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MATH ACTIVITY 9.3
Nets for Three-Dimensional Figures

Materials: Sheets of 2-centimeter grid paper (copy from the website) and scissors. The 
2-centimeter cubes for building figures are optional.

*1. A cube can be formed by creasing and folding along the lines of the pattern shown
here. Use your grid paper to form and cut out several different types of patterns that
will fold into a cube with no overlaps. Show sketches of your patterns. Patterns for
three-dimensional figures are called nets.

2. Form and cut out a net that will fold into the two-cube stack shown here. (Hint: One
way is to imagine this stack sitting on a square of the grid and visualize the squares that
would need to be folded up to cover the stack.) Sketch your net.

3. Visualize a stack of n cubes, and describe a net of squares that will fold and cover this
stack. Write an algebraic expression for the number of squares in this net.

4. Select two of the following figures, and form their nets on grid paper. Show sketches
of your nets. The number of cubes in the figure is the volume of the figure, and the
number of squares in the net is the surface area of the figure. Determine the volume
and surface area of each figure you select.

NCTM Standards

By representing three-
dimensional shapes in two
dimensions and constructing
three-dimensional shapes from
two-dimensional representations,
students learn about the
characteristics of shapes. p. 168
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Section 9.3 SPACE FIGURES

M. C. Escher’s “Cubic
Space Division”
©1999 M. C. Escher/Cordon
Art-Baarn-Holland. All rights reserved.

PROBLEM OPENER
This is a sketch of a three-dimensional figure that contains 54 small cubes. If the outside
of the figure is painted and then the figure is disassembled into 54 individual cubes, how
many cubes will have paint on one face, two faces, three faces, and no faces?

In the above lithograph by the Dutch artist Maurits C. Escher (1898–1970), the girders in-
tersect at right angles to form the edges of large cubes. The Canadian mathematician 
H. S. M. Coxeter calls it the cubic honeycomb. By representing space as being filled with
cubes of the same size, Escher gives a wonderful sense of infinite space.

The notion of space in geometry is an undefined term, just as the ideas of point, line,
and plane are undefined. We intuitively think of space as three-dimensional and of a plane
as only two-dimensional. In his theory of relativity, Einstein tied together the three
dimensions of space and the fourth dimension of time. He showed that space and time
affect each other and give us a four-dimensional universe.
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(a) (b)Figure 9.40

In NCTM’s K–4 Standard, Geometry and Spatial Sense, the importance of spatial under-
standing is discussed:

Insights and intuitions about two- and three-dimensional shapes and their charac-
teristics, the interrelationships of shapes, and the effects of changes to shapes are
important aspects of spatial sense. Children who develop a strong sense of spatial
relationships and who master the concepts and language of geometry are better pre-
pared to learn number and measurement ideas, as well as other advanced mathe-
matical topics.*

*Curriculum and Evaluation Standards for School Mathematics (Reston, VA: National Council of Teachers 
of Mathematics 1989), p. 48.

PLANES

In two dimensions, the figures (lines, angles, polygons, etc.) all occur in a plane. In three
dimensions, there are an infinite number of planes. Each plane partitions space into three
disjoint sets: the points on the plane and two half-spaces. Portions of a few planes are
shown in Figure 9.40. Any two planes either are parallel, as in part a, or intersect in a line,
as in part b.

Sonya Kovalevsky, 1850–1891

HISTORICAL HIGHLIGHT
The Russian mathematician Sonya Kovalevsky is regarded as the greatest woman mathe-
matician to have lived before 1900. Since women were barred by law from institutions of
higher learning in Russia, Kovalevsky attended Heidelberg University in Germany. Later
she was refused admission to the University of Berlin, which also barred women. Even the
famous mathematician Karl Weierstrass, who claimed she had “the gift of intuitive genius,”
was unable to obtain permission for Kovalevsky to attend his lectures. She obtained her
doctorate from the University of Göttingen but was without a teaching position for nine
years, until the newly formed University of Stockholm broke tradition and appointed her to
an academic position. Kovalevsky’s prominence as a mathematician reached its peak in
1888, when she received the famous Prix Bordin from the French Académie des Sciences
for her research paper “On the Rotation of a Solid about a Fixed Point.” The selection com-
mittee “recognized in this work not only the power of an expansive and profound mind, but
also a great spirit of invention.”†

†D. M. Burton, The History of Mathematics, 4th ed. (New York: McGraw-Hill, 1999) pp. 557–560.

