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Exponential 

and Logarithmic 

Functions

MOST of the functions we have worked with so far have been

polynomial or rational functions, with a few others involving

roots. Functions that can be expressed in terms of addition,

subtraction, multiplication, division, and roots of variables and

constants are called algebraic functions. In Chapter 4 we will

learn about exponential and logarithmic functions. These func-

tions are not algebraic; they belong to the class of transcen-
dental functions. Exponential and logarithmic functions are

used to model a surprisingly wide variety of real-world phe-

nomena: growth of populations of people, animals, and bacte-

ria; radioactive decay; epidemics; and magnitudes of sounds

and earthquakes. These and many other applications will be

studied in this chapter.

C
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382 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Many of the functions we’ve studied so far have included exponents. But in every case,
the exponent was a constant, and the base was often a variable. In this section, we
will reverse those roles. In an exponential function, the variable appears in an expo-
nent. As we’ll see, this has a significant effect on the properties and graphs of these
functions. A review of the basic properties of exponents in Appendix A, Section A-2,
would be very helpful before moving on.

Z Defining Exponential Functions

Let’s start by noting that the functions f and g given by

and

are not the same function. Whether a variable appears as an exponent with a constant
base or as a base with a constant exponent makes a big difference. The function g is
a quadratic function, which we have already discussed. The function f is an exponen-
tial function.

The graphs of f and g are shown in Figure 1. As expected, they are very different.
We know how to define the values of for many types of inputs. For positive

integers, it’s simply repeated multiplication:

For negative integers, we use properties of negative exponents:

For rational numbers, a calculator comes in handy:

A graphing calculator can be used to obtain the graph in Figure 1 (see Fig. 2).
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9
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3
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8
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g(x) � x2f (x) � 2x
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The only catch is that we don’t know how to define for all real numbers. For
example, what does

mean? Your calculator can give you a decimal approximation, but where does it come
from? That question is not easy to answer at this point. In fact, a precise definition
of must wait for more advanced courses. For now, we will simply state that for
any positive real number b, the expression is defined for all real values of x, and
the output is a real number as well. This enables us to draw the continuous graph for

in Figure 1. In Problems 85 and 86 in Exercises 4-1, we will explore a
method for defining for irrational x values like 12.bx
f (x) � 2x

bx
212

212

2x
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ZZZ EXPLORE-DISCUSS 1

Compare the graphs of and by graphing both functions in
the same viewing window. Find all points of intersection of the graphs. For
which values of x is the graph of f above the graph of g? Below the graph of
g? Are the graphs of f and g close together as As Discuss.x S ��?x S �?

g(x) � 2xf (x) � 3x

Z DEFINITION 1 Exponential Function

The equation

defines an exponential function for each different constant b, called the base.
The independent variable x may assume any real value.

b 7 0, b � 1f (x) � bx

The domain of f is the set of all real numbers, and it can be shown that the range
of f is the set of all positive real numbers. We require the base b to be positive to avoid
imaginary numbers such as Problems 57 and 58 in Exercises 4-1 explore why

and are excluded.

Z Analyzing Graphs of Exponential Functions

b � 1b � 0
(�2)1�2.

The graphs of for and 5 are shown in Figure 3. Note that all three
have the same basic shape, and pass through the point (0, 1). Also, the x axis is a
horizontal asymptote for each graph, but only as The main difference
between the graphs is their steepness.

x S ��.

b � 2, 3,y � bx

Z Figure 3 y � bx for b � 2, 3, 5.

5�5

10

5

y

x

y3 � 5x

y2 � 3x

y1 � 2x
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Next, let’s look at the graphs of for and (Fig. 4). Again, all
three have the same basic shape, pass through (0, 1), and have a horizontal asymp-
tote but we can see that for the asymptote is only as In gen-
eral, for bases less than 1, the graph is a reflection through the y axis of the graphs
for bases greater than 1.

The graphs in Figures 3 and 4 suggest that the graphs of exponential functions
have the properties listed in Theorem 1, which we state without proof.

x S �.b 6 1,y � 0,

1
5b � 1

2, 
1
3,y � bx

384 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Z Figure 4 for b � 1
2, 

1
3, 

1
5.y � bx

5�5

10

5

y

x

� �1
2y1 �       

x

� �1
3y2 �       

x

� �1
5y3 �       

x

Z THEOREM 1 Properties of Graphs of Exponential Functions

Let be an exponential function, Then the graph of
f (x):

1. Is continuous for all real numbers

2. Has no sharp corners

3. Passes through the point (0, 1)

4. Lies above the x axis, which is a horizontal asymptote either as or
but not both

5. Increases as x increases if decreases as x increases if 

6. Intersects any horizontal line at most once (that is, f is one-to-one)

0 6 b 6 1b 7 1;

x S ��,
x S �

b 7 0, b � 1.f (x) � bx

These properties indicate that the graphs of exponential functions are distinct from
the graphs we have already studied. (Actually, Property 4 is enough to ensure that
graphs of exponential functions are different from graphs of polynomials and
rational functions.) Property 6 is important because it guarantees that exponential
functions have inverses. Those inverses, called logarithmic functions, are the subject
of Section 4-3.

To begin a study of graphing exponentials, it’s helpful to sketch a graph or two
by hand after plotting points.

EXAMPLE 1 Drawing the Graph of an Exponential Function

Sketch the graph of each function after plotting at least seven points. Then confirm
your result with a graphing calculator.

(A) (B) g(x) � a2

3
bx

f  (x) � a3

2
bx
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SOLUTIONS

Make a table of values for f and g.

x

0

1

2

3 a2

3
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�
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�
27

8

a2

3
b2

�
4

9
a3

2
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�
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4

a2

3
b1

�
2

3
a3

2
b1

�
3

2

a2

3
b0

� 1a3

2
b0

� 1

a2

3
b�1

� a3

2
b1

�
3

2
a3

2
b�1

� a2

3
b1

�
2

3
�1

a2

3
b�2

� a3

2
b2

�
9

4
a3

2
b�2

� a2

3
b2

�
4

9
�2

a2

3
b�3

� a3

2
b3

�
27

8
a3

2
b�3

� a2

3
b3

�
8

27
�3

a2

3
bxa3

2
bx
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The hand sketches are shown in Figures 5 and 6, along with the corresponding graph-
ing calculator graph.

5�5

8

y

x
�1

� �3
2

x
y �

�1

�5

8

5

5�5

8

y

x
�1

� �2
3

x
y �

�1

�5

8

5

Z Figure 5 Z Figure 6

Notice that the outputs for in Figure 5 and for in Figure 6 get so small
that it’s hard to distinguish the graph from the x axis. Property 4 in Theorem 1 indi-
cates that the graph of an exponential function is always above the x axis, and approaches
height zero as or (Zooming in on the graph, as in Figure 7, illustrates
the behavior a bit better.) �

x S ��.x S �

x 7 0x 6 0

(a)

(b) (a) (b)
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386 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Z Figure 7

5�5

10

x

�1�2�3�4�5

y

2

1

� �3
2

x
y �

MATCHED PROBLEM 1

Sketch the graph of each function after plotting at least seven points. Then confirm
your result with a graphing calculator.

(A) (B)

�
g(x) � a4

3
bx

f  (x) � a3

4
bx

ZZZ EXPLORE-DISCUSS 2

Examine the graphs of and from Example 1.

(A) What is the relationship between the graphs?

(B) Rewrite as an exponential with base How does this confirm your
answer to part A?

3
2.(2

3)
x

g(x) � (2
3)

xf  (x) � (3
2)

x

We can also use our knowledge of transformations to draw graphs of more compli-
cated functions involving exponentials.

EXAMPLE 2 Drawing the Graph of an Exponential Function

Use transformations of to graph 

SOLUTION

We start with a graph of [Fig. 8(a)], then shift 2 units right and 4 units up
[Fig. 8(b)]. A graphing calculator confirms our result [Fig. 8(c)]. Note that in this
case, is a horizontal asymptote. �y � 4

y � 2x

f (x) � 2x�2 � 4.y � 2x
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Z Additional Properties of Exponential Functions

The properties of exponents you should be familiar with (see Appendix A, Section A-2)
are often stated in terms of exponents that are rational numbers. But we’re consider-
ing irrational exponents as well in defining exponential functions. Fortunately, these
properties still apply. We will summarize the key properties we need in this chapter,
and add two other useful properties.

S E C T I O N  4–1 Exponential Functions 387

(a) (b) (c)

y � 2x

5�5

10

y

x

y � 2x�2 � 4

5�5

10

y

x
�1

�5

10

5

Z Figure 8

MATCHED PROBLEM 2

Use transformations of to graph 
�

f  (x) � (1
2)

x�1 � 3.y � (1
2)

x

Z EXPONENTIAL FUNCTION PROPERTIES

For a and b positive, and for any real numbers x and y:

1. Exponent laws:

2. if and only if If then 

3. For if and only if If then a � 3.a4 � 3
4
,a � b.x � 0, ax � bx

x � 3.6
x � 6

3
,x � y.ax � ay

2
5x

2
7x

     � 2
5x�7x     � 2

�2x
ax

ay � ax�yaa

b
bx

�
ax

bx

(ab)x � axbx(ax)y � axyaxay � ax�y

a � 1, b � 1,

*

*The dashed “think boxes” are used to enclose steps that may be performed mentally.
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388 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Property 2 is another way to express the fact that the exponential function 
is one-to-one (see Property 6 of Theorem 1). Because all exponential functions pass
through the point (0, 1) (see Property 3 of Theorem 1), property 3 indicates that the
graphs of exponential functions with different bases do not intersect at any other points.

f (x) � ax

Using Exponential Function Properties

Find all solutions to 210x�1 � 25�2x.

EXAMPLE 3

SOLUTIONS

Algebraic Solution
According to Property 2, implies that

Check: 25�2(1/2) � 24210(1/2)�1 � 24;

 x � 6
12 � 1

2

 12x � 6

 10x � 1 � 5 � 2x

210x�1 � 25�2x
Graphical Solution
Graph and then use the
INTERSECT command to obtain (Fig. 9).x � 0.5

y2 � 25�2x,y1 � 210x�1

Z Figure 9

�2

�5

20

5

MATCHED PROBLEM 3

Find all solutions to 
�

33�y � 34y�9.

Using Exponential Function Properties

Find all solutions to 4x�3 � 8.

EXAMPLE 4

SOLUTIONS

Algebraic Solution
Notice that the two bases, 4 and 8, can both be written
as a power of 2. This will enable us to use Property 2
to equate exponents.

Express 4 and 8 as powers of 2.

Property 2

Add 6 to both sides.

Divide both sides by 2.

CHECK 

4(9/2)�3 � 43/2 � (14)3 � 23 �
✓ 8

 x � 9
2

 2x � 9

 2x � 6 � 3

 2x�6 � 23

(ax
)
y � axy (22)x�3 � 23

 4x�3 � 8

Graphical Solution
Graph and Use the INTERSECT
command to obtain (Fig. 10).x � 4.5

y2 � 8.y1 � 4x�3

Z Figure 10

�10

�10

10

10
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Z The Exponential Function with Base e

Surprisingly, among the exponential functions it is not the function with
base 2 or the function with base 10 that is used most frequently in math-
ematics. Instead, the most commonly used base is a number that you may not be famil-
iar with.

h(x) � 10x
g(x) � 2x

S E C T I O N  4–1 Exponential Functions 389

MATCHED PROBLEM 4

Solve for x.
�

27x�1 � 9

ZZZ EXPLORE-DISCUSS 3

(A) Calculate the values of for and 5. Are the
values increasing or decreasing as x gets larger?

(B) Graph and discuss the behavior of the graph as x
increases without bound.

y � [1 � (1/x)]x

x � 1, 2, 3, 4,[1 � (1/x)]x

By calculating the value of for larger and larger values of x (Table 1),
it looks like approaches a number close to 2.7183. In a calculus course,
we can show that as x increases without bound, the value of approaches
an irrational number that we call e. Just as irrational numbers such as and have
unending, nonrepeating decimal representations, e also has an unending, nonrepeat-
ing decimal representation. To 12 decimal places,

Don’t let the symbol “e” intimidate you! It’s just a number. 
Exactly who discovered e is still being debated. It is named after the great Swiss

mathematician Leonhard Euler (1707–1783), who computed e to 23 decimal places
using 

The constant e turns out to be an ideal base for an exponential function because
in calculus and higher mathematics many operations take on their simplest form using
this base. This is why you will see e used extensively in expressions and formulas
that model real-world phenomena.

[1 � (1�x)]x.

0�2 �1 21 3 4

�2 �e

e � 2.718 281 828 459

12�
[1 � (1�x)]x

[1 � (1�x)]x
[1 � (1�x)]xTable 1

x

1 2

10 2.593 74 …

100 2.704 81 …

1,000 2.716 92 …

10,000 2.718 14 …

100,000 2.718 27 …

1,000,000 2.718 28 …

a1 �
1

x
bx

Z DEFINITION 2 Exponential Function with Base e

For x a real number, the equation

defines the exponential function with base e.

f (x) � ex

bar51950_ch04_381-399.qxd  10/22/2007  08:33 PM  Page 389 pinnacle 110:MHIA064:mhbar3:ch04:



The exponential function with base e is used so frequently that it is often
referred to as the exponential function. The graphs of and are shown
in Figure 11.

y � e�xy � ex

390 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Z Figure 11 Exponential func-
tions.

y

5�5

10

20

x

y � e�x y � ex
ZZZ EXPLORE-DISCUSS 4

(A) Graph and in the same viewing window.
How do these graphs compare with the graph of for 

(B) Graph and in the same viewing win-
dow. How do these graphs compare with the graph of for 

(C) Use the properties of exponential functions to show that all of these func-
tions can be written in the form y � bx.

0 6 b 6 1?y � bx
y3 � e�2xy1 � e�x, y2 � e�0.5x,

b 7 1?y � bx
y3 � e2xy1 � ex, y2 � e0.5x,

EXAMPLE 5 Analyzing an Exponential Graph

Describe the graph of including x and y intercepts, increasing and
decreasing properties, and horizontal asymptotes. Round any approximate values to
two decimal places.

SOLUTION

A graphing calculator graph of f is shown in Figure 12(a).

y intercept: 

x intercept: 

Graph is decreasing for all x.

Horizontal asymptote: We can write the exponential function as and
so our earlier study of exponential graphs indicates that as

But then, as and is a horizontal asymptote for
the graph of f. The table in Figure 12(b) supports this conclusion. �

y � 4x S ��,4 � ex/2 S 4x S ��.
ex/2 S 0e1/2 � 1.65 7 1,
(e1/2)x,ex/2

x � 2.77

f (0) � 4 � e0 � 4 � 1 � 3

f (x) � 4 � ex�2,

Z Figure 12 f(x) � 4 � ex/2.

�5

�5

5

5

(a)

(b)

MATCHED PROBLEM 5

Describe the graph of including x and y intercepts, increasing and
decreasing properties, and horizontal asymptotes. Round any approximate values to
two decimal places.

�

f  (x) � 2ex/2 � 5,

We will study a wide variety of applications of exponential functions in the next sec-
tion. For now, it’s a good start to examine how exponential functions apply very nat-
urally to the world of finance, something relevant to almost everyone.
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Z Calculating Compound Interest

The fee paid to use someone else’s money is called interest. It is usually computed
as a percentage, called the interest rate, of the original amount (or principal) over
a given period of time. At the end of the payment period, the interest paid is usually
added to the principal amount, so the interest in the next period is earned on both the
original amount, as well as the interest previously earned. Interest paid on interest pre-
viously earned and reinvested in this manner is called compound interest.

Suppose you deposit $1,000 in a bank that pays 8% interest compounded semi-
annually. How much will be in your account at the end of 2 years? “Compounded
semiannually” means that the interest is paid to your account at the end of each 
6-month period, and the interest will in turn earn more interest. To calculate the inter-
est rate per period, we take the annual rate r, 8% (or 0.08), and divide by the num-
ber m of compounding periods per year, in this case 2. If represents the amount
of money in the account after one compounding period (six months), then

Factor out $1,000

We will next use to represent the amounts at the end of the second,
third, and fourth periods. (Note that the amount we’re looking for is is calcu-
lated by multiplying the amount at the beginning of the second compounding period

by 1.04.

What do you think the savings and loan will owe you at the end of 6 years (12
compounding periods)? If you guessed

you have observed a pattern that is generalized in the following compound interest
formula:

A � $1,000(1 � 0.04)12

 � $1,169.86

 � $1,000(1 � 0.04)4

 � [$1,000(1 � 0.04)3](1 � 0.04)

 A4 � A3(1 � 0.04)

 � $1,000(1 � 0.04)3

 � [$1,000(1 � 0.04)2](1 � 0.04)

 A3 � A2(1 � 0.04)

 � $1,000(1 � 0.04)2

 � [$1,000(1 � 0.04)](1 � 0.04)

 A2 � A1(1 � 0.04)

(A1)

A4.) A2

A2, A3, and A4

� $1,000(1 � 0.04)

 A1 � $1,000 � $1,000 a0.08

2
b

Principal � 4% of principal

A1

S E C T I O N  4–1 Exponential Functions 391

Substitute in our expression for 

Multiply.

Substitute in our expression for 

Multiply.

Substitute in our expression for 

Multiply.

Pa1 �
r
m
b4

A3.

Pa1 �
r
m
b3

A2.

Pa1 �
r
m
b2

A1.
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392 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Z COMPOUND INTEREST

If a principal P is invested at an annual rate r compounded m times a year,
then the amount A in the account at the end of n compounding periods is
given by

Note that the annual rate r must be expressed in decimal form, and that
where t is years.n � mt,

A � Pa1 �
r
m
bn

Compound Interest

If you deposit $5,000 in an account paying 9% compounded daily, how much will
you have in the account in 5 years? Compute the answer to the nearest cent.

SOLUTIONS

Interest compounded daily will be compounded 365 times per year.*

EXAMPLE 6

Algebraic Solution
We use the compound interest formula with 

and 

 � $7,841.13

 � 5,000a1 �
0.09

365
b1825

 A � Pa1 �
r
m
bn

n � 5(365) � 1,825:r � 0.09, m � 365,
P � 5,000,

Graphical Solution
Graphing

and using the VALUE command (Fig. 13) shows that
A � $7,841.13.

A � 5,000a1 �
0.09

365
bx

*In all problems involving interest compounded daily, we assume a 365-day year.

Z Figure 13

0

0

15,000

3,650

MATCHED PROBLEM 6

If $1,000 is invested in an account paying 10% compounded monthly, how much will
be in the account at the end of 10 years? Compute the answer to the nearest cent.

