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C H A P T E R

3

RESISTIVE NETWORK ANALYSIS

hapter 3 illustrates the fundamental techniques for the analysis of resistive
circuits. The chapter begins with the definition of network variables and of
network analysis problems. Next, the two most widely applied methods—
node analysis and mesh analysis—are introduced. These are the most gener-

ally applicable circuit solution techniques used to derive the equations of all electric
circuits; their application to resistive circuits in this chapter is intended to acquaint
you with these methods, which are used throughout the book. The second solution
method presented is based on the principle of superposition, which is applicable only
to linear circuits. Next, the concept of Thévenin and Norton equivalent circuits is
explored, which leads to a discussion of maximum power transfer in electric circuits
and facilitates the ensuing discussion of nonlinear loads and load-line analysis. At
the conclusion of the chapter, you should have developed confidence in your ability
to compute numerical solutions for a wide range of resistive circuits. The following
box outlines the principal learning objectives of the chapter.
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82 Chapter 3 Resistive Network Analysis

➲ Learning Objectives

1. Compute the solution of circuits containing linear resistors and independent and
dependent sources by using node analysis. Sections 3.2 and 3.4.

2. Compute the solution of circuits containing linear resistors and independent and
dependent sources by using mesh analysis. Sections 3.3 and 3.4.

3. Apply the principle of superposition to linear circuits containing independent sources.
Section 3.5.

4. Compute Thévenin and Norton equivalent circuits for networks containing linear
resistors and independent and dependent sources. Section 3.6.

5. Use equivalent-circuit ideas to compute the maximum power transfer between a
source and a load. Section 3.7.

6. Use the concept of equivalent circuit to determine voltage, current, and power for
nonlinear loads by using load-line analysis and analytical methods. Section 3.8.

3.1 Network Analysis

The analysis of an electric network consists of determining each of the unknown
branch currents and node voltages. It is therefore important to define all the rele-
vant variables as clearly as possible, and in systematic fashion. Once the known and
unknown variables have been identified, a set of equations relating these variables
is constructed, and these equations are solved by means of suitable techniques. The
analysis of electric circuits consists of writing the smallest set of equations sufficient
to solve for all the unknown variables. The procedures required to write these equa-
tions are the subject of Chapter 3 and are very well documented and codified in the
form of simple rules. The analysis of electric circuits is greatly simplified if some
standard conventions are followed.

Example 3.1 defines all the voltages and currents that are associated with a
specific circuit.

EXAMPLE 3.1

Problem

Identify the branch and node voltages and the loop and mesh currents in the circuit of Figure 3.1.

Solution

The following node voltages may be identified:

Node voltages Branch voltages

va = vS (source voltage) vS = va − vd = va
vb = vR2 vR1 = va − vb
vc = vR4 vR2 = vb − vd = vb
vd = 0 (ground) vR3 = vb − vc

vR4 = vc − vd = vc

vR4

+
_ ia ib

d

a b c

R1

R4

vR1

R2 

+

_

+

_

+ _ + _

vS

ic

+

_

vR3

vR2

Figure 3.1

Comments: Currents ia , ib, and ic are loop currents, but only ia and ib are mesh currents.
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Part I Circuits 83

MAKE THE
CONNECTION

Thermal Systems

A useful analogy can be
found between electric cir-
cuits and thermal systems.
The table below illustrates
the correspondence be-
tween electric circuit var-
iables and thermal system
variables, showing that the
difference in electrical po-
tential is analogous to the
temperature difference be-
tween two bodies. When-
ever there is a temperature
difference between two bod-
ies, Newton’s law of cooling
requires that heat flow from
the warmer body to the
cooler one. The flow of heat
is therefore analogous to the
flow of current. Heat flow
can take place based on
one of three mechanisms:
(1) conduction, (2) convec-
tion, and (3) radiation. In this
sidebar we only consider
the first two, for simplicity.

Electrical Thermal
variable variable

Voltage Temperature
difference difference
v, [V] �T, [◦C]

Current Heat flux
i, A q, [W]

Resistance Thermal
R, [�/m] resistance

Rt [◦C/W]

Resistivity Conduction
ρ, [�/m] heat-transfer

coefficient

k,

[
W

m − ◦C

]
(No exact Convection
electrical heat-transfer
analogy) coefficient, or

film coefficient
of heat-transfer

h,

[
W

m2 − ◦C

]

In the example, we have identified a total of 9 variables! It should be clear that
some method is needed to organize the wealth of information that can be generated
simply by applying Ohm’s law at each branch in a circuit. What would be desirable at
this point is a means of reducing the number of equations needed to solve a circuit to the
minimum necessary, that is, a method for obtaining N equations in N unknowns. The
remainder of the chapter is devoted to the development of systematic circuit analysis
methods that will greatly simplify the solution of electrical network problems.

3.2 THE NODE VOLTAGE METHOD

Node voltage analysis is the most general method for the analysis of electric circuits.
In this section, its application to linear resistive circuits is illustrated. The node voltage
method is based on defining the voltage at each node as an independent variable. One
of the nodes is selected as a reference node (usually—but not necessarily—ground),
and each of the other node voltages is referenced to this node. Once each node voltage
is defined, Ohm’s law may be applied between any two adjacent nodes to determine
the current flowing in each branch. In the node voltage method, each branch current
is expressed in terms of one or more node voltages; thus, currents do not explicitly
enter into the equations. Figure 3.2 illustrates how to define branch currents in this
method. You may recall a similar description given in Chapter 2.

Once each branch current is defined in terms of the node voltages, Kirchhoff’s
current law is applied at each node:∑

i = 0 (3.1)

Figure 3.3 illustrates this procedure.

i

R
va vb

i =
va – vb

R

In the node voltage method, we 
assign the node voltages va and vb; 
the branch current flowing from a 
to b is then expressed in terms of 
these node voltages.

Figure 3.2 Branch current
formulation in node analysis

i1

R1
va

vb

i3

vc

vd

R3

R2

i2

By KCL: i1 – i2 – i3 = 0. In the node 
voltage method, we express KCL by 

va – vb

R1
–

vb – vc

R2
–

vb – vd

R3
= 0

–+–+

–

+

Figure 3.3 Use of KCL in
node analysis

The systematic application of this method to a circuit with n nodes leads to
writing n linear equations. However, one of the node voltages is the reference voltage
and is therefore already known, since it is usually assumed to be zero (recall that
the choice of reference voltage is dictated mostly by convenience, as explained in
Chapter 2). Thus, we can write n − 1 independent linear equations in the n − 1 inde-
pendent variables (the node voltages). Node analysis provides the minimum number
of equations required to solve the circuit, since any branch voltage or current may be
determined from knowledge of node voltages.
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MAKE THE
CONNECTION

Thermal
Resistance

To explain thermal resis-
tance, consider a heat treat-
ed engine crankshaft that
has just completed some
thermal treatment. Assume
that the shaft is to be
quenched in a water bath at
ambient temperature (see
the figure below). Heat flows
from within the shaft to the
surface of the shaft, and
then from the shaft surface
to the water. This process
continues until the tempera-
ture of the shaft is equal to
that of the water.

The first mode of heat
transfer in the above de-
scription is called conduc-
tion, and it occurs because
the thermal conductivity of
steel causes heat to flow
from the higher temperature
inner core to the lower-
temperature surface. The
heat transfer conduction
coefficient k is analogous to
the resistivity ρ of an electric
conductor.

The second mode of
heat transfer, convection,
takes place at the boundary
of two dissimilar materials
(steel and water here). Heat
transfer between the shaft
and water is dependent on
the surface area of the shaft
in contact with the water A
and is determined by the
heat transfer convection
coefficient h.

Tshaft Twater

Engine crankshaft
quenched in water bath.

The node analysis method may also be defined as a sequence of steps, as outlined
in the following box:

➲

LO1
F O C U S O N M E T H O D O L O G Y

NODE VOLTAGE ANALYSIS METHOD

1. Select a reference node (usually ground). This node usually has most
elements tied to it. All other nodes are referenced to this node.

2. Define the remaining n − 1 node voltages as the independent or dependent
variables. Each of the m voltage sources in the circuit is associated with a
dependent variable. If a node is not connected to a voltage source, then its
voltage is treated as an independent variable.

3. Apply KCL at each node labeled as an independent variable, expressing
each current in terms of the adjacent node voltages.

4. Solve the linear system of n − 1 − m unknowns.

Following the procedure outlined in the box guarantees that the correct solution to a
given circuit will be found, provided that the nodes are properly identified and KCL
is applied consistently. As an illustration of the method, consider the circuit shown in
Figure 3.4. The circuit is shown in two different forms to illustrate equivalent graphical
representations of the same circuit. The circuit on the right leaves no question where
the nodes are. The direction of current flow is selected arbitrarily (assuming that iS is
a positive current). Application of KCL at node a yields

iS − i1 − i2 = 0 (3.2)

whereas at node b

i2 − i3 = 0 (3.3)

It is instructive to verify (at least the first time the method is applied) that it is not
necessary to apply KCL at the reference node. The equation obtained at node c,

i1 + i3 − iS = 0 (3.4)

is not independent of equations 3.2 and 3.3; in fact, it may be obtained by adding the

i1

R1

va vb

i3

vc = 0

iS R3

R2

i2

R1 R3

R2
Node a Node b

Node c

iS

iS

–+

–

+ +

–

Figure 3.4 Illustration of node analysis

*(866) 487-8889*

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only



September 23, 2005 17:13 riz63473_ch03 Sheet number 5 Page number 85 magenta black

Part I Circuits 85

MAKE THE
CONNECTION

Thermal Circuit
Model

The conduction resistance
of the shaft is described by
the following equation:

q = k A1

L
�T

Rcond = �T

q
= L

k A1

where A1 is a cross section-
al area and L is the distance
from the inner core to the
surface. The convection re-
sistance is described by a
similar equation, in which
convective heat flow is de-
scribed by the film coef-
ficient of heat transfer, h:

q = h A2�T

Rconv = �T

q
= 1

h A2

where A2 is the surface area
of the shaft in contact with
the water. The equivalent
thermal resistance and the
overall circuit model of the
crankshaft quenching
process are shown in the
figures below.

q

Rcond Rconv
TwaterTshaft

Thermal resistance
representation of quenching

process

Rcond

Rconv

∆T q+
−

Electrical circuit
representing the quenching

process

equations obtained at nodes a and b (verify this, as an exercise). This observation
confirms the statement made earlier:

In a circuit containing n nodes, we can write at most n − 1 independent
equations.➲LO1

Now, in applying the node voltage method, the currents i1, i2, and i3 are expressed as
functions of va , vb, and vc, the independent variables. Ohm’s law requires that i1, for
example, be given by

i1 = va − vc

R1
(3.5)

since it is the potential difference va −vc across R1 that causes current i1 to flow from
node a to node c. Similarly,

i2 = va − vb

R2

i3 = vb − vc

R3

(3.6)

Substituting the expression for the three currents in the nodal equations (equations
3.2 and 3.3), we obtain the following relationships:

iS − va

R1
− va − vb

R2
= 0 (3.7)

va − vb

R2
− vb

R3
= 0 (3.8)

Equations 3.7 and 3.8 may be obtained directly from the circuit, with a little practice.
Note that these equations may be solved for va and vb, assuming that iS , R1, R2, and
R3 are known. The same equations may be reformulated as follows:(

1

R1
+ 1

R2

)
va +

(
− 1

R2

)
vb = iS

(
− 1

R2

)
va +

(
1

R2
+ 1

R3

)
vb = 0

(3.9)

Examples 3.2 through 3.4 further illustrate the application of the method.

EXAMPLE 3.2 Node Analysis➲LO1
Problem

Solve for all unknown currents and voltages in the circuit of Figure 3.5.

Solution

Known Quantities: Source currents, resistor values.
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86 Chapter 3 Resistive Network Analysis

Find: All node voltages and branch currents.

Schematics, Diagrams, Circuits, and Given Data: I1 = 10 mA; I2 = 50 mA;
R1 = 1 k�; R2 = 2 k�; R3 = 10 k�; R4 = 2 k�.

Analysis: We follow the steps outlined in the Focus on Methodology box:

1. The reference (ground) node is chosen to be the node at the bottom of the circuit.

2. The circuit of Figure 3.5 is shown again in Figure 3.6, and two nodes are also shown in
the figure. Thus, there are two independent variables in this circuit: v1, v2.

I2I1

R4R1

R2

R3

Figure 3.5

I2I1

R4R1

R2

R3
Node 1

I2I1

R4R1

R2

R3
Node 2

0 V

0 V

–+

–+

–+

–+

+

–

+

–

Figure 3.6

3. Applying KCL at nodes 1 and 2, we obtain

I1 − v1 − 0

R1
− v1 − v2

R2
− v1 − v2

R3
= 0 node 1

v1 − v2

R2
+ v1 − v2

R3
− v2 − 0

R4
− I2 = 0 node 2

Now we can write the same equations more systematically as a function of the unknown
node voltages, as was done in equation 3.9.(

1

R1
+ 1

R2
+ 1

R3

)
v1 +

(
− 1

R2
− 1

R3

)
v2 = I1 node 1

(
− 1

R2
− 1

R3

)
v1 +

(
1

R2
+ 1

R3
+ 1

R4

)
v2 = −I2 node 2

4. We finally solve the system of equations. With some manipulation, the equations finally
lead to the following form:

1.6v1 − 0.6v2 = 10

−0.6v1 + 1.1v2 = −50
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These equations may be solved simultaneously to obtain

v1 = −13.57 V

v2 = −52.86 V

Knowing the node voltages, we can determine each of the branch currents and voltages
in the circuit. For example, the current through the 10-k� resistor is given by

i10 k� = v1 − v2

10,000
= 3.93 mA

indicating that the initial (arbitrary) choice of direction for this current was the same as
the actual direction of current flow. As another example, consider the current through the
1-k� resistor:

i1 k� = v1

1,000
= −13.57 mA

In this case, the current is negative, indicating that current actually flows from ground
to node 1, as it should, since the voltage at node 1 is negative with respect to ground.
You may continue the branch-by-branch analysis started in this example to verify that the
solution obtained in the example is indeed correct.

Comments: Note that we have chosen to assign a plus sign to currents entering a node and
a minus sign to currents exiting a node; this choice is arbitrary (we could use the opposite
convention), but we shall use it consistently in this book.

EXAMPLE 3.3 Node Analysis

➲

LO1
Problem

Write the nodal equations and solve for the node voltages in the circuit of Figure 3.7.

R1

R2

ia R3 ib R4

Figure 3.7

Solution

Known Quantities: Source currents, resistor values.

Find: All node voltages and branch currents.

Schematics, Diagrams, Circuits, and Given Data: ia = 1 mA; ib = 2 mA; R1 = 1 k�;
R2 = 500 �; R3 = 2.2 k�; R4 = 4.7 k�.

Analysis: We follow the steps of the Focus on Methodology box.

1. The reference (ground) node is chosen to be the node at the bottom of the circuit.

2. See Figure 3.8. Two nodes remain after the selection of the reference node. Let us label
these a and b and define voltages va and vb. Both nodes are associated with independent
variables. R1

R2

ia R3 ib R4

i2i1

i3

i4

va vb

0 V

–+

+

–

+

–

+

–

Figure 3.8

3. We apply KCL at each of nodes a and b:

ia − va

R1
− va − vb

R2
= 0 node a

va − vb

R2
+ ib − vb

R3
− vb

R4
= 0 node b
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88 Chapter 3 Resistive Network Analysis

and rewrite the equations to obtain a linear system:(
1

R1
+ 1

R2

)
va +

(
− 1

R2

)
vb = ia

(
− 1

R2

)
va +

(
1

R2
+ 1

R3
+ 1

R4

)
vb = ib

4. Substituting the numerical values in these equations, we get

3 × 10−3va − 2 × 10−3vb = 1 × 10−3

−2 × 10−3va + 2.67 × 10−3vb = 2 × 10−3

or 3va − 2vb = 1

−2va + 2.67vb = 2

The solution va = 1.667 V, vb = 2 V may then be obtained by solving the system of
equations.

EXAMPLE 3.4 Solution of Linear System of Equations Using
Cramer’s Rule➲LO1

Problem

Solve the circuit equations obtained in Example 3.3, using Cramer’s rule (see Appendix A).

Solution

Known Quantities: Linear system of equations.

Find: Node voltages.