NCTM Standards
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When two planes intersect, we call the angle between the planes a dihedral angle.
Figure 9.41 shows three dihedral angles and their measures. A dihedral angle is measured
by measuring the angle whose sides lie in the planes and are perpendicular to the line of in-
tersection of the two planes. Parts a, b, and c of Figure 9.41 show examples of obtuse, right,
and acute dihedral angles, respectively.

Line of
intersection (a) (b) (c)

140° 90°
55°

Figure 9.41

When a line m in three-dimensional space does not intersect a plane P, it is parallel to
the plane, as in Figure 9.42a. A line n is perpendicular to a plane Q at a point k if the line
is perpendicular to every line in the plane that contains K, as in Figure 9.42b.

m

P Q

k

n

(a) (b)Figure 9.42

POLYHEDRA

The three-dimensional object with flat sides in Figure 9.43 is a crystal of pyrite. Its 12 flat
pentagonal sides with their straight edges were not cut by people but were shaped by nature.

Figure 9.43
Crystal of pyrite

The surface of a figure in space whose sides are polygonal regions, such as the one in
Figure 9.43, is called a polyhedron (polyhedra is the plural). The polygonal regions are
called faces, and they intersect in the edges and vertices of the polyhedron. The union of a
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EXAMPLE A Classify the following polyhedra as convex or nonconvex.

1. 2. 3.

Solution Polyhedra 1 and 3 are convex; 2 is nonconvex.

REGULAR POLYHEDRA

The best known of all the polyhedra are the regular polyhedra, or Platonic solids. A regu-
lar polyhedron is a convex polyhedron whose faces are congruent regular polygons, the
same number of which meet at each vertex. The ancient Greeks proved that there are only
five regular polyhedra. Models of these polyhedra are shown in Figure 9.45. The tetrahe-
dron has 4 triangles for faces; the cube has 6 square faces; the octahedron has 8 triangu-
lar faces; the dodecahedron has 12 pentagons for faces; and the icosahedron has 20 tri-
angular faces.

Figure 9.45
From left to right:
tetrahedron, cube
(hexahedron), octahedron;
dodecahedron, icosahedron

Research Statement

The 6th national mathematics
assessment concluded that
students need more experiences
with concrete models to enhance
their visualization skills and
more opportunities to see how
geometric concepts relate to 
real-live situations and other
mathematical aspects.

Strutchens and Blume 1997

A polyhedron is convex if the line segment connecting any two of its points is contained
inside the polyhedron or on its surface.

(a) (b) (c)Figure 9.44

polyhedron and its interior is called a solid. Figure 9.44 shows examples of a polyhedron
and two figures that are not polyhedra. The figure in part a is a polyhedron because its faces
are polygonal regions. The figures in parts b and c are not polyhedra because one has a
curved surface and the other has two faces that are not polygons.
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The first three of the regular polyhedra shown in Figure 9.45 are found in nature as
crystals. The cube and the octahedron occur in the common mineral pyrite, shown in Fig-
ure 9.46. The cube, which is embedded in rock, was found in Vermont, and the octahedron
is from Peru. The other regular polyhedra, the dodecahedron and the icosahedron, do not
occur as crystals but have been found in the skeletons of microscopic sea animals called 
radiolarians.

Figure 9.46
Crystals of pyrite

Semiregular Polyhedra Some polyhedra have two or more different types of regular
polygons for faces. The faces of the boracite crystal in Figure 9.47 are squares and equilat-
eral triangles. This crystal, too, developed its flat, regularly shaped faces naturally, without
the help of machines or people. Polyhedra whose faces are two or more regular polygons
with the same arrangement of polygons around each vertex are called semiregular poly-
hedra. The boracite crystal is one of these. Each of its vertices is surrounded by three
squares and one equilateral triangle.

Figure 9.47
Crystal of boracite

Several other semiregular polyhedra are shown in Figure 9.48. You may recognize the
combination of hexagons and pentagons in part a as the pattern used on the surface of soc-
cer balls.

(a) (b) (c) (d)Figure 9.48
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Figure 9.49
Community church of
Durham, New Hampshire

Several pyramids with different bases are shown in the following example. Pyramids
whose sides are isosceles triangles, as in Figures (1), (3), and (4) of Example C, are called
right pyramids. Otherwise, as in Figure (2) of Example C, the pyramid is called an
oblique pyramid. The vertex that is not contained in the pyramid’s base is called the apex.

