Worked Examples for Chapter 4

Example for Section 4.1

Consider the following linear programming model.


Maximize Z = 3x1 + 2 x2,

subject to


  x1

≤  4


  x1 + 3x2 
≤ 15


2x1 +   x2 
≤ 10

and


x1 ≥ 0,  x2 ≥ 0.

(a) Use graphical analysis to identify all the corner-point solutions for this model. Label each as either feasible or infeasible.

The graph showing all the constraint boundary lines and the corner-point solutions at their intersections is shown below.
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1, x2) for each of these nine corner-point solutions (A, B,  ..., I) can be identified by obtaining the simultaneous solution of the corresponding two constraint boundary equations. The results are summarized in the following table.

	Corner-point 

solutions
	(x1, x2)
	Feasibility

	A
	(0, 5)
	Feasible

	B
	(0,10)
	Infeasible

	C
	(3, 4)
	Feasible

	D
	(4, 11/3)
	Infeasible

	E
	(4, 2)
	Feasible

	F
	(4, 0)
	Feasible

	G
	(5, 0)
	Infeasible

	H
	(15, 0)
	Infeasible

	I
	(0, 0)
	Feasible


(b) Calculate the value of the objective function for each of the CPF solutions. Use this information to identify an optimal solution.

The objective value of each corner-point feasible solution is calculated in the following table:
	Corner-point 

feasible solutions
	(x1, x2)
	Objective Value     

Z

	A
	(0, 5)
	3*0+2*5 = 10

	C
	(3, 4)
	3*3+2*4 = 17

	E
	(4, 2)
	3*4+2*2 = 16

	F
	(4, 0)
	      3*4+2*0 = 12

	I
	(0, 0)
	      3*0+0*0 =  0


Since point C has the largest value of Z,  (x1, x2) = (3, 4) must be an optimal solution.

(c) Use the solution concepts of the simplex method given in Sec. 5.1 to identify which sequence of CPF solutions would be examined by the simplex method to reach an optimal solution.
CPF solution I:

By Solution Concept 3, we choose the origin, point I = (0, 0), to be the initial CPF solution. By Solution Concept 6,  we know that I is not optimal since two adjacent CPF solutions, A = (0, 5) with Z = 10 and F = (4, 0) with Z = 12, have a larger value of Z (so moving toward either adjacent CPF solution gives a positive rate of improvement in Z). By Solution Concept 5, we choose F because the rate of improvement in Z of F (= 12/4 = 3) is greater than that of A (= 10/5=2).
CPF solution F:

   The CPF solution F is not optimal because one adjacent CPF solution, E = (4, 2) with Z = 16, has a larger value of Z. We then move to CPF solution E.
   CPF solution E: 

   The CPF solution E is not optimal because one adjacent CPF solution, C = (3,4) with Z = 17,  has a larger value of Z. We then move to CPF solution C.
   CPF solution C:

   
By Solution Concept 6, the CPF solution C is optimal since its adjacent CPF solutions, A and E, have smaller values of Z so moving toward either of these adjacent CPF solutions would give a negative rate of improvement in Z. 

   Therefore, the sequence of CPF solutions examined by the simplex method would be   I -> F -> E -> C.

Example for Section 4.2

Reconsider the following linear programming model (previously analyzed in the preceding example).


Maximize Z = 3x1 + 2 x2,

subject to


  x1

≤  4


  x1 + 3x2 
≤ 15


2x1 +   x2 
≤ 10

and


x1 ≥ 0,  x2 ≥ 0.

(a) Introduce slack variables in order to write the functional constraints in augmented form.

We introduce x3, x4, and x5 as the slack variables for the respective constraints. The resulting augmented form of the model is
Maximize   Z = 3 x1 + 2 x2,

subject to


         x1            +   x3            
=  4

                x1 + 3 x2         + x4         
= 15

             2 x1 +    x2                + x5  
= 10
and

                x1 ( 0, x2 ( 0, x3 ( 0, x4 ( 0, x5 ( 0.

(b) For each CPF solution, identify the corresponding BF solution by calculating the values of the slack variables. For each BF solution, use the values of the variables to identify the nonbasic variables and the basic variables.