Analysis: The system of equations generated in Example 3.3 may also be solved by using
linear algebra methods, by recognizing that the system of equations can be written as[

3 −2
−2 2.67

] [
va

vb

]
=

[
1
2

]

By using Cramer’s rule (see Appendix A), the solution for the two unknown variables va and
vb can be written as follows:

va =

∣∣∣∣ 1 −2
2 2.67

∣∣∣∣∣∣∣∣ 3 −2
−2 2.67

∣∣∣∣
= (1)(2.67) − (−2)(2)

(3)(2.67) − (−2)(−2)
= 6.67

4
= 1.667 V

vb =

∣∣∣∣ 3 1
−2 2

∣∣∣∣∣∣∣∣ 3 −2
−2 2.67

∣∣∣∣
= (3)(2) − (−2)(1)

(3)(2.67) − (−2)(−2)
= 8

4
= 2 V

The result is the same as in Example 3.3.

Comments: While Cramer’s rule is an efficient solution method for simple circuits (e.g.,
two nodes), it is customary to use computer-aided methods for larger circuits. Once the nodal
equations have been set in the general form presented in equation 3.9, a variety of computer
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aids may be employed to compute the solution. You will find the solution to the same example
computed using MathCadTM in the electronic files that accompany this book.

CHECK YOUR UNDERSTANDING

Find the current iL in the circuit shown on the left, using the node voltage method.

iL100 Ω 50 Ω

75 Ω50 Ω1 A

10 Ω 30 Ω

20 Ω20 Ω10 V 2 A

vx– +

Find the voltage vx by the node voltage method for the circuit shown on the right.
Show that the answer to Example 3.3 is correct by applying KCL at one or more nodes.

Answers:0.2857A;−18V
EXAMPLE 3.5

➲
LO1

Problem

Use the node voltage analysis to determine the voltage v in the circuit of Figure 3.9. Assume
that R1 = 2 �, R2 = 1 �, R3 = 4 �, R4 = 3 �, I1 = 2 A, and I2 = 3 A.

I1

I2
v2v1

R4R3

R1

R2

–

+
v

v3

Figure 3.9 Circuit for
Example 3.5

Solution

Known Quantities: Values of the resistors and the current sources.

Find: Voltage across R3.

Analysis: Once again, we follow the steps outlined in the Focus on Methodology box.

1. The reference node is denoted in Figure 3.9.

2. Next, we define the three node voltages v1, v2, v3, as shown in Figure 3.9.

3. Apply KCL at each of the n − 1 nodes, expressing each current in terms of the adjacent
node voltages.

v3 − v1

R1
+ v2 − v1

R2
− I1 = 0 node 1

v1 − v2

R2
− v2

R3
+ I2 = 0 node 2

v1 − v3

R1
− v3

R4
− I2 = 0 node 3

4. Solve the linear system of n −1−m unknowns. Finally, we write the system of equations
resulting from the application of KCL at the three nodes associated with independent
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variables:

(−1 − 2)v1 + 2v2 + 1v3 = 4 node 1

4v1 + (−1 − 4)v2 + 0v3 = −12 node 2

3v1 + 0v2 + (−2 − 3)v3 = 18 node 3

The resulting system of three equations in three unknowns can now be solved. Starting
with the node 2 and node 3 equations, we write

v2 = 4v1 + 12

5

v3 = 3v1 − 18

5

Substituting each of variables v2 and v3 into the node 1 equation and solving for v1 provides

−3v1 + 2 · 4v1 + 12

5
+ 1 · 3v1 − 18

5
= 4 ⇒ v1 = −3.5 V

After substituting v1 into the node 2 and node 3 equations, we obtain

v2 = −0.4 V and v3 = −5.7 V

Therefore, we find

v = v2 = −0.4 V

Comments: Note that we have chosen to assign a plus sign to currents entering a node and
a minus sign to currents exiting a node; this choice is arbitrary (the opposite sign convention
could be used), but we shall use it consistently in this book.

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 3.5 when the direction of the current sources becomes the
opposite. Find v.

Answer:v=0.4V

Node Analysis with Voltage Sources

In the preceding examples, we considered exclusively circuits containing current
➲LO1

sources. It is natural that one will also encounter circuits containing voltage sources,
in practice. The circuit of Figure 3.10 is used to illustrate how node analysis is applied
to a circuit containing voltage sources. Once again, we follow the steps outlined in
the Focus on Methodology box.

Step 1: Select a reference node (usually ground). This node usually has most
elements tied to it. All other nodes will be referenced to this node.

The reference node is denoted by the ground symbol in Figure 3.10.

Step 2: Define the remaining n − 1 node voltages as the independent or dependent
variables. Each of the m voltage sources in the circuit will be associated with a
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dependent variable. If a node is not connected to a voltage source, then its voltage is
treated as an independent variable.

R2

R1

vS R4

va vc

iS

R3

+
_

vb

Figure 3.10 Node analysis
with voltage sources

Next, we define the three node voltages va, vb, vc, as shown in Figure 3.10. We note
that va is a dependent voltage. We write a simple equation for this dependent voltage,
noting that va is equal to the source voltage vS: va = vS.

Step 3: Apply KCL at each node labeled as an independent variable, expressing
each current in terms of the adjacent node voltages.

We apply KCL at the two nodes associated with the independent variables vb and vc:

At node b:

or

va − vb

R1
− vb − 0

R2
− vb − vc

R3
= 0

vS − vb

R1
− vb

R2
− vb − vc

R3
= 0

(3.10a)

At node c:

vb − vc

R3
− vc

R4
+ iS = 0 (3.10b)

Step 4: Solve the linear system of n − 1 − m unknowns.

Finally, we write the system of equations resulting from the application of KCL at
the two nodes associated with independent variables:(

1

R1
+ 1

R2
+ 1

R3

)
vb +

(
− 1

R3

)
vc = 1

R1
vs(

− 1

R3

)
vb +

(
1

R3
+ 1

R4

)
vc = iS

(3.11)

The resulting system of two equations in two unknowns can now be solved.

EXAMPLE 3.6

➲

LO1

Problem

Use node analysis to determine the current i flowing through the voltage source in the circuit
of Figure 3.11. Assume that R1 = 2 �, R2 = 2 �, R3 = 4 �, R4 = 3 �, I = 2 A, and
V = 3 V.

I

v2v1 v3V

R4R3

R1

R2

i

− +

Figure 3.11 Circuit for
Example 3.6

Solution

Known Quantities: Resistance values; current and voltage source values.

Find: The current i through the voltage source.

Analysis: Once again, we follow the steps outlined in the Focus on Methodology box.

1. The reference node is denoted in Figure 3.11.

2. We define the three node voltages v1, v2, and v3, as shown in Figure 3.11. We note that
v2 and v3 are dependent on each other. One way to represent this dependency is to treat v2
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92 Chapter 3 Resistive Network Analysis

as an independent voltage and to observe that v3 = v2 + 3 V, since the potential at node
3 must be 3 V higher than at node 2 by virtue of the presence of the voltage source. Note
that since we have an expression for the voltage at node 3 in terms of v2, we will only
need to write two nodal equations to solve this three-node circuit.

3. We apply KCL at the two nodes associated with the independent variables v1 and v2:

v3 − v1

R1
+ v2 − v1

R2
− I = 0 node 1

v1 − v2

R2
− v2

R3
− i = 0 node 2

where i = v3 − v1

R1
+ v3

R4

Rearranging the node 2 equation by substituting the value of i yields

v1 − v2

R2
− v2

R3
− v3 − v1

R1
− v3

R4
= 0 node 2

4. Finally, we write the system of equations resulting from the application of KCL at the two
nodes associated with independent variables:

−2v1 + 1v2 + 1v3 = 4 node 1

12v1 + (−9)v2 + (−10)v3 = 0 node 2

Considering that v3 = v2 + 3 V, we write

−2v1 + 2v2 = 1

12v1 + (−19)v2 = 30

The resulting system of the two equations in two unknowns can now be solved. Solving
the two equations for v1 and v2 gives

v1 = −5.64 V and v2 = −5.14 V

This provides

v3 = v2 + 3 V = −2.14 V

Therefore, the current through the voltage source i is

i = v3 − v1

R1
+ v3

R4
= −2.14 + 5.64

2
+ −2.14

3
= 1.04 A

Comments: Knowing all the three node voltages, we now can compute the current flowing
through each of the resistances as follows: i1 = |v3 − v1|/R1 (to left), i2 = |v2 − v1|/R2 (to
left), i3 = |v2|/R3 (upward), and i4 = |v3|/R4 (upward).

CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 3.6 when the direction of the current source becomes the
opposite. Find the node voltages and i .

Answer:v1=5.21V,v2=1.71V,v3=4.71V,andi=1.32A
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3.3 THE MESH CURRENT METHOD

The second method of circuit analysis discussed in this chapter employs mesh cur-
rents as the independent variables. The idea is to write the appropriate number of
independent equations, using mesh currents as the independent variables. Subsequent
application of Kirchhoff’s voltage law around each mesh provides the desired system
of equations.

i

vR+ –

R

The current i, defined as flowing 
from left to right, establishes the 
polarity of the voltage across R.

Figure 3.12 Basic
principle of mesh analysis

In the mesh current method, we observe that a current flowing through a re-
sistor in a specified direction defines the polarity of the voltage across the resistor,
as illustrated in Figure 3.12, and that the sum of the voltages around a closed circuit
must equal zero, by KVL. Once a convention is established regarding the direction of
current flow around a mesh, simple application of KVL provides the desired equation.
Figure 3.13 illustrates this point.

The number of equations one obtains by this technique is equal to the number of
meshes in the circuit. All branch currents and voltages may subsequently be obtained
from the mesh currents, as will presently be shown. Since meshes are easily identified
in a circuit, this method provides a very efficient and systematic procedure for the
analysis of electric circuits. The following box outlines the procedure used in applying
the mesh current method to a linear circuit.

v1 R3

+

–

v3
i

R2
+

–

v2+ –

A mesh

Once the direction of current flow 
has been selected, KVL requires 
that v1 – v2 – v3 = 0.

Figure 3.13 Use of KVL
in mesh analysis

In mesh analysis, it is important to be consistent in choosing the direction
of current flow. To avoid confusion in writing the circuit equations, unknown mesh
currents are defined exclusively clockwise when we are using this method. To illustrate
the mesh current method, consider the simple two-mesh circuit shown in Figure 3.14.
This circuit is used to generate two equations in the two unknowns, the mesh currents i1

and i2. It is instructive to first consider each mesh by itself. Beginning with mesh 1, note
that the voltages around the mesh have been assigned in Figure 3.15 according to the
direction of the mesh current i1. Recall that as long as signs are assigned consistently,
an arbitrary direction may be assumed for any current in a circuit; if the resulting
numerical answer for the current is negative, then the chosen reference direction is
opposite to the direction of actual current flow. Thus, one need not be concerned about
the actual direction of current flow in mesh analysis, once the directions of the mesh
currents have been assigned. The correct solution will result, eventually.

R3

R4vS

R1

R2
+
_ i1 i2

Figure 3.14 A two-mesh
circuit

R3

R4vS

R1

R2
+
_ i1 i2v2

v1
+ –

+

–

Mesh 1: KVL requires that
vS – v1 – v2 = 0, where v1 = i1R1,
v2 = (i1 – i2)R1.

Figure 3.15 Assignment of
currents and voltages around
mesh 1

According to the sign convention, then, the voltages v1 and v2 are defined as
shown in Figure 3.15. Now, it is important to observe that while mesh current i1 is equal
to the current flowing through resistor R1 (and is therefore also the branch current
through R1), it is not equal to the current through R2. The branch current through R2

is the difference between the two mesh currents i1 − i2. Thus, since the polarity of
voltage v2 has already been assigned, according to the convention discussed in the
previous paragraph, it follows that the voltage v2 is given by

v2 = (i1 − i2)R2 (3.12)

Finally, the complete expression for mesh 1 is

vS − i1 R1 − (i1 − i2)R2 = 0 (3.13)

The same line of reasoning applies to the second mesh. Figure 3.16 depicts
the voltage assignment around the second mesh, following the clockwise direction of
mesh current i2. The mesh current i2 is also the branch current through resistors R3

and R4; however, the current through the resistor that is shared by the two meshes,
denoted by R2, is now equal to i2 − i1; the voltage across this resistor is

v2 = (i2 − i1)R2 (3.14)
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and the complete expression for mesh 2 is

(i2 − i1)R2 + i2 R3 + i2 R4 = 0 (3.15)

Why is the expression for v2 obtained in equation 3.14 different from equation
3.12? The reason for this apparent discrepancy is that the voltage assignment for each
mesh was dictated by the (clockwise) mesh current. Thus, since the mesh currents
flow through R2 in opposing directions, the voltage assignments for v2 in the two
meshes are also opposite. This is perhaps a potential source of confusion in applying
the mesh current method; you should be very careful to carry out the assignment of
the voltages around each mesh separately.

R3

R4vS

R1

R2
+
_ i1 i2v2

v3
+ –

+

–
v4

+

–

Mesh 2: KVL requires that

v2 + v3 + v4 = 0

where

v2 = (i2 – i1)R2

v3 = i2R3

v4 = i2R4

Figure 3.16 Assignment of
currents and voltages around
mesh 2

Combining the equations for the two meshes, we obtain the following system
of equations:

(R1 + R2)i1 − R2i2 = vS

−R2i1 + (R2 + R3 + R4)i2 = 0
(3.16)

These equations may be solved simultaneously to obtain the desired solution, namely,
the mesh currents i1 and i2. You should verify that knowledge of the mesh currents
permits determination of all the other voltages and currents in the circuit. Examples
3.7, 3.8 and 3.9 further illustrate some of the details of this method.

➲LO2

F O C U S O N M E T H O D O L O G Y

MESH CURRENT ANALYSIS METHOD

1. Define each mesh current consistently. Unknown mesh currents will be
always defined in the clockwise direction; known mesh currents (i.e.,
when a current source is present) will always be defined in the direction of
the current source.

2. In a circuit with n meshes and m current sources, n − m independent
equations will result. The unknown mesh currents are the n − m
independent variables.

3. Apply KVL to each mesh containing an unknown mesh current,
expressing each voltage in terms of one or more mesh currents.

4. Solve the linear system of n − m unknowns.

EXAMPLE 3.7 Mesh Analysis➲LO2
Problem

Find the mesh currents in the circuit of Figure 3.17.

R2

R3

R4

V1

R1

+
_

+
_

+
_V2 V3

Figure 3.17

Solution

Known Quantities: Source voltages; resistor values.

Find: Mesh currents.
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Schematics, Diagrams, Circuits, and Given Data: V1 = 10 V; V2 = 9 V; V3 = 1 V;
R1 = 5 �; R2 = 10 �; R3 = 5 �; R4 = 5 �.

Analysis: We follow the steps outlined in the Focus on Methodology box.

1. Assume clockwise mesh currents i1 and i2.

2. The circuit of Figure 3.17 will yield two equations in the two unknowns i1 and i2.

3. It is instructive to consider each mesh separately in writing the mesh equations; to this end,
Figure 3.18 depicts the appropriate voltage assignments around the two meshes, based
on the assumed directions of the mesh currents. From Figure 3.18, we write the mesh
equations:

V1 − R1i1 − V2 − R2(i1 − i2) = 0

R2(i1 − i2) + V2 − R3i2 − V3 − R4i2 = 0

Rearranging the linear system of the equation, we obtain

15i1 − 10i2 = 1

−10i1 + 20i2 = 8

4. The equations above can be solved to obtain i1 and i2:

i1 = 0.5 A and i2 = 0.65 A

R4

R3

V1

R1

+
_

+
_

+
_ V2

i1 i2

R2

V3

+

–
v2

+ –v1

v1

R4

R3

V1

R1

+
_

+
_

+
_ V2

i1 i2

R2

V3

+ –

+

–
v4

+

–
v2

+ –v3

Analysis of mesh 1

Analysis of mesh 2

Figure 3.18

Comments: Note how the voltage v2 across resistor R2 has different polarity in Figure 3.18,
depending on whether we are working in mesh 1 or mesh 2.

EXAMPLE 3.8 Mesh Analysis

➲

LO2
Problem

Write the mesh current equations for the circuit of Figure 3.19.

R3

V2V1

R1

R2

i1 i2

i3

R4

+
_+

_

Figure 3.19

Solution

Known Quantities: Source voltages; resistor values.

Find: Mesh current equations.

Schematics, Diagrams, Circuits, and Given Data: V1 = 12 V; V2 = 6 V; R1 = 3 �;
R2 = 8 �; R3 = 6 �; R4 = 4 �.

Analysis: We follow the Focus on Methodology steps.