EXAMPLE C Determine the name of each pyramid.

1. 2. 3. 4.

Solution 1. Triangular pyramid (also called a tetrahedron) 2. Oblique square pyramid 3. Pen-
tagonal pyramid 4. Hexagonal pyramid

PYRAMIDS AND PRISMS

Chances are that when you hear the word pyramid, you think of the monuments built by the
ancient Egyptians. Each of the Egyptian pyramids has a square base and triangular sides ris-
ing up to the vertex. This is just one type of pyramid. In general, the base of a pyramid can
be any polygon, but its sides are always triangular. Pyramids are named according to the
shape of their bases. Church spires are familiar examples of pyramids. They are usually
square, hexagonal, or octagonal pyramids. The spire in the photograph in Figure 9.49 is a
hexagonal pyramid that sits on the octagonal roof that is supported by eight columns of the
housing for the bell.

EXAMPLE B For each semiregular polyhedron in Figure 9.48, list the polygons in the order in which
they occur about any vertex.

Solution Part a: hexagon, hexagon, pentagon; part b: dodecagon, dodecagon, triangle; part c: tri-
angle, triangle, triangle, triangle, square; part d: octagon, octagon, triangle
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Prisms Prisms are another common type of polyhedron. You probably remember from
your science classes that a prism is used to produce the spectrum of colors ranging from
violet to red. Because of the angle between the vertical faces of a prism, light directed into
one face will be bent when it passes out through the other face (Figure 9.50).
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Figure 9.50

A prism has two parallel bases, upper and lower, which are congruent polygons. Like
pyramids, prisms get their names from the shape of their bases. If the lateral sides of a
prism are perpendicular to the bases, as in the case of the triangular, quadrilateral, hexago-
nal, and rectangular prisms in Figure 9.51, they are rectangles. Such a prism is called a
right prism. A rectangular prism, which is modeled by a box, is the most common type of
prism. If some of the lateral faces of a prism are parallelograms that are not rectangles, as
in the pentagonal prism, the prism is called an oblique prism. The union of a prism and its
interior is called a solid prism. A rectangular prism that is a solid is sometimes called a
rectangular solid.

Triangular
prism

Quadrilateral
prism

Hexagonal
prism

Pentagonal
prism

Rectangular
prismFigure 9.51

EXAMPLE D The following figure is a right prism with bases that are regular pentagons.

A

B C

D

F I

J

G H

E

Research Statement

In order to develop a conceptual
understanding of geometry, 
students need to be placed in 
situations that allow them to
apply deductive, inductive,
and spatial reasoning.

Geddes and Fortunato 1993
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1. What is the measure of the dihedral angle between face ABGF and face BCHG?

2. What is the measure of the dihedral angle between face GHIJF and face CDIH?

3. Name two faces that are in parallel planes.

Solution 1. It is the same as the measure of �FGH, which is 108�. 2. 90�. Since this is a right
prism, the top base is perpendicular to each of the vertical sides. 3. ABCDE and FGHIJ

The two oblique hexagonal prisms in Figure 9.52 are crystals that grew with these flat,
smooth faces and straight edges. Their lateral faces are parallelograms.

Figure 9.52
Prisms of the crystal 
orthoclase feldspar

CONES AND CYLINDERS

Cones and cylinders are the circular counterparts of pyramids and prisms. Ice cream cones,
paper cups, and party hats are common examples of cones. A cone has a circular region
(disk) for a base and a lateral surface that slopes to the vertex (apex). If the vertex lies di-
rectly above the center of the base, the cone is called a right cone or usually just a cone;
otherwise, it is an oblique cone (Figure 9.53).

Vertex point

Right
cone

Vertex point

Oblique
cone

Base Base

Figure 9.53

Ordinary cans are models of cylinders. A cylinder has two parallel circular bases
(disks) of the same size and a lateral surface that rises from one base to the other. If the cen-
ters of the upper base and lower base lie on a line that is perpendicular to each base, the
cylinder is called a right cylinder or simply a cylinder; otherwise, it is an oblique cylin-
der (Figure 9.54). Almost without exception, the cones and cylinders we use are right
cones and right cylinders.

ben22845_ch09.qxd  3/23/06  18:43  Page 608



Master 2

Section 9.3 Space Figures 9.49 609

Base Base

Right
cylinder

Oblique
cylinder

Base Base

Figure 9.54

SPHERES AND MAPS

The photograph in Figure 9.55 is a view of Earth showing its almost perfect spherical
shape. It was photographed from the Apollo 17 spacecraft during its 1972 lunar mission.
The dark regions are water. The Red Sea and the Gulf of Aden are near the top center, and
the Arabian Sea and Indian Ocean are on the right.