CPF solution I = (0, 0):

   Plug in x1 = x2 = 0 into the augmented form. The values of the slack variables are x3 = 4, x4 = 15, x5 = 10. 

   The BF solution is (x1, x2, x3, x4, x5) = (0, 0, 4, 15, 10).

   Since x1 = x2 = 0, we know that x1 and x2 are the two nonbasic variables. 

   Since x3 >0, x4>0, x5>0, we know that x3, x4, and x5 are basic variables.

   CPF solution A = (0, 5):

   Plug in x1 = 0 and x2 = 5 into the augmented form. The values of the slack variables are x3 = 4, x4 = 0, x5 = 5. 

   The BF solution is (x1, x2, x3, x4, x5) = (0, 5, 4, 0, 5).

   Since x1 = x4 = 0, we know that x1 and x4 are the two nonbasic variables. 

   Since x2 >0, x3>0, x5>0, we know that x2, x3, and x5 are basic variables.

   CPF solution C = (3, 4):

   Plug in x1 = 3 and x2 = 4 into the augmented form. The values of the slack variables are x3 = 1, x4 = 0, x5 = 0. 

   The BF solution is (x1, x2, x3, x4, x5) = (3, 4, 1, 0, 0).

   Since x4 = x5 = 0, we know that x4 and x5 are the two nonbasic variables. 

   Since x1 >0, x2>0, x3>0, we know that x1, and x2 and x3 are basic variables.

   CPF solution E = (4, 2):

   Plug in x1 = 4 and x2 = 2 into the augmented form. The values of the slack variables are x3 = 0, x4 = 5, x5 = 0. 

   The BF solution is (x1, x2, x3, x4, x5) = (4, 2, 0, 5, 0).

   Since x3 = x5 = 0, we know that x3 and x5 are the two nonbasic variables. 

   Since x1 >0, x2>0, x4>0, we know that x1, x2, and x4 are basic variables.

   CPF solution F = (4, 0):

   Plug in x1 = 4 and x2 = 0 into the augmented form. The values of the slack variables are x3 = 0, x4 = 11, x5 = 2. 

   The BF solution is (x1, x2, x3, x4, x5) = (4, 0, 0, 11, 2).

   Since x2 = x3 = 0, we know that x2 and x3 are the two nonbasic variables. 

   Since x1 >0, x4>0, x5>0, we know that x1, x4, and x5 are basic variables.

Summary of results:

Label  CPF solution   BF solution      Nonbasic variables        Basic variables

  I   
 
(0, 0)  
 (0, 0, 4, 15, 10)       
x1, x2            

x3, x4, x5  

  A   
(0, 5)    
 (0, 5, 4, 0, 5)           
x1, x4            

x2, x3, x5  

  C   
(3, 4)    
 (3, 4, 1, 0, 0)          
 
x4, x5            

x1, x2, x3  

  E   
(4, 2)    
 (4, 2, 0, 5, 0)           
x3, x5            

x1, x2, x4  

  F   
(4, 0)    
 (4, 0, 0, 11, 2)         
x2, x3           
 
x1, x4, x5  

(c) For each BF solution, demonstrate (by plugging in the solution) that, after the nonbasic variables are set equal to zero, this BF solution also is the simultaneous solution of the system of equations obtained in part (a).

BF solution I = (0, 0, 4, 15, 10): Plugging this solution into the equations yields:

           0     
    +  4         

 = 4

           0   + 3(0)          + 15       
= 15

       2(0)  +  0                      +10 
= 10,

so the equations are satisfied.

BF solution A = (0, 5, 4, 0, 5): Plugging this solution into the equations yields

           0     
    +  4         

 = 4

           0   + 3(5)          + 0       
= 15

       2(0)  +   5                      +5 
= 10, 

so the equations are satisfied.

BF Solution C = (3, 4, 1, 0, 0): Plugging this solution into the equations yields

           3     
    +  1         

 = 4

           3   + 3(4)          + 0       
= 15

       2(3)  +   4                      + 0 
= 10,
so the equations are satisfied.