1. Assume clockwise mesh currents i1, i2, and i3.

2. We recognize three independent variables, since there are no current sources. Starting
from mesh 1, we apply KVL to obtain

V1 − R1(i1 − i3) − R2(i1 − i2) = 0

KVL applied to mesh 2 yields

−R2(i2 − i1) − R3(i2 − i3) + V2 = 0

while in mesh 3 we find

−R1(i3 − i1) − R4i3 − R3(i3 − i2) = 0
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These equations can be rearranged in standard form to obtain

(3 + 8)i1 − 8i2 − 3i3 = 12

−8i1 + (6 + 8)i2 − 6i3 = 6

−3i1 − 6i2 + (3 + 6 + 4)i3 = 0

You may verify that KVL holds around any one of the meshes, as a test to check that the
answer is indeed correct.

CHECK YOUR UNDERSTANDING

Find the unknown voltage vx by mesh current analysis in the circuit on the left.

6 Ω

6 Ω
15 V

vx

+

–+
_

5 Ω
60 Ω

3 Ω

24 V

12 Ω

+
_ Ix

+
_ 15 V6 Ω

Find the unknown current Ix , using the mesh current method in the circuit on the right.
Answers:5V;2A

EXAMPLE 3.9 Mesh Analysis➲LO2
Problem

The circuit of Figure 3.20 is a simplified DC circuit model of a three-wire electrical distribution
service to residential and commercial buildings. The two ideal sources and the resistances R4

and R5 represent the equivalent circuit of the distribution system; R1 and R2 represent 110-V
lighting and utility loads of 800 and 300 W, respectively. Resistance R3 represents a 220-V
heating load of about 3 kW. Determine the voltages across the three loads.

R3

R2

R1I1

I2

I3

R4

R5

+
−

+
−

+

−
VS2

+

−
VS1

Figure 3.20

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure 3.20 are VS1 = VS2 = 110 V; R4 = R5 = 1.3 �; R1 = 15 �; R2 = 40 �; R3 = 16 �.

Find: v1, v2, and v3.

Analysis: We follow the mesh current analysis method.

1. The (three) clockwise unknown mesh currents are shown in Figure 3.20. Next, we write
the mesh equations.

2. No current sources are present; thus we have three independent variables. Applying KVL
to each mesh containing an unknown mesh current and expressing each voltage in terms
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of one or more mesh currents, we get the following:

Mesh 1:

VS1 − R4 I1 − R1(I1 − I3) = 0

Mesh 2:

VS2 − R2(I2 − I3) − R5 I2 = 0

Mesh 3:

−R1(I3 − I1) − R3 I3 − R2(I3 − I2) = 0

With some rearrangements, we obtain the following system of three equations in three
unknown mesh currents.

−(R1 + R4)I1 + R1 I3 = −VS1

−(R2 + R5)I2 + R2 I3 = −VS2

R1 I1 + R2 I2 − (R1 + R2 + R3)I3 = 0

Next, we substitute numerical values for the elements and express the equations in a matrix
form as shown.

 −16.3 0 15
0 −41.3 40

15 40 −71





 I1

I2

I3


 =


 −110

−110
0




which can be expressed as

[R][I ] = [V ]
with a solution of

[I ] = [R]−1[V ]
The solution to the matrix problem can then be carried out using manual or numerical
techniques. In this case, we have used MatlabTM to compute the inverse of the 3×3 matrix.
Using MatlabTM to compute the inverse matrix, we obtain

[R]−1 =

 −0.1072 −0.0483 −0.0499

−0.0483 −0.0750 −0.0525
−0.0499 −0.0525 −0.0542




The value of current in each mesh can now be determined:

[I ] = [R]−1[V ] =

 −0.1072 −0.0483 −0.0499

−0.0483 −0.0750 −0.0525
−0.0499 −0.0525 −0.0542





 −110

−110
0


 =


 17.11

13.57
11.26




Therefore, we find

I1 = 17.11 A I2 = 13.57 A I3 = 11.26 A

We can now obtain the voltages across the three loads, keeping in mind the ground location:

VR1 = R1(I1 − I3) = 87.75 V

VR2 = −R2(I2 − I3) = −92.40 V

VR3 = R3 I3 = 180.16 V
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CHECK YOUR UNDERSTANDING

Repeat the exercise of Example 3.9, using node voltage analysis instead of the mesh current
analysis.

Answer:VR1=87.75V,VR2=−92.40V,VR3=180.16V

Mesh Analysis with Current Sources

In the preceding examples, we considered exclusively circuits containing voltage
➲LO2

sources. It is natural to also encounter circuits containing current sources, in prac-
tice. The circuit of Figure 3.21 illustrates how mesh analysis is applied to a circuit
containing current sources. Once again, we follow the steps outlined in the Focus on
Methodology box.

Step 1: Define each mesh current consistently. Unknown mesh currents are always
defined in the clockwise direction; known mesh currents (i.e., when a current source
is present) are always defined in the direction of the current source.

The mesh currents are shown in Figure 3.21. Note that since a current source de-
fines the current in mesh 2, this (known) mesh current is in the counterclockwise
direction.

Step 2: In a circuit with n meshes and m current sources, n − m independent
equations will result. The unknown mesh currents are the n − m independent
variables.

In this illustration, the presence of the current source has significantly simplified the
problem: There is only one unknown mesh current, and it is i1.

Step 3: Apply KVL to each mesh containing an unknown mesh current, expressing
each voltage in terms of one or more mesh currents.

We apply KVL around the mesh containing the unknown mesh current:

or

VS − R1i1 − R2(i1 + IS) = 0

(R1 + R2)i1 = VS − R2 IS
(3.17)

Step 4: Solve the linear system of n − m unknowns.

i1 = VS − R2 IS

R1 + R2
(3.18)

R2

i1 IS

IS

R1 R3

+
−VS

Figure 3.21 Circuit used
to demonstrate mesh analysis
with current sources

EXAMPLE 3.10 Mesh Analysis with Current Sources➲LO2
Problem

Find the mesh currents in the circuit of Figure 3.22.
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Solution

Known Quantities: Source current and voltage; resistor values. R3

VI

R1

R2

i1 i2

i3 

R4

+
_

Figure 3.22

Find: Mesh currents.

Schematics, Diagrams, Circuits, and Given Data: I = 0.5 A; V = 6 V; R1 = 3 �;
R2 = 8 �; R3 = 6 �; R4 = 4 �.

Analysis: We follow the Focus on Measurements steps.

1. Assume clockwise mesh currents i1, i2, and i3.

2. Starting from mesh 1, we see immediately that the current source forces the mesh current
to be equal to I:

i1 = I
3. There is no need to write any further equations around mesh 1, since we already know the

value of the mesh current. Now we turn to meshes 2 and 3 to obtain

−R2(i2 − i1) − R3(i2 − i3) + V = 0 mesh 2

−R1(i3 − i1) − R4i3 − R3(i3 − i2) = 0 mesh 3

Rearranging the equations and substituting the known value of i1, we obtain a system of
two equations in two unknowns:

14i2 − 6i3 = 10

−6i2 + 13i3 = 1.5

4. These can be solved to obtain

i2 = 0.95 A i3 = 0.55 A

As usual, you should verify that the solution is correct by applying KVL.

Comments: Note that the current source has actually simplified the problem by constraining
a mesh current to a fixed value.

CHECK YOUR UNDERSTANDING

Show that the equations given in Example 3.10 are correct, by applying KCL at each node.

EXAMPLE 3.11 Mesh Analysis with Current Sources

➲

LO2
Problem

Find the unknown voltage vx in the circuit of Figure 3.23.

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure 3.23: VS = 10 V; IS = 2 A; R1 = 5 �; R2 = 2 �; and R3 = 4 �.

*(866) 487-8889*

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only



September 23, 2005 17:13 riz63473_ch03 Sheet number 20 Page number 100 magenta black

100 Chapter 3 Resistive Network Analysis

Find: vx .

Analysis: We observe that the second mesh current must be equal to the current source:

i2 = IS

Thus, the unknown voltage, vx , can be obtained applying KVL to mesh 2:

−i2 R3 − i2 R2 − vx = 0

vx = IS (R2 + R3)

To find the current i1 we apply KVL to mesh 1:

VS − i1 R1 − (i1 − i2) R2 = 0

VS + i2 R2 = i1 (R1 + R2)

but, since i2 = IS ,

i1 = VS + IS R2

(R1 + R2)
= 10 + 2 × 2

5 + 2
= 2 A

ISVS

i2i1

R1 R2

R3+
−

+

−
vx

Figure 3.23 Illustration of
mesh analysis in the presence of
current sources

Comments: Note that the presence of the current source reduces the number of unknown
mesh currents by one. Thus, we were able to find vx without the need to solve simultaneous
equations.

CHECK YOUR UNDERSTANDING

Find the value of the current i1 if the value of the current source is changed to 1 A.

Answer:1.71A

3.4 NODE AND MESH ANALYSIS WITH
CONTROLLED SOURCES

The methods just described also apply, with relatively minor modifications, in the➲LO1, LO2
presence of dependent (controlled) sources. Solution methods that allow for the pres-
ence of controlled sources are particularly useful in the study of transistor amplifiers
in Chapters 8 and 9. Recall from the discussion in Section 2.1 that a dependent source
generates a voltage or current that depends on the value of another voltage or current
in the circuit. When a dependent source is present in a circuit to be analyzed by node
or mesh analysis, we can initially treat it as an ideal source and write the node or mesh
equations accordingly. In addition to the equation obtained in this fashion, there is an
equation relating the dependent source to one of the circuit voltages or currents. This
constraint equation can then be substituted in the set of equations obtained by the
techniques of node and mesh analysis, and the equations can subsequently be solved
for the unknowns.
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ib

VO

+

–

RSiS Rb RCβ ib

Node 1 Node 2

Figure 3.24 Circuit with dependent source

It is important to remark that once the constraint equation has been substi-
tuted in the initial system of equations, the number of unknowns remains unchanged.
Consider, for example, the circuit of Figure 3.24, which is a simplified model of a
bipolar transistor amplifier (transistors are introduced in Chapter 9). In the circuit of
Figure 3.24, two nodes are easily recognized, and therefore node analysis is chosen
as the preferred method. Applying KCL at node 1, we obtain the following equation:

iS = v1

(
1

RS
+ 1

Rb

)
(3.19)

KCL applied at the second node yields

βib + v2

RC
= 0 (3.20)

Next, observe that current ib can be determined by means of a simple current divider:

ib = iS
1/Rb

1/Rb + 1/RS
= iS

RS

Rb + RS
(3.21)

This is the constraint equation, which when inserted in equation 3.20, yields a system
of two equations:

iS = v1

(
1

RS
+ 1

Rb

)

−βiS
RS

Rb + RS
= v2

RC

(3.22)

which can be used to solve for v1 and v2. Note that, in this particular case, the two
equations are independent of each other. Example 3.12 illustrates a case in which the
resulting equations are not independent.

EXAMPLE 3.12 Analysis with Dependent Sources

➲

LO1, LO2
Problem

Find the node voltages in the circuit of Figure 3.25.

Solution

Known Quantities: Source current; resistor values; dependent voltage source relationship.
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Find: Unknown node voltage v.

Schematics, Diagrams, Circuits, and Given Data: I = 0.5 A; R1 = 5 �; R2 = 2 �;
R3 = 4 �. Dependent source relationship: vx = 2 × v3.

R1 v R2

R3vx I

v3

v3

vx

+

–
+
_

Figure 3.25

Analysis:

1. Assume the reference node is at the bottom of the circuit. Use node analysis.

2. The two independent variables are v and v3.

3. Applying KCL to node v, we find that

vx − v

R1
+ I − v − v3

R2
= 0

Applying KCL to node v3, we find

v − v3

R2
− v3

R3
= 0

If we substitute the dependent source relationship into the first equation, we obtain a
system of equations in the two unknowns v and v3:

(
1

R1
+ 1

R2

)
v +

(
− 2

R1
− 1

R2

)
v3 = I

(
− 1

R2

)
v +

(
1

R2
+ 1

R3

)
v3 = 0

4. Substituting numerical values, we obtain

0.7v − 0.9v3 = 0.5

−0.5v + 0.75v3 = 0

Solution of the above equations yields v = 5 V; v3 = 3.33 V.

CHECK YOUR UNDERSTANDING

Solve the same circuit if vx = 2I.

Answer:v=
21
11V;v=

14
11V

EXAMPLE 3.13 Mesh Analysis with Dependent Sources➲LO1, LO2
Problem

Determine the voltage “gain” Av = v2/v1 in the circuit of Figure 3.26.
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R5R2i1 2vv1
i3

i2

R1 R4

R3

+
−

+

−
v

+

−
v2+

−

Figure 3.26 Circuit containing
dependent source

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure 3.26 are R1 = 1 �; R2 = 0.5 �; R3 = 0.25 �; R4 = 0.25 �; R5 = 0.25 �.

Find: Av = v2/v1.

Analysis: We note first that the two voltages we seek can be expressed as follows: v =
R2(i1 − i2), and v2 = R5i3. Next, we follow the mesh current analysis method.

1. The mesh currents are defined in Figure 3.26.

2. No current sources are present; thus we have three independent variables, the currents i1,

i2, and i3.

3. Apply KVL at each mesh.

For mesh 1:

v1 − R1i1 − R2(i1 − i2) = 0

or rearranging the equation gives

(R1 + R2)i1 + (−R2)i2 + (0)i3 = v1

For mesh 2:

v − R3i2 − R4(i2 − i3) + 2v = 0

Rearranging the equation and substituing the expression v = −R2(i2 − i1), we obtain

−R2(i2 − i1) − R3i2 − R4(i2 − i3) − 2R2(i2 − i1) = 0

(−3R2)i1 + (3R2 + R3 + R4)i2 − (R4)i3 = 0

For mesh 3:

−2v − R4(i3 − i2) − R5i3 = 0

substituting the expression for v = R2(i1 − i2) and rearranging, we obtain

−2R2(i1 − i2) − R4(i3 − i2) − R5i3 = 0

2R2i1 − (2R2 + R4)i2 + (R4 + R5)i3 = 0

Finally, we can write the system of equations
 (R1 + R2) (−R2) 0

(−3R2) (3R2 + R3 + R4) (−R4)

(2R2) −(2R2 + R4) (R4 + R5)





 i1

i2

i3


 =


 v1

0
0



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104 Chapter 3 Resistive Network Analysis

which can be written as

[R][i] = [v]
with solution

[i] = [R]−1[v]
4. Solve the linear system of n − m unknowns. The system of equations is

 1.5 −0.5 0
−1.5 2 −0.25

1 −1.25 0.5





 i1

i2

i3


 =


 v1

0
0




Thus, to solve for the unknown mesh currents, we must compute the inverse of the matrix
of resistances R. Using MatlabTM to compute the inverse, we obtain

[R]−1 =

 0.88 0.32 0.16

0.64 0.96 0.48
−0.16 1.76 2.88





 i1

i2

i3


 = [R]−1


 v1

0
0


 =


 0.88 0.32 0.16

0.64 0.96 0.48
−0.16 1.76 2.88





 v1

0
0




and therefore

i1 = 0.88v1

i2 = 0.32v1

i3 = 0.16v1

Observing that v2 = R5i3, we can compute the desired answer:

v2 = R5i3 = R5(0.16v1) = 0.25(0.16v1)

Av = v2

v1
= 0.04v1

v1
= 0.04

Comments: The MatlabTM commands required to obtain the inverse of matrix R are listed
below.

R=[1.5 -0.5 0; -1.5 2 -0.25; 1 -1.25 0.5];

Rinv=inv(R);

The presence of a dependent source did not really affect the solution method. Systematic
application of mesh analysis provided the desired answer. Is mesh analysis the most efficient
solution method? Hint: See the exercise below.

CHECK YOUR UNDERSTANDING

Determine the number of independent equations required to solve the circuit of Example 3.13
using node analysis. Which method would you use?

The current source ix is related to the voltage vx in the figure on the left by the relation

ix = vx

3

Find the voltage across the 8-� resistor by node analysis.
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6 Ω

6 Ω
15 V

vx+ –

+
_

6 Ω
8 Ω

ix

3 Ω

vx

12 Ω

ix
+
_15 V6 Ω

i12

+
_

Find the unknown current ix in the figure on the right, using the mesh current method. The
dependent voltage source is related to current i12 through the 12-� resistor by vx = 2i12.

Answers:Two;12V;1.39A

Remarks on Node Voltage and Mesh Current Methods

The techniques presented in this section and the two preceding sections find use more
generally than just in the analysis of resistive circuits. These methods should be viewed
as general techniques for the analysis of any linear circuit; they provide systematic and
effective means of obtaining the minimum number of equations necessary to solve a
network problem. Since these methods are based on the fundamental laws of circuit
analysis, KVL and KCL, they also apply to electric circuits containing nonlinear
circuit elements, such as those to be introduced later in this chapter.

You should master both methods as early as possible. Proficiency in these circuit
analysis techniques will greatly simplify the learning process for more advanced
concepts.