Figure 9.55
View of Earth as seen by 
the Apollo 17 crew traveling
toward the Moon. This view
extends from the Mediter-
ranean Sea to the Antarctica
south polar ice cap. Almost
the entire coastline of Africa
is visible and the Arabian
Peninsula can be seen at the
northeastern edge of Africa.
The large island off the coast
of Africa is the Malagasy 
Republic and the Asian 
mainland is on the horizon
toward the northeast.

Sphere A sphere is the set of points in space that are the same distance from a fixed
point, called the center. The union of a sphere and its interior is called a solid sphere.

A line segment joining the center of a sphere to a point on the sphere is called a radius.
The length of such a line segment is also called the radius of the sphere. A line segment
containing the center of the sphere and whose endpoints are on the sphere is called a
diameter, and the length of such a line segment is called the diameter of the sphere.

The geometry of the sphere is especially important for navigating on the surface of the
Earth. You may have noticed that airline maps show curved paths between distant cities.
This is because the shortest distance between two points on a sphere is along an arc of a
great circle. In the drawing of the sphere in Figure 9.56 on page 611, the red arc between
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From McGraw-Hill National Mathematics, Grade 4, by Macmillan/McGraw-Hill. Copyright © 2003 by The McGraw-Hill Companies, Inc.

Reprinted by permission of The McGraw-Hill Companies, Inc.
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X Y

Figure 9.56

Locations on the Earth’s surface are often given by naming cities, streets, and build-
ings. A more general method of describing location uses two systems of circles (Fig-
ure 9.57). The circles that are parallel to the equator are called parallels of latitude and are
shown in part a. Except for the equator, these circles are not great circles. Each parallel of
latitude is specified by an angle from 0° to 90°, both north and south of the equator. For
example, New York City is at a northern latitude of 41°, and Sydney, Australia, is at a
southern latitude of 34°. The second system of circles is shown in part b. These circles pass
through the north and south poles and are called meridians of longitude. These are great
circles, and each is perpendicular to the equator. Since there is no natural point at which to
begin numbering the meridians of longitude, the meridian that passes through Greenwich,
England, was chosen as the zero meridian. Each meridian of longitude is given by an angle
from 0� to 180�, both east and west of the zero meridian. The longitude of New York City
is 74� west, and that of Sydney, Australia, is 151� east. These parallels of latitude and
meridians of longitude, shown together in part c, form a grid or coordinate system for
locating any point on the Earth.

Parallels of latitude Meridians of longitude Grid formed by both
types of circles

(a) (b) (c)

15°

0°

30°

45°

75°
90°

60°

75°

60°
45°

30°
15°

0°

90°

North Pole

Equator

15°
30°

15°
30°

45° W      E↑↑

Figure 9.57

Map Projections The globe is a spherical map of the Earth. While such a map accurately
represents the Earth’s shape and relative distances, we cannot see the whole globe at one
time, nor can distances be measured easily. Maps on a flat surface are much more

points X and Y is the arc of a great circle, because the center of the red circle is also the
center of the sphere. However, the arc of the blue circle between points X and Y is not the
arc of a great circle. So the distance between points X and Y along the red arc on a sphere
is less than the distance between these points along the blue arc.
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Cylindrical projection Conic projection Plane projection

(a) (b) (c)Figure 9.58

A cylindrical projection (part a), also called a mercator projection, is obtained by
placing a cylinder around a sphere and copying the surface of the sphere onto the cylinder.
The cylinder is then cut to produce a flat map. Regions close to the equator are reproduced
most accurately. The closer we get to the poles, the more the map is distorted.

A conic projection (part b) is produced by placing a cone with its apex over one of the
poles and copying a portion of the surface of a sphere onto the cone. The cone is then cut
and laid flat. This type of map construction is commonly used for countries that lie in an
east-west direction and are middle latitude countries, as opposed to those near the poles or
equator. The maps of the United States that are issued by the American Automobile Asso-
ciation are conical projections.