�
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S E C T I O N  4–1 Exponential Functions 393

ZZZ CAUTION ZZZ

When using the compound interest formula, don’t forget to write the interest
rate in decimal form.

EXAMPLE 7 Comparing Investments

If $1,000 is deposited into an account earning 10% compounded monthly and, at the
same time, $2,000 is deposited into an account earning 4% compounded monthly, will
the first account ever be worth more than the second? If so, when?

SOLUTION

Let and represent the amounts in the first and second accounts, respectively,
then

where x is the number of compounding periods (months). Using the INTERSECT
command to analyze the graphs of and [Fig. 14(a)], we see that the graphs inter-
sect at months. Because compound interest is paid at the end of each
compounding period, we should compare the amount in the accounts after 139 months
and after 140 months [Fig. 14(b)]. The table shows that the first account is worth more
than the second for months, or 11 years and 8 months.                                  �x 	 140

x � 139.438
y2y1

y2 � 2,000(1 � 0.04/12)x

y1 � 1,000(1 � 0.10/12)x

y2y1

Z Figure 14

0

0

5,000

240

(a)

(b)

MATCHED PROBLEM 7

If $4,000 is deposited into an account earning 10% compounded quarterly and, at the
same time, $5,000 is deposited into an account earning 6% compounded quarterly,
when will the first account be worth more than the second?

�

Z Calculating Interest Compounded Continuously

If $1,000 is deposited in an account that earns compound interest at an annual rate
of 8% for 2 years, how will the amount A change if the number of compounding peri-
ods is increased? If m is the number of compounding periods per year, then

A � 1,000a1 �
0.08

m
b2m
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The amount A is computed for several values of m in Table 2. Notice that the largest
gain appears in going from annually to semiannually. Then, the gains slow down as
m increases. In fact, it appears that A might be approaching something close to
$1,173.50 as m gets larger and larger.

Table 2 Effect of Compounding Frequency

Compounding frequency m

Annually 1 $1,166.400

Semiannually 2 1,169.859

Quarterly 4 1,171.659

Weekly 52 1,173.367

Daily 365 1,173.490

Hourly 8,760 1,173.501

We now return to the general problem to see if we can determine what happens
to as m increases without bound. A little algebraic manipulation
of the compound interest formula will lead to an answer and a significant result in
the mathematics of finance:

Does the expression within the square brackets look familiar? Recall from the first
part of this section that

as

Because the interest rate r is fixed, as So and

as

This is known as the continuous compound interest formula, a very important and
widely used formula in business, banking, and economics.

m S �Pa1 �
r
m
bmt

� P c a1 �
1
x
bx d rt

S Pert

(1 � 1
x)

x S e,m S �.x � m/r S �

x S �a1 �
1
x
bx

S e

 � P c a1 �
1
x
bx d rt

 � Pa1 �
1

m/r
b(m/r)rt

 A � Pa1 �
r
m
bmt

A � P[1 � (r/m)]mt

A � 100a1 �
0.08

m
b2m
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Replace with and mt with 

Replace with variable x.
m
r

m
r

� rt.
1

m/r
,

r
m
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S E C T I O N  4–1 Exponential Functions 395

Z CONTINUOUS COMPOUND INTEREST FORMULA

If a principal P is invested at an annual rate r compounded continuously, then
the amount A in the account at the end of t years is given by

The annual rate r must be expressed as a decimal.

A � Pert

Interest Compounded Continuously

If $1,000 is invested at an annual rate of 8% compounded continuously, what amount,
to the nearest cent, will be in the account after 2 years?

EXAMPLE 8

SOLUTIONS

Algebraic Solution
Use the continuous compound interest formula to find
A when and 

Compare this result with the values calculated in Table 2.

 � $1,173.51

 � $1,000e(0.08)(2)

 A � Pert

t � 2:P � $1,000, r � 0.08,

Graphical Solution
Graphing

and using the VALUE command (Fig. 15) shows

A � $1,173.51.

A � 1,000e0.08x

8% is equivalent

to r � 0.08.

Z Figure 15

0

0

2000

10

MATCHED PROBLEM 8

What amount will an account have after 5 years if $1,000 is invested at an annual
rate of 12% compounded annually? Quarterly? Continuously? Compute answers to the
nearest cent.  

�

bar51950_ch04_381-399.qxd  10/23/07  2:39 PM  Page 395 Team D 110:MHIA064:mhbar3:ch04:



396 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

ANSWERS TO MATCHED PROBLEMS

1. (A) (B)

2.

3. 4. 5. y intercept: x intercept: 1.83; increasing for all x;
horizontal asymptote: 6. $2,707.04 7. After 23 quarters 8. Annually:
$1,762.34; quarterly: $1,806.11; continuously: $1,822.12

y � �5
�3;x � �1

3y � 4

(�1, �2)

� �1
2y �       

x�1
 � 3

x

y

�5

5�5

5

(0, 1)

10�10

10

y

x

� �4
3y �       

x

(0, 1)

10�10

10

5

y

x

� �3
4y �       

x

4-1 Exercises

1. What is an exponential function?

2. What is the significance of the symbol e in the study of ex-
ponential functions?

3. For a function explain how you can tell if the
graph increases or decreases without looking at the graph.

4. Explain why and are really the
same function. Can you use this fact to add to your answer
for Question 3?

5. How do we know that the equation has no solution?

6. Define the following terms related to compound interest:
principal, interest rate, compounding period.

e x � 0

g(x) � 4�xf (x) � (1/4)x

f (x) � bx,

7. Match each equation with the graph of f, g, m, or n in the
figure.
(A) (B) 
(C) (D) 

0

�2

6

2

f g m

n

y � 4xy � (1
3)

x
y � 2xy � (0.2)x

*Additional answers can be found in the Instructor Answer Appendix.

A

g n

f m
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8. Match each equation with the graph of f, g, m, or n in the
figure.
(A) (B) 
(C) (D) 

In Problems 9–16, compute answers to four significant digits.

9. 10.

11. 12.

13. 14.

15. 16.

In Problems 17–20, sketch the graph of each function after
plotting at least six points. Then confirm your result with a
graphing calculator.

17. 18.

19. 20.

In Problems 21–28, use properties of exponents to simplify.

21. 22. 23.

24. 25. 26.

27. 28.

29. (A) Explain what is wrong with the following reasoning
about the expression As x gets large,

approaches 1 because 1/x approaches 0, and
1 raised to any power is 1, so approaches 1.

(B) Which number does approach as x ap-
proaches 

30. (A) Explain what is wrong with the following reasoning
about the expression If then the
exponential function approaches as x approaches

and is greater than 1, so ap-
proaches infinity as 

(B) Which number does approach as x ap-
proaches �?

[1 � (1/x)]x
x S �.

[1 � (1/x)]x1 � (1/x)�,
�bx

b 7 1,[1 � (1/x)]x:

�?
[1 � (1/x)]x

[1 � 1/x]x
1 � (1/x)

[1 � (1/x)]x:

e4�3x

e2�5x

e5x

e2x�1

(2x3y)za4x

5yb
3z5x�3

5x�4

3x

31�x(43x)2y103x�1104�x

y � (1
5)

x � 5�xy � (1
3)

x � 3�x

y � 5xy � 3x

3� � 3��

2

2� � 2��

2

e221e

e � e�1e2 � e�2

3�22523

0

�4

6

4

f

g m n

y � e1.3xy � e�0.4x
y � e0.7xy � e�1.2x

In Problems 31–38, graph each function using transformations
of an appropriate function of the form 

31. 32.

33. 34.

35. 36.

37. 38. 

In Problems 39–52, find all solutions to the equation.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. Find all real numbers a such that Explain why
this does not violate the second exponential function prop-
erty in the box on page 387.

54. Find real numbers a and b such that but Ex-
plain why this does not violate the third exponential func-
tion property in the box on page 387.

55. Examine the graph of on a graphing calculator and
explain why 1 cannot be the base for an exponential function.

56. Examine the graph of on a graphing calculator and
explain why 0 cannot be the base for an exponential func-
tion. [Hint: Turn the axes off before graphing.]

57. Evaluate for and 3. Why
is excluded when defining the exponential function

58. Evaluate for and 3. Why
is excluded when defining the exponential function

59. Explain why the graph of an exponential function cannot be
the graph of a polynomial function.

60. Explain why the graph of an exponential function cannot be
the graph of a rational function.

In Problems 61–64, simplify.

61. 62.

63.

64. ex(e�x � 1) � e�x(ex � 1)

(ex � e�x)2 � (ex � e�x)2

5x4e5x � 4x3e5x

x8

�2x1e�2x � 3x2e�2x

x6

y � bx?
b � 0

x � �3, �2, �1, 0, 1, 2,y � 0x

y � bx?
b � 1

x � �3, �2, �1, 0, 1, 2,y � 1x

y � 0x

y � 1x

a4 � b4.a � b

a2 � a�2.

3xe�x � x2e�x � 0x2ex � 5xex � 0

(x � 3)ex � 02xe�x � 0

9x2

� 27x�34x2

� 8x

4x2

� 2x�39x2

� 33x�1

53 � (x � 2)3(1 � x)5 � (2x � 1)5

45x�x2

� 4�67x2

� 72x�3

102�3x � 105x�653x � 54x�2

g(x) � 0.5e�(x�1)g(x) � 2e�(x�2)

g(x) � e x � 1g(x) � e x � 2

f (x) � a1

2
bx�10

� 5g(x) � a1

3
bx�5

� 10

g(x) � 3x�1 � 2f (x) � 2x�3 � 1

y � bx.
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B

Problem numbers that appear in blue indicate problems that require

students to apply their reasoning and writing skills to the solution of the

problem.

g n

f m

16.24 0.2115

7.524 2.350

1.649 4.113

4.469 15.76

102x�3
46xy 32x�1

5

e3x�1 e2x�2

43xz

53yz

2xz3yz

e

e

x � 2

x � �1, 3

x � 1

x � 6, �1

x �
2

3
x � 3

x � �1, 
3

2
x �

1

2
, 1

x � 0, 
3

2
x � �

3

2
, 3

x � 0 x � 3

x � 0, 5
x � 0, �3

or a � �1a � 1
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In Problems 65–76, use a graphing calculator to find local
extrema, y intercepts, and x intercepts. Investigate the behavior as

and as and identify any horizontal asymptotes.
Round any approximate values to two decimal places.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. Use a graphing calculator to investigate the behavior of
as x approaches 0.

78. Use a graphing calculator to investigate the behavior of
as x approaches 

It is common practice in many applications of mathematics to
approximate nonpolynomial functions with appropriately selected
polynomials. For example, the polynomials in Problems 79–82,
called Taylor polynomials, can be used to approximate the
exponential function To illustrate this approximation
graphically, in each problem graph and the indicated
polynomial in the same viewing window, and

79.

80.

81.

82.

83. Investigate the behavior of the functions 
and as and as 

and find any horizontal asymptotes. Generalize to functions
of the form where n is any positive integer.

84. Investigate the behavior of the functions 
and as and as 

and find any horizontal asymptotes. Generalize to functions
of the form where n is any positive integer.

85. The irrational number is approximated by 1.414214 to
six decimal places. Each of 1.41, 1.414, 1.4142,
1.41421, and 1.414214 is a rational number, so we know
how to define for each. Compute the value of for each
of these x values, and use your results to estimate the value
of Then compute using your calculator to check
your estimate.

86. The irrational number is approximated by 1.732051 to
six decimal places. Each of 1.73, 1.732, 1.7321,x � 1.7,

13

212212.

2x2x

x � 1.4,
12

gn(x) � xnex,

x S ��,x S �g3(x) � x3ex g2(x) � x2ex,
g1(x) � xex,

fn(x) � xn/ex,

x S ��,x S �f3(x) � x3/ex f2(x) � x2/ex,
f1(x) � x/ex,

P4(x) � 1 � x � 1
2x

2 � 1
6x

3 � 1
24x

4 � 1
120x

5

P3(x) � 1 � x � 1
2x

2 � 1
6x

3 � 1
24x

4

P2(x) � 1 � x � 1
2x

2 � 1
6x

3

P1(x) � 1 � x � 1
2x

2

�5 
 y 
 50.
�4 
 x 
 4

f (x) � ex
f (x) � ex.

�.f (x) � (1 � x)1/x

f (x) � (1 � x)1/x

g(x) �
3x � 3�x

2
f (x) �

2x � 2�x

2

h(x) � 3x(2�x) � 1m(x) � 2x(3�x) � 2

G(x) �
100

1 � e�xF(x) �
200

1 � 3e�x

r(x) � ex2

s(x) � e�x2

n(x) � e��x�m(x) � e�x�

g(x) � �3 � e1�xf (x) � 2 � ex�2

x S ��x S �

1.73205, and 1.732051 is a rational number, so we know
how to define for each. Compute the value of for each
of these x values, and use your results to estimate the value
of Then compute using your calculator to check
your estimate.

APPLICATIONS*

87. FINANCE Suppose $4,000 is invested at 11% compounded
weekly. How much money will be in the account in
(A) (B) 10 years?
Compute answers to the nearest cent.

88. FINANCE Suppose $2,500 is invested at 7% compounded
quarterly. How much money will be in the account in
(A) (B) 15 years?
Compute answers to the nearest cent.

89. MONEY GROWTH If you invest $5,250 in an account paying
11.38% compounded continuously, how much money will be in
the account at the end of
(A) 6.25 years? (B) 17 years?

90. MONEY GROWTH If you invest $7,500 in an account paying
8.35% compounded continuously, how much money will be in
the account at the end of
(A) 5.5 years? (B) 12 years?

91. FINANCE If $3,000 is deposited into an account earning 8%
compounded daily and, at the same time, $5,000 is deposited
into an account earning 5% compounded daily, will the first ac-
count ever be worth more than the second? If so, when?

92. FINANCE If $4,000 is deposited into an account earning 9%
compounded weekly and, at the same time, $6,000 is deposited
into an account earning 7% compounded weekly, will the first
account ever be worth more than the second? If so, when?

93. FINANCE Will an investment of $10,000 at 8.9% com-
pounded daily ever be worth more at the end of a quarter than an
investment of $10,000 at 9% compounded quarterly? Explain.

94. FINANCE A sum of $5,000 is invested at 13% compounded
semiannually. Suppose that a second investment of $5,000 is
made at interest rate r compounded daily. For which values of r,
to the nearest tenth of a percent, is the second investment better
than the first? Discuss.

95. PRESENT VALUE A promissory note will pay $30,000 at
maturity 10 years from now. How much should you be willing to
pay for the note now if the note gains value at a rate of 9% com-
pounded continuously?

3
4 year?

1
2 year?

313313.

3x3x

398 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

C

*Round monetary amounts to the nearest cent unless specified

otherwise. In all problems involving interest that is compounded

daily, assume a 365-day year.

$4,225.92 $12,002.71

$2,633.56 $7,079.54

$10,691.81 $36,336.69

$11,871.65 $20,427.93

Yes, after 1,056 weeks

Yes, after 6,217 days

No

12.6%r 	

$12,197.09
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96. PRESENT VALUE A promissory note will pay $50,000 at
maturity years from now. How much should you be willing to
pay for the note now if the note gains value at a rate of 10%
compounded continuously?

97. MONEY GROWTH Barron’s, a national business and finan-
cial weekly, published the following “Top Savings Deposit
Yields” for -year certificate of deposit accounts:

Gill Savings 8.30% (CC)
Richardson Savings and Loan 8.40% (CQ)
USA Savings 8.25% (CD)

where CC represents compounded continuously, CQ com-
pounded quarterly, and CD compounded daily. Compute the
value of $1,000 invested in each account at the end of 2
years.

1
2

21
2

51
2

98. MONEY GROWTH Refer to Problem 97. In another issue of
Barron’s, 1-year certificate of deposit accounts included:

Alamo Savings 8.25% (CQ)
Lamar Savings 8.05% (CC)

Compute the value of $10,000 invested in each account at the
end of 1 year.

99. FINANCE A couple just had a new child. How much should
they invest now at 8.25% compounded daily to have $100,000
for the child’s education 17 years from now? Compute the an-
swer to the nearest dollar.

100. FINANCE A person wishes to have $15,000 cash for a new
car 5 years from now. How much should be placed in an account
now if the account pays 9.75% compounded weekly? Compute
the answer to the nearest dollar.
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One of the best reasons for studying exponential functions is the fact that many things
that occur naturally in our world can be modeled accurately by these functions. In
this section, we will study a wide variety of applications, including growth of popu-
lations of people, animals, and bacteria; radioactive decay; spread of epidemics; prop-
agation of rumors; light intensity; atmospheric pressure; and electric circuits. The
regression techniques we used in Chapter 2 to construct linear and quadratic models
will be extended to construct exponential models.

Z Modeling Exponential Growth

What sort of function is likely to describe the growth of a population? We will con-
sider this question in Explore-Discuss 1.

4-2 Exponential Models

Z Modeling Exponential Growth

Z Modeling Negative Exponential Growth

Z Carbon-14 Dating

Z Modeling Limited Growth

Z Data Analysis and Regression

Z A Comparison of Exponential Growth Phenomena

$28,847.49
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400 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

ZZZ EXPLORE-DISCUSS 1

A certain species of fruit fly reproduces quickly, with a new generation
appearing in about a week.

(A) Suppose that a population starts with 200 flies, and we assume that the
population increases by 50 flies each week. Calculate the number of flies after
1, 2, 3, 4, and 5 weeks.

(B) Now suppose that the population increases by 25% of the current popu-
lation each week. Calculate the number of flies after 1, 2, 3, 4, and 5 weeks.

(C) Which scenario do you think is more realistic? Why?

The population model described in part B of Explore-Discuss 1 is the more realistic
one. As a population grows, there are more individuals to reproduce, so the rate of
increase grows as well. This sounds an awful lot like compound interest: The
percentage added to the population is in effect calculated on both the original
amount and the number of new individuals. It should come as no surprise, then, that
populations of organisms, from bacteria all the way to human beings, tend to grow
exponentially.

One convenient and easily understood measure of growth rate is the doubling
time—that is, the time it takes for a population to double. Over short periods the dou-
bling time growth model is often used to model population growth:

where

Note that when the amount of time passed is equal to the doubling time 

and the population is double the original, as it should be. We will use this model to
solve a population growth problem in Example 1.

A � A02t/d � A02

(t � d),

 d � Doubling time

 A0 � Population at time t � 0

 A � Population at time t

A � A02t/d

Population Growth

Mexico has a population of around 100 million people, and it is estimated that the
population will double in 21 years. If population growth continues at the same rate,
what will be the population:

(A) 15 years from now? (B) 30 years from now?

Calculate answers to three significant digits.