3.5 THE PRINCIPLE OF SUPERPOSITION

This brief section discusses a concept that is frequently called upon in the analysis
of linear circuits. Rather than a precise analysis technique, like the mesh current and
node voltage methods, the principle of superposition is a conceptual aid that can be
very useful in visualizing the behavior of a circuit containing multiple sources. The
principle of superposition applies to any linear system and for a linear circuit may be
stated as follows:

➲

LO3
In a linear circuit containing N sources, each branch voltage and current is the
sum of N voltages and currents, each of which may be computed by setting all
but one source equal to zero and solving the circuit containing that single source.

An elementary illustration of the concept may easily be obtained by simply consid-
ering a circuit with two sources connected in series, as shown in Figure 3.27.

The circuit of Figure 3.27 is more formally analyzed as follows. The current i
flowing in the circuit on the left-hand side of Figure 3.27 may be expressed as

i = vB1 + vB2

R
= vB1

R
+ vB2

R
= iB1 + iB2 (3.23)

Figure 3.27 also depicts the circuit as being equivalent to the combined effects of
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R =
vB2

+
_

+
_vB1 i

R
+
_vB1

iB1

R The net current through
R is the sum of the in-
dividual source currents:
i = iB1 + iB2.

vB2
+
_

iB2

+

Figure 3.27 The principle of superposition

two circuits, each containing a single source. In each of the two subcircuits, a short
circuit has been substituted for the missing battery. This should appear as a sensible
procedure, since a short circuit, by definition, will always “see” zero voltage across
itself, and therefore this procedure is equivalent to “zeroing” the output of one of the
voltage sources.

If, on the other hand, we wished to cancel the effects of a current source, it
would stand to reason that an open circuit could be substituted for the current source,
since an open circuit is, by definition, a circuit element through which no current can
flow (and which therefore generates zero current). These basic principles are used
frequently in the analysis of circuits and are summarized in Figure 3.28.

➲LO3

iS

R1

+
_vS

A circuit

iS

R1

R2

The same circuit with vS = 0

iS

R1

+
_vS R2

R2

A circuit

R1

R2

The same circuit with iS = 0

+
_vS

1. In order to set a voltage source equal to zero, we replace it with a short circuit.

2. In order to set a current source equal to zero, we replace it with an open circuit.

Figure 3.28 Zeroing voltage and current sources

The principle of superposition can easily be applied to circuits containing mul-
tiple sources and is sometimes an effective solution technique. More often, however,
other methods result in a more efficient solution. Example 3.14 further illustrates
the use of superposition to analyze a simple network. The Check Your Understand-
ing exercises at the end of the section illustrate the fact that superposition is often a
cumbersome solution method.

EXAMPLE 3.14 Principle of Superposition➲LO3
Problem

Determine the current i2 in the circuit of Figure 3.29(a), using the principle of superposition.
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Solution

Known Quantities: Source voltage and current values; resistor values.

Find: Unknown current i2.

Given Data: VS = 10 V; IS = 2 A; R1 = 5 �; R2 = 2 �; R3 = 4 �.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Part 1: Zero the current source. Once the current source has been set to zero (replaced
by an open circuit), the resulting circuit is a simple series circuit shown in Figure 3.29(b); the
current flowing in this circuit i2−V is the current we seek. Since the total series resistance is
5 + 2 + 4 = 11 �, we find that i2−V = 10/11 = 0.909 A.

R3

i1 i2

ISVS

R1 R2

+
−

(a)

Figure 3.29 (a) Circuit for
the illustration of the principle
of superposition

R3

i1 i2

VS

R1 R2

+
−

(b)

Figure 3.29 (b) Circuit
with current source set to zero

Part 2: Zero the voltage source. After we zero the voltage source by replacing it with a
short circuit, the resulting circuit consists of three parallel branches shown in Figure 3.29(c):
On the left we have a single 5-� resistor; in the center we have a −2-A current source (negative
because the source current is shown to flow into the ground node); on the right we have a total
resistance of 2 + 4 = 6 �. Using the current divider rule, we find that the current flowing in
the right branch i2−I is given by

i2−I =
1

6
1

5
+ 1

6

(−2) = −0.909 A

And, finally, the unknown current i2 is found to be

i2 = i2−V + i2−I = 0 A

R3

i1 i2

IS

R1 R2

(c)

Figure 3.29 (c)
Circuit with voltage source
set to zero

Comments: Superposition is not always a very efficient tool. Beginners may find it prefer-
able to rely on more systematic methods, such as node analysis, to solve circuits. Eventually,
experience will suggest the preferred method for any given circuit.

CHECK YOUR UNDERSTANDING

In Example 3.15, verify that the same answer is obtained by mesh or node analysis.

EXAMPLE 3.15 Principle of Superposition

➲

LO3
Problem

Determine the voltage across resistor R in the circuit of Figure 3.30.
RB

IB

RG

R

VG

VR

+
−

(a)

–

+

Figure 3.30 (a) Circuit
used to demonstrate the
principle of superposition

Solution

Known Quantities: The values of the voltage sources and of the resistors in the circuit of
Figure 3.30 are IB = 12 A; VG = 12 V; RB = 1 �; RG = 0.3 �; R = 0.23 �.

Find: The voltage across R.
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Analysis: Specify a ground node and the polarity of the voltage across R. Suppress the voltage
source by replacing it with a short circuit. Redraw the circuit, as shown in Figure 3.30(b), and
apply KCL:

−IB + VR−I

RB
+ VR−I

RG
+ VR−I

R
= 0

VR−I = IB

1/RB + 1/RG + 1/R
= 12

1/1 + 1/0.3 + 1/0.23
= 1.38 V

Suppress the current source by replacing it with an open circuit, draw the resulting circuit, as
shown in Figure 3.30(c), and apply KCL:

VR−V

RB
+ VR−V − VG

RG
+ V R − V

R
= 0

VR−V = VG/RG

1/RB + 1/RG + 1/R
= 12/0.3

1/1 + 1/0.3 + 1/0.23
= 4.61 V

Finally, we compute the voltage across R as the sum of its two components:

VR = VR−I + VR−V = 5.99 V

RB
IB

RG

R VR

(b)

–

+

Figure 3.30 (b) Circuit
obtained by suppressing the
voltage source

RB

RG

R VR

(c)

–

+

VG
+
−

Figure 3.30 (c) Circuit
obtained by suppressing the
current source

Comments: Superposition essentially doubles the work required to solve this problem. The
voltage across R can easily be determined by using a single KCL.

CHECK YOUR UNDERSTANDING

In Example 3.15, verify that the same answer can be obtained by a single application of KCL.

Find the voltages va and vb for the circuits of Example 3.7 by superposition.

Solve Example 3.7, using superposition.

Solve Example 3.10, using superposition.

3.6 ONE-PORT NETWORKS AND EQUIVALENT
CIRCUITS

You may recall that, in the discussion of ideal sources in Chapter 2, the flow of
energy from a source to a load was described in a very general form, by showing
the connection of two “black boxes” labeled source and load (see Figure 2.2). In the
same figure, two other descriptions were shown: a symbolic one, depicting an ideal
voltage source and an ideal resistor; and a physical representation, in which the load
was represented by a headlight and the source by an automotive battery. Whatever
the form chosen for source-load representation, each block—source or load—may
be viewed as a two-terminal device, described by an i-v characteristic. This general
circuit representation is shown in Figure 3.31. This configuration is called a one-port
network and is particularly useful for introducing the notion of equivalent circuits.
Note that the network of Figure 3.31 is completely described by its i-v characteristic;
this point is best illustrated by Example 3.15.

Linear
network

i

v

+

–

Figure 3.31 One-port
network
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EXAMPLE 3.16 Equivalent Resistance Calculation

➲

LO4
Problem

Determine the source (load) current i in the circuit of Figure 3.32, using equivalent resistance
ideas.

R3
+
_vS R2

i

v

+

–

R1

LoadSource

Figure 3.32 Illustration of
equivalent-circuit concept

Solution

Known Quantities: Source voltage, resistor values.

Find: Source current.

Given Data: Figures 3.32 and 3.33.

Assumptions: Assume the reference node is at the bottom of the circuit. R3R2R1

REQ

Load circuit

Equivalent 
load circuit

Figure 3.33 Equivalent load
resistance concept

Analysis: Insofar as the source is concerned, the three parallel resistors appear identical to a
single equivalent resistance of value

REQ = 1

1/R1 + 1/R2 + 1/R3

Thus, we can replace the three load resistors with the single equivalent resistor REQ, as shown
in Figure 3.33, and calculate

i = vS

REQ

Comments: Similarly, insofar as the load is concerned, it would not matter whether the source
consisted, say, of a single 6-V battery or of four 1.5-V batteries connected in series.

For the remainder of this section, we focus on developing techniques for com-
puting equivalent representations of linear networks. Such representations are useful
in deriving some simple—yet general—results for linear circuits, as well as analyzing
simple nonlinear circuits.

Thévenin and Norton Equivalent Circuits

This section discusses one of the most important topics in the analysis of electric
circuits: the concept of an equivalent circuit. We show that it is always possible to
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view even a very complicated circuit in terms of much simpler equivalent source and
load circuits, and that the transformations leading to equivalent circuits are easily
managed, with a little practice. In studying node voltage and mesh current analysis,
you may have observed that there is a certain correspondence (called duality) between
current sources and voltage sources, on one hand, and parallel and series circuits, on
the other. This duality appears again very clearly in the analysis of equivalent circuits:
It will shortly be shown that equivalent circuits fall into one of two classes, involving
either voltage or current sources and (respectively) either series or parallel resistors,
reflecting this same principle of duality. The discussion of equivalent circuits begins
with the statement of two very important theorems, summarized in Figures 3.34 and
3.35.

➲LO4 Load

i

v
+

–
Source Load

i

v
+

–
+
_

RT

vT

Figure 3.34 Illustration of Thévenin theorem

Load

i

v
+

–
Source Load

i

v
+

–
RNiN

Figure 3.35 Illustration of Norton theorem

The Thévenin Theorem

When viewed from the load, any network composed of ideal voltage and current
sources, and of linear resistors, may be represented by an equivalent circuit

➲LO4

consisting of an ideal voltage source vT in series with an equivalent resistance
RT .

The Norton Theorem

When viewed from the load, any network composed of ideal voltage and current
sources, and of linear resistors, may be represented by an equivalent circuit

➲LO4

consisting of an ideal current source iN in parallel with an equivalent resistance
RN .

The first obvious question to arise is, How are these equivalent source voltages,
currents, and resistances computed? The next few sections illustrate the computation
of these equivalent circuit parameters, mostly through examples. A substantial number
of Check Your Understanding exercises are also provided, with the following caution:
The only way to master the computation of Thévenin and Norton equivalent circuits
is by patient repetition.

*(866) 487-8889*

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only



September 23, 2005 17:13 riz63473_ch03 Sheet number 31 Page number 111 magenta black

Part I Circuits 111

Determination of Norton or Thévenin Equivalent
Resistance

In this subsection, we illustrate the calculation of the equivalent resistance of a network
containing only linear resistors and independent sources. The first step in computing
a Thévenin or Norton equivalent circuit consists of finding the equivalent resistance
presented by the circuit at its terminals. This is done by setting all sources in the circuit
equal to zero and computing the effective resistance between terminals. The voltage
and current sources present in the circuit are set to zero by the same technique used
with the principle of superposition: Voltage sources are replaced by short circuits;
current sources, by open circuits. To illustrate the procedure, consider the simple
circuit of Figure 3.36; the objective is to compute the equivalent resistance the load
RL “sees” at port a-b.

To compute the equivalent resistance, we remove the load resistance from the
circuit and replace the voltage source vS by a short circuit. At this point—seen from
the load terminals—the circuit appears as shown in Figure 3.37. You can see that
R1 and R2 are in parallel, since they are connected between the same two nodes. If
the total resistance between terminals a and b is denoted by RT , its value can be
determined as follows:

RT = R3 + R1 ‖ R2 (3.24)

R2 

R1

+
_vS RL

Complete circuit

Circuit with  load removed
for computation of RT . The voltage
source is replaced by a short circuit.

R3

R2 

R1 R3

vS

a

b

a

b

Figure 3.36 Computation
of Thévenin resistance

R2 

a

b

R3

R1 

a

b

R3

R1||R2 RT

Figure 3.37 Equivalent
resistance seen by the load

R2 

a

b

R3

R1 

RT  = R1 || R2  +  R3

vx

+

–

iS

R1

R3

iSR2 iS

What is the total resistance the 
current iS will encounter in flowing 
around the circuit?

Figure 3.38 An alternative
method of determining the
Thévenin resistance

An alternative way of viewing RT is depicted in Figure 3.38, where a hypo-
thetical 1-A current source has been connected to terminals a and b. The voltage vx

appearing across the a-b pair is then numerically equal to RT (only because iS =
1 A!). With the 1-A source current flowing in the circuit, it should be apparent that
the source current encounters R3 as a resistor in series with the parallel combination
of R1 and R2, prior to completing the loop.

Summarizing the procedure, we can produce a set of simple rules as an aid in
the computation of the Thévenin (or Norton) equivalent resistance for a linear resis-
tive circuit that does not contain dependent sources. The case of circuits containing
dependent sources is outlined later in this section.

➲LO4

F O C U S O N M E T H O D O L O G Y

COMPUTATION OF EQUIVALENT RESISTANCE OF A ONE-PORT
NETWORK THAT DOES NOT CONTAIN DEPENDENT SOURCES

1. Remove the load.

2. Zero all independent voltage and current sources.

3. Compute the total resistance between load terminals, with the load
removed. This resistance is equivalent to that which would be encountered
by a current source connected to the circuit in place of the load.

We note immediately that this procedure yields a result that is independent of
the load. This is a very desirable feature, since once the equivalent resistance has been
identified for a source circuit, the equivalent circuit remains unchanged if we connect
a different load. The following examples further illustrate the procedure.
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EXAMPLE 3.17 Thévenin Equivalent Resistance➲LO4
Problem

Find the Thévenin equivalent resistance seen by the load RL in the circuit of Figure 3.39.

R3

RL

R5 a

b

I R4R2R1

Figure 3.39

Solution

Known Quantities: Resistor and current source values.

Find: Thévenin equivalent resistance RT .

Schematics, Diagrams, Circuits, and Given Data: R1 = 20 �; R2 = 20 �; I = 5 A;
R3 = 10 �; R4 = 20 �; R5 = 10 �.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Following the Focus on Methodology box introduced in this section, we first set
the current source equal to zero, by replacing it with an open circuit. The resulting circuit is
depicted in Figure 3.40. Looking into terminal a-b, we recognize that, starting from the left
(away from the load) and moving to the right (toward the load), the equivalent resistance is
given by the expression

RT = [((R1||R2) + R3) ||R4] + R5

= [((20||20) + 10) ||20] + 10 = 20 �

R3 R5 a

b

R4R2R1

Figure 3.40
Comments: Note that the reduction of the circuit started at the farthest point away from the
load.

CHECK YOUR UNDERSTANDING

Find the Thévenin equivalent resistance of the circuit below, as seen by the load resistor RL .

2.5 kΩ

5 V

RL

+
_

5 kΩ3 kΩ
5 kΩ 

2 kΩ

a

b

Find the Thévenin equivalent resistance seen by the load resistor RL in the following circuit.
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2 Ω

10 V

RL

+
_

10 Ω

3 Ω

a

b

4 Ω

2 Ω

0.5 A

6 Ω 5 Ω

Answers:RT=2.5k�;RT=7�

EXAMPLE 3.18 Thévenin Equivalent Resistance

➲

LO4
Problem

Compute the Thévenin equivalent resistance seen by the load in the circuit of Figure 3.41.

R1

RL

R3 a

b

I R4R2V +
_

Figure 3.41

Solution

Known Quantities: Resistor values.

Find: Thévenin equivalent resistance RT .

Schematics, Diagrams, Circuits, and Given Data: V = 5 V; R1 = 2 �; R2 = 2 �; R3 = 1 �;
I = 1 A, R4 = 2 �.

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Following the Thévenin equivalent resistance Focus on Methodology box, we first
set the current source equal to zero, by replacing it with an open circuit, then set the voltage
source equal to zero by replacing it with a short circuit. The resulting circuit is depicted in
Figure 3.42. Looking into terminal a-b, we recognize that, starting from the left (away from
the load) and moving to the right (toward the load), the equivalent resistance is given by the
expression

RT = ((R1||R2) + R3) ||R4

= ((2||2) + 1) ||2 = 1 �

R3 a

b

R4R2R1

Figure 3.42Comments: Note that the reduction of the circuit started at the farthest point away from the
load.
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CHECK YOUR UNDERSTANDING

For the circuit below, find the Thévenin equivalent resistance seen by the load resistor RL .