A plane projection (part c), also called an azimuthal projection, is made by placing
a plane next to any point on a sphere and projecting the surface onto the plane. To visual-
ize this process, imagine a light at the center of the sphere, and think of the boundary of a
country as being pierced with small holes. The light shining through these holes, as shown
by the dashed lines in part c, forms an image of the country on the plane. Less than one-half
of the sphere’s surface can be copied onto a plane projection, with the greatest distortion
taking place at the outer edges of the plane. A plane projection, unlike cylindrical and con-
ical projections, has the advantage that the distortion is uniform from the center of the map
to its edges. Plane projections are used for hemispheres and maps of the Arctic and Antarc-
tic. To map the polar regions, a plane is placed perpendicular to the Earth’s axis in contact
with the north or south pole.

convenient. However, since a sphere cannot be placed flat on a plane without separating or
overlapping some of its surface, making flat maps of the earth is a problem. There are three
basic solutions: copying the Earth’s surface onto a cylinder, a cone, or a plane (Figure
9.58). These methods of copying are called map projections. In each case, some distor-
tions of shapes and distances occur.
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Laboratory Connection

Pyramid Patterns
Determine how to construct a
pattern that will fold to make a
pyramid with a given polygonal
base and an apex above a given
point in the base. Explore this
and related questions in this 
investigation.

Mathematics Investigation
Chapter 9, Section 3
www.mhhe.com/bennett-nelson

A D

C

S

B
T

R

P

U

PROBLEM-SOLVING APPLICATION
There is a remarkable formula that relates the numbers of vertices, edges, and faces of a
polyhedron. This formula was first stated by René Descartes about 1635. In 1752 it was dis-
covered again by Leonhard Euler and is now referred to as Euler’s formula. See if you can
discover this formula, either before or as you read the parts of the solution presented below.

Problem

What is the relationship among the numbers of faces, vertices, and edges of a polyhedron?

Understanding the Problem Euler’s formula holds for all polyhedra. Let’s look at a
specific example. A die is a cube that has six faces. Question 1: How many vertices and
edges does it have?

Devising a Plan Let’s make a table; list the numbers of faces, vertices, and edges for
several polyhedra; and look for a relationship. Question 2: What are the numbers of
faces, vertices, and edges for the polyhedra in figures (a), (b), and (c)?

Carrying Out the Plan The following table contains the numbers of faces, vertices, and
edges for the cube in the margin above and the preceding polyhedra in figures (a) through
(c). Using F for the number of faces, V for the number of vertices, and E for the number of
edges, we can construct Euler’s formula from these data. Question 3: What is Euler’s
formula?

F V E

Cube 6 8 12

Figure (a) 5 6 9

Figure (b) 6 6 10

Figure (c) 9 9 16

Looking Back You may remember that an icosahedron has 20 triangular faces, but may
not remember the number of edges or vertices. Altogether, 20 triangles have a total of
60 edges. Since every two edges of a triangle form one edge of an icosahedron, this polyhe-
dron has 60 � 2 � 30 edges. Given the numbers of faces and edges for the icosahedron and
Euler’s formula F � V � 2 � E, we can determine the number of vertices. Question 4:
How many vertices are there?

Answers to Questions 1–4 1. 8 vertices and 12 edges 2. Figure (a): 5 faces, 6 vertices, 9 edges;
figure (b): 6 faces, 6 vertices, 10 edges; figure (c): 9 faces, 9 vertices, 16 edges 3. F � V � 2 � E
4. 12; 20 � V � 2 � 30

(c)(b)(a)
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Technology Connection

How would you cut this cube into two parts with one straight slice so that the cross section
is a triangle? A trapezoid? This applet lets you select points on the edges of the cube for
your slices and then rotate the cube for a better perspective of the resulting cross section.

Cross-Sections of a Cube Applet, Chapter 9, Section 3
www.mhhe.com/bennett-nelson

Leonhard Euler, 1707–1783

HISTORICAL HIGHLIGHT
Switzerland’s Leonhard Euler is considered to be the most prolific writer in the history of
mathematics. He published over 850 books and papers, and most branches of mathematics
contain his theorems. After he became totally blind at the age of 60, he continued his amaz-
ing productivity for 17 years by dictating to a secretary and writing formulas in chalk on a
large slate. On the 200th anniversary of his birthday in 1907, a Swiss publisher began reis-
suing Euler’s entire collected works; the collection is expected to run to 75 volumes of
about 60 pages each.*

*H. W. Eves, In Mathematical Circles (Boston: Prindle, Weber, and Schmidt, 1969), pp. 46–49.
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1. The crystals crowded together in the photograph are
growing with flat polygonal faces.
a. What type of polygon is the top face of these 

crystals?
b. What type of polyhedron is formed by these 

crystals?