EXAMPLE 1
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S E C T I O N  4–2 Exponential Models 401

SOLUTIONS

Algebraic Solutions
We use the doubling time growth model with 
and 

(A) Find A when 

(B) Find A when 

 � 269 million people

 A � 100(230/21)

t � 30 years:

 � 164 million people

 A � 100(215/21)

t � 15 years:

 A � 100(2t/21)

 A � A02t/d

d � 21:
A0 � 100

Graphical Solutions
We graph

and construct a table of values (Fig. 2).

(A) When 

(B) When A � 269 million people.x � 30 years,

A � 164 million people.x � 15 years,

A � 100(2x/21)

Z Figure 1 A � 100(2t/21).

5010 20

Years
30 40

100

500

400

300

200

A (millions)

t

0

0

500

50

Let 

Figure 1

A0 � 100, d � 21

Z Figure 2

MATCHED PROBLEM 1

The bacterium Escherichia coli (E. coli) is found naturally in the intestines of many
mammals. In a particular laboratory experiment, the doubling time for E. coli is found
to be 25 minutes. If the experiment starts with a population of 1,000 E. coli and there
is no change in the doubling time, how many bacteria will be present:

(A) In 10 minutes? (B) In 5 hours?

Write answers to three significant digits.
�

ZZZ EXPLORE-DISCUSS 2

The doubling time growth model would not be expected to give accurate results
over long periods. According to the doubling time growth model of Example 1,
what was the population of Mexico 500 years ago at the height of Aztec civi-
lization? What will the population of Mexico be 200 years from now? Explain
why these results are unrealistic. Discuss factors that affect human populations
that are not taken into account by the doubling time growth model.
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402 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

The doubling time model is not the only one used to model populations. An alterna-
tive model based on the continuous compound interest formula will be used in Exam-
ple 2. In this case, the formula is written as

where

The relative growth rate is written as a percentage in decimal form. For example, if
a population is growing so that at any time the population is increasing at 3% of the
current population per year, the relative growth rate k would be 0.03.

 k � Relative growth rate

 A0 � Population at time t � 0

 A � Population at time t

A � A0ekt

Medicine—Bacteria Growth

Cholera, an intestinal disease, is caused by a cholera bacterium that multiplies expo-
nentially by cell division as modeled by

where A is the number of bacteria present after t hours and is the number of bacte-
ria present at If we start with 1 bacterium, how many bacteria will be present in

(A) 5 hours? (B) 12 hours?

Compute the answers to three significant digits.

t � 0.
A0

A � A0e1.386t

EXAMPLE 2

SOLUTIONS

Algebraic Solutions
(A) Use and 

(B) Use and 

 � 16,700,000

 � e1.386(12)

 A � A0e1.386t

t � 12:A0 � 1

 � 1,020

 � e1.386(5)

 A � A0e1.386t

t � 5:A0 � 1
Graphical Solutions
We graph

and construct a table of values (Fig. 3).

(A) When 

(B) When A � 16,700,000 bacteria.x � 12 hours,

A � 1,020 bacteria.x � 5 hours,

A � e1.386x

0

0

25,000,000

15

Z Figure 3
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S E C T I O N  4–2 Exponential Models 403

Z Modeling Negative Exponential Growth

Exponential functions can also be used to model radioactive decay, which is some-
times referred to as negative growth. Radioactive materials are used extensively in
medical diagnosis and therapy, as power sources in satellites, and as power sources
in many countries. If we start with an amount of a particular radioactive sub-
stance, the amount declines exponentially over time. The rate of decay varies depend-
ing on the particular radioactive substance. A convenient and easily understood
measure of the rate of decay is the half-life of the material—that is, the time it takes
for half of a particular material to decay. We can use the following half-life decay
model:

where

Note that when the amount of time passed is equal to the half-life 

and the amount of radioactive material is half the original amount, as it should be.

A � A02�h/h � A02�1 � A0 � 1
2

(t � h),

 h � Half-life

 A0 � Amount at time t � 0

 A � Amount at time t

 � A02�t/h

 A � A0(1
2)

t/h

A0

Radioactive Decay

The radioactive isotope gallium 67 used in the diagnosis of malignant tumors,
has a biological half-life of 46.5 hours. If we start with 100 milligrams of the iso-
tope, how many milligrams will be left after

(A) 24 hours? (B) 1 week?

Compute answers to three significant digits.

(67Ga),

EXAMPLE 3

MATCHED PROBLEM 2

Repeat Example 2 if and all other information remains the same.A � A0e0.783t

�
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404 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

SOLUTIONS

Algebraic Solutions
We use the half-life decay model with and

 A � 100(2�t/46.5)

 A � A0(1
2)

t/h � A02�t/h

h � 46.5:
A0 � 100

Graphical Solutions
We graph

and construct a table of values (Fig. 5).

(A) When 

(B) When (1 week),
A � 8.17 milligrams.

x � 168 hours

A � 69.9 milligrams.x � 24 hours,

A � 100(2�x/46.5)
h � 46.5A0 � 100,

See Figure 4

Hours
200100

100

50

A (milligrams)

t

(A) Find A when 

(B) Find A when 

 � 8.17 milligrams

 A � 100(2�168/46.5)

(1 week � 168 hours):t � 168 hours

 � 69.9 milligrams

 A � 100(2�24/46.5)

t � 24 hours:

Z Figure 4 A � 100(2�t/46.5).
0

0

100

200

Z Figure 5

MATCHED PROBLEM 3

Radioactive gold 198 used in imaging the structure of the liver, has a half-
life of 2.67 days. If we start with 50 milligrams of the isotope, how many milligrams
will be left after:

(A) day? (B) 1 week?

Compute answers to three significant digits.

1
2

(198Au),

�
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S E C T I O N  4–2 Exponential Models 405

In Example 2, we saw that a base e exponential function can be used as an alterna-
tive to the doubling time model. Not surprisingly, the same can be said for the half-
life model. In this case, the formula will be

where

Z Carbon-14 Dating

Our atmosphere is constantly being bombarded with cosmic rays. These rays produce
neutrons, which in turn react with nitrogen to produce radioactive carbon-14. Radioac-
tive carbon-14 enters all living tissues through carbon dioxide, which is first absorbed
by plants. As long as a plant or animal is alive, carbon-14 is maintained in the living
organism at a constant level. Once the organism dies, however, carbon-14 decays
according to the equation

Carbon-14 decay equation

where A is the amount of carbon-14 present after t years and is the amount
present at time This can be used to calculate the approximate age of 
fossils.

t � 0.
A0

A � A0e�0.000124t

k � a positive constant specific to the type of material

A0 � the amount at time t � 0

A � the amount of radioactive material at time t

A � A0e�kt

ZZZ CAUTION ZZZ

When using exponential models, be aware of the units of time. In Exam-
ple 3 the half-life was given in hours, so when time was provided in
weeks, we had to first convert that into hours before using the half-life
formula.

Carbon-14 Dating

If 1,000 milligrams of carbon-14 are present in the tissue of a recently deceased ani-
mal, how many milligrams will be present in

(A) 10,000 years? (B) 50,000 years?

Compute answers to three significant digits.

EXAMPLE 4
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406 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

SOLUTIONS

Algebraic Solutions
Substituting in the decay equation, we have

Figure 6A � 1,000e�0.000124t

A0 � 1,000
Graphical Solutions
We graph

and construct a table of values (Fig. 7).

(A) When 

(B) When A � 2.03 milligrams.x � 50,000 years,

A � 289 milligrams.x � 10,000 years,

A � 1,000e�0.000124x

t
50,000

1,000

500

A

Z Figure 6

(A) Find A when 

(B) Find A when 

 � 2.03 milligrams

 A � 1,000e�0.000124(50,000)

t � 50,000:

 � 289 milligrams

 A � 1,000e�0.000124(10,000)

t � 10,000:

0

0

300

60,000

Z Figure 7

We will use the carbon-14 decay equation in Exercise 4-5, where we will be inter-
ested in solving for t after being given information about A and A0.

MATCHED PROBLEM 4

Referring to Example 4, how many milligrams of carbon-14 would have to be pres-
ent at the beginning to have 10 milligrams present after 20,000 years? Approximate
the answer to four significant digits.

�
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S E C T I O N  4–2 Exponential Models 407

Z Modeling Limited Growth

One of the problems with using exponential functions to model things like popula-
tion is that the growth is completely unlimited in the long term. But in real life, there
is often some reasonable maximum value, like the largest population that space and
resources allow. We can use modified versions of exponential functions to model such
phenomena more realistically.

One such type of function is called a learning curve since it can be used to model
the performance improvement of a person learning a new task. Learning curves are
functions of the form where c and k are positive constants.A � c(1 � e�kt),

EXAMPLE 5 Learning Curve

People assigned to assemble circuit boards for a computer manufacturing company
undergo on-the-job training. From past experience, it was found that the learning curve
for the average employee is given by

where A is the number of boards assembled per day after t days of training (Fig. 8).

(A) How many boards can an average employee produce after 3 days of training?
After 5 days of training? Round answers to the nearest integer.

(B) How many days of training will it take until an average employee can assemble
25 boards a day? Round answers to the nearest integer.

(C) Does A approach a limiting value as t increases without bound? Explain.

SOLUTIONS

(A) When 

Rounded to nearest integer

so the average employee can produce 12 boards after 3 days of training. Simi-
larly, when 

Rounded to nearest integer

so the average employee can produce 18 boards after 5 days of training.

(B) Solve the equation for t by graphing

and

and using the INTERSECT command (Fig. 9). It will take about 8 days of training.

y2 � 25y1 � 40(1 � e�0.12t)

40(1 � e�0.12t) � 25

A � 40(1 � e�0.12(5)) � 18

t � 5,

A � 40(1 � e�0.12(3)) � 12

t � 3,

A � 40(1 � e�0.12t)

0

0

50

30

Z Figure 8 Limited growth.

Z Figure 9

y1 � 40(1 � e�0.12t), y2 � 25.

0

0

50

30
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(C) Because approaches 0 as t increases without bound,

So the limiting value of A is 40 boards per day. (This can be supported by the
graph.) �

MATCHED PROBLEM 5

A company is trying to expose as many people as possible to a new product through
television advertising in a large metropolitan area with 2 million potential viewers. A
model for the number of people A, in millions, who are aware of the product after t
days of advertising was found to be

(A) How many viewers are aware of the product after 2 days? After 10 days? Express
answers as integers, rounded to three significant digits.

(B) How many days will it take until half of the potential viewers will become aware
of the product? Round answer to the nearest integer.

(C) Does A approach a limiting value as t increases without bound? Explain.
�

A � 2(1 � e�0.037t)

A � 40(1 � e�0.12t) S 40(1 � 0) � 40

e�0.12t

408 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Another limited-growth model is useful for phenomena such as the spread of an epi-
demic or the propagation of a rumor. It is called the logistic equation, and is given by

where M, c, and k are positive constants. Logistic growth, illustrated in Example 6,
also approaches a limiting value as t increases without bound.

A �
M

(1 � ce�kt)

EXAMPLE 6 Logistic Growth in an Epidemic

A certain community consists of 1,000 people. One individual who has just returned
from another community has a particularly contagious strain of influenza. Assume the
community has not had influenza shots and all are susceptible. The spread of the dis-
ease in the community is predicted to be given by the logistic curve

where A is the number of people who have contracted influenza after t days.

(A) How many people have contracted influenza after 10 days? After 20 days?

A(t) �
1,000

1 � 999e�0.3t
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S E C T I O N  4–2 Exponential Models 409

(B) How many days will it take until half the community has contracted influenza?
Round answer to the nearest integer.

(C) Does A approach a limiting value as t increases without bound? Explain.

SOLUTIONS

(A) Enter into a graphing calculator. The table in Figure 10(a)
shows that individuals and individuals.A(20) � 288A(10) � 20

y1 � 1,000/(1 � 999e�0.3t)

0

0

1,000

50

(a) (b)

Z Figure 10 Logistic growth.

(B) Figure 10(b) shows that the graph of A(t) intersects the line after approx-
imately 23 days.

(C) The values in Figure 10(a) and the graph in Figure 10(b) both indicate that A
approaches 1,000 as t increases without bound. We can confirm this algebraically
by noting that because as t increases without bound,

Thus, the upper limit on the growth of A is 1,000, the total number of people in
the community. �

MATCHED PROBLEM 6

A group of 400 parents, relatives, and friends are waiting anxiously at Kennedy
Airport for a charter flight returning students after a year in Europe. It is stormy and
the plane is late. A particular parent thought he had heard that the plane’s radio had
gone out and related this news to some friends, who in turn passed it on to others.
The propagation of this rumor is predicted to be given by

where A is the number of people who have heard the rumor after t minutes.

(A) How many people have heard the rumor after 10 minutes? After 20 minutes?

(B) How many minutes will it take until half the group has heard the rumor? Round
answer to the nearest integer.

(C) Does A approach a limiting value as t increases without bound? Explain.
�

A(t) �
400

1 � 399e�0.4t

A(t) �
1,000

1 � 999e�0.3t S
1,000

1 � 0
� 1,000

999e�0.3t S 0

y � 500
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Z Data Analysis and Regression

Many graphing calculators with regression commands have options for exponential
regression. We can use exponential regression to fit a function of the form 
to a set of data points, and logistic regression to fit a function of the form

to a set of data points. The techniques are similar to those introduced in Chapter 2
for linear and quadratic functions.

y �
c

1 � ae�bx

y � abx

410 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

EXAMPLE 7 Infectious Diseases

The U.S. Department of Health and Human Services published the data in Table 1.

(A) Let x represent time in years with representing 1970, and let y represent
the corresponding number of reported cases of mumps. Use regression analysis
on a graphing calculator to find an exponential function of the form that
models the data. (Round the constants a and b to three significant digits.)

(B) Use the exponential regression function to predict the number of reported cases
of mumps in 2010.

SOLUTIONS

(A) Figure 11 shows the details of constructing the model on a graphing calculator.

y � abx

x � 0

Table 1 Reported Cases
of Infectious Diseases

Year Mumps Rubella

1970 104,953 56,552

1980 8,576 3,904

1990 5,292 1,125

1995 906 128

2000 323 152 

�10,000

�5

110,000

45

(a) Data (b) Regression equation (c) Regression equation entered

in equation editor

(d) Graph of data and regression

equation

Z Figure 11

(B) Evaluating at gives a prediction of 67 cases of
mumps in 2010. �

MATCHED PROBLEM 7

Repeat Example 7 for reported cases of rubella.
�

x � 40y1 � 91,400(0.835)x
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Table 2 Acquired Immuno-
deficiency Syndrome
(AIDS) Cases and Deaths
in the United States

Cases Known
diagnosed deaths

Year to date to date

1988 107,755 62,468

1991 261,259 159,294

1994 493,713 296,507

1997 672,970 406,179

2000 774,467 447,648

2005 956,665 550,394

EXAMPLE 8 AIDS Cases and Deaths

The U.S. Department of Health and Human Services published the data in Table 2.

(A) Let x represent time in years with representing 1988, and let y represent
the corresponding number of AIDS cases diagnosed to date. Use regression analy-
sis on a graphing utility to find a logistic function of the form

that models the data. (Round the constants a, b, and c to three significant digits.)

(B) Use the logistic regression function to predict the number of cases of AIDS diag-
nosed by 2015.

SOLUTIONS

(A) Figure 12 shows the details of constructing the model on a graphing calculator.

y �
c

1 � ae�bx

x � 0

0

�5

1,000,000

30

(a) Data (b) Regression equation (c) Regression equation entered

in equation editor

(d) Graph of data and regression

equation

Z Figure 12

(B) Evaluating

at gives a prediction of approximately 973,000 cases of AIDS diagnosed
by 2015. �

MATCHED PROBLEM 8

Repeat Example 8 for known deaths from AIDS to date.
�

x � 27

y1 �
975,000

1 � 6.36e�0.292x
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Z A Comparison of Exponential Growth Phenomena

The equations and graphs given in Table 3 compare several widely used growth mod-
els. These are divided basically into two groups: unlimited growth and limited growth.
Following each equation and graph is a short, incomplete list of areas in which the
models are used. We have only touched on a subject that has been extensively devel-
oped and that you are likely to study in greater depth in the future.

412 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Table 3 Exponential Growth and Decay

Description Equation Graph Short list of uses

Unlimited growth

Exponential decay

Limited growth

Logistic growth

c, k, M 7 0

A �
M

1 � ce�kt

c, k 7 0
A � c(1 � e�kt )

k 7 0
A � A0e�kt

k 7 0
A � A0ekt Short-term population

growth (people, bacteria,
etc.); growth of money
at continuous compound
interest

Radioactive decay; light
absorption in water,
glass, and the like;
atmospheric pressure;
electric circuits

Learning skills; sales
fads; company growth;
electric circuits

Long-term population
growth; epidemics;
sales of new products;
spread of rumors;
company growth

t

A

0

c

t

A

0

c

t

A

0

c

t

A

0

M
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ANSWERS TO MATCHED PROBLEMS

1. (A) 1,320 bacteria (B) 
2. (A) 50 bacteria (B) 12,000 bacteria 3. (A) 43.9 milligrams (B) 8.12 milligrams
4. 119.4 milligrams 5. (A) 143,000 viewers; 619,000 viewers (B) 19 days
(C) A approaches an upper limit of 2 million, the number of potential viewers
6. (A) 48 individuals; 353 individuals (B) 15 minutes (C) A approaches an upper
limit of 400, the number of people in the entire group.
7. (A) (B) 12 cases

8. (A) (B) 548,000 known deathsy �
549,000

1 � 6.14e�0.311x

y � 44,500(0.815)x

4,100,000 bacteria

4-2 Exercises
*Additional answers can be found in the Instructor Answer Appendix.

1. Define the terms “doubling time” and “half-life” in your
own words.

2. One of the models below represents positive growth, and the
other represents negative growth. Classify each, and explain
how you decided on your answer. (Assume that 

3. Explain the difference between exponential growth and
limited growth.

4. Explain why a limited growth model would be more accu-
rate than regular exponential growth in modeling the long-
term population of birds on an island in Lake Erie.

In Problems 5–8, write an exponential equation describing the
given population at any time t.

5. Initial population 200; doubling time 5 months

6. Initial population 5,000; doubling time 3 years

7. Initial population 2,000; continuous growth at 2% per year

8. Initial population 500; continuous growth at 3% per week

In Problems 9–12, write an exponential equation describing the
amount of radioactive material present at any time t.

9. Initial amount 100 grams; half-life 6 hours

10. Initial amount 5 pounds; half-life 1,300 years

11. Initial amount 4 kilograms; continuous decay at 12.4% per
year

12. Initial amount 50 milligrams; continuous decay at 0.03%
per year

A � A0ektA � A0e�kt

k 7 0.)