6 kΩ

20 V RL6 kΩ 3 kΩ

a

b

1 MΩ

2 kΩ3 kΩ

2 kΩ +
_

For the circuit below, find the Thévenin equivalent resistance seen by the load resistor RL .

10 Ω

RL

+
_

10 Ω
1 Ω

20 Ω 
12 V

a

b

Answers:RT=4.23k�;RT=7.06�

As a final note, the Thévenin and Norton equivalent resistances are one and the
same quantity:

➲LO4 RT = RN (3.25)

Therefore, the preceding discussion holds whether we wish to compute a Norton or
a Thévenin equivalent circuit. From here on, we use the notation RT exclusively, for
both Thévenin and Norton equivalents.

vOC

+

–

One-port
network

+
_

RT

vT vOC = vT

+

–

i = 0

Figure 3.43 Equiva-
lence of open-circuit and
Thévenin voltage

Computing the Thévenin Voltage

This section describes the computation of the Thévenin equivalent voltage vT for an
arbitrary linear resistive circuit containing independent voltage and current sources
and linear resistors. The Thévenin equivalent voltage is defined as follows:

➲

LO4The equivalent (Thévenin) source voltage is equal to the open-circuit voltage
present at the load terminals (with the load removed).

This states that to compute vT , it is sufficient to remove the load and to compute
the open-circuit voltage at the one-port terminals. Figure 3.43 illustrates that the open-
circuit voltage vOC and the Thévenin voltage vT must be the same if the Thévenin
theorem is to hold. This is true because in the circuit consisting of vT and RT , the
voltage vOC must equal vT , since no current flows through RT and therefore the voltage
across RT is zero. Kirchhoff’s voltage law confirms that

vT = RT (0) + vOC = vOC (3.26)
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➲

LO2

F O C U S O N M E T H O D O L O G Y

COMPUTING THE THÉVENIN VOLTAGE

1. Remove the load, leaving the load terminals open-circuited.

2. Define the open-circuit voltage vOC across the open load terminals.

3. Apply any preferred method (e.g., node analysis) to solve for vOC.

4. The Thévenin voltage is vT = vOC.

The actual computation of the open-circuit voltage is best illustrated by exam-
ples; there is no substitute for practice in becoming familiar with these computations.
To summarize the main points in the computation of open-circuit voltages, consider
the circuit of Figure 3.36, shown again in Figure 3.44 for convenience. Recall that the
equivalent resistance of this circuit was given by RT = R3 + R1 ‖ R2. To compute
vOC, we disconnect the load, as shown in Figure 3.45, and immediately observe that
no current flows through R3, since there is no closed-circuit connection at that branch.
Therefore, vOC must be equal to the voltage across R2, as illustrated in Figure 3.46.
Since the only closed circuit is the mesh consisting of vS , R1, and R2, the answer we
are seeking may be obtained by means of a simple voltage divider:

vOC = vR2 = vS
R2

R1 + R2

R2 

R1

+
_vS RL

R3

iL

Figure 3.44

R1

+
_vS

R3

R2 vOC

+

–

Figure 3.45

R1

+
_vS

R3

R2 vOC

+

–

vOC

+

–

+ –0 V

i

Figure 3.46

It is instructive to review the basic concepts outlined in the example by con-
sidering the original circuit and its Thévenin equivalent side by side, as shown in
Figure 3.47. The two circuits of Figure 3.47 are equivalent in the sense that the cur-
rent drawn by the load iL is the same in both circuits, that current being given by

iL = vS · R2

R1 + R2
· 1

(R3 + R1 ‖ R2) + RL
= vT

RT + RL
(3.27)

R2 

R1

+
_vS RL

R3

iL

R2

R1 + R2

vS

R3 + R1 || R2

+
_ RL

iL

A circuit Its Thévenin equivalent

Figure 3.47 A circuit and its Thévenin equivalent

The computation of Thévenin equivalent circuits is further illustrated in Exam-
ples 3.19 and 3.20.

EXAMPLE 3.19 Thévenin Equivalent Voltage
(Open-Circuit Voltage)

➲

LO4

Problem

Compute the open-circuit voltage vOC in the circuit of Figure 3.48.
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Solution

Known Quantities: Source voltage, resistor values.

Find: Open-circuit voltage vOC.

Schematics, Diagrams, Circuits, and Given Data: V = 12 V; R1 = 1 �; R2 = 10 �;
R3 = 10 �; R4 = 20 �.

V

vOC

va

vb

+

–+
_

R4R2

R1
R3

v

Figure 3.48

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: Following the Thévenin voltage Focus on Methodology box, first we remove the
load and label the open-circuit voltage vOC. Next, we observe that since vb is equal to the
reference voltage (i.e., zero), the node voltage va will be equal, numerically, to the open-circuit
voltage. If we define the other node voltage to be v, node analysis is the natural technique
for arriving at the solution. Figure 3.48 depicts the original circuit ready for node analysis.
Applying KCL at the two nodes, we obtain the following two equations:

V − v

R1
− v

R2
− v − va

R3
= 0

v − va

R3
− va

R4
= 0

Substituting numerical values gives

12 − v

1
− v

10
− v − va

10
= 0

v − va

10
− va

20
= 0

In matrix form we can write

[
1.2 −0.1

−0.1 0.15

] [
v

va

]
=

[
12

0

]

Solving the above matrix equations yields v = 10.588 V and va = 7.059 V. Thus, vOC =
va − vb = 7.059 V.

Comments: Note that the determination of the Thévenin voltage is nothing more than the
careful application of the basic circuit analysis methods presented in earlier sections. The only
difference is that we first need to properly identify and define the open-circuit load voltage.

CHECK YOUR UNDERSTANDING

Find the open-circuit voltage vOC for the circuit of Figure 3.48 if R1 = 5 �.

Answer:4.8V
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EXAMPLE 3.20 Load Current Calculation by Thévenin
Equivalent Method

➲

LO4

Problem

Compute the load current i by the Thévenin equivalent method in the circuit of Figure 3.49.

R3

+
_

I

R1

R2

V

i
a

b

Figure 3.49

Solution

Known Quantities: Source voltage, resistor values.

Find: Load current i .

Schematics, Diagrams, Circuits, and Given Data: V = 24 V; I = 3 A; R1 = 4 �;
R2 = 12 �; R3 = 6 �.

R1

a

b

R2

Figure 3.50

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: We first compute the Thévenin equivalent resistance. According to the method
proposed earlier, we zero the two sources by shorting the voltage source and opening the
current source. The resulting circuit is shown in Figure 3.50. We can clearly see that RT =
R1‖R2 = 4‖12 = 3 �.

Following the Thévenin voltage Focus on Methodology box, first we remove the load
and label the open-circuit voltage vOC. The circuit is shown in Figure 3.51. Next, we observe
that since vb is equal to the reference voltage (i.e., zero), the node voltage va will be equal,
numerically, to the open-circuit voltage. In this circuit, a single nodal equation is required to
arrive at the solution:

V − va

R1
+ I − va

R2
= 0

Substituting numerical values, we find that va = vOC = vT = 27 V.

V

vOC

va

vb

+

–+
_

R2I

R1

Figure 3.51

3 Ω

+
_ 6 Ω

i

27 V

Figure 3.52 Thévenin
equivalent

Finally, we assemble the Thévenin equivalent circuit, shown in Figure 3.52, and reconnect
the load resistor. Now the load current can be easily computed to be

i = vT

RT + RL
= 27

3 + 6
= 3 A

Comments: It may appear that the calculation of load current by the Thévenin equivalent
method leads to more complex calculations than, say, node voltage analysis (you might wish
to try solving the same circuit by node analysis to verify this). However, there is one major
advantage to equivalent circuit analysis: Should the load change (as is often the case in many
practical engineering situations), the equivalent circuit calculations still hold, and only the
(trivial) last step in the above example needs to be repeated. Thus, knowing the Thévenin
equivalent of a particular circuit can be very useful whenever we need to perform computations
pertaining to any load quantity.

CHECK YOUR UNDERSTANDING

With reference to Figure 3.44, find the load current iL by mesh analysis if vS = 10 V, R1 =
R3 = 50 �, R2 = 100 �, and RL = 150 �.

Find the Thévenin equivalent circuit seen by the load resistor RL for the circuit in the figure
on the left.
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Find the Thévenin equivalent circuit for the circuit in the figure on the right.

30 Ω

60 Ω

+
_ 15 V

RL

a

10 Ω

b

0.25 A

0.5 A

40 Ω

100 Ω

+
_50 V RL

a

b

20 Ω 10 ΩA
1
2

A
1
4

20 Ω 2.4 Ω

Answers:iL=0.02857A;RT=30�;vOC=vT=5V;RT=10�;
vOC=vT=0.704V.

Computing the Norton Current

The computation of the Norton equivalent current is very similar in concept to that
of the Thévenin voltage. The following definition serves as a starting point:

Definition

The Norton equivalent current is equal to the short-circuit current that would
➲LO4

flow if the load were replaced by a short circuit.

An explanation for the definition of the Norton current is easily found by considering,
again, an arbitrary one-port network, as shown in Figure 3.53, where the one-port
network is shown together with its Norton equivalent circuit.

iSCiN RT = RN

iSC
One-port
network

Figure 3.53 Illustration of
Norton equivalent circuit

R2 

R1

+
_vS

R3

iSC
i1 i2

Short circuit
replacing the load

v

Figure 3.54 Computation
of Norton current

It should be clear that the current iSC flowing through the short circuit replacing
the load is exactly the Norton current iN , since all the source current in the circuit of
Figure 3.53 must flow through the short circuit. Consider the circuit of Figure 3.54,
shown with a short circuit in place of the load resistance. Any of the techniques
presented in this chapter could be employed to determine the current iSC. In this
particular case, mesh analysis is a convenient tool, once it is recognized that the
short-circuit current is a mesh current. Let i1 and i2 = iSC be the mesh currents in the
circuit of Figure 3.54. Then the following mesh equations can be derived and solved
for the short-circuit current:

(R1 + R2)i1 − R2iSC = vS

−R2i1 + (R2 + R3)iSC = 0

An alternative formulation would employ node analysis to derive the equation
vS − v

R1
= v

R2
+ v

R3

leading to

v = vS
R2 R3

R1 R3 + R2 R3 + R1 R2
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F O C U S O N M E T H O D O L O G Y

COMPUTING THE NORTON CURRENT

1. Replace the load with a short circuit.

2. Define the short-circuit current iSC to be the Norton equivalent current.

3. Apply any preferred method (e.g., node analysis) to solve for iSC.

4. The Norton current is iN = iSC.

Recognizing that iSC = v/R3, we can determine the Norton current to be

iN = v

R3
= vS R2

R1 R3 + R2 R3 + R1 R2

Thus, conceptually, the computation of the Norton current simply requires identifying
the appropriate short-circuit current. Example 3.21 further illustrates this idea.

➲

LO4

EXAMPLE 3.21 Norton Equivalent Circuit

➲
LO4

Problem

Determine the Norton current and the Norton equivalent for the circuit of Figure 3.55.

R2 

V

I

R3
–  +

R1

a

b

Figure 3.55

Solution

Known Quantities: Source voltage and current; resistor values.

Find: Equivalent resistance RT ; Norton current iN = iSC.

Schematics, Diagrams, Circuits, and Given Data: V = 6 V; I = 2 A; R1 = 6 �; R2 = 3 �;
R3 = 2 �.

Assumptions: Assume the reference node is at the bottom of the circuit. R2 

R3

R1

a

b

Figure 3.56

Analysis: We first compute the Thévenin equivalent resistance. We zero the two sources by
shorting the voltage source and opening the current source. The resulting circuit is shown in
Figure 3.56. We can clearly see that RT = R1‖R2 + R3 = 6‖3 + 2 = 4 �.

Next we compute the Norton current. Following the Norton current Focus on Methodology
box, first we replace the load with a short circuit and label the short-circuit current iSC. The
circuit is shown in Figure 3.57 ready for node voltage analysis. Note that we have identified two
node voltages v1 and v2, and that the voltage source requires that v2 − v1 = V . The unknown
current flowing through the voltage source is labeled i .

R2 

V

I

R3
– +

R1

a

b

v2 v1

i isc

Figure 3.57 Circuit of
Example 3.21 ready for node
analysis

Now we are ready to apply the node analysis method.

1. The reference node is the ground node in Figure 3.57.

2. The two nodes v1 and v2 are also identified in the figure; note that the voltage source im-
poses the constraint v2 = v1 + V . Thus only one of the two nodes leads to an independent
equation. The unknown current i provides the second independent variable, as you will
see in the next step.
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3. Applying KCL at nodes 1 and 2, we obtain the following set of equations:

I − v1

R1
− i = 0 node 1

i − v2

R2
− v2

R3
= 0 node 2

Next, we eliminate v1 by substituting v1 = v2 − V in the first equation:

I − v2 − V

R1
− i = 0 node 1

and we rewrite the equations in matrix form, recognizing that the unknowns are i and v2.

Note that the short-circuit current is iSC = v2/R3; thus we will seek to solve for v2.


1
1

R1

−1
1

R2
+ 1

R3




[
i
v2

]
=


 I + V

R1

0




Substituting numerical values, we obtain[
1 0.1667

−1 0.8333

] [
i
v2

]
=

[
3
0

]

and we can numerically solve for the two unknowns to find that i = 2.5 A and v2 = 3 V.
Finally, the Norton or short-circuit current is iN = iSC = v2/R3 = 1.5 A.1.5 A 4 Ω

a

b

Figure 3.58 Norton
equivalent circuit

Comments: In this example it was not obvious whether node analysis, mesh analysis, or
superposition might be the quickest method to arrive at the answer. It would be a very good
exercise to try the other two methods and compare the complexity of the three solutions. The
complete Norton equivalent circuit is shown in Figure 3.58.

CHECK YOUR UNDERSTANDING

Repeat Example 3.21, using mesh analysis. Note that in this case one of the three mesh currents
is known, and therefore the complexity of the solution will be unchanged.

Source Transformations

This section illustrates source transformations, a procedure that may be very useful
in the computation of equivalent circuits, permitting, in some circumstances, replace-
ment of current sources with voltage sources and vice versa. The Norton and Thévenin
theorems state that any one-port network can be represented by a voltage source in
series with a resistance, or by a current source in parallel with a resistance, and that
either of these representations is equivalent to the original circuit, as illustrated in
Figure 3.59.

An extension of this result is that any circuit in Thévenin equivalent form may
be replaced by a circuit in Norton equivalent form, provided that we use the following
relationship:

➲LO4 vT = RT iN (3.28)
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vT

RT

One-port
network iN RT

+
_

Thévenin equivalent Norton equivalent

Figure 3.59 Equivalence of Thévenin and Norton representations

Thus, the subcircuit to the left of the dashed line in Figure 3.60 may be replaced by its
Norton equivalent, as shown in the figure. Then the computation of iSC becomes very
straightforward, since the three resistors are in parallel with the current source and
therefore a simple current divider may be used to compute the short-circuit current.
Observe that the short-circuit current is the current flowing through R3; therefore,

iSC = iN = 1/R3

1/R1 + 1/R2 + 1/R3

vS

R1
= vS R2

R1 R3 + R2 R3 + R1 R2
(3.29)

which is the identical result obtained for the same circuit in the preceding section,
as you may easily verify. This source transformation method can be very useful, if
employed correctly. Figure 3.61 shows how to recognize subcircuits amenable to
such source transformations. Example 3.22 is a numerical example illustrating the
procedure.

R2 

R1

vS

R3

iSC+
_

R2 
vS

R3

iSCR1 
R1

Figure 3.60 Effect of source
transformation

iS
+
_

Thévenin subcircuits

R

R

R

vS
+
_

iS Ror

Node a

Node b

a

b

a

b

vS
or

Norton subcircuits

a

b

Figure 3.61 Subcircuits amenable to source transformation

EXAMPLE 3.22 Source Transformations

➲

LO4
Problem

Compute the Norton equivalent of the circuit of Figure 3.62 using source transformations.

Solution

Known Quantities: Source voltages and current; resistor values.

Find: Equivalent resistance RT ; Norton current iN = iSC.

Schematics, Diagrams, Circuits, and Given Data: V1 = 50 V; I = 0.5 A; V2 = 5 V;
R1 = 100 �; R2 = 100 �; R3 = 200 �; R4 = 160 �.
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R1 a

b

I
–
+

R3

V2

+
_ R2 RLV1

a'

b'

R4

Figure 3.62

Assumptions: Assume the reference node is at the bottom of the circuit.