BF solution E= (4, 2, 0, 5, 0): Plugging this solution into the equations yields

           4     
    + 0         

=   4

           4   + 3(2)          +  5       
= 15

       2(4)   +    2                     + 0 
= 10,

so the equations are satisfied.

BF solution F = (4, 0, 0, 11, 2): Plugging this solution into the equations yields

           4     
    +  0         

= 4

           4   + 3(0)          + 11      
= 15

         2(4)   +   0                      + 2 
= 10,
so the equations are satisfied.
Example for Section 4.3

Reconsider the following linear programming model (previously considered in the preceding two examples).


Maximize Z = 3x1 + 2 x2,

subject to


  x1

≤  4


  x1 + 3x2 
≤ 15


2x1 +   x2 
≤ 10

and


x1 ≥ 0,  x2 ≥ 0.

We introduce x3, x4, and x5 as slack the variables for the respective constraints. The resulting augmented form of the model is 
Maximize   Z = 3 x1 + 2 x2,

subject to


        x1            +   x3               =  4

                x1 + 3 x2         + x4         = 15

             2 x1 +    x2                + x5  = 10
and

                x1 ( 0, x2 ( 0, x3 ( 0, x4 ( 0, x5 ( 0.
(a) Work through the simplex method (in algebraic form) to solve this model.

Initialization:

Let x1 and x2 be the nonbasic variables, so x1 = x2 = 0. Solving for x3, x4, and x5 from the equations for the constraints: 

  (1)                x1            + x3                  =   4

(2)                x1 + 3 x2          + x4          = 15

(3)             2 x1 +    x2                  + x5  = 10

we obtain the initial BF solution (0, 0, 4, 15, 10). 

The objective function is Z = 3 x1 + 2 x2. The current BF solution is not optimal since we can improve Z by increasing x1 or x2. 

Iteration 1:

Z = 3 x1 + 2 x2, 
so equation (0) is

(0) Z- 3 x1 - 2 x2 = 0.

If we increase x1, the rate of improvement in Z = 3.

If we increase x2, the rate of improvement in Z = 2. 

Hence, we choose x1 as the entering basic variable. 

Next, we need to decide how far we can increase x1. Since we need variables x3, x4, and x5 to stay nonnegative, from equations (1), (2), and (3), we have 

  (1) 

x3    =    4 – x1       ( 0  (  x1 (   4.   ( minimum 

(2)
 
x4    =  15 – x1     ( 0 (  x1  ( 15.
(3)
 
x5    =  10 – 2 x1  ( 0 (  x1  (   5.

Thus, the entering basic variable x1 can be increased to 4, at which point x3 has decreased to 0. The variable x3 becomes the new nonbasic variable. Proper form from Gaussian elimination is restored by adding 3 times equation (1) to equation (0), subtracting equation (1) from equation (2), and subtracting 2 times equation (1) from equation (3). This yields the following system of equations:

  (0)    Z      -2 x2 +   3 x3 


= 12

  (1)        x1          +      x3                      
=   4

(2)                3 x2   –   x3   + x4           
=  11
(3)                   x2   –  2x3            + x5   
=   2.

Thus, the new BF solution is (4, 0, 0, 11, 2) with Z = 12.

Iteration 2:

Using the new equation (0), the objective function becomes Z = 2 x2 –  3 x3 + 12. The current BF solution is nonoptimal since we can increase x2 to improve Z with the rate of improvement in Z = 2.  Hence, we choose x2 as the entering basic variable. 

Next, we need to decide how far we can increase x2. Since we need the variables x1, x4 and x5 to stay nonnegative, from equations (1), (2), and (3) in iteration 1, we have 

  (1) 

x1    =    4            ( 0 (  no upper bound on x2 

(2) 

x4    =  11 – 3 x2  ( 0 (   x2  ( 11/3   
(3) 

x5    =    2 –    x2  ( 0 (  x2  (   2.                 ( minimum

Thus, x2 can be increased to 2, at which point x5 has decreased to 0, so x5 becomes the leaving basic variable. Thus, x5 becomes a nonbasic variable. After restoring proper form from Gaussian elimination, we obtain the following system of equations:

  (0)    Z                    -    x3               +  2 x5  
= 16

  (1)           x1           +    x3                         
=  4

(2)                             5 x3    + x4    –  3 x5 
=  5
(3)                   x2   –  2 x3              +     x5 
=  2.