APPLICATIONS

13. GAMING A person bets on red and black on a roulette wheel
using a Martingale strategy. That is, a $2 bet is placed on red,
and the bet is doubled each time until a win occurs. The
process is then repeated. If black occurs n times in a row, then

dollars is lost on the nth bet. Graph this function for
Although the function is defined only for positive

integers, points on this type of graph are usually joined with a
smooth curve as a visual aid.

14. BACTERIAL GROWTH If bacteria in a certain culture double
every hour, write an equation that gives the number of bacte-
ria N in the culture after t hours, assuming the culture has 100
bacteria at the start. Graph the equation for 

15. POPULATION GROWTH Because of its short life span and
frequent breeding, the fruit fly Drosophila is used in some ge-
netic studies. Raymond Pearl of Johns Hopkins University, for
example, studied 300 successive generations of descendants of
a single pair of Drosophila flies. In a laboratory situation with
ample food supply and space, the doubling time for a particular
population is 2.4 days. If we start with 5 male and 5 female flies,
how many flies should we expect to have in
(A) 1 week? (B) 2 weeks?

16. POPULATION GROWTH If Kenya has a population of about
34,000,000 people and a doubling time of 27 years and if the
growth continues at the same rate, find the population in
(A) 10 years (B) 30 years
Compute answers to two significant digits.

17. COMPUTER DESIGN In 1965, Gordon Moore, founder of
Intel, predicted that the number of transistors that could be

0 � t � 5.

1
2

1 � n � 10.
L � 2n

A � 200(2)t /5

A � 5,000(2)t /3

A � 2,000e0.02t

A � 500e0.03t

A � 4e�0.124t

A � 50e�0.03t

76 flies 570 flies

44,000,000 73,000,000
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placed on a computer chip would double every 2 years. This has
come to be known as Moore’s law. In 1970, 2,200 transistors
could be placed on a chip. Use Moore’s law to predict the num-
ber of transistors in
(A) 1990 (B) 2005

18. HISTORY OF TECHNOLOGY The earliest mechanical clocks
appeared around 1350 in Europe, and would gain or lose an
average of 30 minutes per day. After that, accuracy roughly dou-
bled every 30 years. Find the predicted accuracy of clocks in
(A) 1700 (B) 2000

19. INSECTICIDES The use of the insecticide DDT is no longer
allowed in many countries because of its long-term adverse ef-
fects. If a farmer uses 25 pounds of active DDT, assuming its
half-life is 12 years, how much will still be active after
(A) 5 years? (B) 20 years?
Compute answers to two significant digits.

20. RADIOACTIVE TRACERS The radioactive isotope tech-
netium-99m is used in imaging the brain. The isotope
has a half-life of 6 hours. If 12 milligrams are used, how much
will be present after
(A) 3 hours? (B) 24 hours?
Compute answers to three significant digits.

21. POPULATION GROWTH If the world population is about 
6.5 billion people now and if the population grows continuously
at a relative growth rate of 1.14%, what will the population be in
10 years? Compute the answer to two significant digits.

22. POPULATION GROWTH If the population of Mexico is
around 106 million people now and if the population grows con-
tinuously at a relative growth rate of 1.17%, what will the popu-
lation be in 8 years? Compute the answer to three significant
digits.

23. POPULATION GROWTH In 2005 the population of Russia
was 143 million and the population of Nigeria was 129 million.
If the populations of Russia and Nigeria grow continuously at
relative growth rates of and 2.56%, respectively, in
what year will Nigeria have a greater population than Russia?

24. POPULATION GROWTH In 2005 the population of Germany
was 82 million and the population of Egypt was 78 million. If
the populations of Germany and Egypt grow continuously at
relative growth rates of 0% and 1.78%, respectively, in what
year will Egypt have a greater population than Germany?

25. SPACE SCIENCE Radioactive isotopes, as well as solar
cells, are used to supply power to space vehicles. The isotopes
gradually lose power because of radioactive decay. On a partic-
ular space vehicle the nuclear energy source has a power output
of P watts after t days of use as given by

Graph this function for 0 � t � 100.

P � 75e�0.0035t

�0.37%

(99mTc)

26. EARTH SCIENCE The atmospheric pressure P, in pounds per
square inch, decreases exponentially with altitude h, in miles
above sea level, as given by

Graph this function for 

27. MARINE BIOLOGY Marine life is dependent upon the mi-
croscopic plant life that exists in the photic zone, a zone that
goes to a depth where about 1% of the surface light still re-
mains. Light intensity I relative to depth d, in feet, for one of the
clearest bodies of water in the world, the Sargasso Sea in the
West Indies, can be approximated by

where is the intensity of light at the surface. To the nearest per-
cent, what percentage of the surface light will reach a depth of
(A) 50 feet? (B) 100 feet?

28. MARINE BIOLOGY Refer to Problem 27. In some waters
with a great deal of sediment, the photic zone may go down only
15 to 20 feet. In some murky harbors, the intensity of light d feet
below the surface is given approximately by

What percentage of the surface light will reach a depth of
(A) 10 feet? (B) 20 feet?

29. AIDS EPIDEMIC The World Health Organization estimated
that 39.4 million people worldwide were living with HIV in
2004. Assuming that number continues to increase at a relative
growth rate of 3.2% compounded continuously, estimate the
number of people living with HIV in
(A) 2010 (B) 2015

30. AIDS EPIDEMIC The World Health Organization estimated
that there were 3.1 million deaths worldwide from HIV/AIDS
during the year 2004. Assuming that number continues to increase
at a relative growth rate of 4.3% compounded continuously, esti-
mate the number of deaths from HIV/AIDS during the year
(A) 2008 (B) 2012

31. NEWTON’S LAW OF COOLING This law states that the rate
at which an object cools is proportional to the difference in tem-
perature between the object and its surrounding medium. The
temperature T of the object t hours later is given by

where is the temperature of the surrounding medium and 
is the temperature of the object at Suppose a bottle of
wine at a room temperature of is placed in the refrigerator
to cool before a dinner party. If the temperature in the refrigera-
tor is kept at and find the temperature of the wine,
to the nearest degree, after 3 hours. (In Exercise 4-5 we will find
out how to determine k.)

k � 0.4,40°F

72°F
t � 0.

T0Tm

T � Tm � (T0 � Tm)e�kt

I � I0e�0.23d

I0

I � I0e�0.00942d

0 � h � 10.

P � 14.7e�0.21h

19 pounds 7.9 pounds

8.49 mg 0.750 mg

7.3 billion

116 million

62% 39%

10% 1%

2,252,800 407,800,360

2008

47.7 million people 56.0 million people

2007

3.7 million

T � 50°F

4.4 million
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32. NEWTON’S LAW OF COOLING Refer to Problem 31. What is
the temperature, to the nearest degree, of the wine after 5 hours
in the refrigerator?

33. PHOTOGRAPHY An electronic flash unit for a camera is ac-
tivated when a capacitor is discharged through a filament of
wire. After the flash is triggered, and the capacitor is discharged,
the circuit (see the figure) is connected and the battery pack gen-
erates a current to recharge the capacitor. The time it takes for
the capacitor to recharge is called the recycle time. For a partic-
ular flash unit using a 12-volt battery pack, the charge q, in
coulombs, on the capacitor t seconds after recharging has
started is given by

Find the value that q approaches as t increases without bound
and interpret.

34. MEDICINE An electronic heart pacemaker uses the same
type of circuit as the flash unit in Problem 33, but it is designed
so that the capacitor discharges 72 times a minute. For a partic-
ular pacemaker, the charge on the capacitor t seconds after it
starts recharging is given by

Find the value that q approaches as t increases without bound
and interpret.

35. WILDLIFE MANAGEMENT A herd of 20 white-tailed deer is
introduced to a coastal island where there had been no deer be-
fore. Their population is predicted to increase according to the
logistic curve

where A is the number of deer expected in the herd after t years.
(A) How many deer will be present after 2 years? After 6 years?
Round answers to the nearest integer.
(B) How many years will it take for the herd to grow to 50 deer?
Round answer to the nearest integer.
(C) Does A approach a limiting value as t increases without
bound? Explain.

36. TRAINING A trainee is hired by a computer manufacturing
company to learn to test a particular model of a personal com-
puter after it comes off the assembly line. The learning curve for
an average trainee is given by

A �
200

4 � 21e�0.1t

A �
100

1 � 4e�0.14t

q � 0.000 008(1 � e�2t )

I

R

V

C

S

q � 0.0009(1 � e�0.2t)

where A is the number of computers an average trainee can test
per day after t days of training.
(A) How many computers can an average trainee be expected to
test after 3 days of training? After 6 days? Round answers to the
nearest integer.
(B) How many days will it take until an average trainee can test 
30 computers per day? Round answer to the nearest integer.
(C) Does A approach a limiting value as t increases without
bound? Explain.

Problems 37–40 require a graphing calculator or a computer
that can calculate exponential and logistic regression models
for a given data set.

37. DEPRECIATION Table 4 gives the market value of a minivan
(in dollars) x years after its purchase. Find an exponential re-
gression model of the form for this data set. Round to
four significant digits. Estimate the purchase price of the van.
Estimate the value of the van 10 years after its purchase. Round
answers to the nearest dollar.

Table 4

x Value ($)

1 12,575

2 9,455

3 8,115

4 6,845

5 5,225

6 4,485

Source: Kelley Blue Book

38. DEPRECIATION Table 5 gives the market value of a luxury
sedan (in dollars) x years after its purchase. Find an exponential
regression model of the form for this data set. Estimate
the purchase price of the sedan. Estimate the value of the sedan
10 years after its purchase. Round answers to the nearest dollar.

Table 5

x Value ($)

1 23,125

2 19,050

3 15,625

4 11,875

5 9,450

6 7,125

Source: Kelley Blue Book

y � abx

y � abx

T � 44°F

10 computers, 13 computers

21 days

25 deer, 37 deer

10 years
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39. NUCLEAR POWER Table 6 gives data on nuclear power gen-
eration by region for the years 1980–1999.

Table 6 Nuclear Power Generation

(Billion kilowatt-hours)

North Central and
Year America South America

1980 287.0 2.2

1985 440.8 8.4

1990 649.0 9.0

1995 774.4 9.5

1998 750.2 10.3

1999 807.5 10.5

Source: U.S. Energy Information Administration

(A) Let x represent time in years with representing 1980.
Find a logistic regression model for the genera-(y � c

1 � ae�bx)
x � 0

416 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Solving an equation like is easy: We know that so is the solu-
tion. But what about an equation like There probably is an exponent x
between 2 and 3 for which is 20, but its exact value is not at all clear.

Compare this situation to an equation like This is easy to solve because
we know that and are both 9. But what about To solve this equa-
tion, we needed to introduce a new function to be the opposite of the squaring func-
tion. This, of course, is the function 

In this section, we will do something very similar with exponential functions. In
the first section of this chapter, we learned that exponential functions are one-to-one,
so we can define their inverses. These are known as the logarithmic functions.

Z Defining Logarithmic Functions

The exponential function for is a one-to-one function, and
therefore has an inverse. Its inverse, denoted (read “log to the base
b of x”) is called the logarithmic function with base b. Just like exponentials, there
are different logarithmic functions for each positive base other than 1. A point (x, y)  

f �1(x) � logb   
x

b � 1,b 7 0,f (x) � bx

f (x) � 1x.

x2 � 20?(�3)232
x2 � 9.

3x
3x � 20?

x � 232 � 9,3x � 9

4-3 Logarithmic Functions

Z Defining Logarithmic Functions

Z Converting Between Logarithmic Form and Exponential Form

Z Properties of Logarithmic Functions

Z Common and Natural Logarithms

Z The Change-of-Base Formula

tion of nuclear power in North America. (Round the constants a,
b, and c to three significant digits.)
(B) Use the logistic regression model to predict the generation
of nuclear power in North America in 2010.

40. NUCLEAR POWER Refer to Table 6.
(A) Let x represent time in years with representing 1980.
Find a logistic regression model for the genera-(y � c

1 � ae�bx)
x � 0

tion of nuclear power in Central and South America. (Round the
constants a, b, and c to three significant digits.)
(B) Use the logistic regression model to predict the generation
of nuclear power in Central and South America in 2010.

836.0 billion kilowatt-hours

9.9 billion kilowatt-hours
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S E C T I O N  4–3 Logarithmic Functions 417

is on the graph of if and only if the point (y, x) is on the graph of
In other words,

if and only if 

In a specific example,

if and only if and

is the power to which 2 must be raised to obtain x: 
We can use this fact to learn some things about the logarithmic functions from

our knowledge of exponential functions. For example, the graph of 
is the graph of reflected through the line Also, the domain of

is the range of and vice versa.
In Example 1, we will use information about to graph its inverse,

f �1(x) � log2  
x.

f (x) � 2x
f (x) � bx,f �1 (x) � logb   

x
y � x.f (x) � bx

f �1(x) � logb  
x

2log2 x � 2y � x.log2 x

x � 2y,y � log2  
x

x � byy � logb  
x

f � bx.
f �1 � logb  

x

EXAMPLE 1 Graphing a Logarithmic Function

Make a table of values for and reverse the ordered pairs to obtain a table
of values for Then use both tables to graph f (x) and on the
same set of axes.

SOLUTION

We chose to evaluate f for integer values from to 3. The tables are shown here,
along with the graph (Fig. 1). Note the important comments about domain and range
below the graph.

�3

f �1(x)f �1(x) � log2  
x.
f (x) � 2x

f

x y � 2x

0 1

1 2

2 4

3 8

1
2�1

1
4�2

1
8�3

x y � log2 x

1 0

2 1

4 2

8 3

�11
2

�21
4

�31
8

f�1

Z Figure 1 Logarithmic function with base 2.

�5

5 10�5

10

5

x

y
f

y � 2x
y � x

f�1

y � log2 x

Ordered

pairs

reversed �
DOMAIN of f � ( , ) � RANGE of f�1

RANGE of f � (0, ) � DOMAIN of f�1�

���

MATCHED PROBLEM 1

Repeat Example 1 for and 
�

f �1(x) � log1/2 x.f (x) � (1
2)

x
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418 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Z DEFINITION 1 Logarithmic Function

For the inverse of denoted is the
logarithmic function with base b.

Logarithmic form Exponential form

is equivalent to

The log to the base b of x is the exponent to which b must be raised to obtain
x. For example,

is equivalent to

is equivalent to

Remember: A logarithm is an exponent.

x � eyy � loge  
x

x � 10 yy � log10  
x

x � byy � logb  
x

f �1(x) � logb  
x,f  (x) � bx,b 7 0, b � 1,

Z Figure 2 Typical logarithmic
graphs.

x

y

0 1

y � logb x
0 � b � 1

DOMAIN � (0, �)
RANGE � (��, �)

x

y

y � logb x
b � 1

DOMAIN � (0, �)
RANGE � (��, �)

0 1

(a)

(b)

Z THEOREM 1 Properties of Graphs of Logarithmic Functions

Let be a logarithmic function, Then the graph
of f (x):

1. Is continuous on its domain 

2. Has no sharp corners

3. Passes through the point (1, 0)

4. Lies to the right of the y axis, which is a vertical asymptote

5. Is increasing as x increases if is decreasing as x increases if 

6. Intersects any horizontal line exactly once, so is one-to-one

0 6 b 6 1b 7 1;

(0, �)

b 7 0, b � 1.f  (x) � logb  x

It is very important to remember that the equations and 
define the same function, and as such can be used interchangeably.

Because the domain of an exponential function includes all real numbers and its
range is the set of positive real numbers, the domain of a logarithmic function is the
set of all positive real numbers and its range is the set of all real numbers. Thus,

is defined, but and are not defined.
In short, the function for any b is only defined for positive x values.

Typical logarithmic curves are shown in Figure 2. Notice that in each case, the y axis
is a vertical asymptote for the graph.

The graphs in Example 1 and Figure 2 suggest that logarithmic graphs share some
common properties. Several of these properties are listed in Theorem 1. It might be
helpful in understanding them to review Theorem 1 in Section 4-1. Each of these prop-
erties is a consequence of a corresponding property of exponential graphs.

y � logb  x
log10  

(�5)log10 0log10 3

x � byy � logb   
x
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S E C T I O N  4–3 Logarithmic Functions 419

Z Converting Between Logarithmic 

Form and Exponential Form

We now look into the matter of converting logarithmic forms to equivalent exponen-
tial forms, and vice versa. Throughout the remainder of the chapter, it will be useful
to sometimes convert a logarithmic expression into the equivalent exponential form.
At other times, it will be useful to do the reverse.

ZZZ EXPLORE-DISCUSS 1

For the exponential function graph f and on the same
coordinate system. Then sketch the graph of Use the DRAW
INVERSE command on a graphing calculator to check your work. Discuss
the domains and ranges of f and its inverse. By what other name is 
known?

f �1

f �1.
y � xf (x) � (2

3)
x,

EXAMPLE 2 Logarithmic–Exponential Conversions

Change each logarithmic form to an equivalent exponential form.

(A) (B) (C) 

SOLUTIONS

(A) is equivalent to

(B) is equivalent to

(C) is equivalent to

Note that in each case, the base of the logarithm matches the base of the correspon-
ding exponent. �

MATCHED PROBLEM 2

Change each logarithmic form to an equivalent exponential form.

(A) (B) (C) 
�

log3 (
1
9) � �2log36 6 � 1

2log3 27 � 3

1
4 � 2�2.log2  (

1
4) � �2

5 � 251/2.log25 5 � 1
2

8 � 23.log2 8 � 3

log2 
 (1

4) � �2log25 5 � 1
2log2 8 � 3
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To gain a little deeper understanding of logarithmic functions and their relation-
ship to the exponential functions, we will consider a few problems where we want to
find x, b, or y in given the other two values. All values were chosen so
that the problems can be solved without a calculator. In each case, converting to the
equivalent exponential form is useful.

y � logb  x,

420 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

EXAMPLE 3 Logarithmic–Exponential Conversions

Change each exponential form to an equivalent logarithmic form.

(A) (B) (C) 

SOLUTIONS

(A) is equivalent to

(B) is equivalent to

(C) is equivalent to

Again, the bases match. �

MATCHED PROBLEM 3

Change each exponential form to an equivalent logarithmic form.

(A) (B) (C) 
�

1
16 � 4�22 � 13 864 � 43

log5  
(1

5) � �1.1
5 � 5�1

log9 3 � 1
2.3 � 19

log7 49 � 2.49 � 72

1
5 � 5�13 � 1949 � 72

EXAMPLE 4 Solutions of the Equation 

Find x, b, or y as indicated.