Analysis: First, we sketch the circuit again, to take advantage of the source transformation
technique; we emphasize the location of the nodes for this purpose, as shown in Figure 3.63.
Nodes a′ and b′ have been purposely separated from nodes a′′ and b′′ even though these are the
same pairs of nodes. We can now replace the branch consisting of V1 and R1, which appears
between nodes a′′ and b′′, with an equivalent Norton circuit with Norton current source V1/R1

and equivalent resistance R1. Similarly, the series branch between nodes a′ and b′ is replaced
by an equivalent Norton circuit with Norton current source V2/R3 and equivalent resistance
R3. The result of these manipulations is shown in Figure 3.64. The same circuit is now depicted
in Figure 3.65 with numerical values substituted for each component. Note how easy it is to
visualize the equivalent resistance: If each current source is replaced by an open circuit, we find

RT = R1||R2||R3|| + R4 = 200||100||100 + 160 = 200 �

R1 a

b

–
+

R3

V2

+
_ R2 RLV1

a'

b'

R4a"

b"

I

Figure 3.63

a

b

R2 RL

a'

b'

R4a"

b"

I R3
V1

R1

V2

R3
R1

Figure 3.64

a

b

RL

160 Ω

100 Ω
50
100

200 ΩA
5

200 A A
1
2

100 Ω

Figure 3.65
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The calculation of the Norton current is similarly straightforward, since it simply involves
summing the currents:

iN = 0.5 − 0.025 − 0.5 = −0.025 A

Figure 3.66 depicts the complete Norton equivalent circuit connected to the load.

a

b

RL200 Ω0.025 A

Figure 3.66

Comments: It is not always possible to reduce a circuit as easily as was shown in this example
by means of source transformations. However, it may be advantageous to use source transfor-
mation as a means of converting parts of a circuit to a different form, perhaps more naturally
suited to a particular solution method (e.g., node analysis).

Experimental Determination of Thévenin and
Norton Equivalents

The idea of equivalent circuits as a means of representing complex and sometimes
unknown networks is useful not only analytically, but in practical engineering appli-
cations as well. It is very useful to have a measure, for example, of the equivalent
internal resistance of an instrument, so as to have an idea of its power requirements
and limitations. Fortunately, Thévenin and Norton equivalent circuits can also be eval-
uated experimentally by means of very simple techniques. The basic idea is that the
Thévenin voltage is an open-circuit voltage and the Norton current is a short-circuit
current. It should therefore be possible to conduct appropriate measurements to de-
termine these quantities. Once vT and iN are known, we can determine the Thévenin
resistance of the circuit being analyzed according to the relationship

RT = vT

iN
(3.30)

How are vT and iN measured, then?
Figure 3.67 illustrates the measurement of the open-circuit voltage and short-

circuit current for an arbitrary network connected to any load and also illustrates that
the procedure requires some special attention, because of the nonideal nature of any
practical measuring instrument. The figure clearly illustrates that in the presence of
finite meter resistance rm , one must take this quantity into account in the computation
of the short-circuit current and open-circuit voltage; vOC and iSC appear between
quotation marks in the figure specifically to illustrate that the measured “open-circuit
voltage” and “short-circuit current” are in fact affected by the internal resistance of
the measuring instrument and are not the true quantities.

You should verify that the following expressions for the true short-circuit current
and open-circuit voltage apply (see the material on nonideal measuring instruments
in Section 2.8):

iN = “iSC”

(
1 + rm

RT

)

vT = “vOC”

(
1 + RT

rm

) (3.31)

where iN is the ideal Norton current, vT is the Thévenin voltage, and RT is the
true Thévenin resistance. If you recall the earlier discussion of the properties of
ideal ammeters and voltmeters, you will recall that for an ideal ammeter, rm should
approach zero, while in an ideal voltmeter, the internal resistance should approach an
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a

b

rm

A

a

b

rmV

a

b

+

–

Unknown
network

Unknown
network

Unknown
network

Load

An unknown network connected to a load

Network connected for measurement of short-circuit current 

Network connected for measurement of open-circuit voltage

“iSC”

“vOC”

Figure 3.67 Measurement of open-circuit voltage
and short-circuit current

open circuit (infinity); thus, the two expressions just given permit the determination
of the true Thévenin and Norton equivalent sources from an (imperfect) measurement
of the open-circuit voltage and short-circuit current, provided that the internal meter
resistance rm is known. Note also that, in practice, the internal resistance of voltmeters
is sufficiently high to be considered infinite relative to the equivalent resistance of
most practical circuits; on the other hand, it is impossible to construct an ammeter
that has zero internal resistance. If the internal ammeter resistance is known, however,
a reasonably accurate measurement of short-circuit current may be obtained. The
following Focus on Measurements box illustrates the point.

FOCUS ON
MEASUREMENTS

Experimental Determination of Thévenin Equivalent Circuit

Problem:
Determine the Thévenin equivalent of an unknown circuit from measurements of open-
circuit voltage and short-circuit current.

Solution:
Known Quantities—Measurement of short-circuit current and open-circuit voltage.
Internal resistance of measuring instrument.
Find—Equivalent resistance RT ; Thévenin voltage vT = vOC.
Schematics, Diagrams, Circuits, and Given Data—Measured vOC = 6.5 V; mea-
sured iSC = 3.75 mA; rm = 15 �.

(Continued)
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(Concluded)

Assumptions—The unknown circuit is a linear circuit containing ideal sources and
resistors only.
Analysis—The unknown circuit, shown on the top left in Figure 3.68, is replaced by
its Thévenin equivalent and is connected to an ammeter for a measurement of the short-
circuit current (Figure 3.68, top right), and then to a voltmeter for the measurement of the
open-circuit voltage (Figure 3.68, bottom). The open-circuit voltage measurement yields
the Thévenin voltage:

vOC = vT = 6.5 V

To determine the equivalent resistance, we observe in the figure depicting the voltage
measurement that, according to the circuit diagram,

vOC

iSC
= RT + rm

Thus,

RT = vOC

iSC
− rm = 1,733 − 15 = 1,718 �

a

b

rm

A

a

b

V

+

–

+
_

+
_

RT

vT

vT

RT

Network connected for measurement of 
short-circuit current (practical ammeter)

An unknown circuit Load
terminals

a

b

Network connected for measurement of 
open-circuit voltage (ideal voltmeter)

“iSC”

“vOC”

Figure 3.68

Comments—Note how easy the experimental method is, provided we
are careful to account for the internal resistance of the
measuring instruments.

One last comment is in order concerning the practical measurement of the
internal resistance of a network. In most cases, it is not advisable to actually short-
circuit a network by inserting a series ammeter as shown in Figure 3.67; permanent
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damage to the circuit or to the ammeter may be a consequence. For example, imagine
that you wanted to estimate the internal resistance of an automotive battery; connecting
a laboratory ammeter between the battery terminals would surely result in immediate
loss of the instrument. Most ammeters are not designed to withstand currents of
such magnitude. Thus, the experimenter should pay attention to the capabilities of
the ammeters and voltmeters used in measurements of this type, as well as to the
(approximate) power ratings of any sources present. However, there are established
techniques especially designed to measure large currents.

3.7 MAXIMUM POWER TRANSFER

The reduction of any linear resistive circuit to its Thévenin or Norton equivalent
form is a very convenient conceptualization, as far as the computation of load-related
quantities is concerned. One such computation is that of the power absorbed by the
load. The Thévenin and Norton models imply that some of the power generated by
the source will necessarily be dissipated by the internal circuits within the source.
Given this unavoidable power loss, a logical question to ask is, How much power
can be transferred to the load from the source under the most ideal conditions? Or,
alternatively, what is the value of the load resistance that will absorb maximum power
from the source? The answer to these questions is contained in the maximum power
transfer theorem, which is the subject of this section.➲LO5

vT

RT

Practical source

RL
+
_

Load

iL

Source equivalent

RL

Given vT and RT, what value of RL 
will allow for maximum power 
transfer?

Figure 3.69 Power transfer
between source and load

The model employed in the discussion of power transfer is illustrated in Figure
3.69, where a practical source is represented by means of its Thévenin equivalent
circuit. The maximum power transfer problem is easily formulated if we consider
that the power absorbed by the load PL is given by

PL = i2
L RL (3.32)

and that the load current is given by the familiar expression

iL = vT

RL + RT
(3.33)

Combining the two expressions, we can compute the load power as

PL = v2
T

(RL + RT )2
RL (3.34)

To find the value of RL that maximizes the expression for PL (assuming that VT and
RT are fixed), the simple maximization problem

dPL

dRL
= 0 (3.35)

must be solved. Computing the derivative, we obtain the following expression:

dPL

dRL
= v2

T (RL + RT )2 − 2v2
T RL(RL + RT )

(RL + RT )4
(3.36)

which leads to the expression

(RL + RT )2 − 2RL(RL + RT ) = 0 (3.37)

It is easy to verify that the solution of this equation is

RL = RT (3.38)
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Thus, to transfer maximum power to a load, the equivalent source and load resistances
must be matched, that is, equal to each other. Figure 3.70 depicts a plot of the load
power divided by v2

T versus the ratio of RL to RT . Note that this value is maximum
when RL = RT .
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0.05

0.1
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Graphical representation of maximum power transfer

N
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⁄v
T

2

Normalized resistance RL ⁄RT

Figure 3.70 Graphical representation of maximum power transfer

This analysis shows that to transfer maximum power to a load, given a fixed
equivalent source resistance, the load resistance must match the equivalent source
resistance. What if we reversed the problem statement and required that the load
resistance be fixed? What would then be the value of source resistance that maximizes
the power transfer in this case? The answer to this question can be easily obtained by
solving the Check Your Understanding exercises at the end of the section.

A problem related to power transfer is that of source loading. This phenomenon,
which is illustrated in Figure 3.71, may be explained as follows: When a practical
voltage source is connected to a load, the current that flows from the source to the
load will cause a voltage drop across the internal source resistance vint; as a conse-
quence, the voltage actually seen by the load will be somewhat lower than the open-
circuit voltage of the source. As stated earlier, the open-circuit voltage is equal to the
Thévenin voltage. The extent of the internal voltage drop within the source depends on
the amount of current drawn by the load. With reference to Figure 3.72, this internal
drop is equal to iRT , and therefore the load voltage will be

vL = vT − iRT (3.39)

It should be apparent that it is desirable to have as small an internal resistance as
possible in a practical voltage source.

vT

vint

+
_ RL

+ –

RT

i

iN v RL

+

–

iint

RT

Source Load

Source Load

Figure 3.71 Source
loading effects

In the case of a current source, the internal resistance will draw some current
away from the load because of the presence of the internal source resistance; this
current is denoted by iint in Figure 3.71. Thus the load will receive only part of the
short-circuit current available from the source (the Norton current):

iL = iN − v

RT
(3.40)
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VT

RT

+
_ RL VL

+

–

a

b

a

b

SpeakerAmplifier

Figure 3.72 A simplified model of an audio system

It is therefore desirable to have a very large internal resistance in a practical current
source. You may wish to refer to the discussion of practical sources to verify that the
earlier interpretation of practical sources can be expanded in light of the more recent
discussion of equivalent circuits.

EXAMPLE 3.23 Maximum Power Transfer➲LO5
Problem

Use the maximum power transfer theorem to determine the increase in power delivered to a
loudspeaker resulting from matching the speaker load resistance to the amplifier equivalent
source resistance.

Solution

Known Quantities: Source equivalent resistance RT ; unmatched speaker load resistance RLU;
matched loudspeaker load resistance RLM.

Find: Difference between power delivered to loudspeaker with unmatched and matched loads,
and corresponding percentage increase.

Schematics, Diagrams, Circuits, and Given Data: RT = 8 �; RLU = 16 �; RLM = 8 �.

Assumptions: The amplifier can be modeled as a linear resistive circuit, for the purposes of
this analysis.

Analysis: Imagine that we have unknowingly connected an 8-� amplifier to a 16-� speaker.
We can compute the power delivered to the speaker as follows. The load voltage is found by
using the voltage divider rule:

vLU = RLU

RLU + RT
vT = 2

3
vT

and the load power is then computed to be

PLU = v2
LU

RLU
= 4

9

v2
T

RLU
= 0.0278v2

T
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Let us now repeat the calculation for the case of a matched 8-� speaker resistance RLM. Let
the new load voltage be vLM and the corresponding load power be PLM. Then

vLM = 1

2
vT

and

PLM = v2
LM

RLM
= 1

4

v2
T

RLM
= 0.03125v2

T

The increase in load power is therefore

�P = 0.03125 − 0.0278

0.0278
× 100 = 12.5%

Comments: In practice, an audio amplifier and a speaker are not well represented by the simple
resistive Thévenin equivalent models used in the present example. Circuits that are appropriate
to model amplifiers and loudspeakers are presented in later chapters. The audiophile can find
further information concerning hi-fi circuits in Chapters 7 and 16.

Focus on Computer-Aided Tools: A very nice illustration of the maximum power transfer
theorem based on MathCadTM may be found in the Web references.

CHECK YOUR UNDERSTANDING

A practical voltage source has an internal resistance of 1.2 � and generates a 30-V output under
open-circuit conditions. What is the smallest load resistance we can connect to the source if
we do not wish the load voltage to drop by more than 2 percent with respect to the source
open-circuit voltage?
A practical current source has an internal resistance of 12 k� and generates a 200-mA output
under short-circuit conditions. What percentage drop in load current will be experienced (with
respect to the short-circuit condition) if a 200-� load is connected to the current source?
Repeat the derivation leading to equation 3.38 for the case where the load resistance is fixed
and the source resistance is variable. That is, differentiate the expression for the load power,
PL with respect to RS instead of RL . What is the value of RS that results in maximum power
transfer to the load?

Answers:58.8�;1.64%;Rs=0

3.8 NONLINEAR CIRCUIT ELEMENTS

Until now the focus of this chapter has been on linear circuits, containing ideal voltage
and current sources, and linear resistors. In effect, one reason for the simplicity of some
of the techniques illustrated earlier is the ability to utilize Ohm’s law as a simple, linear
description of the i-v characteristic of an ideal resistor. In many practical instances,
however, the engineer is faced with elements exhibiting a nonlinear i-v characteristic.
This section explores two methods for analyzing nonlinear circuit elements.
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Description of Nonlinear Elements➲LO6

There are a number of useful cases in which a simple functional relationship exists
between voltage and current in a nonlinear circuit element. For example, Figure 3.73
depicts an element with an exponential i-v characteristic, described by the following
equations:

i = I0eαv v > 0

i = −I0 v ≤ 0
(3.41)

There exists, in fact, a circuit element (the semiconductor diode) that very nearly
satisfies this simple relationship. The difficulty in the i-v relationship of equation
3.41 is that it is not possible, in general, to obtain a closed-form analytical solution,
even for a very simple circuit.

–1 –0.5 0 0.5 1

2

1.5

1

0.5

0

A
m

pe
re

s

Volts

Figure 3.73 The i-v
characteristic of exponential
resistor

RT

+
_

ix

vT vx

+

–

Nonlinear
element

Nonlinear element as a load. We wish 
to solve for vx and ix.

Figure 3.74 Representation
of nonlinear element in a linear
circuit

With the knowledge of equivalent circuits you have just acquired, one approach
to analyzing a circuit containing a nonlinear element might be to treat the nonlinear
element as a load and to compute the Thévenin equivalent of the remaining circuit, as
shown in Figure 3.74. Applying KVL, the following equation may then be obtained:

vT = RT ix + vx (3.42)

To obtain the second equation needed to solve for both the unknown voltage vx

and the unknown current ix , it is necessary to resort to the i-v description of the
nonlinear element, namely, equation 3.41. If, for the moment, only positive voltages
are considered, the circuit is completely described by the following system:

ix = I0eαvx vx > 0

vT = RT ix + vx
(3.43)

The two parts of equation 3.43 represent a system of two equations in two unknowns;
however, one of these equations is nonlinear. If we solve for the load voltage and
current, for example, by substituting the expression for ix in the linear equation, we
obtain the following expression:

vT = RT I0eαvx + vx (3.44)

or

vx = vT − RT I0eαvx (3.45)

Equations 3.44 and 3.45 do not have a closed-form solution; that is, they are tran-
scendental equations. How can vx be found? One possibility is to generate a solution
numerically, by guessing an initial value (for example, vx = 0) and iterating until a
sufficiently precise solution is found. This solution is explored further in the home-
work problems. Another method is based on a graphical analysis of the circuit and is
described in the following section.