Thus, the new BF solution is (4, 2, 0, 5, 0) with Z = 16.

Iteration 3:

Using the new equation (0), the objective function becomes Z =  x3 –  2 x5  + 16. The current BF solution is nonoptimal since we can increase x3 to improve Z with the rate of improvement in Z = 1.  Hence, we choose x3 as the entering basic variable. 

Next, we need to decide how far we can increase x2. Since we need variables x1, x2, and x4 to stay nonnegative, from equations (1), (2), and (3) in iteration 2, we have 

  (1) 

x1    =    4  –    x3  ( 0  
(    x3  ( 4.

(2) 

x4    =    5  – 5 x3  (  
(     x3  ( 1.                 ( minimum 
  (3) 

x2    =    2 +  2 x3  ( 0 
( no upper bound on x3. 

Thus, x3 can be increased to 1, at which point x4 has decreased to 0, so x4 becomes the leaving basic variable. Thus, x4 becomes a nonbasic variable. After restoring proper form from Gaussian elimination, we obtain the following system of equations:

  (0)    Z                                + (1/5)  x4  +  (7/5) x5  = 17

  (1)           x1                         – (1/5)  x4  +  (3/5) x5 =  3
(2)                              x3     + (1/5)  x4   –  (3/5) x5 =  1
(3)                   x2                + (2/5)  x4   –  (1/5) x5 =  4.

Thus, the new BF solution is (3, 4, 1, 0, 0) with Z = 17. Since increasing either x4 or x5 will decrease Z, the current BF solution is optimal. 

(b) Verify the optimal solution you obtained by using a software package based on the simplex method.
Using the Excel Solver (which employs the simplex method) to solve this linear programming model finds the optimal solution as 

    (x1, x2)  = (3, 4) with Z = 17, as displayed next. 
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Example for Section 4.4

Repeat the example for Section 4.3, using the tabular form of the simplex method this time.

The augmented form of the model is

Maximize   Z = 3 x1 + 2 x2,

subject to


          x1            + x3        

=  4

                x1 + 3 x2         + x4      
= 15

               2 x1 +  x2               + x5  
= 10
and

                x1 ( 0, x2 ( 0, x3 ( 0, x4 ( 0, x5 ( 0
Let x1 and x2 be the nonbasic variables and x3, x4, and x5 be the nonbasic variables.  

The simplex tableau for this initial BF solution is 

	Basic Variable
	Eq
	Coefficient of:
	Right Side
	Ratio

	
	
	Z
	x1
	x2
	x3
	x4
	x5
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This BF solution is nonoptimal since the coefficients of x1 and x2 in Eq. (0) are negative. This means that if we increase either x1 or x2, we will increase the objective function value Z. 

Iteration 1.

Since the most negative coefficient in Eq. (0) is –3 for x1 (3 > 2), the nonbasic variable x1 is to be changed to a basic variable. Performing the minimum ratio test on x1, as shown in the last column of the above tableau, the leaving basic variable is x3. After using elementary row operations to restore proper form from Gaussian elimination, the new simplex tableau with basic variables x1, x4, and x5 becomes   

	Basic Variable
	Eq
	Coefficient of:
	Right Side
	Ratio

	
	
	Z
	x1
	x2
	x3
	x4
	x5
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Iteration 2.

Since the coefficient for x2 in Eq. (0) is –3, we can improve Z by increasing x2. The nonbasic variable x2 is to be changed to a basic variable. Performing the minimum ratio test on x2, as shown in the last column of the above tableau, the leaving basic variable is x5. After restoring proper form from Gaussian elimination, the new simplex tableau with basic variables x1, x2, and x4 becomes 

	Basic Variable
	Eq
	Coefficient of:
	Right Side
	Ratio

	
	
	Z
	x1
	x2
	x3
	x4
	x5
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Iteration 3.