(A) Find y: (B) Find x: (C) Find b: 

SOLUTIONS

(A) Write in equivalent exponential form.

Write each number to the same base 2.

Recall that if and only if 

We conclude that 3
2 � log4 8.

 y � 3
2

 2y � 3

m � n.bm � bn 23 � 22y

 8 � 4y

y � log4 8

logb 81 � 4.log3  x � �2.y � log4 8.

y � logb x
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S E C T I O N  4–3 Logarithmic Functions 421

(B) Write in equivalent exponential form.

We conclude that 

(C) Write in equivalent exponential form:

We conclude that �

MATCHED PROBLEM 4

Find x, b, or y as indicated.

(A) Find y: (B) Find x: (C) Find b: 
�

logb 100 � 2.log2 x � �3.y � log9 27.

log3 81 � 4.

 b � 3

 34 � b4

 81 � b4

logb 81 � 4

log3  (
1
9) � �2.

 �
1

32 �
1

9

 x � 3�2

log3  x � �2

Z Properties of Logarithmic Functions

Some of the properties of exponential functions that we studied in Section 4-1 can be
used to develop corresponding properties of logarithmic functions. Several of these
important properties of logarithmic functions are listed in Theorem 1. We will justify
them individually.

Z THEOREM 2 Properties of Logarithmic Functions

If b, M, and N are positive real numbers, and p and x are real numbers,
then

1. 5. if and only if

2. 6.

3. 7.

4. 8. logb  M
p � p  logb  Mblogb x � x, x 7 0

logb  
M

N
� logb  M � logb  Nlogb  b

x � x

logb  MN � logb  M � logb  Nlogb  b � 1

M � Nlogb  M � logb  Nlogb 1 � 0

b � 1,

Write 81 as a fourth power.

b could be 3 or �3, but the base of a logarithm must be positive.
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Now we will justify properties in Theorem 2.

1. because

2. because

3. and 4. These are simply another way to state that and 
are inverse functions. Property 3 can be written as for all x in the
domain of f. Property 4 can be written as for all x in the domain of

This matches our characterization of inverse functions in Theorem 5, Section 1-6.
Collectively, these properties say that if you apply an exponential function and a
logarithmic function with the same base consecutively (in either order) you end up
with the same value you started with.

5. This follows from the fact that logarithmic functions are one-to-one.

Properties 6, 7, and 8 are used often in manipulating logarithmic expressions. We will
justify them in Problems 111 and 112 in Exercises 4-3, and Problem 68 in the Chapter 4
Review Exercises.

f �1.
f ( f �1(x)) � x

f �1( f (x)) � x
f �1(x) � logb xf (x) � bx

b1 � blogb b � 1

b0 � 1logb 1 � 0

422 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

ZZZ CAUTION ZZZ

1. In Properties 3 and 4, it’s essential that the base of the exponential and
the base of the logarithm are the same.

2. Properties 6 and 7 are often misinterpreted, so you should examine them
carefully.

logb (M � N ) � logb M � logb N

logb M

logb N
� logb M � logb N

cannot be simplified.

cannot be simplified.logb (M � N)

logb M � logb N � logb MN;

logb M

logb N

logb M � logb N � logb 
M
N

;

EXAMPLE 5 Using Logarithmic Properties

Simplify, using the properties in Theorem 2.

(A) (B) (C)

(D) (E) (F)

SOLUTIONS

(A) Property 1 (B) Property 2

(C) Property 3 (D) Property 3

(E) Property 4 (F) Property 4 �eloge x
2

� x210log10 7 � 7

log10 0.01 � log10 10�2 � �2loge e
2x�1 � 2x � 1

log10 10 � 1loge 1 � 0

eloge x
2

10log10 7log10 0.01

loge e
2x�1log10 10loge 1
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S E C T I O N  4–3 Logarithmic Functions 423

MATCHED PROBLEM 5

Simplify, using the properties in Theorem 2.

(A) (B) (C)

(D) (E) (F)
�

eloge (x
4�1)10log10 4loge e

m�n

log10 1log5 25log10 10�5

Z Common and Natural Logarithms

To work with logarithms effectively, we will need to be able to calculate (or at least
approximate) the logarithms of any positive number to a variety of bases. Histori-
cally, tables were used for this purpose, but now calculators are used because they
are faster and can find far more values than any table can possibly include. 

Of all possible bases, there are two that are used most often. Common loga-
rithms are logarithms with base 10. Natural logarithms are logarithms with base
e. Most calculators have a function key labeled “log” and a function key labeled
“ln.” The former represents the common logarithmic function and the latter the nat-
ural logarithmic function. In fact, “log” and “ln” are both used in most math books,
and whenever you see either used in this book without a base indicated, they should
be interpreted as follows:

ZZZ EXPLORE-DISCUSS 2

(A) Sketch the graph of and y � x in the same coordi-
nate system and state the domain and range of the common logarithmic
function.

(B) Sketch the graph of and in the same coordi-
nate system and state the domain and range of the natural logarithmic
function.

y � xy � ex, y � ln x,

y � 10x, y � log x,

Z LOGARITHMIC FUNCTIONS

Common logarithmic function

Natural logarithmic functiony � ln x � loge x

y � log x � log10 x
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424 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

EXAMPLE 6 Calculator Evaluation of Logarithms

Use a calculator to evaluate each to six decimal places.

(A) log 3,184 (B) ln 0.000 349 (C) 

SOLUTIONS

(A) (B) 

(C)

Why is an error indicated in part C? Because is not in the domain of the log
function. [Note: Calculators display error messages in various ways. Some calculators
use a more advanced definition of logarithmic functions that involves complex num-
bers. They will display an ordered pair, representing a complex number, as the value
of rather than an error message. You should interpret such a display as
indicating that the number entered is not in the domain of the logarithmic function as
we have defined it.] �

MATCHED PROBLEM 6

Use a calculator to evaluate each to six decimal places.

(A) log 0.013 529 (B) ln 28.693 28 (C) 
�

When working with common and natural logarithms, we will follow the common
practice of using the equal sign “ ” where it might be technically correct to use the
approximately equal sign “ .” No harm is done as long as we keep in mind that in
a statement such as the number on the right is only assumed accu-
rate to three decimal places and is not exact.

log 3.184 � 0.503,
�

�

ln (�0.438)

log (�3.24),

�3.24

log (�3.24) � Error

ln 0.000 349 � �7.960 439log 3,184 � 3.502 973

log (�3.24)

ZZZ EXPLORE-DISCUSS 3

Graphs of the functions and
are shown in the graphing calcu-

lator display of Figure 3. Which graph belongs
to which function? It appears from the display
that one of the functions may be a constant
multiple of the other. Is that true? Find and
discuss the evidence for your answer.

g(x) � ln x
f  (x) � log x

Z Figure 3

�2

0

2

5
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S E C T I O N  4–3 Logarithmic Functions 425

We now turn to the second problem: Given the logarithm of a number, find the
number. To solve this problem, we make direct use of the logarithmic–exponential
relationships, and change logarithmic expressions into exponential form.

EXAMPLE 7 Calculator Evaluation of Logarithms

Use a calculator to evaluate each expression to three decimal places.

(A) (B) (C) 

SOLUTIONS

(A) Enter as 

(B) Enter as 

(C) Note that but

(see Theorem 2). �

MATCHED PROBLEM 7

Use a calculator to evaluate each to three decimal places.

(A) (B) (C) 

�
ln 3 � ln 1.08ln  

3

1.08

ln 3

ln 1.08

log 
2

1.1
� log 2 � log 1.1

log 2

log 1.1
� log 2 � log 1.1,log 2 � log 1.1 � 0.260.

log (2 � 1.1).log 
2

1.1
� 0.260

(log 2) � (log 1.1).

log 2

log 1.1
� 7.273

log 2 � log 1.1log 
2

1.1

log 2

log 1.1

Z LOGARITHMIC–EXPONENTIAL RELATIONSHIPS

is equivalent to

is equivalent to x � eyln  x � y

x � 10 ylog x � y

EXAMPLE 8 Solving for x

Find x to three significant digits, given the indicated logarithms.

(A) (B) 

SOLUTIONS

(A) Change to exponential form (Definition 1).

� 4.84 	 10�10

x � 10�9.315

 log x � �9.315

ln x � 2.386log x � �9.315

logb x � y
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426 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Notice that the answer is displayed in scientific notation in the calculator.

(B) Change to exponential form (Definition 1).

�

MATCHED PROBLEM 8

Find x to four significant digits, given the indicated logarithms.

(A) (B) 

�
log x � 12.0821ln x � �5.062

� 10.9

x � e2.386

ln x � 2.386

ZZZ EXPLORE-DISCUSS 4

Example 8 was solved algebraically using logarithmic–exponential relation-
ships. Use the INTERSECT command on a graphing calculator to solve this
problem graphically. Discuss the relative merits of the two approaches.

Z The Change-of-Base Formula

How would you find the logarithm of a positive number to a base other than 10 or e?
For example, how would you find log3 5.2? In Example 9 we evaluate this logarithm
using several properties of logarithms. Then we develop a change-of-base formula to
find such logarithms more easily.

EXAMPLE 9 Evaluating a Base 3 Logarithm

Evaluate to four decimal places.

SOLUTION

Let and proceed as follows:

Change to exponential form.

Apply the natural log (or common log) to each side.

Solve for y.

y �
ln 5.2

ln 3

ln 5.2 � y ln 3

use logb M
p � p logb Mln 5.2 � ln 3y

5.2 � 3y

log3 5.2 � y

y � log3 5.2

log3 5.2
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S E C T I O N  4–3 Logarithmic Functions 427

Replace y with log3 5.2 from the first step, and use a calculator to evaluate the right
side:

�

MATCHED PROBLEM 9

Evaluate log0.5 0.0372 to four decimal places.

�

log3 5.2 �
ln 5.2

ln 3
� 1.5007

If we repeat the process we used in Example 9 on a generic logarithm, something
interesting happens. The goal is to evaluate where b is any acceptable base,
and N is any positive real number. As in Example 9, let 

This provides a formula for evaluating a logarithm to any base by using natural log:

We could also have used log base 10 rather than natural log, and developed an alter-
native formula:

In fact, the same approach would enable us to rewrite in terms of a logarithm
with any base we choose!

logb N

logb N �
log N

log b

logb N �
ln N

ln b

 y �
ln N

ln b

 ln N � y ln b

 ln N � ln by

 N � by

 logb N � y

y � logb N.
logb N,

Write in exponential form.

Apply natural log to each side.

use (Property 8, Theorem 2).

Solve for y.

ln b y � y ln  b

Z THE CHANGE-OF-BASE FORMULA

For any and any positive real number N,

where a is any positive number other than 1.

logb N �
loga N

loga b

b � 1,b 7 0,
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ZZZ EXPLORE-DISCUSS 5

If b is any positive real number different from 1, the change-of-base formula
implies that the function is a constant multiple of the natural log-
arithmic function; that is, ln x for some k.

(A) Graph the functions and 

(B) Write each function of part A in the form by finding the base
b to two decimal places.

(C) Is every exponential function a constant multiple of 
Explain.

y � ex?y � bx

y � logb x

y � �3 ln  x.y � ln x, y � 2 ln x, y � 0.5 ln x,

logb x � k
y � logb x

ANSWERS TO MATCHED PROBLEMS

1.

x y � log1/2 x

8

4

2

1 0

1

2

3
1
8

1
4

1
2

�1

�2

�3

f�1f

x y �

8

4

2

0 1

1

2

3
1
8

1
4

1
2

�1

�2

�3

a
1

2
b

x

�5

105�5

10

5

y � log1/2 x

y
y � x

x

� �1
2

x
y �

f

f �1

2. (A) (B) (C) 
3. (A) (B) (C) 
4. (A) (B) (C) 
5. (A) (B) 2 (C) 0 (D) (E) 4 (F) 
6. (A) (B) 3.356 663 (C) Not possible
7. (A) 14.275 (B) 1.022 (C) 1.022
8. (A) (B) 9. 4.7486x � 1.208 	 1012x � 0.006 333

�1.868 734
x4 � 1m � n�5

b � 10x � 1
8y � 3

2

log4 (
1

16) � �2log8 2 � 1
3log4 64 � 3

1
9 � 3�26 � 361/227 � 33
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S E C T I O N  4–3 Logarithmic Functions 429

4-3 Exercises

1. Describe the relationship between logarithmic functions
and exponential functions in your own words.

2. Explain why there are infinitely many different logarithmic
functions.

3. Why are logarithmic functions undefined for zero and nega-
tive inputs?

4. Why is for any base?

5. Explain how to calculate on a calculator that only has
log buttons for base 10 and base e.

6. Using the word “inverse,” explain why for any
x and any acceptable base b.

Rewrite Problems 7–12 in equivalent exponential form.

7. 8.

9. 10.

11. 12.

Rewrite Problems 13–18 in equivalent logarithmic form.

13. 14.

15. 16.

17. 18.

In Problems 19–22, make a table of values similar to the one in
Example 1, then use it to graph both functions by hand.

19.

20.

21.

22.

In Problems 23–38, simplify each expression using Theorem 2.

23. 24. 25.

26. 27. 28.

29. 30. 31.

32. 33. 34.

35. 36. 37.

38. log218

log5 13 5eloge 10eloge 5

log1/5 ( 1
25)log1/2 2log4 256

log3 27log10 100log10 0.01

log10 105loge e
4log7 7

log0.5 0.5log25 1log16 1

f �1(x) � log xf (x) � 10x

f �1(x) � log2/3 xf (x) � (2
3)

x

f �1(x) � log1/3 xf (x) � (1
3)

x

f �1(x) � log3 xf (x) � 3x

(5
2)

�2 � 0.16(2
3)

3 � 8
27

1
8 � 2�31

2 � 32�1/5

9 � 272/38 � 43/2

log2 1
64 � �6log6 1

36 � �2

log10 1,000 � 3log10 0.001 � �3

log5 125 � 3log3 81 � 4

logb b
x � x

log5 3

logb 1 � 0

In Problems 39–46, evaluate to four decimal places.

39. 40.

41. 42.

43. 44.

45. 46.

In Problems 47–54, evaluate x to four significant digits.

47. 48.

49. 50.

51. 52.

53. 54.

Find x, y, or b, as indicated in Problems 55–72.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

In Problems 73–78, evaluate to three decimal places.

73. 74.

75. 76.

77. 78. 

In Problems 79–82, rewrite the expression in terms of log x and
log y.

79. 80.

81. 82. log a x21y
blog (x4y3)

log (xy)log ax

y
b

log 200

3 log 2

ln 150

2 ln 3

ln 4

ln 1.2

ln 3

ln 1.15

log 2

log 1.12

log 2

log 1.15

log9 27 � ylog16 8 � y

log25 x � �3
2log8 x � �4

3

logb 4 � 2
3logb 1,000 � 3

2

log49 (
1
7) � ylog1/3 9 � y

log8 x � 1
3log4 x � 1

2

logb b � 1logb 1 � 0

logb 10�3 � �3logb 16 � 2

log8 64 � ylog4 16 � y

log3 x � 3log2 x � 2

ln x � �4.1083ln x � �0.3916

ln x � 5.0884ln x � 3.8655

log x � �2.0411log x � �3.1773

log x � 1.9168log x � 5.3027

log17 304.66log5 120.24

log9 78log7 13

ln 19.722ln 54.081

log 691,450log 49,236

*Additional answers can be found in the Instructor Answer Appendix.

A

B
81 � 34

0.001 � 10�3

1
36 � 6�2

log4 8 � 3
2

log32 12 � �1
5

log2/3 8
27 � 3

log27 9 � 2
3

log2 18 � �3

log5/2 0.16 � �2

1,000 � 103

1
64 � 2�6

125 � 53

4.6923 5.8398

3.9905 2.9817

1.3181 1.9828

2.9759

200,800

0.0006648

47.73 162.1

0.6760

x � 4

y � 2

x � 2

y � �2

b � 100

x � 1
16

y � 3
4

4.959

7.861

2.280 2.548

7.604

6.116

y � 3
2

x � 1
125

b � 8

y � �1
2

b � 4

b is any positive real

number except 1.
b is any positive real

number except 1.

b � 10

x � 2

y � 2

x � 27

0.01644

0.009097

82.57

2.0186

0 0 1

1

4

5

4

2

�1

10

�2

5

3

2

1
3

3
2
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430 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

In Problems 83–86, rewrite the expression as a single log.

83. 84.

85. 86.

In Problems 87–90, given that and find:

87. 88. 89. 90.

In Problems 91–98, use transformations to explain how the
graph of g is related to the graph of the given logarithmic
function f. Determine whether g is increasing or decreasing,
find its domain and asymptote, and sketch the graph of g.

91.

92.

93.

94.

95.

96.

97.

98.

In Problems 99–102, find 

99. 100.

101. 102.

103. Let 
(A) Find (B) Graph 
(C) Reflect the graph of in the line to obtain

the graph of f.

104. Let 
(A) Find (B) Graph 
(C) Reflect the graph of in the line to obtain

the graph of f.
y � xf �1

f �1.f �1.
f  (x) � log2 (�3 �x).

y � xf �1
f �1.f �1.

f (x) � log3 (2 � x).

f  (x) � 2 log2 (x � 5)f  (x) � 4 log3 (x � 3)

f  (x) � log1/3 xf  (x) � log5 x

f �1.

g (x) � �3 � 2 ln  x; f  (x) � ln  x

g (x) � 5 � 3 ln  x; f  (x) � ln  x

g (x) � 2 � log x; f  (x) � log x

g (x) � �1 � log x; f  (x) � log x

g (x) � log1/2 (x � 3); f  (x) � log1/2 x

g (x) � log1/3 (x � 2); f  (x) � log1/3 x

g (x) � �4 � log3 x; f  (x) � log3 x

g (x) � 3 � log2 x; f  (x) � log2 x

log (x5y3)log a
1x

y3 blog a
x

y
blog (xy)

log y � 3,log x � �2

log a � 2 log b � 3 log c2 ln x � 5 ln y � ln z

log3 x � log3 yln x � ln y

105. What is wrong with the following “proof ” that 3 is less
than 2?

Divide both sides by 27.

Divide both sides by 

106. What is wrong with the following “proof ” that 1 is greater
than 2?

Multiply both sides by 

Multiply both sides by 8.

The polynomials in Problems 107–110, called Taylor polynomials,
can be used to approximate the function To
illustrate this approximation graphically, in each problem, graph

and the indicated polynomial in the same
viewing window, and 

107. 108.

109.

110.

111. Prove that for any positive M, N, and b
(Hint: Start by writing 

and and changing each to expo-
nential form.)