Which of the figures in exercises 2 and 3 are polyhedra?

2. a. b. c.

3. a. b. c.

Classify the polyhedra in exercises 4 and 5 as convex or
nonconvex.

4. a. b.

c.

5. a. b.

c.

Exercises and Problems 9.3

Crystals of calcite
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The semiregular polyhedra are classified according to the
arrangement of regular polygons around each vertex. Pro-
ceeding counterclockwise, list the polygons about a vertex
of each polyhedron in exercises 6 and 7.

6. a. b.

20 hexagons 32 triangles
12 pentagons 6 squares

7. a. b.

8 triangles 20 hexagons
6 squares 30 squares

12 decagons

Name each of the figures in exercises 8 and 9.

8. a. b. c.

9. a. b. c.

Name the figures in exercises 10 and 11, and state whether
they are right or oblique.

10. a. b. c.

11. a. b. c.

12. The polyhedron below is a right pentagonal prism
whose bases are regular polygons.

a. What face is parallel to face ABCDE?
b. What is the measure of the dihedral angle between

face ABGF and face BCHG?
c. What is the measure of the dihedral angle between

face FGHIJ and face EDIJ?

13. The polyhedron shown here is a right prism, and its
bases are regular hexagons.

a. What face is parallel to face GHIJKL?
b. What face is parallel to face IJDC?
c. What is the measure of the dihedral angle between

face ABHG and face ABCDEF?
d. What is the measure of the dihedral angle between

face ABHG and face BCIH?

Which of the three types of projections is best suited for
making flat maps of the regions in exercises 14 and 15?

14. a. Australia
b. North, Central, and South America
c. The entire equatorial region between 30� north lati-

tude and 30� south latitude

15. a. Arctic region
b. Western hemisphere between 20� north and 20�

south
c. United States

A

B

D

C

L K

G J
H I

F E

F

J

I

A

B C

D

G H

E
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Each of the geometric shapes listed in exercises 16 and 17
can be seen in the photograph. Locate these objects.

Thompson Hall, University of New Hampshire

16. a. Cone b. Pyramid c. Cylinder
d. Sphere e. Circle

17. a. Obtuse angle b. Rectangle c. Semicircle
d. Square e. Isosceles triangle

18. Use the photo with exercise 19 and your knowledge
of the spherical coordinate system to match each of
the following cities with its longitude and latitude.

Tokyo 38�N and 120�W
San Francisco 56�N and 4�W
Melbourne 35�N and 140�E
Glasgow 35�S and 20�E
Capetown 38�S and 145�E

19. Two points on the Earth’s surface that are on opposite
ends of a line segment through the center of the earth
are called antipodal points. The coordinates of such
points are nicely related. The latitude of one point is as
far above the equator as that of the other is below, and
the longitudes are supplementary angles (in opposite
hemispheres). For example, (30�N, 15�W) is off the
west coast of Africa near the Canary Islands, and its an-
tipodal point (30�S, 165�E) is off the eastern coast of
Australia.

a. This globe shows that (20�N, 120�W) is a point in
the Pacific Ocean just west of Mexico. Its antipodal
point is just east of Madagascar. What are the coor-
dinates of this antipodal point?

b. The point (30�S, 80�E) is in the Indian Ocean. What
are the coordinates of its antipodal point? In what
country is it located?

20. China is bounded by latitudes of 20�N and 55�N and by
longitudes of 75�E and 135�E. It is playfully assumed
that if you could dig a hole straight through the center
of the Earth, you would come out in China. For which
of the following starting points is this true?
a. Panama (9�N, 80�W)
b. Buenos Aires (35�S, 58�W)
c. New York (41�N, 74�W)

The intersection of a plane and a three-dimensional figure is
called a cross section. The cross section produced by the in-
tersection of a plane and a right cylinder, where the plane is
parallel to the base of the cylinder (see figure), is a circle.
Determine the cross sections of the figures in exercises 21
and 22.
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21. a. b.

22. a. b.

23. A cube can be divided into triangular pyramids in sev-
eral ways. Pyramid FHCA divides this cube into five
triangular pyramids. Name the four vertices of each of
the other four pyramids.

24. E, F, G, H, and C are the vertices of a square pyramid
inside this cube. Name the five vertices of two more
square pyramids that, together with the given pyramid,
divide the cube into three pyramids.