Since the coefficient for x3 in Eq. (0) is –1, we can improve Z  by increasing x3. The nonbasic variable x3 is to be changed to a basic variable. Performing the minimum ratio test on x3, as shown in the last column of the above tableau, the leaving basic variable is x4. After restoring proper form from Gaussian elimination, the new simplex tableau with basic variables x1, x2, and x3 becomes
	Basic Variable
	Eq
	Coefficient of:
	Right Side

	
	
	Z
	x1
	x2
	x3
	x4
	x5
	

	Z
	(0)
	1
	0
	0
	0
	1/5
	7/5
	17

	x1
	(1)
	0
	1
	0
	0
	-1/5
	3/5
	3

	x3
	(2)
	0
	0
	0
	1
	1/5
	-3/5
	1

	x2
	(3)
	0
	0
	1
	0
	2/5
	-1/5
	4


Since all the coefficients in Eq. (0) are nonnegative, the current BF is optimal. The optimal solution is (3, 4, 1, 0, 0) with Z = 17.

Example for Section 4.6

Consider the following problem.

Minimize
    Z = 3x1 + 2x2 + x3,

subject to



  x1 +  x2 

=   7



3x1 +  x2 + x3 
≥ 10

and


       x1 ≥ 0,  x2 ≥ 0,  x3 ≥ 0.

After introducing the surplus variable x4, the above linear programming problem becomes 

Minimize   Z =  3 x1 + 2 x2  +  x3,        
subject to

           x1 +    x2                        =  7

         3x1 +    x2 +  x3  –  x4  = 10
and

 
         x1 ( 0, x2 ( 0, x3 ( 0, x4 ( 0.
(a) Using the Big M method, work through the simplex method step by step to solve the problem.

After introducing the artificial variables 
[image: image4.wmf] and 
[image: image5.wmf], the form of the problem becomes

Minimize   Z =  3 x1 + 2 x2  +  x3          + M 
[image: image6.wmf]  + M 
[image: image7.wmf],

subject to

                     x1 +  x2                  +  
[image: image8.wmf]                =  7
                         3x1 +  x2 +  x3  –  x4          +  
[image: image9.wmf]  = 10
and

                             x1 ( 0, x2 ( 0, x3 ( 0, x4 ( 0, 
[image: image10.wmf] ( 0, 
[image: image11.wmf] ( 0.
where M represents a huge positive number.

Converting from minimization to maximization, we have 

Maximize   (-Z) =  – 3 x1 – 2 x2  –  x3          – M 
[image: image12.wmf]  – M 
[image: image13.wmf]
subject to


             x1 +   x2                      +  
[image: image14.wmf]                 
=  7
                         3x1 +    x2 +  x3  –  x4               +  
[image: image15.wmf]  
= 10
and

                             x1 ( 0, x2 ( 0, x3 ( 0, x4 ( 0 , 
[image: image16.wmf] ( 0, 
[image: image17.wmf] ( 0.
Let 
[image: image18.wmf] and 
[image: image19.wmf] be the basic variables. The corresponding simplex tableau is as follows.

	Basic Variable
	Eq
	Coefficient of:
	Right Side

	
	
	Z
	x1
	x2
	x3
	x4
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Iteration 1:

Since M is a huge positive number, the most negative coefficient in Eq. (0) is –4M+3 for x1. Therefore, the nonbasic variable x1 is to be changed to a basic variable. Performing the minimum ratio test on x1, the leaving basic variable is 
[image: image24.wmf]. After restoring proper form from Gaussian elimination, the new simplex tableau with basic variables 
[image: image25.wmf] and x1 becomes

	Basic Variable
	Eq
	Coefficient of:
	Right Side

	
	
	Z
	x1
	x2
	x3
	x4
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Iteration 2:

The most negative coefficient in Eq. (0) now is –(2/3)M+1 for x2, so the nonbasic variable x2 is to be changed to a basic variable. Performing the minimum ratio test on x2, the leaving basic variable is 
[image: image29.wmf]. The new simplex tableau with basic variables x2 and x1 becomes

	Basic Variable
	Eq
	Coefficient of:
	Right Side

	
	
	Z
	x1
	x2
	x3
	x4
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	Z
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The current BF solution is optimal since all the coefficients in Eq.(0) are nonnegative. The resulting optimal solution is 

(x1, x2, x3) = (1.5, 5.5 , 0) with Z = 15.5. 