112. Prove that for any positive integer p and any positive b
and M [Hint: Write as

( p factors).]M � M � p M
M plogb M

p � p logb M.(b � 1),

v � logb Nlogb Mu �
logb (

M
N) � logb M � logb N.

(b � 1),

P4(x) � x � 1
2 
x2 � 1

3 
x3 � 1

4 
x4 � 1

5 
x5

P3(x) � x � 1
2 
x2 � 1

3 
x3 � 1

4 
x4

P2(x) � x � 1
2 
x2 � 1

3 
x3P1(x) � x � 1

2 
x2

�2 
 y 
 2.�1 
 x 
 3
g(x) � ln (1 � x)

g(x) � ln (1 � x).

1 7 2

1
8 7 1

4

(1
2)

3 7 (1
2)

2

log (1
2)

3 7 log (1
2)

2

3 log 12 7 2 log 12

log 
1
2.3 7 2

3 6 2

log 
1
3.3 log 13 6 2 log 13

log (1
3)

3 6 log (1
3)

2

(1
3)

3 6 (1
3)

2

1
27 6 1

9

1
27 6 3

27

1 6 3

f �1(x) � 5x

f �1(x) � 3x/4 � 3 f �1(x) � 2x/2 � 5

f �1(x) � 3�x

C

4-4 Logarithmic Models

Z Logarithmic Scales

Z Data Analysis and Regression

Logarithmic functions occur naturally as the inverses of exponential functions. But that’s
not to say that they are not useful in their own right. Some of these uses are probably
familiar to you, but you might not have realized that they involved logarithmic functions.
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S E C T I O N  4–4 Logarithmic Models 431

In this section, we will study logarithmic scales that are used to compare the
intensity of sounds, the severity of earthquakes, and the brightness of distant stars.
We will also look at using regression to model data with a logarithmic function, and
discuss what sort of data is likely to fit such a model.

Z Logarithmic Scales

SOUND INTENSITY: The human ear is able to hear sound over an incredible range of
intensities. The loudest sound a healthy person can hear without damage to the
eardrum has an intensity 1 trillion (1,000,000,000,000) times that of the softest
sound a person can hear. If we were to use these intensities as a scale for meas-
uring volume, we would be stuck using numbers from zero all the way to the tril-
lions, which seems cumbersome, if not downright silly. In the last section, we saw
that logarithmic functions increase very slowly. We can take advantage of this to
create a scale for sound intensity that is much more condensed, and therefore more
manageable.

The decibel scale for sound intensity is an example of such a scale. The decibel,
named after the inventor of the telephone, Alexander Graham Bell (1847–1922), is
defined as follows:

Decibel scale (1)

where D is the decibel level of the sound, I is the intensity of the sound measured
in watts per square meter and is the intensity of the least audible sound
that an average healthy young person can hear. The latter is standardized to be

watts per square meter. Table 1 lists some typical sound intensities from
familiar sources. In Example 1 and problems 1 and 2 in Exercises 4, we will calcu-
late the decibel levels for these sounds.

Table 1 Typical Sound Intensities

Sound intensity Sound

Threshold of hearing

Whisper

Normal conversation

Heavy traffic

Jackhammer

Threshold of pain

Jet plane with afterburner8.3 � 102

1.0 � 100

3.2 � 10�3

8.5 � 10�4

3.2 � 10�6

5.2 � 10�10

1.0 � 10�12

(W/m2)

I0 � 10�12

I0(W/m2),

D � 10 log 
I

I0
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432 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

EXAMPLE 1 Sound Intensity

(A) Find the number of decibels from a whisper with sound intensity watts
per square meter, then from heavy traffic at watts per square meter.
Round your answers to two decimal places.

(B) How many times larger is the sound intensity of heavy traffic compared to a whisper?

SOLUTIONS

(A) We can use the decibel formula (1) with First, we use 

Substitute 

Simplify the fraction.

Next, for heavy traffic:

Substitute 

Simplify the fraction.

(B) Dividing the larger intensity by the smaller,

we see that the sound intensity of heavy traffic is more than 1.6 million times as
great as the intensity of a whisper! �

MATCHED PROBLEM 1

Find the number of decibels from a jackhammer with sound intensity 
watts per square meter. Compute the answer to two decimal places.

�
3.2 � 10�3

8.5 � 10�4

5.2 � 10�10 � 1,634,615.4

 � 89.29 decibels

 � 10 log 850,000,000

 � 10 log 
8.5 � 10�4

10�12

I � 8.5 � 10
�4

, I0 � 10
�12

. D � 10 log 
I

I0

 � 27.16 decibels

 � 10 log 520

 � 10 log 
5.2 � 10�10

10�12

I � 5.2 � 10
�10

, I0 � 10
�12

. D � 10 log 
I

I0

I � 5.2 � 10�10:I0 � 10�12.

8.5 � 10�4
5.20 � 10�10
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ZZZ EXPLORE-DISCUSS 1

Suppose that you are asked to draw a graph of the data in Table 1, with sound
intensities on the x axis, and the corresponding decibel levels on the y axis.

(A) What would be the coordinates of the point corresponding to a jack-
hammer (see Matched Problem 1)?

(B) Suppose the axes of this graph are labeled as follows: Each tick mark on
the x axis corresponds to the intensity of the least audible sound watts
per square meter), and each tick mark on the y axis corresponds to 1 deci-
bel. If there is inch between all tick marks, how far away from the x axis
is the point you found in part A? From the y axis? (Give the first answer in
inches and the second in miles!) Discuss your result.

1
8

(10�12

EARTHQUAKE INTENSITY: The energy released by the largest earthquake recorded,
measured in joules, is about 100 billion (100,000,000,000) times the energy released
by a small earthquake that is barely felt. Over the past 150 years several people from
various countries have devised different types of measures of earthquake magnitudes
so that their severity could be compared without using tremendously large numbers.
In 1935 the California seismologist Charles Richter devised a logarithmic scale that
bears his name and is still widely used in the United States. The magnitude of an
earthquake M on the Richter scale* is given as follows:

Richter scale (2)

where E is the energy released by the earthquake, measured in joules, and is the energy
released by a very small reference earthquake, which has been standardized to be

The destructive power of earthquakes relative to magnitudes on the Richter scale is
indicated in Table 2.

E0 � 104.40 joules

E0

M �
2

3
 log 

E

E0

*Originally, Richter defined the magnitude of an earthquake in terms of logarithms of the maximum seismic

wave amplitude, in thousandths of a millimeter, measured on a standard seismograph. Formula (2) gives

essentially the same magnitude that Richter obtained for a given earthquake but in terms of logarithms of

the energy released by the earthquake.

Table 2 The Richter Scale

Magnitude on Richter scale Destructive power

Small

Moderate

Large

Major

Greatest7.5 6 M

6.5 6 M 6 7.5

5.5 6 M 6 6.5

4.5 6 M 6 5.5

M 6 4.5
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434 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

EXAMPLE 2 Earthquake Intensity

The 1906 San Francisco earthquake released approximately of
energy. Another quake struck the Bay Area just before game 3 of the 1989 World
Series, releasing of energy.

(A) Find the magnitude of each earthquake on the Richter scale. Round your answers
to two decimal places.

(B) How many times more energy did the 1906 earthquake release than the one in
1989?

SOLUTIONS

(A) We can use the magnitude formula (2) with First, for the 1906 earth-
quake, we use 

Substitute 

Next, for the 1989 earthquake:

Substitute 

(B) Dividing the larger energy release by the smaller,

we see that the 1906 earthquake released 53.2 times as much energy as the 1989
quake. �

MATCHED PROBLEM 2

The 1985 earthquake in central Chile released approximately of
energy. What was its magnitude on the Richter scale? Compute the answer to two dec-
imal places.

�

1.26 � 1016 joules

5.96 � 1016

1.12 � 1015 � 53.2

 � 7.1

 �
2

3
 log 

1.12 � 1015

104.40

E � 1.12 � 10
15

, E0 � 10
4.40. M �

2

3
 log 

E

E0

 � 8.25

 �
2

3
 log 

5.96 � 1016

104.40

E � 5.96 � 10
16

, E0 � 10
4.40. M �

2

3
 log 

E

E0

E � 5.96 � 1016:
E0 � 104.40.

1.12 � 1015 joules

5.96 � 1016 joules
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EXAMPLE 3 Earthquake Intensity

If the energy release of one earthquake is 1,000 times that of another, how much larger
is the Richter scale reading of the larger than the smaller?

SOLUTION

Let

and

be the Richter equations for the smaller and larger earthquakes, respectively. Since
the larger earthquake released 1,000 times as much energy, we can write

Substitute for 

Use 

Distribute.

Thus, an earthquake with 1,000 times the energy of another has a Richter scale read-
ing of 2 more than the other. �

MATCHED PROBLEM 3

If the energy release of one earthquake is 10,000 times that of another, how much
larger is the Richter scale reading of the larger than the smaller?

�

 � 2 � M1

2

3
 log 

E1

E0

 is M1! �
2

3
(3) �

2

3
 log 

E1

E0

 �
2

3
a3 � log 

E1

E0
b

log 1,000 � log 10
3 � 3 �

2

3
alog 1,000 � log 

E1

E0
b

log (MN) � log M � log N. �
2

3
 log 

1,000E1

E0

E2.1,000E1 M2 �
2

3
 log 

E2

E0

E2 � 1,000E1.

M2 �
2

3
 log 

E2

E0
M1 �

2

3
 log 

E1

E0

ROCKET FLIGHT: The theory of rocket flight uses advanced mathematics and physics to
show that the velocity v of a rocket at burnout (depletion of fuel supply) is given by

Rocket equation (3)

where c is the exhaust velocity of the rocket engine, is the takeoff weight (fuel,
structure, and payload), and is the burnout weight (structure and payload).Wb

Wt

v � c ln  
Wt

Wb
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Because of the Earth’s atmospheric resistance, a launch vehicle velocity of at least
9.0 kilometers per second is required to achieve the minimum altitude needed for a
stable orbit. Formula (3) indicates that to increase velocity v, either the weight ratio

must be increased or the exhaust velocity c must be increased. The weight ratio
can be increased by the use of solid fuels, and the exhaust velocity can be increased
by improving the fuels, solid or liquid.

Wt /Wb

EXAMPLE 4 Rocket Flight Theory

A typical single-stage, solid-fuel rocket may have a weight ratio and
an exhaust velocity kilometers per second. Would this rocket reach a launch
velocity of 9.0 kilometers per second?

SOLUTION

We can use the rocket equation (3) with and 

The velocity of the launch vehicle is far short of the 9.0 kilometers per second
required to achieve orbit. This is why multiple-stage launchers are used—the dead-
weight from a preceding stage can be jettisoned into the ocean when the next stage
takes over. �

MATCHED PROBLEM 4

A launch vehicle using liquid fuel, such as a mixture of liquid hydrogen and liquid
oxygen, can produce an exhaust velocity of kilometers per second. However,
the weight ratio must be low—around 5.5 for some vehicles—because of the
increased structural weight to accommodate the liquid fuel. How much more or less
than the 9.0 kilometers per second required to reach orbit will be achieved by this
vehicle?

�

Wt /Wb

c � 4.7

 � 6.97 kilometers per second

 � 2.38 ln 18.7

 v � c ln  

Wt

Wb

Wt

Wb
� 18.7:c � 2.38

c � 2.38
Wt /Wb � 18.7

Z Data Analysis and Regression

Based on the logarithmic graphs we studied in the last section, when a quantity
increases relatively rapidly at first, but then levels off and increases very slowly, it
might be a good candidate to be modeled by a logarithmic function. Most graphing
calculators with regression commands can fit functions of the form 
to a set of data points using the same techniques we used earlier for other types of
regression.

y � a � b ln  x
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Table 3 Home Ownership
Rates

Home ownership
Year rate (%)

1940 43.6

1950 55.0

1960 61.9

1970 62.9

1980 64.4

1990 64.2

2000 67.4

EXAMPLE 5 Home Ownership Rates

The U.S. Census Bureau published the data in Table 3 on home ownership rates.

(A) Let x represent time in years with representing 1900, and let y represent
the corresponding home ownership rate. Use regression analysis on a graphing
calculator to find a logarithmic function of the form that models
the data. (Round the constants a and b to three significant digits.)

(B) Use your logarithmic function to predict the home ownership rate in 2010.

SOLUTIONS

(A) Figure 1 shows the details of constructing the model on a graphing calculator.

(B) The year 2010 corresponds to Evaluating at
predicts a home ownership rate of 71.4% in 2010.x � 110

y1 � �36.7 � 23.0 ln  xx � 110.

y � a � b ln  x

x � 0

0

0

100

120

Z Figure 1

(a) Data (b) Regression equation (c) Regression equation entered

in equation editor

(d) Graph of data and regression

equation �

MATCHED PROBLEM 5

Refer to Example 5. The home ownership rate in 1995 was 64.7%.

(A) Find a logarithmic regression equation for the expanded data set.

(B) Predict the home ownership rate in 2010.
�

ANSWERS TO MATCHED PROBLEMS

1. 95.05 decibels 2. 7.80 3. 2.67 4. 1 kilometer per second less
5. (A) (B) 70.5%�31.5 � 21.7 ln  x
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4-4 Exercises
*Additional answers can be found in the Instructor Answer Appendix.

1. Describe the decibel scale in your own words.

2. Describe the Richter scale in your own words.

3. Explain why logarithms are a good choice for describing
sound intensity and earthquake magnitude.

4. Think of a real-life quantity that is likely to be modeled
well by a logarithmic function, and explain your reasoning.

APPLICATIONS

5. SOUND What is the decibel level of
(A) The threshold of hearing, watts per square
meter?
(B) The threshold of pain, 1.0 watt per square meter?
Compute answers to two significant digits.

6. SOUND What is the decibel level of
(A) A normal conversation, watts per square
meter?
(B) A jet plane with an afterburner, watts per square
meter?
Compute answers to two significant digits.

7. SOUND If the intensity of a sound from one source is 1,000
times that of another, how much more is the decibel level of the
louder sound than the quieter one?

8. SOUND If the intensity of a sound from one source is 10,000
times that of another, how much more is the decibel level of the
louder sound than the quieter one?

9. EARTHQUAKES One of the strongest recorded earthquakes
to date was in Colombia in 1906, with an energy release of

What was its magnitude on the Richter
scale? Compute the answer to one decimal place.

10. EARTHQUAKES Anchorage, Alaska, had a major earthquake
in 1964 that released of energy. What was its
magnitude on the Richter scale? Compute the answer to one
decimal place.

11. EARTHQUAKES The 1933 Long Beach, California, earth-
quake had a Richter scale reading of 6.3, and the 1964 Anchor-
age, Alaska, earthquake had a Richter scale reading of 8.3. How
many times more powerful was the Anchorage earthquake than
the Long Beach earthquake?

7.08 � 1016 joules

1.99 � 1017 joules.

8.3 � 102

3.2 � 10�6

1.0 � 10�12

12. EARTHQUAKES Generally, an earthquake requires a magni-
tude of over 5.6 on the Richter scale to inflict serious damage.
How many times more powerful than this was the great 1906
Colombia earthquake, which registered a magnitude of 8.6 on
the Richter scale?

13. EXPLOSIVE ENERGY The atomic bomb dropped on
Nagasaki, Japan, on August 9, 1945, released about

of energy. What would be the magnitude of
an earthquake that released that much energy?

14. EXPLOSIVE ENERGY The largest and most powerful nuclear
weapon ever detonated was tested by the Soviet Union on Octo-
ber 30, 1961, on an island in the Arctic Sea. The blast was so
powerful there were reports of windows breaking in Finland,
over 700 miles away. The detonation released about

of energy. What would be the magnitude of an
earthquake that released that much energy?

15. ASTRONOMY A moderate-size solar flare observed on the
sun on July 9, 1996, released enough energy to power the United
States for almost 23,000 years at 2001 consumption levels,

What would be the magnitude of an earth-
quake that released that much energy?

16. CONSTRUCTION The energy released by a typical con-
struction site explosion is about What
would be the magnitude of an earthquake that released that
much energy?

17. SPACE VEHICLES A new solid-fuel rocket has a weight ra-
tio and an exhaust velocity kilometers
per second. What is its velocity at burnout? Compute the answer
to two decimal places.

18. SPACE VEHICLES A liquid-fuel rocket has a weight ratio
and an exhaust velocity kilometers per

second. What is its velocity at burnout? Compute the answer to
two decimal places.

19. CHEMISTRY The hydrogen ion concentration of a substance
is related to its acidity and basicity. Because hydrogen ion con-
centrations vary over a very wide range, logarithms are used to
create a compressed pH scale, which is defined as follows:

where is the hydrogen ion concentration, in moles per
liter. Pure water has a pH of 7, which means it is neutral. Sub-
stances with a pH less than 7 are acidic, and those with a pH

[H�]

pH � �log [H�]

c � 5.2Wt/Wb � 6.2

c � 2.57Wt/Wb � 19.8

7.94 � 105 joules.

2.38 � 1021 joules.

2.1 � 1017 joules

1.34 � 1014 joules

0 decibels

120 decibels

65 decibels

150 decibels

30 decibels

40 decibels

8.6

8.3

1,000 times as powerful

32,000 times as powerful

6.5

8.6

11.3

1.0

7.67 km/s

9.49 km/s
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S E C T I O N  4–4 Logarithmic Models 439

greater than 7 are basic. Compute the pH of each substance
listed, given the indicated hydrogen ion concentration. Also,
indicate whether each substance is acidic or basic. Compute
answers to one decimal place.
(A) Seawater, 
(B) Vinegar, 

20. CHEMISTRY Refer to Problem 19. Compute the pH of each
substance below, given the indicated hydrogen ion concentra-
tion. Also, indicate whether it is acidic or basic. Compute an-
swers to one decimal place.
(A) Milk, 
(B) Garden mulch, 

21. ECOLOGY Refer to Problem 19. Many lakes in Canada and
the United States will no longer sustain some forms of wildlife
because of the increase in acidity of the water from acid rain and
snow caused by sulfur dioxide emissions from industry. If the
pH of a sample of rainwater is 5.2, what is its hydrogen ion con-
centration in moles per liter? Compute the answer to two signif-
icant digits.

22. ECOLOGY Refer to Problem 19. If normal rainwater has a
pH of 5.7, what is its hydrogen ion concentration in moles per
liter? Compute the answer to two significant digits.

23. ASTRONOMY The brightness of stars is expressed in
terms of magnitudes on a numerical scale that increases as the
brightness decreases. The magnitude m is given by the
formula

where L is the light flux of the star and is the light flux of the
dimmest stars visible to the naked eye.
(A) What is the magnitude of the dimmest stars visible to the
naked eye?
(B) How many times brighter is a star of magnitude 1 than a star
of magnitude 6?