Graphical (Load-Line) Analysis of Nonlinear Circuits

The nonlinear system of equations of the previous section may be analyzed in a
different light, by considering the graphical representation of equation 3.42, which
may also be written as

ix = − 1

RT
vx + vT

RT
(3.46)
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iX

vx

1
RT

Load-line equation:  ix = –
vT

RT
vx +

vT

–1
RT

vT

RT

Figure 3.75 Load line

ix

vx

i = Ioeαv,v > 0

i-v curve of “exponential resistor”

Solution

1
RT

Load-line equation:  ix =
vT

RT
vx +

vT

RT

vT

Figure 3.76 Graphical solution of equations 3.44 and 3.45

We notice, first, that equation 3.46 describes the behavior of any load, linear or
nonlinear, since we have made no assumptions regarding the nature of the load voltage
and current. Second, it is the equation of a line in the ixvx plane, with slope −1/RT

and ix intercept VT /RT . This equation is referred to as the load-line equation; its
graphical interpretation is very useful and is shown in Figure 3.75.

➲

LO6

The load-line equation is but one of two i-v characteristics we have available,
the other being the nonlinear-device characteristic of equation 3.41. The intersection
of the two curves yields the solution of our nonlinear system of equations. This result
is depicted in Figure 3.76.

Finally, another important point should be emphasized: The linear network
reduction methods introduced in the preceding sections can always be employed to
reduce any circuit containing a single nonlinear element to the Thévenin equivalent
form, as illustrated in Figure 3.77. The key is to identify the nonlinear element and to
treat it as a load. Thus, the equivalent-circuit solution methods developed earlier can
be very useful in simplifying problems in which a nonlinear load is present. Examples
3.24 and 3.25 further illustrate the load-line analysis method.

RT

+
_vT vx

+

–

ix

vx

+

–

Linear
network

ix

Nonlinear
load

Nonlinear
load

Figure 3.77 Transformation of nonlinear circuit of Thévenin equivalent

EXAMPLE 3.24 Nonlinear Load Power Dissipation

➲

LO6
Problem

A linear generator is connected to a nonlinear load in the configuration of Figure 3.77. Determine
the power dissipated by the load.
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Solution

Known Quantities: Generator Thévenin equivalent circuit; load i-v characteristic and load
line.

Find: Power dissipated by load Px .

Schematics, Diagrams, Circuits, and Given Data: RT = 30 �; vT = 15 V.

Assumptions: None.

Analysis: We can model the circuit as shown in Figure 3.77. The objective is to determine the
voltage vx and the current ix , using graphical methods. The load-line equation for the circuit
is given by the expression

ix = − 1

RT
vx + vT

RT

or

ix = − 1

30
vx + 15

30

This equation represents a line in the ixvx plane, with ix intercept at 0.5 A and vx intercept at
15 V. To determine the operating point of the circuit, we superimpose the load line on the device
i-v characteristic, as shown in Figure 3.78, and determine the solution by finding the intersection
of the load line with the device curve. Inspection of the graph reveals that the intersection point
is given approximately by

ix = 0.14 A vx = 11 V

and therefore the power dissipated by the nonlinear load is

Px = 0.14 × 11 = 1.54 W

It is important to observe that the result obtained in this example is, in essence, a description
of experimental procedures, indicating that the analytical concepts developed in this chapter
also apply to practical measurements.
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0.2

0.0
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vX
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I x
 (a

m
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)

0.5 A

15 V

Load line

Device i-v
characteristic

Figure 3.78
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CHECK YOUR UNDERSTANDING

Example 3.24 demonstrates a graphical solution method. Sometimes it is possible to determine
the solution for a nonlinear load by analytical methods. Imagine that the same generator of
Example 3.24 is now connected to a “square law” load, that is, one for which vx = βi2

x , with
β = 0.1. Determine the load current ix . [Hint: Assume that only positive solutions are possible,
given the polarity of the generator.]

Answer:ix=0.5A

EXAMPLE 3.25 Load Line Analysis

➲

LO6
Problem

A temperature sensor has a nonlinear i-v characteristic, shown in the figure on the left. The
load is connected to a circuit represented by its Thévenin equivalent circuit. Determine the
current flowing through the temperature sensor. The circuit connection is identical to that of
Figure 3.77.

Solution

Known Quantities: RT = 6.67 �; VT = 1.67 V. ix = 0.14 − 0.03v2
x .

Find: ix .

Analysis: The figure on the left depicts the device i-v characteristic. The figure on the right
depicts a plot of both the device i-v characteristic and the load line obtained from

ix = − 1

RT
vx + vT

RT
= −0.15vx + 0.25
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The solution for vx and ix occurs at the intersection of the device and load-line characteristics:
ix ≈ 0.12 A, vx ≈ 0.9 V.

CHECK YOUR UNDERSTANDING

Knowing that the load i-v characteristic is given exactly by the expression ix = 0.14 −
0.03v2

x , determine the load current ix . [Hint: Assume that only positive solutions are possible,
given the polarity of the generator.]

Answer:ix=0.116A

Conclusion

The objective of this chapter is to provide a practical introduction to the analysis of linear
resistive circuits. The emphasis on examples is important at this stage, since we believe that
familiarity with the basic circuit analysis techniques will greatly ease the task of learning more
advanced ideas in circuits and electronics. In particular, your goal at this point should be to
have mastered six analysis methods, summarized as follows:

1., 2. Node voltage and mesh current analysis. These methods are analogous in concept;
the choice of a preferred method depends on the specific circuit. They are generally
applicable to the circuits we analyze in this book and are amenable to solution by
matrix methods.

3. The principle of superposition. This is primarily a conceptual aid that may simplify the
solution of circuits containing multiple sources. It is usually not an efficient method.

4. Thévenin and Norton equivalents. The notion of equivalent circuits is at the heart of
circuit analysis. Complete mastery of the reduction of linear resistive circuits to either
equivalent form is a must.

5. Maximum lower transfer. Equivalent circuits provide a very clear explanation of how
power is transferred from a source to a load.

6. Numerical and graphical analysis. These methods apply in the case of nonlinear
circuit elements. The load-line analysis method is intuitively appealing and is
employed again in this book to analyze electronic devices.

The material covered in this chapter is essential to the development of more advanced
techniques throughout the remainder of the book.

HOMEWORK PROBLEMS

Sections 3.2 through 3.4:
Node Mesh Analysis

3.1 Use node voltage analysis to find the voltages V1 and
V2 for the circuit of Figure 3.1.

3.2 Using node voltage analysis, find the voltages V1 and
V2 for the circuit of Figure P3.2.

4 A

1 Ω

2 Ω 1 Ω3 Ω

V1  V2

Figure P3.1
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20 V

10 Ω

30 Ω 30 Ω20 Ω

30 Ω V1 V2 

+
−

Figure P3.2

3.3 Using node voltage analysis in the circuit of Figure
P3.3, find the voltage v across the 0.25-ohm resistance.

0.5 Ω

3 A

2 A

+

v

_

1 Ω

0.25 Ω 0.33 Ω

Figure P3.3

3.4 Using node voltage analysis in the circuit of Figure
P3.4, find the current i through the voltage source.

0.5 Ω

3 V

i

2 A

+_

0.5 Ω

0.25 Ω 0.33 Ω

Figure P3.4

3.5 In the circuit shown in Figure P3.5, the mesh
currents are

I1 = 5 A I2 = 3 A I3 = 7 A

Determine the branch currents through:

a. R1. b. R2. c. R3.

R1

R4 A

BR5

R2

R3

I2

I1

I3
+

–
VS2

+

–
VS1

+
_

+
_

Figure P3.5

3.6 In the circuit shown in Figure P3.5, the source and
node voltages are

VS1 = VS2 = 110 V

VA = 103 V VB = −107 V

Determine the voltage across each of the five resistors.

3.7 Using node voltage analysis in the circuit of Figure
P3.7, find the currents i1 and i2. R1 = 3 �; R2 = 1 �;
R3 = 6 �.

i1 R1

R2

i2 R31 A 2 A

Figure P3.7

3.8 Use the mesh analysis to determine the currents i1

and i2 in the circuit of Figure P3.7.

3.9 Using node voltage analysis in the circuit of Figure
P3.9, find the current i through the voltage source. Let
R1 = 100 �; R2 = 5 �; R3 = 200 �; R4 = 50 �;
V = 50 V; I = 0.2 A.

I

v2v1

R4

R1

R2

R3

v3V

i

+−

Figure P3.9

3.10 Using node voltage analysis in the circuit of Figure
P3.10, find the three indicated node voltages. Let
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I = 0.2 A; R1 = 200 �; R2 = 75 �; R3 = 25 �;
R4 = 50 �; R5 = 100 �; V = 10 V.

R5R1

R2

v2 v3v1

R4

R3I

V

i

+ −

Figure P3.10

3.11 Using node voltage analysis in the circuit of Figure
P3.11, find the current i drawn from the independent
voltage source. Let V = 3 V; R1 = 1

2 �; R2 = 1
2 �;

R3 = 1
4 �; R4 = 1

2 �; R5 = 1
4 �; I = 0.5 A.

R5R2

R3 v2 v3v1
R1 R4

V
i

I+
−

Figure P3.11

3.12 Find the power delivered to the load resistor RL for
the circuit of Figure P3.12, using node voltage
analysis, given that R1 = 2 �, RV = R2 = RL = 4 �,
VS = 4 V , and IS = 0.5 A.

V1
VS V2

VLIS
R1 R1

RV R2

RL

Load

+

−

+ −

Figure P3.12

3.13
a. For the circuit of Figure P3.13, write the node equations
necessary to find voltages V1, V2, and V3. Note that
G = 1/R = conductance. From the results, note the
interesting form that the matrices [G] and [I ] have taken in
the equation [G] [V ] = [I ] where

[G] =




g11 g12 g13 · · · g1n

g21 g22 · · · · · · g2n

g31
. . .

...
. . .

gn1 gn2 · · · · · · gnn




and [I ] =




I1

I2

...

...

In




b. Write the matrix form of the node voltage equations
again, using the following formulas:
gii = ∑

conductances connected to node i
gi j = −∑

conductances shared by nodes i and j
Ii = ∑

all source currents into node i

IS

V1 V2

V3G13

G12

G1

G23

G2

G3

Figure P3.13

3.14 Using mesh current analysis, find the currents i1

and i2 for the circuit of Figure P3.14.

1 Ω 2 Ω

3 Ω1 V 2 Vi1 i2

Figure P3.14

3.15 Using mesh current analysis, find the currents I1

and I2 and the voltage across the top 10-� resistor in
the circuit of Figure P3.15.
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20 Ω

15 Ω

10 Ω

40 Ω

10 Ω

50 V +
–

I1

I2

Figure P3.15

3.16 Using mesh current analysis, find the voltage, v,
across the 3-� resistor in the circuit of Figure P3.16.

2 Ω

2 Ω

1 Ω3 Ω

1 Ω

1 Ω

+

–
v

+
–

+
_

1 V

2 V

Figure P3.16

3.17 Using mesh current analysis, find the currents I1,
I2, and I3 and the voltage across the 40-� resistor in

the circuit of Figure P3.17 (assume polarity according
to I2).

+
–

2 A2 V

2 Ω 1 Ω 3 Ω

2 Ω3 Ω v
+

–

Figure P3.17

3.18 Using mesh current analysis, find the voltage, v,
across the source in the circuit of Figure P3.18.

+ 2 A2 V

2 Ω 1 Ω 3 Ω

2 Ω3 Ω v
+

––

Figure P3.18

3.19 a. For the circuit of Figure P3.19, write the mesh
equations in matrix form. Notice the form of the [R]
and [V ] matrices in the [R] [I ] = [V ], where

[R] =




r11 r12 r13 · · · r1n

r21 r22 · · · · · · r2n

r31
. . .

...
. . .

rn1 rn2 · · · · · · rnn




and [V ] =




V1

V2

...

...

Vn




b. Write the matrix form of the mesh equations again by
using the following formulas:

rii = ∑
resistances around loop i

ri j = −∑
resistances shared by loops i and j

Vi = ∑
source voltages around loop i
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+
−

R3

Vs

R13 R23

R2R12

I3

I1 I2

Figure P3.19

3.20 For the circuit of Figure P3.20, use mesh current
analysis to find the matrices required to solve the
circuit, and solve for the unknown currents. [Hint: you
may find source transformations useful.]

+
−

2 A

V1

5 V 

i4

2 Ω

4 Ω

4 Ω

8 Ω6 Ω

V2
V3

3 Vi1 i2
i3

+_

Figure P3.20

3.21 In the circuit in Figure P3.21, assume the source
voltage and source current and all resistances are
known.

a. Write the node equations required to determine the
node voltages.

b. Write the matrix solution for each node voltage in
terms of the known parameters.

R2

IS

R1

VS

R3

R4

–

+
+
_

Figure P3.21

3.22 For the circuit of Figure P3.22 determine

a. The most efficient way to solve for the voltage
across R3. Prove your case.

b. The voltage across R3.
VS1 = VS2 = 110 V

R1 = 500 m� R2 = 167 m�

R3 = 700 m�

R4 = 200 m� R5 = 333 m�

R1

R4

R5

R2

R3

+

–
Vs2

+

–
Vs1

+
_

+
_

Figure P3.22

3.23 In the circuit shown in Figure P3.23, VS2 and Rs

model a temperature sensor, i.e.,

VS2 = kT k = 10 V/◦C

VS1 = 24 V Rs = R1 = 12 k�

R2 = 3 k� R3 = 10 k�

R4 = 24 k� VR3 = −2.524 V

The voltage across R3, which is given, indicates the
temperature. Determine the temperature.

R1
R3

RS

R2

R4+

–

+ –

VS2

VR3
+

–
VS1

+
_

+
_

Figure P3.23

3.24 Using KCL, perform node analysis on the circuit
shown in Figure P3.24, and determine the voltage
across R4. Note that one source is a controlled voltage
source! Let VS = 5 V; AV = 70; R1 = 2.2 k�;
R2 = 1.8 k�; R3 = 6.8 k�; R4 = 220 �.
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R3

R1

R2

+ –VR1

+

–
VS +

–
AVVR1

R4

+
_

+
–

Figure P3.24

3.25 Using mesh current analysis, find the voltage v

across R4 in the circuit of Figure P3.25. Let
VS1 = 12 V; VS2 = 5 V; R1 = 50 �;
R2 = R3 = 20 �; R4 = 10 �; R5 = 15 �.

VS1

R5

–

+

VS2
–

+

+
_

+
_

R4

R1

R3

R2

Figure P3.25

3.26 Use mesh current analysis to solve for the voltage v

across the current source in the circuit of Figure P3.26.
Let V = 3 V; I = 0.5 A; R1 = 20 �; R2 = 30 �;
R3 = 10 �; R4 = 30 �; R5 = 20 �.

R5R2

R3R1 R4

V I+
−

+

−
v

Figure P3.26

3.27 Use mesh current analysis to find the current i in
the circuit of Figure P3.27. Let V = 5.6 V;
R1 = 50 �; R2 = 1.2 k�; R3 = 330 �; gm = 0.2 S;
R4 = 440 �.

R2 R4

gmvx

R3R1

+

−
vx

V
i

+
−

Figure P3.27

3.28 Using mesh current analysis, find the current i
through the voltage source in the circuit of Figure P3.9.

3.29 Using mesh current analysis, find the current i in
the circuit of Figure P3.10.

3.30 Using mesh current analysis, find the current i in
the circuit of Figure P3.30.

1 Ω 1/2 Ω

1/4 Ω 1/3 Ω

1/5 Ω
I

i

Figure P3.30

3.31 Using mesh current analysis, find the voltage gain
Av = v2/v1 in the circuit of Figure P3.31.

2 Ω

4 Ω

4 Ω

4 Ω

1 Ω

2vv1

+

−
v

+

−
v2i1

i2

i3

+
− +

−

Figure P3.31

3.32 In the circuit shown in Figure P3.32:

VS1 = VS2 = 450 V

R4 = R5 = 0.25 �

R1 = 8 � R2 = 5 �

R3 = 32 �

Determine, using KCL and node analysis, the voltage
across R1, R2, and R3.
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VS2

R3

R4

R5
–

+

VS1

–

+
+
_

+
_

R1

R2

Figure P3.32

3.33 In the circuit shown in Figure P3.33, F1 and F2 are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, its element melts and the fuse “blows” (i.e., it
becomes an open circuit).

VS1 = VS2 = 115 V

R1 = R2 = 5 � R3 = 10 �

R4 = R5 = 200 m�

Normally, the voltages across R1, R2, and R3 are
106.5, −106.5, and 213.0 V. If F1 now blows, or
opens, determine, using KCL and node analysis, the
new voltages across R1, R2, and R3.

R1

R4 F1

R5 F2

R2

R3

+

–
VS2

+

–
VS1

+
_

+
_

Figure P3.33

3.34 In the circuit shown in Figure P3.33, F1 and F2 are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, it “blows” and the fuse becomes an open circuit.

