Worked Examples for Chapter 7

Example for Section 7.1

Consider the following linear programming problem.

Maximize   Z = -5 x1 + 5 x2 + 13 x3, 
subject to
 

   -1 x1 + 1 x2  +   3 x3   ≤  20
          12 x1 + 4 x2 + 10 x3   ≤  90

and

             x1 ( 0, x2 ( 0, x3 ( 0.

After introducing x4  and x5 as the slack variables for the respective constraints and then applying the simplex method, the final simplex tableau is 

	Basic Variable
	Eq
	Coefficient of:
	Right Side

	
	
	Z
	x1
	x2
	x3
	x4
	x5
	

	Z
	(0)
	1
	0
	0
	2
	5
	0
	100

	x2
	(1)
	0
	-1
	1
	3
	1
	0
	20

	x5
	(2)
	0
	16
	0
	-2
	-4
	1
	10



Now suppose that the right-hand side of the second constraint is changed from b2 = 90 to b2 = 70. Using the sensitivity analysis procedure described in Sec. 6.7 for Case 1, the only resulting change in the above final simplex tableau is that the Right Side entry for Eq. (2) changes from 10 to - 10. This revised tableau is shown below, labeled as Iteration 0 (for the dual simplex method). 

Application of the Dual Simplex Method

Because x5 = -10 < 0, our basic solution that was optimal is no longer feasible. However, since all the coefficients in Eq. (0) still are nonnegative, we can quickly reoptimize by applying the dual simplex method, starting with the Iteration 0 tableau shown below.


Since x5 is the only negative variable in this tableau, it is chosen as the leaving basic variable for the first iteration of the dual simplex method.


To select the entering basic variable, we consider x3 and x4, since they are the only nonbasic variables that have negative coefficients in Eq. (2). Taking the absolute values of the ratios of these coefficients to the corresponding coefficients in E. (0),
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so x3 is selected as the entering basic variable.


To use Gaussian elimination to solve for the new basic solution, we divide Eq. (2) by (-2) and then subtract 2 times this new Eq. (2) from Eq. (0) and also subtract 3 times this new Eq. (2) from Eq. (1). This yields the Iteration 1 tableau shown below.

The corresponding basic solution is x1 = 0, x2 = 5, x3 = 5, x4 = 0, x5 = 0, with Z = 90, which is feasible and therefore optimal.

	Iteration
	Basic Variable
	Eq
	Coefficient of:
	Right Side

	
	
	
	Z
	x1
	x2
	x3
	x4
	x5
	

	
	Z
	(0)
	1
	0
	0
	2
	5
	0
	100

	0
	x2
	(1)
	0
	-1
	1
	3
	1
	0
	20

	
	x5
	(2)
	0
	16
	0
	-2
	-4
	1
	-10

	
	Z
	(0)
	1
	16
	0
	0
	1
	1
	90

	1
	x2
	(1)
	0
	-23
	1
	0
	-5
	3/2
	5

	
	x3
	(2)
	0
	-8
	0
	1
	2
	-1/2
	5


Example for Section 7.2

Consider the following problem (previously analyzed in the preceding example).

Maximize   Z =   -5 x1 + 5 x2 + 13 x3, 
subject to


   -1 x1 + 1 x2 +    3 x3    ≤  20
          12 x1 + 4 x2 + 10 x3     ≤  90

and
             x1 ( 0, x2 ( 0, x3 ( 0.

Application of Parametric Linear Programming


Suppose that we now want to apply parametric linear programming analysis to this problem by changing the right-hand sides of the functional constraints to


20 + 2 (

(for constraint 1)

and


90  -  (

(for constraint 2),

where ( can be varied over the range 0≤ ( ≤ 20.


To start, we apply the simplex method to solve the problem with ( = 0. Letting x4 and x5 be the slack variables for the respective constraints, the resulting final simplex tableau is the first one shown below (when setting ( = 0). (This same tableau also is shown at the beginning of the preceding example.)


Next, we introduce ( into the problem by using the sensitivity analysis procedure for Case 1 presented in Sec. 6.7. Thus, the only changes in the tableau just obtained are that the Right Side values become

Z* = y*
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as shown in the first tableau below. When ( is increased from 0, the basic solution given in this tableau (basic variables x2 = 20 + 2 ( and x5 = 10 - 9() will remain feasible, and therefore optimal, as long as 20 + 2 ( ≥ 0 and 10 - 9 ( ≥ 0. These inequalities hold for 0 ≤ ( ≤ 10/9.


If ( > 10/9, then x5 < 0, so the dual simplex method needs to be applied (as illustrated in the preceding example) with x5 as the leaving basic variable. The entering basic variable is x3 (2/2 < 5/4), which leads to the second tableau below. For 10/9 ( ( ( 70/23, the optimal basic solution x1 = 0, x2 = 35-(23/2)(, x3 = -5+(9/2)(, x4 = 0, x5 = 0 with Z(() = 110+(. 

