.10-9	Change $\mu_{x_{1}-g}$ to $\mu_{x_{1} \rightarrow g}, \mu_{x_{n}-g}$ to $\mu_{x_{n} \rightarrow g}$, and $\mu_{g-x_{i}}$ to $\mu_{g \rightarrow x_{i}}$	
593	line 5	$\sum_{j}\left\|\boldsymbol{r}_{j}-\boldsymbol{c}_{j}\right\|$	$\sum_{j}\left\|r_{j}-c_{j}\right\|$
593	line 6	Find an upper bound ...	Assuming $\mathscr{E}_{C}=1$,
617	Eq. 9.2-66, second line	$\mathrm{P}[\ldots \mid B=-2(M-2) d]$	$\mathrm{P}[\ldots \mid B=-2(M-1) d]$
674	3rd line in Problem 9.1	$A(f) e^{j \theta(f)}$	$A(f) e^{-j \theta(f)}$
595	Prob. 8.23	Change to $\boldsymbol{r}=(0.3,0.2,1,-1.2,1.2,1.7,0.3,-0.6)$	
832	line 7	Equation 14.1-1	Equation 13.1-1
885	line 9	where F_{d}	where f_{m}
889	in Fig. 13.6-3 (twice)	$T F_{d}$	$T f_{m}$
896	line 10 from bottom	$r(t)$	$r_{1}(t)$
927	line 6 from bottom	If coding affects only ...	If fading affects only ...
947	Eq. 14.7-13	$p_{b}<$	$P_{b}<$
961	line 9	by ?)	by Tse and Viswanath (2004)

Continued from previous page

Page	Location	Incorrect	Correct
964	line 2	$\sqrt{1-\alpha}$	$\sqrt{1-\alpha^{2}}$
964	Problem 14.13 line 2	PSK	FSK
964	line 3 from bottom	$\left\|x_{i}-\hat{x}_{i}\right\|^{2}$	$\sigma^{2}\left\|x_{i}-\hat{x}_{i}\right\|^{2}$
987	Eq. $15.2-21$	$\frac{(\pi / 2)^{N(N-1)}}{\left[\Gamma_{N}(N)\right]^{2}} \exp \ldots$	$\frac{(\pi / 2)^{N(N-1)}}{N!\left[\Gamma_{N}(N)\right]^{2}}$ exp \ldots
1009	line 18	$($ see Problem 15.15)	$($ see Problem 15.14)
1022	line 8	MIMO	SIMO
1022	line 16	C	\bar{C}
1023	line 17	$\boldsymbol{y}^{\prime}=\Sigma \boldsymbol{s}+\boldsymbol{\eta}^{\prime}$	$\boldsymbol{y}^{\prime}=\Sigma \boldsymbol{s}^{\prime}+\boldsymbol{\eta}^{\prime}$
1023	line 19	\ldots channel matrix \boldsymbol{H}	\ldots channel matrix \boldsymbol{H} and $\boldsymbol{s}^{\prime}=\boldsymbol{V}^{H} \boldsymbol{s}$
1025	Problem 15.13	01101001110010	011010011100
1025	Problem 15.15	C	\boldsymbol{G}
1091	Eq. B-6	$w=\frac{A \mu_{x x}+B \mu_{y y}+C \mu_{x y}^{*}+C^{*} \mu_{x y}}{\ldots}$	$w=\frac{A \mu_{x x}+B \mu_{y y}+C^{*} \mu_{x y}^{*}+C \mu_{x y}}{\ldots}$
1091	Eq. B-6	$\alpha_{2 k}=\cdots+C \bar{X}_{k}^{*} \bar{Y}_{k}+C^{*} \bar{X}_{k} \bar{Y}_{k}^{*}$	$\alpha_{2 k}=\cdots+C^{*} \bar{X}_{k}^{*} \bar{Y}_{k}+C \bar{X}_{k} \bar{Y}_{k}^{*}$
1118	Last reference	Remove this reference, instead refer to the second reference on page 1119.	

C

Figure 6.5-5: The capacity plot versus SNR per bit.

Figure 6.5-7: The capacity of a discrete-time AWGN channel.