(b) Using the two-phase method, work through the simplex method step by step to solve the problem.

We introduce the artificial variables 
[image: image32.wmf] and 
[image: image33.wmf].

The Phase 1 problem then is:

Minimize   Z =                                        
[image: image34.wmf]  +  
[image: image35.wmf],

subject to
           


   x1 +    x2                  +  
[image: image36.wmf]                 =  7
                         
3 x1 +    x2 +  x3  –  x4          +  
[image: image37.wmf]  = 10
and

                             x1 ( 0, x2 ( 0, x3 ( 0, x4 ≥ 0, 
[image: image38.wmf] ≥ 0, 
[image: image39.wmf] ≥ 0,

or equivalently, 

Maximize   (-Z) =                                – 
[image: image40.wmf]  –  
[image: image41.wmf],

subject to
            


x1 +    x2                  +  
[image: image42.wmf]                 =  7
                          3 
x1 +    x2 +  x3  –  x4          +  
[image: image43.wmf]  = 10
and

                             x1 ( 0, x2 ( 0, x3 ( 0, x4 ≥ 0, 
[image: image44.wmf] ≥ 0, 
[image: image45.wmf] ≥ 0.

Let 
[image: image46.wmf] and 
[image: image47.wmf] be the basic variables. The current system of equations is

(0)
-Z




+ 
[image: image48.wmf]
+
[image: image49.wmf]
=  0

(1)

x1
+ x2


+ 
[image: image50.wmf]

=  7

(2)

3x1
+ x2
 + x3
  - x4

+ 
[image: image51.wmf]
= 10

To restore proper form from Gaussian elimination, we need to eliminate the basic variables, 
[image: image52.wmf] and 
[image: image53.wmf], from Eq. (0). This is done by subtracting both Eq. (1) and Eq. (2) from Eq. (0), which yields the following new Eq. (0).

(0)
- Z -  4 x1 - 2 x2 -  x3  +  x4  = -17.


Using the initial system of equations with this Eq. (0) to get started, the simplex method yields the following sequence of simplex tableaux for the Phase 1 problem. 

	Iteration
	Basic Variable
	Eq
	Coefficient of:
	Right 
Side

	
	
	
	Z
	x1
	x2
	x3
	x4
	
[image: image54.wmf]
	
[image: image55.wmf]
	

	
	Z
	(0)
	-1
	-4
	-2
	-1
	1
	0
	0
	-17

	(0)
	
[image: image56.wmf]
	(1)
	0
	1
	1
	0
	0
	1
	0
	7

	
	
[image: image57.wmf]
	(2)
	0
	3
	1
	1
	-1
	0
	1
	10

	
	Z
	(0)
	-1
	0
	-2/3
	1/3
	-1/3
	0
	4/3
	-11/3

	(1)
	
[image: image58.wmf]
	(1)
	0
	0
	2/3
	-1/3
	1/3
	1
	-1/3
	11/3

	
	x1
	(2)
	0
	1
	1/3
	1/3
	-1/3
	0
	1/3
	10/3

	
	Z
	(0)
	-1
	0
	0
	0
	0
	1
	1
	0

	(2)
	x2
	(1)
	0
	0
	1
	-0.5
	 0.5
	 1.5
	-0.5
	5.5

	
	x1
	(2)
	0
	1
	0
	 0.5
	-0.5
	-0.5
	 0.5
	1.5


Therefore, the optimal solution for the Phase 1 problem is 

(x1, x2, x3, x4, 
[image: image59.wmf], 
[image: image60.wmf]) = (1.5, 5.5, 0, 0, 0, 0) with Z = 0.