24. ASTRONOMY An optical instrument is required to observe
stars beyond the sixth magnitude, the limit of ordinary vision.
However, even optical instruments have their limitations. The
limiting magnitude L of any optical telescope with lens diame-
ter D, in inches, is given by

L � 8.8 � 5.1 log D

L0

m � 6 � 2.5 log 
L

L0

3.78 � 10�6
2.83 � 10�7

9.32 � 10�4
4.63 � 10�9

(A) Find the limiting magnitude for a homemade 6-inch reflect-
ing telescope.
(B) Find the diameter of a lens that would have a limiting mag-
nitude of 20.6.
Compute answers to three significant digits.

25. AGRICULTURE Table 4 shows the yield (bushels per acre)
and the total production (millions of bushels) for corn in the
United States for selected years since 1950. Let x represent
years since 1900.

Table 4 United States Corn Production

Yield Total production
Year (bushels per acre) (million bushels)

1950 37.6 2,782

1960 55.6 3,479

1970 81.4 4,802

1980 97.7 6,867

1990 115.6 7,802

2000 137.0 9,915

Source: U.S. Department of Agriculture

(A) Find a logarithmic regression model for
the yield. Estimate (to one decimal place) the yield in 2003 and
in 2010.
(B) The actual yield in 2003 was 142 bushels per acre. How
does this compare with the estimated yield in part A? What ef-
fect with this additional 2003 information have on the estimate
for 2010? Explain.

26. AGRICULTURE Refer to Table 4.
(A) Find a logarithmic regression model for
the total production. Estimate (to the nearest million) the pro-
duction in 2003 and in 2010.
(B) The actual production in 2003 was 10,114 million bushels.
How does this compare with the estimated production in part A?
What effect will this 2003 production information have on the
estimate for 2010? Explain.

(y � a � b ln  x)

(y � a � b ln  x)

8.3, basic

3.0, acidic

6.5 acidic

5.4 acidic

6.3 � 10�6 moles per liter

2 � 10�6 moles per liter

m � 6

100 times brighter

12.8

206 in.
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440 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

When quantities are modeled by exponential or logarithmic functions, it’s not a sur-
prise that solving equations involving expressions of these types is useful in studying
those quantities.

Equations involving exponential and logarithmic functions, such as

and

are called exponential and logarithmic equations, respectively. The properties of log-
arithms that we studied in Section 4-3 play a central role in their solution. Of course,
a graphing calculator can be used to find approximate solutions for many exponential
and logarithmic equations. However, there are situations in which the algebraic solu-
tion is necessary. In this section, we will emphasize algebraic solutions, but will still
consider graphical solutions in many cases.

Z Solving Exponential Equations

The distinguishing feature of exponential equations is that the variable appears in an
exponent. Before defining logarithms, we didn’t have a reliable method for removing
variables from an exponent: Now we do. To illustrate the idea, we return to the equa-
tion we considered at the beginning of Section 4-3, 3x � 20.

 log(x � 3) � log x � 123x�2 � 5

Solving an Exponential Equation

Solve . Round your answer to four decimal places.3x � 20

EXAMPLE 1

SOLUTIONS

Algebraic Solution
The key is to apply a logarithmic function to each side,
then use one of the properties of logs from Section 4-3.

Notice that the solution is between 2 and 3, as we sur-
mised at the beginning of Section 4-3 (since and
33 � 27).

32 � 9

 x �
ln 20

ln 3
� 2.7268

 x ln 3 � ln 20

 ln 3x � ln 20

 3x � 20

Graphical Solution
Graph and and use the INTERSECT
command (Fig. 1).

y2 � 20y1 � 3x

Apply common or natural log to both sides.

Use .

Solve for x.

 log b N
p � p log b N

Z Figure 1 y1 � 3x, y2 � 20.

0

�10

30

10

The solution is to four decimal places.x � 2.7268

4-5 Exponential and Logarithmic Equations

Z Solving Exponential Equations

Z Solving Logarithmic Equations
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S E C T I O N  4–5 Exponential and Logarithmic Equations 441

In Example 1, the choice of natural log to apply to both sides of the equation was
unimportant. We could have chosen common log, or really log with any base. We’ll
usually choose either natural or common log because those are easiest to compute
using a calculator.

In Example 2, we will use the technique of Example 1 on a slightly more com-
plicated equation.

MATCHED PROBLEM 1

Solve Round your answer to four decimal places.
�

5x � 30.

Solving an Exponential Equation

Solve for x to four decimal places.23x�2 � 5

EXAMPLE 2

SOLUTIONS

Algebraic Solution
Again, we will use logs to get x out of the exponent.

 � 1.4406

 x �
1

3
 a2 �

 log 5

 log 2
b

 3x � 2 �  

 log 5

 log 2

 3x � 2 �
 log 5

 log 2

 (3x � 2) log 2 � log 5

  log 23x�2 �  log 5

 23x�2 � 5

Graphical Solution
Graph and and use the INTER-
SECT command (Fig. 2).

y2 � 5y1 � 23x�2

Take the common or natural log of

both sides.

Use to get

out of the exponent position.

Solve.

Remember:

Multiply both sides by .

To four decimal places.

1
3

 log 5

  log 2
� log 5 � log 2.

3x � 2

 log b N
p � p log b N

Z Figure 2 y1 � 23x�2, y2 � 5.

0

�2

8

4

MATCHED PROBLEM 2

Solve for x to four decimal places.
�

351�2x � 7

Being able to solve exponential equations comes in handy when working with quan-
tities that can be modeled with exponential functions.
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442 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Compound Interest

A certain amount of money P (principal) is invested at an annual rate r compounded
annually. The amount of money A in the account after t years, assuming no with-
drawals, is given by

for annual compounding

How many years to the nearest year will it take the money to double if it is invested
at 6% compounded annually?

m � 1A � Pa1 �
r
m
bn

� P(1 � r)n

EXAMPLE 3

SOLUTIONS

Algebraic Solution
We don’t know the original amount, so we’ll have to
just use P to represent it. We can substitute to
get

We are asked to find the number of years (n) when the
amount (A) equals twice the original amount (2P). So
we substitute 2P for A and solve for n.

 � 12 years

 n �
 log 2

 log 1.06

  log 2 � n log 1.06

  log 2 �  log 1.06n

 2 � 1.06n

 2P � P(1.06)n

A � P(1.06)n

r � 0.6

Graphical Solution
From the first part of the algebraic solution, we need to
solve the equation 

Graph and and use the INTER-
SECT command (Fig. 3).

y2 � 2y1 � 1.06x
2 � 1.06n.

Divide both sides by P.

Take the common or natural log of both sides.

Note how log properties are used to get n
out of the exponent position.

Solve for n.

To the nearest year.

Z Figure 3 y1 � 1.06x, y2 � 2.

0

0

4

20

The solution (rounded to the nearest year) is 12.

MATCHED PROBLEM 3

Repeat Example 3, changing the interest rate to 9% compounded annually.
�

ZZZ CAUTION ZZZ

When solving exponential equations, it is crucial to first isolate the expo-
nential expression before applying a log function to each side. [In Example 3,
this entailed dividing both sides by P to isolate the exponential expression
(1.06)n. ]
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S E C T I O N  4–5 Exponential and Logarithmic Equations 443

Atmospheric Pressure

The atmospheric pressure P, in pounds per square inch, at x miles above sea level is
given approximately by

At what height will the atmospheric pressure be half the sea-level pressure? Compute
the answer to two significant digits.

P � 14.7e�0.21x

EXAMPLE 4

SOLUTIONS

Algebraic Solution
Since x represents miles above sea level, sea-level pres-
sure is the pressure at 

One-half of sea-level pressure is Now
our problem is to find x so that that is, we
solve for x:

 � 3.3 miles

 x �
ln 0.5

�0.21

 ln 0.5 � �0.21x

 ln 0.5 � ln e�0.21x

 0.5 � e�0.21x

 7.35 � 14.7e�0.21x

7.35 � 14.7e�0.21x
P � 7.35;
14.7/2 � 7.35.

P � 14.7e0 � 14.7

x � 0:

Graphical Solution
From the first part of the algebraic solution, we need to
solve 

Graph and and use the
INTERSECT command (Fig. 4).

y2 � 7.35y1 � 14.7e�0.21x
7.35 � 14.7e�0.21x.

Divide both sides by 14.7 to isolate the

exponential expression.

Because the base is e, take the natural

log of both sides.

Use the property 

Solve for x.

To two significant digits.

ln ea � a.

Z Figure 4

y2 � 7.35.
y1 � 14.7e�0.21x,

0

0

20

5

MATCHED PROBLEM 4

Using the formula in Example 4, find the altitude in miles so that the atmospheric
pressure will be one-eighth that at sea level. Compute the answer to two significant
digits.

�

Many people assume that a cable hanging between two fixed points (think of utility
wires between two poles) are parabolas, but actually they are not. Instead, they fol-
low the shape of the graph in Figure 5, known as a catenary. Catenaries are impor-
tant in engineering and architecture, and are often studied in calculus. The graph of
the equation

(1)

is an example of a catenary.

y �
ex � e�x

2

Z Figure 5 Catenary.

x
5�5

5

10

y � ex � e�x

2
y
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Solving an Exponential Equation

Given equation (1), find x for Compute the answer to four decimal places.y � 2.5.

EXAMPLE 5

SOLUTIONS

Algebraic Solution

Let then

Note that the algebraic method produces exact solu-
tions, an important consideration in certain calculus
applications (see Problems 69–72 in Exercises 4-5).

 � �1.5668, 1.5668

 x � ln 
5 � 121

2

 ln ex � ln 

5 � 121

2

 ex �
5 � 121

2

 �
5 � 121

2

 u �
5 � 125 � 4(1)(1)

2

 u2 � 5u � 1 � 0

u � ex,

 e2x � 5ex � 1 � 0

 5ex � e2x � 1

 5 � ex � e�x

 2.5 �
ex � e�x

2

 y �
ex � e�x

2

Graphical Solution
Graph and and use the
INTERSECT command (Fig. 6).

y2 � 2.5y1 � (ex � e�x )/2

Substitute 

Multiply both sides by 2 to clear

fractions.

Multiply both sides by to

eliminate negative exponents.

Rearrange so that zero is on one

side.

Use the quadratic formula.

ex

y � 2.5.

Replace u with and solve

for x.

Take the natural log of both

sides (both values on the

right are positive).

Use ln .ex � x

ex

Z Figure 6 y1 �
ex � e�x

2
, y2 � 2.5.

0

�5

5

5

(a)

0

�5

5

5

(b)

The two solutions are and to
four decimal places.

x � 1.5668x � �1.5668

MATCHED PROBLEM 5

Given find x for Compute the answer to three decimal
places.

y � 1.5.y � (ex � e�x)/2,

�
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S E C T I O N  4–5 Exponential and Logarithmic Equations 445

Z Solving Logarithmic Equations

We will begin our study of solving logarithmic equations with a key observation. For
equations of the form

changing to exponential form solves the equation, as in Example 6.

 logb  x � a

ZZZ EXPLORE-DISCUSS 1

Let 

(A) Try to find x when using the method of Example 5. Explain the
difficulty that arises.

(B) Use a graphing calculator to find x when y � 7.

y � 7

y � e2x � 3ex � e�x

EXAMPLE 6 Solve 

SOLUTION

Change to exponential form:

�

MATCHED PROBLEM 6

Solve 

�
 log2  x � �4.

 x � 125

 53 � x

 log5  x � 3.

Obviously, this is a very simple example, but it provides some valuable insight in
solving logarithmic equations. If we can reduce an equation to the form

where “expression” is something involving the variable, then
changing to exponential form should result in an equation we already know how
to solve.

logb (expression) � a,
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446 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Solving a Logarithmic Equation

Solve and check. log (x � 3) �  log x � 1,

EXAMPLE 7

SOLUTIONS

Algebraic Solution
First use properties of logarithms to express the left side
as a single logarithm, then convert to exponential form
and solve for x, as in Example 6.

CHECK

is not defined 
because the domain of the log function is 

The only solution to the original equation is 
Remember, solutions should be checked in the original
equation to see whether any should be discarded.

x � 2.

� log (5 � 2) � log 10 ✓
� 1

x � 2: log (2 � 3) � log 2 �  log 5 �  log 2

(0, �).
x � �5: log (�5 � 3) �  log (�5)

x � �5, 2

(x � 5)(x � 2) � 0

x2 � 3x � 10 � 0

x(x � 3) � 101

 log [x(x � 3)] � 1

 log (x � 3) �  log x � 1

Graphical Solution
Graph and and use
the INTERSECT command. Figure 7 shows that 
is a solution, and also shows that (the left side of the
original equation) is not defined at the extra-
neous solution produced by the algebraic method.

x � �5,
y1

x � 2
y2 � 1y1 �  log (x � 3) �  log x

Combine left side using 

log M � log N � log MN.

Change to equivalent 

exponential form.

Write in ax2 � bx � c � 0 

form and solve.

Factor.

Z Figure 7

y2 � 1.
y1 �  log (x � 3) �  log x,

MATCHED PROBLEM 7

Solve and check. log (x � 15) � 2 �  log x,
�

ZZZ CAUTION ZZZ

It’s important to check your answer when solving logarithmic equations.
Because log functions are undefined for negative inputs, extraneous solutions
are common.
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S E C T I O N  4–5 Exponential and Logarithmic Equations 447

Solving a Logarithmic Equation

Solve (ln x)2 � ln x2.

EXAMPLE 8

SOLUTIONS

Algebraic Solution
There are no logarithmic properties for simplifying

However, we can simplify obtaining an
equation involving 

or

or

or

Checking that both and are solutions to
the original equation is left to you. Don’t let us down.

x � e2x � 1

x � 1, e2

e2 � xe0 � x

ln x � 2ln x � 0

ln x � 2 � 0ln x � 0

(ln x)(ln x � 2) � 0

(ln x)2 � 2 ln x � 0

(ln x)2 � 2 ln x

(ln x)2 � ln x2

ln x and (ln x)2.
ln x2,(ln x)2.

Graphical Solution
Graph and and use the INTER-
SECT command to obtain the solutions and

(Fig. 8). The second solution is not
exact; it is an approximation to .

�4

0

6

10

e2
x � 7.3890561

x � 1
y2 � ln x2y1 � (ln x)2

Use 

Rearrange so that zero is on one side.

Factor out 

Set each factor equal to zero.

Change to exponential form. 

Recall that ln x � loge x.

ln x.

 logb N
p � p  logb N.

Z Figure 8

MATCHED PROBLEM 8

Solve  log x2 � ( log x)2.
�

ZZZ CAUTION ZZZ

Note that

You might find it helpful to keep these straight by writing as
 logb (x

2).
 logb  x

2

 logb  x
2 � 2  logb  x

(logb  x)
2 � (logb  x)(logb  x)(logb  x)2 �  logb  x

2
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EXAMPLE 9

Multiply both sides by 

Change to exponential form.

Multiply both sides by E0.

3
2.

Earthquake Intensity

Recall from the last section that the magnitude of an earthquake on the Richter scale
is given by

Solve for E in terms of the other symbols.

SOLUTION

�

MATCHED PROBLEM 9

Solve the rocket equation from the last section for in terms of the other
symbols:

�
v � c ln 

Wt

Wb

Wb

 E � E0103M/2

 
E

E0
� 103M/2

 log 
E

E0
�

3M

2

 M �
2

3
 log 

E

E0

M �
2

3
 log 

E

E0

ANSWERS TO MATCHED PROBLEMS

1. 2.1133 2.

3. More than double in 9 years, but not quite double in 8 years
4. 9.9 miles 5. 6.

7. 8. 9. Wb � Wt e
�v/cx � 1,100x � 20

x � 1
16x � 1.195

x � 0.2263
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1. Which property of logarithms do you think is most useful in
solving exponential equations? Explain.

2. Which properties of logarithms do you think are most use-
ful in solving equations with more than one logarithm?
Explain.

3. If u and v represent expressions with variable x, how can
you solve equations of the form for x? Ex-
plain why this works.

4. Why is it especially important to check answers when solv-
ing logarithmic equations?

5. Explain the difference between and 

6. When solving logarithmic and exponential equations,
what is the advantage of solving algebraically, rather than
graphically?

Solve Problems 7–22 algebraically and graphically. Round
answers to three significant digits.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

Solve Problems 23–32 exactly.

23. 24.

25.

26.

27.

28.

29.

30.

31.

32.  log7 (x � 1) �  log7 (2x2 � x � 3)

 log2 (x
2 � 2x) �  log2 (3x � 6)

 log5 (2 � x) �  log5 (3x � 8)

ln (4x � 3) � ln (x � 1)

 log (2x � 1) � 1 �  log (x � 2)

 log (x � 1) �  log (x � 1) � 1

 log (x � 9) �  log 100x � 3

 log x �  log (x � 3) � 1

 log x �  log 8 � 1 log 5 �  log x � 2

 log2 (x
2 � 5) � 3 log3 (x

2 � 8x) � 2

 log2 (4 � x) � 4 log5 (2x � 7) � 2

3�x � 0.0742�x � 0.238

3x � 45x � 18

e3x�5 � 23.8e 2x�1 � 405

e�x � 0.0142e x � 3.65

105x�2 � 348103x�1 � 92

10 x � 14.310�x � 0.0347

ln x2.(ln x)2

 logb u �  logb v

Solve Problems 33–44 algebraically and graphically. Round
answers to three significant digits.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

Solve Problems 45–56 exactly.

45.

46.

47.

48.

49.

50.

51. 52.

53. 54.

55. 56.

In Problems 57–60,
(A) Explain the difficulty in solving the equation exactly.
(B) Determine the number of solutions by graphing the functions

on each side of the equation.

57. 58.

59. 60.

Solve Problems 61–68 for the indicated variable in terms of the
remaining symbols. Use the natural log for solving exponential
equations.

61. for r (finance)

62. for t (finance)

63. for I (sound)

64. for A (decay)t �
�1

k
 (ln A � ln A0)

D � 10 log 
I

I0

A � P a1 �
r

n
bnt

A � Pert

ex/4 � 5 log x � 4 ln x3x � 2 � 7 � x � e�x

ln (ln x) � ln x � 2e x/2 � 5 ln x

3 log x � 3xx log x � 100x

 log (log x) � 1ln (ln x) � 1

(log x)3 �  log x4(ln x)3 � ln x4

1 � log (x � 2) �  log (3x � 1)

log (2x � 1) � 1 � log (x � 1)

ln (x � 1) � ln (3x � 1) � ln x

ln x � ln (2x � 1) � ln (x � 2)

 log (6x � 5) �  log 3 �  log 2 �  log x

 log x �  log 5 �  log 2 �  log (x � 3)

e x2

� 125e�x2

� 0.23

438 � 200e0.25x123 � 500e�0.12x

3 � 47�x � �16102x�5 � 7 � 13

�3 � (1
2)

x � 125 � 3x � 10

e0.32x � 632e�1.4x � 13

3 � 1.06 x2 � 1.05 x

4-5 Exercises
*Additional answers can be found in the Instructor Answer Appendix.