VS1 = VS2 = 120 V

R1 = R2 = 2 � R3 = 8 �

R4 = R5 = 250 m �

If F1 blows, or opens, determine, using KCL and node
analysis, the voltages across R1, R2, R3, and F1.

3.35 The circuit shown in Figure P3.35 is a simplified
DC version of an AC three-phase Y-Y electrical
distribution system commonly used to supply

industrial loads, particularly rotating machines.

VS1 = VS2 = VS3 = 170 V

RW 1 = RW 2 = RW3 = 0.7 �

R1 = 1.9 � R2 = 2.3 �

R3 = 11 �

a. Determine the number of unknown node voltages
and mesh currents.

b. Compute the node voltages v′
1, v′

2, and v′
3. With

respect to v′
n .

R1

Rw3

v1

v3

R2v2

R3

+

+

+ –

–

–

VS1

VS3

VS2

+_

+_

+ _

Rw2

Rw1

v'n
v'2

v'3

v'1

Figure P3.35

3.36 The circuit shown in Figure P3.35 is a simplified
DC version of an AC three-phase Y-Y electrical
distribution system commonly used to supply
industrial loads, particularly rotating machines.

VS1 = VS2 = VS3 = 170 V

RW 1 = RW 2 = RW 3 = 0.7 �

R1 = 1.9 � R2 = 2.3 �

R3 = 11 �

Node analysis with KCL and a ground at the terminal
common to the three sources gives the only unknown
node voltage VN = 28.94 V. If the node voltages in a
circuit are known, all other voltages and currents in the
circuit can be determined. Determine the current
through and voltage across R1.

3.37 The circuit shown in Figure P3.35 is a simplified
DC version of a typical three-wire, three-phase AC
Y-Y distribution system. Write the mesh (or loop)
equations and any additional equations required to
determine the current through R1 in the circuit shown.

3.38 Determine the branch currents, using KVL and
loop analysis in the circuit of Figure P3.35.

VS2 = VS3 = 110 V VS1 = 90 V

R1 = 7.9 � R2 = R3 = 3.7 �

RW 1 = RW 2 = RW 3 = 1.3 �
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3.39 In the circuit shown in Figure P3.33, F1 and F2 are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, its element melts and the fuse blows (i.e., it
becomes an open circuit).

VS1 = VS2 = 115 V

R1 = R2 = 5 � R3 = 10 �

R4 = R5 = 200 m�

Determine, using KVL and a mesh analysis, the
voltages across R1, R2, and R3 under normal
conditions (i.e., no blown fuses).

Section 3.5: Superposition

3.40 With reference to Figure P3.40, determine the
current through R1 due only to the source VS2.

VS1 = 110 V VS2 = 90 V

R1 = 560 � R2 = 3.5 k�

R3 = 810 �

VS2

R2

R3

R1

–

+

VS1

–

+
+
_

+
_

Figure P3.40

3.41 Determine, using superposition, the voltage across
R in the circuit of Figure P3.41.

IB = 12 A RB = 1 �

VG = 12 V RG = 0.3 �

R = 0.23 �

RB RIB

RG

+

–
VG

+
_

Figure P3.41

3.42 Using superposition, determine the voltage across
R2 in the circuit of Figure P3.42.

VS1 = VS2 = 12 V

R1 = R2 = R3 = 1 k�

R3

+

–
VS1

R2

R1

+

–
VS2

+
_

+
_

Figure P3.42

3.43 With reference to Figure P3.43, using
superposition, determine the component of the current
through R3 that is due to VS2.

VS1 = VS2 = 450 V

R1 = 7 � R2 = 5 �

R3 = 10 � R4 = R5 = 1 �

VS2

R4

R5

R3

–

+

VS1

–

+

R2

R1
+
_

+
_

Figure P3.43

3.44 The circuit shown in Figure P3.35 is a simplified
DC version of an AC three-phase electrical distribution
system.

VS1 = VS2 = VS3 = 170 V

RW 1 = RW 2 = RW 3 = 0.7 �

R1 = 1.9 � R2 = 2.3 �

R3 = 11 �

To prove how cumbersome and inefficient (although
sometimes necessary) the method is, determine, using
superposition, the current through R1.

3.45 Repeat Problem 3.9, using the principle of
superposition.

3.46 Repeat Problem 3.10, using the principle of
superposition.

3.47 Repeat Problem 3.11, using the principle of
superposition.

3.48 Repeat Problem 3.23, using the principle of
superposition.

3.49 Repeat Problem 3.25, using the principle of
superposition.

3.50 Repeat Problem 3.26, using the principle of
superposition.

*(866) 487-8889*

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only



September 23, 2005 17:13 riz63473_ch03 Sheet number 62 Page number 142 magenta black

142 Chapter 3 Resistive Network Analysis

Section 3.6: Equivalent Circuits

3.51 Find the Thévenin equivalent circuit as seen by the
3-� resistor for the circuit of Figure P3.51.

5 Ω 1 Ω

4 Ω 3 Ω36 V
+
–

Figure P3.51

3.52 Find the voltage v across the 3-� resistor in the
circuit of Figure P3.52 by replacing the remainder of
the circuit with its Thévenin equivalent.

3 V

2 A

2 Ω

2 Ω

4 Ω 3 Ω v

+

–

– +

Figure P3.52

3.53 Find the Norton equivalent of the circuit to the left
of the 2-� resistor in the Figure P3.53.

2 V 2 A

3 Ω

3 Ω 2 Ω

1 Ω 1 Ω

+
−

Figure P3.53

3.54 Find the Norton equivalent to the left of terminals
a and b of the circuit shown in Figure P3.54.

1 Ω 3 Ω

2 Ω8 V

5 Ω

a

b

+
−

Figure P3.54

3.55 Find the Thévenin equivalent circuit that the load
sees for the circuit of Figure P3.55.

3 Ω1 Ω

10 mA RL10 V

1 kΩ

1 kΩ+
−

a

b

Figure P3.55

3.56 Find the Thévenin equivalent resistance seen by the
load resistor RL in the circuit of Figure P3.56.

50 Ω

a

b

100 Ω

100 Ω

50 Ω50 Ω

+
−

+
− RL

Figure P3.56

3.57 Find the Thévenin equivalent of the circuit
connected to RL in Figure P3.57.
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RL12 V

8 Ω 8 Ω

8 Ω

2 Ω

3 Ω

a

b

+
−

Figure P3.57

3.58 Find the Thévenin equivalent of the circuit
connected to RL in Figure P3.58, where R1 = 10 �,
R2 = 20 �, Rg = 0.1 �, and Rp = 1 �.

15 V

a

b

R1 R2

Rg

+
−

RL

Rp Rp Rp

Rg Rg

Figure P3.58

3.59 The Wheatstone bridge circuit shown in Figure
P3.59 is used in a number of practical applications.
One traditional use is in determining the value of an
unknown resistor Rx .
Find the value of the voltage Vab = Va – Vb in terms of
R, Rx , and VS .
If R = 1 k�, VS = 12 V and Vab = 12 mV, what is the
value of Rx ?

VS Va Vb
a b

R R

R
RX

Figure P3.59

3.60 It is sometimes useful to compute a Thévenin
equivalent circuit for a Wheatstone bridge. For the
circuit of Figure P3.60,

a. Find the Thévenin equivalent resistance seen by the
load resistor RL .

b. If VS = 12 V, R1 = R2 = R3 = 1 k�, and Rx is the
resistance found in part b of the previous problem,
use the Thévenin equivalent to compute the power
dissipated by RL , if RL = 500 �.

c. Find the power dissipated by the Thévenin
equivalent resistance RT with RL included in the
circuit.

d. Find the power dissipated by the bridge without the
load resistor in the circuit.

VS Va Vb

Rx

RL

R3R1

R2

Figure P3.60

3.61 The circuit shown in Figure P3.61 is in the form of
what is known as a differential amplifier. Find the
expression for v0 in terms of v1 and v2 using
Thévenin’s or Norton’s theorem.

v0 +

5 Ω

4 Ω4 Ω

i1 i2

2 Ω 2 Ω

v1 v2
+
−

+
−−

i2

Figure P3.61

3.62 Find the Thévenin equivalent resistance seen by
resistor R3 in the circuit of Figure P3.5. Compute the

*(866) 487-8889*

CONFIRMING PROOFS
MASTER SET
Please mark
all alterations

on this set only



September 23, 2005 17:13 riz63473_ch03 Sheet number 64 Page number 144 magenta black

144 Chapter 3 Resistive Network Analysis

Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R3 is the load.

3.63 Find the Thévenin equivalent resistance seen by
resistor R5 in the circuit of Figure P3.10. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R5 is the load.

3.64 Find the Thévenin equivalent resistance seen by
resistor R5 in the circuit of Figure P3.11. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R5 is the load.

3.65 Find the Thévenin equivalent resistance seen by
resistor R3 in the circuit of Figure P3.23. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R3 is the load.

3.66 Find the Thévenin equivalent resistance seen by
resistor R4 in the circuit of Figure P3.25. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R4 is the load.

3.67 Find the Thévenin equivalent resistance seen by
resistor R5 in the circuit of Figure P3.26. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R5 is the load.

3.68 Find the Thévenin equivalent resistance seen by
resistor R in the circuit of Figure P3.41. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R is the load.

3.69 Find the Thévenin equivalent resistance seen by
resistor R3 in the circuit of Figure P3.43. Compute the
Thévenin (open-circuit) voltage and the Norton
(short-circuit) current when R3 is the load.

3.70 In the circuit shown in Figure P3.70, VS models the
voltage produced by the generator in a power plant,
and RS models the losses in the generator, distribution
wire, and transformers. The three resistances model
the various loads connected to the system by a
customer. How much does the voltage across the total
load change when the customer connects the third load
R3 in parallel with the other two loads?

VS = 110 V RS = 19 m�

R1 = R2 = 930 m� R3 = 100 m�

Power
plant

+

–

Customer

R3R2R1

RS

VS
+
_

Figure P3.70

3.71 In the circuit shown in Figure P3.71, VS models the
voltage produced by the generator in a power plant,
and RS models the losses in the generator, distribution
wire, and transformers. Resistances R1, R2, and R3

model the various loads connected by a customer. How
much does the voltage across the total load change
when the customer closes switch S3 and connects the
third load R3 in parallel with the other two loads?

VS = 450 V RS = 19 m�

R1 = R2 = 1.3 � R3 = 500 m�

Power system

+

–
R3

S3

R2R1

RS

VS
+
_

Figure P3.71

3.72 A nonideal voltage source is modeled in Figure
P3.72 as an ideal source in series with a resistance that
models the internal losses, that is, dissipates the same
power as the internal losses. In the circuit shown in
Figure P3.72, with the load resistor removed so that the
current is zero (i.e., no load), the terminal voltage of
the source is measured and is 20 V. Then, with
RL = 2.7 k�, the terminal voltage is again measured
and is now 18 V. Determine the internal resistance and
the voltage of the ideal source.

Nonideal source

+

–
RL

RS

VS

+

–

VR

IT

+
_

Figure P3.72

Section 3.7: Maximum Power Transfer

3.73 The equivalent circuit of Figure P3.73 has

VT = 12 V RT = 8 �

If the conditions for maximum power transfer exist,
determine
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a. The value of RL .

b. The power developed in RL .

c. The efficiency of the circuit, that is, the ratio of
power absorbed by the load to power supplied by
the source.

RL

+

–
VT

RT+
_

Figure P3.73

3.74 The equivalent circuit of Figure P3.73 has

VT = 35 V RT = 600 �

If the conditions for maximum power transfer exist,
determine

a. The value of RL .

b. The power developed in RL .

c. The efficiency of the circuit.

3.75 A nonideal voltage source can be modeled as an
ideal voltage source in series with a resistance
representing the internal losses of the source, as shown
in Figure P3.75. A load is connected across the
terminals of the nonideal source.

VS = 12 V RS = 0.3 �

a. Plot the power dissipated in the load as a function
of the load resistance. What can you conclude from
your plot?

b. Prove, analytically, that your conclusion is valid in
all cases.

I

R

RS

+

–
VS

+
_

Figure P3.75

Section 3.8: Nonlinear Circuit Elements

3.76 Write the node voltage equations in terms of v1 and
v2 for the circuit of Figure P3.76. The two nonlinear
resistors are characterized by

ia = 2v3
a

ib = v3
b + 10vb

Do not solve the resulting equations.

1 Ω

ia

va
ib

Ra

vbRb

+

–

+ –

26 A1 A

v1 v2

Figure P3.76

3.77 We have seen that some devices do not have a
linear current–voltage characteristic for all i and v; that
is, R is not constant for all values of current and
voltage. For many devices, however, we can estimate
the characteristics by piecewise linear approximation.
For a portion of the characteristic curve around an
operating point, the slope of the curve is relatively
constant. The inverse of this slope at the operating
point is defined as incremental resistance Rinc:

Rinc = dV

d I

∣∣∣∣
[V0,I0]

≈ �V

�I

∣∣∣∣
[V0,I0]

where [V0, I0] is the operating point of the circuit.

a. For the circuit of Figure P3.77, find the operating
point of the element that has the characteristic
curve shown.

b. Find the incremental resistance of the nonlinear
element at the operating point of part a.

c. If VT is increased to 20 V, find the new operating
point and the new incremental resistance.

+
_ Nonlinear

element

RT

VT

VT = 15 V RT = 200 Ω

V

I

I = 0.0025V 2

Figure P3.77
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3.78 The device in the circuit in Figure P3.78 is an
induction motor with the nonlinear i-v characteristic
shown. Determine the current through and the voltage
across the nonlinear device.

VS = 450 V R = 9 �

150
vD (V)

(b)

300 450

20

40

60

i D
 (

A
)

STALL

+

–

VD

iDR

+

–
VS

N.
L.
D.

(a)

+
_

Figure P3.78

3.79 The nonlinear device in the circuit shown in Figure
P3.79 has the i-v characteristic given.

VS = VTH = 1.5 V R = Req = 60 �

Determine the voltage across and the current through
the nonlinear device.

+

–
vD

iD
R

+

–
VS

(a)

N.L.+
_

0.5
vD (V)

(b)

1.0 1.5

10

20

30

i D
 (

m
A

)

Figure P3.79

3.80 The resistance of the nonlinear device in the circuit
in Figure P3.80 is a nonlinear function of pressure. The
i-v characteristic of the device is shown as a family of
curves for various pressures. Construct the DC load
line. Plot the voltage across the device as a function of
pressure. Determine the current through the device
when P = 30 psig.

VS = VTH = 2.5 V R = Req = 125 �

+

–

vD

iDR

+

–
VS

N.
L.
D.

(a)

+
_

1.0
vD (V)

(b)

2.0 3.0

10 psig

20

253040

10

20

30

i D
 (

m
A

)

Figure P3.80

3.81 The nonlinear device in the circuit shown in Figure
P3.81 has the i-v characteristic

iD = IoevD/VT

Io = 10−15 A VT = 26 mV

VS = VTH = 1.5 V

R = Req = 60 �

Determine an expression for the DC load line. Then
use an iterative technique to determine the voltage
across and current through the nonlinear device.

+

–
vD

iDR

+

–
VS N.L.+

_

Figure P3.81
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3.82 The resistance of the nonlinear device in the
circuits shown in Figure P3.82 is a nonlinear function
of pressure. The i-v characteristic of the device is
shown as a family of curves for various pressures.
Construct the DC load line and determine the current
through the device when P = 40 psig.

VS = VTH = 2.5 V R = Req = 125 �

+

–

vD

iDR

+

–
VS

N.
L.
D.

(a)

+
_

1.0
vD (V)

(b)

2.0 3.0

10 psig

20

253040

10

20

30

i D
 (

m
A

)

Figure P3.82

.

3.83 The voltage-current (iD − vD) relationship of a
semiconductor diode may be approximated by the
expression

iD = IS AT

(
exp

{
vD

kT/q

}
− 1

)

where, at room temperature,

IS AT = 10−12 A
kT
q = 0.0259 V

a. Given the circuit of Figure P3.83, use graphical
analysis to find the diode current and diode voltage
if RT = 22 � and VT = 12 V.

b. Write a computer program in MatlabTM (or in any
other programming language) that will find the
diode voltage and current using the flowchart
shown in Figure P3.83.

Yes

No

No

Yes

Start

Finished

VD1 =
VT

2
,

iD1 =
RT

VT – VD1

iD2 = ISAT
exp

qVD1

kT

 
 –1

   
   

+
2

iD2 . iD1

iD1 . iD2
vD2 = VD1

VD1 = 
VD1 = VD1

VD2 – VD1

+
–

VT Vi

+

_

VD2 = VT

}{ ( )

VD1
2

Figure P3.83
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