Now using the original objective function, the Phase 2 problem is 

Minimize   Z =  3 x1 + 2 x2  +  x3,        
subject to
           

      x1 +    x2                       =  7
                         3 x1 +    x2 +  x3  –  x4  = 10
and

                           x1 ( 0, x2 ( 0, x3 ( 0, x4 ( 0,

or equivalently, 

Maximize   (-Z ) =  – 3 x1 –  2 x2  –  x3 ,       
subject to


              x1 +    x2                    
=  7
                         3 x1 +    x2 +  x3  –  x4  
= 10
and

                             x1 ( 0, x2 ( 0, x3 ( 0, x4 ( 0.
Using the optimal solution for the Phase 1 problem (after eliminating the artificial variables, which are no longer needed) as the initial BF solution for the Phase 2 problem, we obtain the following simplex tableau.

	Basic Variable
	Eq
	Coefficient of:
	Right Side

	
	
	Z
	x1
	x2
	x3
	x4
	

	Z
	(0)
	-1
	0
	0
	 0.5
	-0.5
	-15.5

	x2
	(1)
	0
	0
	1
	-0.5
	 0.5
	5.5

	x1
	(2)
	0
	1
	0
	 0.5
	-0.5
	1.5


This tableau reveals that the current BF solution is also optimal. Hence, the optimal solution is (x1, x2, x3, x4) = (1.5, 5.5, 0, 0) with Z = 15.5.

(c) Compare the sequence of BF solutions obtained in parts (a) and (b). Which of these solutions are feasible only for the artificial problem obtained by introducing artificial variables and which are actually feasible for the real problem?.

The sequence of BF solutions obtained in part (a) and (b) are the same. All these BF solutions except the last one are feasible only for the artificial problem obtained by introducing artificial variables. Only the final BF solution represents a feasible solution for the real problem.

(d) Use a software package based on the simplex method to solve the problem.
Using the Excel Solver (which employs the simplex method) to solve the problem yields the following optimal solution:  
(x1, x2, x3) = (1.5, 5.5, 0) with Z = 15.5, as displayed next..
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Example for Section 4.7

Reconsider the linear programming model previously analyzed in the example for Sections 4.1, 4.2, 4.3, and 4.4. This model is again shown below, where the right-hand sides of the functional constraints now are interpreted as the amounts available of the respective resources.

Maximize   Z = 3 x1 + 2 x2,

subject to
(1)            

  x1             (   4     (resource 1)

(2)                            x1 + 3 x2  ( 15     (resource 2)

(3)                       
2 x1 +    x2  ( 10     (resource 3)
and

                           x1 ( 0, x2 ( 0.
The optimal solution is (x1, x2) = (3, 4) with Z = 17.
(a) Use graphical analysis as in Fig. 4.8 to determine the shadow prices for the respective resources.

The following figure summarizes the analysis.


From the figure, we can see the following.

Constraint (1) (x1 (  4): Constraint (1) is not binding at the optimal solution (3, 4), since a small change in b1 = 4 will not change the optimal value of Z. Hence, 
[image: image64.wmf] = 0.
Constraint (2) (x1 + 3 x2  ( 15): Constraint (2) is binding at (3, 4). We increase b2 from 15 to 16. The new optimal solution is (14/5, 22/5) with Z = 3*(14/5) + 2*(22/5) = 86/5.

                           y2* = ( Z = 86/5 – 17 = 1/5.
Constraint (3) (2x1 +  x2  ( 10): Constraint (3) is binding at (3, 4). We increase b3 from 10 to 11. The new optimal solution is (18/5, 19/5) with Z = 3*(18/5) + 2*(19/5) = 92/5.

                           
[image: image65.wmf] = ( Z = 92/5 – 17 = 1.4.
(b) Use graphical analysis to perform sensitivity analysis on this model. In particular, check each parameter of the model to determine whether it is a sensitive parameter (a parameter whose value cannot be changed without changing the optimal solution) by examining the graph that identifies the optimal solution.