One method of describing a three-dimensional figure is to
make a drawing of its different views. There are nine cubes
in the following figure (two are hidden), and the top, right,
and front views are shown.

E

A

D

F

G

H

CB

A

D

F

G

H

B

E

C

Sketch the top, front, and side views of each of the figures in
exercises 25 and 26. (Note: Figure 25b has one hidden cube
beneath a cube that can be seen, and the color faces of the
cubes are part of the front views of the figures.)

25. a. b.

26. a. b.

The following table of polyhedra illustrates some of the
forms that crystals may take in nature. The polygons at
the tops of the columns are the horizontal cross sections
of the polyhedra in the columns. Use this table in exercises
27 and 28.

27. a. List the numbers of the polyhedra that are pyramids.
b. Which of the polyhedra is most like a dodecahedron?

Front view

Top view

Side view (right)
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28. a. List the numbers of the polyhedra that are prisms.
b. Which of the polyhedra is most like an octahedron?

Use Euler’s formula in exercises 29 and 30 to determine the
missing numbers for each polyhedron. For each set of con-
ditions, find a polyhedron from those numbered from 1 to
21 in the table above that has the given number of faces,
vertices, and edges.

29. a. 7 faces, 7 vertices, edges
b. 16 faces, vertices, 24 edges
c. faces, 5 vertices, 8 edges

30. a. 6 faces, vertices, 9 edges
b. faces, 8 vertices, 12 edges
c. 14 faces, 24 vertices, edges

Hurricane Ginger was christened on September 10, 1971,
and became the longest-lived Atlantic hurricane on record.
This tropical storm formed approximately 275 miles south
of Bermuda and reached the U.S. mainland 20 days later.
Use this map in exercises 31 and 32.

Atlantic Ocean

Bermuda

30 Sep 1971

10 Sep 1971

Erratic path of Hurricane Ginger

11

12

13 14
15

16

17
18

19

20
21

22

23
24

25

2627

28

29

80° 70° 60° 50°

30°

40°

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17
18

19 20 21

22 23 24 25 26 27 28

29 30 31 32 33

31. The storm’s coordinates on September 10 were (28�N,
66�W). What were its coordinates on September 15,
September 23, and September 30?

32. At this latitude on the Earth’s surface, each degree of
longitude spans a distance of approximately 60 miles.
About how many miles did this hurricane travel be-
tween September 10 and September 30? (Hint: Use a
piece of string.)

Reasoning and Problem Solving

33. Erica is designing a science experiment that requires
two different three-dimensional figures such that one
fits inside the other and both figures have at least one
cross section that is the same for both figures (see exer-
cises 21 and 22). Find such a pair of figures.

34. Here are the first three figures in a staircase pattern.
These staircases are polyhedra.

1st 2d 3d

a. The number of faces for the polyhedron in the first
figure is 8. How many faces are there for the polyhe-
dron in the 35th figure?

b. The number of edges for the polyhedron in the first
figure is 18. How many edges are there for the poly-
hedron in the 35th figure?

c. The number of vertices for the polyhedron in the
first figure is 12. How many vertices are there for the
polyhedron in the 35th figure?

35. Sketch and describe how to form a piece of paper into
the following figures (without bases).

a. b. c.

Oblique
circular cylinder

Right
circular cone

Right
circular cylinder
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36. Featured Strategies: Making a Drawing and Using
a Model The five regular polyhedra and the numbers
and shapes of their faces are shown in the following
table. Determine the missing numbers of vertices and
edges.

Polyhedron Vertices Faces Edges

Tetrahedron 4 triangles

Cube 8 6 squares 12

Octahedron 8 triangles

Dodecahedron 12 pentagons

Icosahedron 20 triangles

a. Understanding the Problem The cube is the
most familiar of the regular polyhedra. Its 6 faces
meet in 12 edges, and its edges meet in 8 vertices
(see figure i). How many vertices and edges does a
tetrahedron have?

i. ii.

b. Devising a Plan One approach is to use a model
or a sketch of the polyhedra and to count the num-
bers of vertices and edges. Or once we determine ei-
ther the number of vertices or the number of edges,
the missing number can be obtained by using
Euler’s formula F � V � 2 � E.