If 70/23 < ( ≤ 20,  then x2 < 0 and it will become the leaving basic variable. The entering basic variable is x4 (16/23 > 1/5), which leads to the third tableau below. For 70/23 ( ( ( 20, the optimal basic solution is x1 = 0, x2 = 0, x3 = 9-(1/10)(, x4 = 
-7 + (23/10)(, x5 = 0 with Z(() = 117-(13/10)(. 

	Range of (
	Basic Variable
	Eq
	Coefficient of:
	Right Side

	
	
	
	Z
	x1
	x2
	x3
	x4
	x5
	

	
	Z(()
	(0)
	1
	0
	0
	2
	5
	0
	100+10(

	0 ( ( ( 10/9
	x2
	(1)
	0
	-1
	1
	3
	1
	0
	20+2(

	
	x5
	(2)
	0
	16
	0
	-2
	-4
	1
	10-9(

	
	Z(()
	(0)
	1
	16
	0
	0
	1
	1
	110+(

	10/9 ( ( ( 70/23
	x2
	(1)
	0
	-23
	1
	0
	-5
	3/2
	35-(23/2) (

	
	x3
	(2)
	0
	-8
	0
	1
	2
	-1/2
	-5+(9/2) (

	
	Z(()
	(0)
	1
	103/5
	1/5
	0
	0
	13/10
	117-(13/10)(

	70/23 ( ( ( 20
	x4
	(1)
	0
	-23/5
	-1/5
	0
	1
	-3/10
	-7+(23/10) (

	
	x3
	(2)
	0
	6/5
	2/5
	1
	0
	1/10
	9-(1/10)(


Example for Section 7.3

We will illustrate the upper bound technique by applying it to solve the Wyndor Glass Co. problem presented in Sec. 3.1.


Recall that the model for the Wyndor Glass Co. problem is 
Maximize
Z =  3 x1 + 5 x2, 
subject to


     1 x1       
    ( 4

              
         2 x2     ( 12


          3 x1  + 2 x2    ( 18
and

            x1 ( 0, x2 ( 0.


Since the second constraint is equivalent to x2 ( 6, we can rewrite this problem as an equivalent linear programming problem with one functional constraint and two upper bound constraints:
Maximize  Z = 3 x1 + 5 x2, 
subject to



  3 x1 + 2 x2  ≤ 18

          
  0 ( x1 ( 4

           
  0 ( x2 ( 6.
Let x3 be the slack variable for the functional constraint and also define new variables,

y1 = 4 – x1 ( 0  and  y2 = 6 – x2 ( 0. 
Application of the Upper Bound Technique


With x3 being the basic variable and x1 and x2 being nonbasic, the initial simplex tableau gives the first set of equations, labeled as iteration 0, shown below. 

	Iteration 
	Basic Variable
	Eq
	Coefficient of:
	Right Side

	
	
	
	Z
	x1
	x2
	x3
	

	0
	Z
	(0)
	1
	-3
	-5
	0
	0

	
	x3
	(1)
	0
	3
	2
	1
	18


Since there are negative coefficients in Eq. (0), this basic solution is not optimal. 

We choose x2 as the entering basic variable (-5 < -3). From Eq. (1), x2 ( 9, and from the upper bound constraint, x2 ( 6. Thus, the smallest maximum feasible value of x2 is 6. Because x2 reaches its upper bound, replace x2 by 

y2 = 6 – x2, 
so that y2 = 0 becomes the new nonbasic variable and x3 remains as a basic variable. This leads to the following simplex tableau.

	Iteration 
	Basic Variable
	Eq
	Coefficient of:
	Right Side

	
	
	
	Z
	x1
	y2
	x3
	

	1
	Z
	(0)
	1
	-3
	5
	0
	30

	
	x3
	(1)
	0
	3
	-2
	1
	6



Since the coefficient of x1 in Eq. (0) is negative, we choose x1 as the entering basic variable. From Eq. (1), x1 ( 2, and from the upper bound constraint, x1 ( 4. Thus, the smallest maximum feasible value of x1 is 2. Because x1 does not  reach its upper bound, we still use x1 as a basic variable, and then x3 becomes the leaving basic variable in the usual way. This leads to the optimal simplex tableau shown below. The optimal solution is x1 = 2, y2 = 0 (so x2 = 6) with Z = 36.  

	Iteration 
	Basic Variable
	Eq
	Coefficient of:
	Right Side

	
	
	
	Z
	x1
	y2
	x3
	

	2
	Z
	(0)
	1
	3
	1
	0
	36

	
	x1
	(1)
	0
	1
	-2/3
	1/3
	2
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