From part (a), we know that b1 is not a sensitive parameter, while b2 and b3 are sensitive parameters. Similarly, since constraint (1) is not binding at the optimal solution (3, 4), the coefficients a11 = 1 and a12 = 0 of constraint (1) are not sensitive. Since constraint (2) and (3) are binding at the optimal solution, the coefficients a21 = 1,  a22 = 3, a31 = 2, and a32 = 1 are sensitive parameters. From the following figure, we can see that at the optimal solution, the objective function Z = 3 x1 + 2 x2 is not parallel to constraint (2) or constraint (3). Hence, the coefficients c1 = 3 and c2 = 2 are not sensitive parameters. 


(c) Use graphical analysis as in Fig. 4.9 to determine the allowable range for each cj value (coefficient of xj in the objective function) over which the current optimal solution will remain optimal.

From the following graph, we can see that the current optimal solution will remain optimal for  2/3 ( c1 ( 4 (with c2 fixed at 2)  and  3/2 ( c2 ( 9 (with c1 fixed at 3), since the objective function line will rotate around to coincide with one of the constraint boundary lines at each of the endpoints of these intervals. 

(d) Changing just one bi value (the right-hand side of functional constraint i) will shift the corresponding constraint boundary. If the current optimal CPF solution lies on this constraint boundary, this CPF solution also will shift. Use graphical analysis to determine the allowable range for each bi value over which this CPF solution will remain feasible.

From the following graph, we can see the following.

For Constraint (1) (x1 (  4):  The allowable range for b1 is  3 ( b1 ( ( since (3, 4) remains feasible over this range.

For Constraint (2) (x1 + 3 x2  ( 15): The allowable range for b2 is  10 ( b2 ( 30. For b2 < 10, the intersection of x1 + 3x2 = b2 and 2x1 + x2 = 10 violates the x1 ≤ 4 constraint. For b2 > 30, this intersection violates the x1 ≥ 0 constraint.

For Constraint (3) (2x1 +  x2  ( 10): The allowable range for b3 is  5 ( b3 ( 35/3. For b3 < 5, the intersection of x1 + 3x2 = 15 and 2x1 + x2 = b3 violates the x1 ≥ 0 constraint. for b3 > 35/3, this intersection violates the x1 ≤ 4 constraint.


(e) Verify your answers in parts (a), (c), and (d) by using a computer package based on the simplex method to solve the problem and then to generate sensitivity analysis information.

Using the Excel Solver (which employs the simplex method), the sensitivity analysis report (which verifies these answers) is generated, as shown after the following spreadsheet.




Example for Section 4.9

Use the interior-point algorithm in your OR Courseware to solve the following model (previously analyzed in the examples for Sections 4.1, 4.2, 4.3, 4.4, and 4.7). Choose  = 0.5 from the Option menu, use (x1, x2 ) = (0.1, 0.4) as the initial trial solution, and run 15 iterations. Draw a graph of the feasible region, and then plot the trajectory of the trial solutions through this feasible region.
Maximize   Z = 3 x1 + 2 x2,

subject to


         x1        
 (   4

                x1 + 3 x2  ( 15

               2 x1 +  x2  ( 10
and

                x1 ( 0, x2 ( 0.
We use the IOR tutorial with  = 0.5, which generates the following output:
Solve Automatically by the Interior Point Algorithm: (Alpha = 0.5)

	Iteration
	x1
	x2
	Z

	0
	0.1
	0.4
	1.1

	1
	0.30854
	2.61382
	6.15325

	2
	0.35481
	3.74006
	8.54455

	3
	0.42446
	4.28768
	9.84874

	4
	0.60705
	4.51223
	10.8456

	5
	1.3213
	4.41686
	12.7976

	6
	2.19583
	4.13808
	12.7976

	7
	2.63337
	3.99813
	15.8964

	8
	2.85
	3.93243
	16.4149

	9
	2.95476
	3.90669
	16.6777

	10
	3.00139
	3.90533
	16.8148

	11
	3.01647
	3.92112
	16.8916

	12
	3.01519
	3.94665
	16.9389

	13
	3.00904
	3.97043
	16.968

	14
	3.0046
	3.98506
	16.9839

	15
	3.0023
	3.99253
	16.992


The trajectory of the trial solutions through the feasible region is shown in the following figure. 
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