Another approach that avoids counting is to use
the fact that each pair of faces meets in exactly one
edge. For example, since a dodecahedron has 12 pen-
tagons for faces and each pair of pentagons shares an
edge, the number of edges is (12 � 5)�2 � 30. Using
Euler’s formula, determine the number of vertices in
a dodecahedron.

c. Carrying Out the Plan Continue to find the num-
bers of edges by multiplying the number of faces by
the number of sides on the face and dividing by 2.
For example, what is the number of edges in an
icosahedron? Fill in the rest of the table above.

d. Looking Back The number of vertices for each
regular polyhedron can also be found directly from
the number of edges that meet at each vertex. For
example, three edges meet at each vertex of the
dodecahedron, as shown in the following Figure iii.
Since there are 12 faces and each face has 5 vertex

points, the dodecahedron has (12 � 5)�3 � 20 ver-
tex points. Use this approach to determine the num-
ber of vertices for the icosahedron in iv.

37. Each of the following polygons contains five squares.
There are only 12 such polygons that can be formed in
the plane by joining five squares along their edges, and
they are called pentominoes.

a. Which two of these pentominoes will fold into an
open-top box, so that each face of the box is one of
the squares?

b. Eight of the 12 pentominoes will fold into an open-
top box. Find another one of these.

38. The polygons were formed by joining six squares along
their edges. There are 35 such polygons, and they are
called hexominoes.
a. Which two of these hexominoes will fold into a

cube so that each face of the cube is one of the
squares?

b. Eleven of the 35 hexominoes will fold into a cube.
Find another such hexomino.

i. ii. iii.

Dodecahedron Icosahedron

iii. iv.
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39. The centers of the faces of a cube can be connected to
form a regular octahedron. Also, the centers of the
faces of an octahedron can be connected to form a
cube. Such pairs of polyhedra are called duals.

a. How is this dual relationship suggested by the table
in exercise 36?

b. Find two other regular polyhedra that are duals of
each other.

c. Which regular polyhedron is its own dual?

40. There are six categories of illusions.* One category,
called impossible objects, is produced by drawing three-
dimensional figures on two-dimensional surfaces. Find
the impossible feature in each of these figures.

a. b.

M. C. Escher’s “Waterfall”
©1999 M. C. Escher/Cordon
Art-Baarn-Holland.
All rights reserved.

41. A second type of illusion involves depth perception.
We have accustomed our eyes to see depth when three-
dimensional objects are drawn on two-dimensional
surfaces. Answer questions a and b by disregarding the
depth illusions.
a. Is one of these cylinders larger than the others?

b. Which of the four numbered angles below is the
largest? Which are right angles? (Hint: Use a corner
of a piece of paper.)

Writing and Discussion

1. Natalie asked her teacher why, when you blow bubbles,
they are round like a sphere and not cubes or other
shapes. Research the question and then write a re-
sponse you can give to this student.

2. One of your students wants to make cone-shaped birth-
day hats and asks you to show him how to do it. Ex-
plain, with diagrams, how you would go about this.

3. After using your classroom Earth globe to illustrate a
sphere, a student asks how they get the map of the
Earth on a flat piece of paper. Research the question
and then write a response that would make sense to this
student.

1

2

3

4

c.

*P. A. Rainey, Illusions (Hamden, CT: The Shoe String Press, 1973), 
pp. 18–43.
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4. Researchers have concluded that students need more
experiences with concrete models. Suppose you are a
new teacher going into a school that does not have
three-dimensional manipulatives. Compile a list of ob-
jects you could acquire, or make, to bring into your
classroom to successfully teach spatial concepts and il-
lustrate the three-dimensional objects referred to in this
section.

Making Connections

1. The Standards statement on page 600 suggests 
constructing three-dimensional shapes from two-
dimensional representations. Hexominoes are poly-
gons formed by joining six squares along their edges.
(Three examples are shown in the exercise set for this
section.) There are 35 hexominoes and 11 of them will
fold into a cube. Identify and diagram the 11 hex-
ominoes that fold into a cube and describe the strategy
you used to find them.

2. Repeat the question posed in the Problem Opener for
this section for a 3 � 3 � 3 cube made up of 27 of the
smaller cubes. Repeat for a 4 � 4 � 4 cube and then for
an n � n � n cube.

3. The Elementary School Text example on page 610
shows several common three-dimensional shapes that
students are to learn. Make a list of some three-
dimensional forms found in your community (build-
ings, sculptures, etc.) that represent each of the three-
dimensional shapes on that page.

4. One of the recommendations in the Grades 3–5
Standards—Geometry (see inside front cover) states:
“Identify and build a three-dimensional object from a
two-dimensional representation of that object.” Explain
what this means and give examples of how you would
accomplish this.
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