A

B

C

x � 1.46 x � 1.16

x � 0.321 x � 0.908

x � 1.29 x � 4.25

x � 3.50 x � �0.610

x � 1.80 x � 1.26

x � 2.07 x � 2.37

x � 16 x � �12

x � �1, 9 x � �13

x � 20

x � 5

x � 10

x �
11

9

x �
21

8

x �
4

3

x � �
3

2

x � 80

x � 3

x � 2

x � 14.2

x � �1.83

x � 1.46

x � 20.2

x � �3.17

x � �1.85
x � 4.88

x � 11.7

x � 18.9

x � 3.14

x � �1.21 x � �2.20

x � 5

x �
2

3

x � 2 � 13

x � 1 � 12

x �
1 � 189

4

x � 3

x � 1, e2, e�2

x � 1, x � 10�2

x � ee

x � 1010

x � 100, 0.1

x � 10(log 3)/(log 3�1)

(B) 2 (B) 1

(B) 2 (B) 2

r �
1

t
 ln 

A

P

t �
ln AP

n ln (1 � r
n)

I � I0(10D/10)

A � A0e�kt
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450 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

65. for I (astronomy)

66. for D (astronomy)

67. for t (circuitry)

68. for n (annuity)

The following combinations of exponential functions define four of
six hyperbolic functions, an important class of functions in calculus
and higher mathematics. Solve Problems 69–72 for x in terms of y.
The results are used to define inverse hyperbolic functions, another
important class of functions in calculus and higher mathematics.

69. 70.

71. 72.

In Problems 73–84, use a graphing calculator to approximate to
two decimal places any solutions of the equation in the interval

None of these equations can be solved exactly using
any step-by-step algebraic process.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

APPLICATIONS

85. COMPOUND INTEREST How many years, to the nearest
year, will it take a sum of money to double if it is invested at
15% compounded annually?

86. COMPOUND INTEREST How many years, to the nearest
year, will it take money to quadruple if it is invested at 20%
compounded annually?

87. COMPOUND INTEREST At what annual rate compounded
continuously will $1,000 have to be invested to grow to $2,500
in 10 years? Compute the answer to three significant digits.

88. COMPOUND INTEREST How many years will it take $5,000 to
grow to $8,000 if it is invested at an annual rate of 9% compounded
continuously? Compute the answer to three significant digits.

89. IMMIGRATION According to the U.S. Office of Immigration
Statistics, there were 10.5 million illegal immigrants in the United
States in May 2005, and that number had grown to 11.3 million
by May 2007.
(A) Find the relative growth rate if we use the model
for population growth. Round to three significant digits.

P � P0ert

ln x � x � 0ln x � e x � 0

ln x � x 2 � 0ln x � 2x � 0

e�x � 2x � 0xe x � 2 � 0

xe2x � 1 � 0e�x � x � 0

x2x � 1 � 0x3x � 1 � 0

3�x � 3x � 02�x � 2x � 0

0 	 x 	 1.

y �
e x � e�x

e x � e�xy �
e x � e�x

e x � e�x

y �
e x � e�x

2
y �

e x � e�x

2

S � R 
(1 � i)n � 1

i

I �
E

R
 (1 � e�Rt/L)

L � 8.8 � 5.1 log D

M � 6 � 2.5 log 
I

I0

(B) Use your answer from part A to write a function describing
the illegal immigrant population in millions in terms of years after
May 2005, and use it to predict when the illegal immigrant pop-
ulation should reach 20 million.

90. POPULATION GROWTH According to U.S. Census Bureau
estimates, the population of the United States was 227.2 million
on July 1, 1980, and 249.5 million on July 1, 1990.
(A) Find the relative growth rate if we use the model
for population growth. Round to three significant digits.
(B) Use your answer from part A to write a function describing
the population of the United States in millions in terms of years
after July 1980, and use it to predict when the  population should
reach 400 million.
(C) Use your function from part B to estimate the population of
the United States today, then compare your estimate to the one
found at www.census.gov/population/www/popclockus.html.

91. WORLD POPULATION A mathematical model for world
population growth over short periods is given by

where P is the population after t years, is the population at
and the population is assumed to grow continuously at

the annual rate r. How many years, to the nearest year, will it
take the world population to double if it grows continuously at
an annual rate of 1.14%?

92. WORLD POPULATION Refer to Problem 91. Starting with a
world population of 6.5 billion people and assuming that the
population grows continuously at an annual rate of 1.14%, how
many years, to the nearest year, will it be before there is only 
1 square yard of land per person? Earth contains approximately

square yards of land.

93. MEDICAL RESEARCH A medical researcher is testing a ra-
dioactive isotope for use in a new imaging process. She finds
that an original sample of 5 grams decays to 1 gram in 6 hours.
Find the half-life of the sample to three significant digits. [Re-
call that the half-life model is where is the 
original amount and h is the half-life.]

94. CARBON-14 DATING If 90% of a sample of carbon-14 re-
mains after 866 years, what is the half-life of carbon-14? (See
Problem 93 for the half-life model.)

As long as a plant or animal remains alive, carbon-14 is
maintained in a constant amount in its tissues. Once dead,
however, the plant or animal ceases taking in carbon, and
carbon-14 diminishes by radioactive decay. The amount
remaining can be modeled by the equation 
where A is the amount after t years, and is the amount at time

Use this model to solve Problems 95–98.

95. CARBON-14 DATING In 2003, Japanese scientists an-
nounced the beginning of an effort to bring the long-extinct
woolly mammoth back to life using modern cloning techniques.
Their efforts were focused on an especially well-preserved
specimen discovered frozen in the Siberian ice. Nearby samples

t � 0.
A0

A � A0e�0.000124t,

A0A � A0(1
2)

t/h,

1.7 � 1014

t � 0,
P0

P � P0ert

P � P0ert

I � I0[10(6�M)/2.5]

D � 10(L�8.8)/5.1

t � �
L

R
 ln a1 �

RI

E
b

n �
ln (Si

R � 1)

ln (1 � i )

x � 0.38 x � 0.25

x � 0.55 x � 0.64

x � 0.57 x � 0.43

x � 0.85 x � 0.35

x � 0.43 x � 0.65

x � 0.27 x � 0.57

5 years to the nearest year

8 years to the nearest year

or 9.16%r � 0.0916

5.22 years

3.67% per year

in 2022P � 10.5e0.0367t;

in 2040P � 227.2e0.00936t;

61 years

892 years

2.58 hours

5,697 years
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S E C T I O N  4–5 Exponential and Logarithmic Equations 451

of plant material were found to have 28.9% of the amount of
carbon-14 in a living sample. What was the approximate age of
these samples?

96. CARBON-14 DATING In 2004, archaeologist Al Goodyear
discovered a site in South Carolina that contains evidence of the
earliest human settlement in North America. Carbon dating of
burned plant material indicated 0.2% of the amount of carbon-14
in a live sample. How old was that sample?

97. CARBON-14 DATING Many scholars believe that the earli-
est nonnative settlers of North America were Vikings who sailed
from Iceland. If a fragment of a wooden tool found and dated in
2004 had 88.3% of the amount of carbon-14 in a living sample,
when was this tool made?

98. CARBON-14 DATING In 1998, the Shroud of Turin was ex-
amined by researchers, who found that plant fibers in the fabric
had 92.1% of the amount of carbon-14 in a living sample. If this
is accurate, when was the fabric made?

99. PHOTOGRAPHY An electronic flash unit for a camera is ac-
tivated when a capacitor is discharged through a filament of wire.
After the flash is triggered and the capacitor is discharged, the
circuit (see the figure) is connected and the battery pack gener-
ates a current to recharge the capacitor. The time it takes for the
capacitor to recharge is called the recycle time. For a particular
flash unit using a 12-volt battery pack, the charge q, in coulombs,
on the capacitor t seconds after recharging has started is given by

How many seconds will it take the capacitor to reach a charge of
0.0007 coulomb? Compute the answer to three significant digits.

100. ADVERTISING A company is trying to expose as many
people as possible to a new product through television advertis-
ing in a large metropolitan area with 2 million possible viewers.
A model for the number of people N, in millions, who are aware
of the product after t days of advertising was found to be

How many days, to the nearest day, will the advertising cam-
paign have to last so that 80% of the possible viewers will be
aware of the product?

101. NEWTON’S LAW OF COOLING This law states that the rate
at which an object cools is proportional to the difference in tem-
perature between the object and its surrounding medium. The
temperature T of the object t hours later is given by

T � Tm � (T0 � Tm)e�kt

N � 2(1 � e�0.037t )

I

R

V

C

S

q � 0.0009(1 � e�0.2t)

where is the temperature of the surrounding medium and 
is the temperature of the object at Suppose a bottle of
wine at a room temperature of is placed in a refrigerator at

to cool before a dinner party. After an hour the temperature
of the wine is found to be Find the constant k, to two
decimal places, and the time, to one decimal place, it will take
the wine to cool from 72 to 

102. MARINE BIOLOGY Marine life is dependent upon the mi-
croscopic plant life that exists in the photic zone, a zone that goes
to a depth where about 1% of the surface light still remains.
Light intensity is reduced according to the exponential function

where I is the intensity d feet below the surface and is the in-
tensity at the surface. The constant k is called the coefficient of
extinction. At Crystal Lake in Wisconsin it was found that half
the surface light remained at a depth of 14.3 feet. Find k, and
find the depth of the photic zone. Compute answers to three sig-
nificant digits.

Problems 103–106 are based on the Richter scale equation from
Section 4-4, where M is the magnitude and E is
the amount of energy in joules released by the earthquake.
Round all calculations to three significant digits.

103. EARTHQUAKES There were 11 earthquakes recorded
worldwide in 2005 with magnitude at least 7.0.
(A) How much energy is released by a magnitude 7.0 earthquake?
(B) The total average daily consumption of energy for the entire
United States in 2006 was joules. How many days
could the energy released by a magnitude 7.0 earthquake power
the United States?

104. EARTHQUAKES On December 26, 2004, a magnitude 9.0
earthquake struck in the Indian Ocean, causing a massive
tsunami that resulted in over 230,000 deaths.
(A) How much energy was released by this earthquake?
(B) The total average daily consumption of energy for the entire
United States in 2006 was joules. How many days
could the energy released by a magnitude 9.0 earthquake power
the United States?

105. EARTHQUAKES There were 10 earthquakes worldwide in
2005 with magnitudes between 7.0 and 7.9. Assume that these
earthquakes had an average magnitude of 7.5. How long could
the total energy released by these ten earthquakes power the
United States, which had a total energy consumption of

joules in 2006?

106. EARTHQUAKES There were 144 earthquakes worldwide in
2005 with magnitudes between 6.0 and 6.9. Assume that these
earthquakes had an average magnitude of 6.5. How long could
the total energy released by these 144 earthquakes power the
United States, which had a total energy consumption of

joules in 2006?1.05 � 1017

1.05 � 1017

2.88 � 1014

2.88 � 1014

M � 2
3 log E

104.40,

I0

I � I0e�kd

50°F.

61.5°F.
40°F

72°F
t � 0.

T0Tm

10,010 years

50,118 years

The year 1001

1334

7.52 seconds

43 days

2.9 hoursk � 0.40,

95.0 ftk � 0.0485,

2.76 days

2,760 days

0.426 years, or about 155 days

0.193 years, or about 70.4 days
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452 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

4-1 Exponential Functions

The equation defines an exponential
function with base b. The domain of f is and the range
is The graph of f is a continuous curve that has no sharp
corners; passes through (0, 1); lies above the x axis, which is a
horizontal asymptote; increases as x increases if de-
creases as x increases if and intersects any horizontal
line at most once. The function f is one-to-one and has an in-
verse. The following exponential function properties are use-
ful in working with these functions.

1.

2. if and only if 

3. For if and only if 

As x approaches the expression approaches
the irrational number The function

is called the exponential function with base e. The
growth of money in an account paying compound interest is de-
scribed by where P is the principal, r is the
annual rate, m is the number of compounding periods in 1 year,
and A is the amount in the account after n compounding periods.

If the account pays interest compounded continuously,
the amount A in the account after t years is given by 

4-2 Exponential Models

Exponential functions are used to model various types of
growth:

1. Population growth can be modeled by using the doubling
time growth model where A is the population at
time t, is the population at time and d is the
doubling time—the time it takes for the population to
double. Another model of population growth, 
where is the population at time zero and k is a positive
constant called the relative growth rate, uses the exponential
function with base e. This model is used for many other types
of quantities that exhibit exponential growth as well.

2. Radioactive decay can be modeled by using the half-life
decay model where A is the amount
at time t, is the amount at time and h is the half-life—
the time it takes for half the material to decay. Another
model of radioactive decay, , where is theA0A � A0e�kt

t � 0,A0

A � A0(1
2)

t/h � A02�t/h,

A0

A � A0ekt,

t � 0,A0

A � A02t/d,

A � Pert.

A � P(1 � r/m)n,

f (x) � e x
e � 2.718 281 828 459.

[1 � (1/x)]x�,

a � b.x � 0, a x � b x

x � y.a x � a y

a x

a y � a x�yaa

b
bx

�
a x

b x

(ab)x � a xbx(a x) y � a xya xa y � a x�y

b 6 1;
b 7 1;

(0, �).
(��, �)

f (x) � bx, b 7 0, b � 1,

amount at time zero and k is a positive constant, uses the
exponential function with base e. This model can be used
for other types of quantities that exhibit negative exponential
growth as well.

3. Limited growth—the growth of a company or proficiency at
learning a skill, for example—can often be modeled by the
equation where A and k are positive
constants.

Logistic growth is another limited growth model that is
useful for modeling phenomena like the spread of an epidemic, or
sales of a new product. The logistic model is 
where c, k, and M are positive constants. A good comparison of
these different exponential models can be found in Table 3 at the
end of Section 4-2.

Exponential regression can be used to fit a function of the
form to a set of data points. Logistic regression can be
use to find a function of the form 

4-3 Logarithmic Functions

The logarithmic function with base b is defined to be the inverse
of the exponential function with base b and is denoted by

Thus, if and only if 
This relationship can be used to convert an expression from log-
arithmic to exponential form, and vice versa. 

The domain of a logarithmic function is and the range
is The graph of a logarithmic function is a continuous
curve that always passes through the point (1, 0) and has the y axis
as a vertical asymptote. The following properties of logarithmic
functions are useful in working with these functions:

1.

2.

3.

4.

5. if and only if 

6.

7.

8.

Logarithms to the base 10 are called common logarithms and
are denoted by log x. Logarithms to the base e are called natural

logb  M
p � p logb  M

logb 
M

N
� logb M � logb N

logb  MN � logb M � logb N

M � Nlogb  M � logb N

blogb x � x, x 7 0

logb  b
x � x

logb  b � 1

logb 1 � 0

(��, �).
(0, �)

x � b y, b 7 0, b � 1.y � logb xy � logb x.

y � c/(1 � ae�bx).
y � ab x

y � M/(1 � ce�kt ),

y � A(1 � e�kt ),

CHAPTER 4 Review
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Review Exercises 453

logarithms and are denoted by Thus, is equiva-
lent to and is equivalent to 

The change-of-base formula,
relates logarithms to two different bases and can be used, along
with a calculator, to evaluate logarithms to bases other than e or 10.

4-4 Logarithmic Models

Logarithmic functions increase very slowly as the input gets
very large, so they can be used to scale down quantities that in-
volve very large numbers, like the intensity of sound waves and
the energy released by earthquakes.

The following applications involve logarithmic functions:

1. The decibel is defined by where D is the
decibel level of a sound, I is the intensity of the sound, and

watts per square meter is a standardized sound
level.

2. The magnitude M of an earthquake on the Richter scale is
given by where E is the energy released by
the earthquake and joules is a standardized
energy level.

E0 � 104.40
M � 2

3  log (E/E0),

I0 � 10�12

D � 10 log (I/I0),

logb N � (loga N)/(loga b),
x � e y.ln x � yx � 10 y,

log x � yln x. 3. The velocity v of a rocket at burnout is given by the rocket
equation where c is the exhaust velocity,

is the takeoff weight, and is the burnout weight.

Logarithmic regression is used to fit a function of the form
to a set of data points.

4-5 Exponential and Logarithmic Equations

Exponential equations are equations in which the variable ap-
pears in an exponent. If the exponential expression is isolated,
applying a logarithmic function to both sides and using the
property will enable you to remove the
variable from the exponent. If the exponential expression is not
isolated, we can use previously developed techniques to first
solve for the exponential, then solve as above.

Logarithmic equations are equations in which the vari-
able appears inside a logarithmic function. In most cases, the
key to solving them is to change the equation to the equivalent
exponential expression. For equations with multiple log expres-
sions, properties of logarithms can be used to combine the ex-
pressions before solving.

logb  N
p � p logb  N

y � a � b ln  x

WbWt

v � c ln (Wt /Wb),

CHAPTER 4 Review Exercises

Work through all the problems in this chapter review and check
answers in the back of the book. Answers to all review problems
are there, and following each answer is a number in italics
indicating the section in which that type of problem is discussed.
Where weaknesses show up, review appropriate sections in the
text.

1. Match each equation with the graph of f, g, m, or n in the
figure.

(A) (B) 

(C) (D) 

�3

�4.5

3

4.5

f g

m

n

y � 2xy �  log0.5 x

y � 0.5xy �  log2 x

2. Write in logarithmic form using base 10: 

3. Write in logarithmic form using base e: 

Write Problems 4 and 5 in exponential form.

4. 5.

6. (A) Plot at least five points, then draw a hand sketch of the
graph of 

(B) Use your result from part A to sketch the graph of

In Problems 7 and 8, simplify using properties of exponents.

7. 8. 

Solve Problems 9–11 for x exactly. Do not use a calculator or
table.

9. 10. 11. log3 27 � xlogx 25 � 2log2 x � 3

a ex

e�xb
x7x�2

72�x

y � log
4/3 x.

y � (4
3)

x.

ln y � xlog x � y

x � e y.

m � 10n.

A

m f

n g (4–1, 4–3)

(4–3)log m � n

(4–3)ln x � y

(4–3)x � 10y (4–3)y � ex

(4–1)72x (4–1)e2x2

(4–3)x � 8 (4–3)x � 5 (4–3)x � 3
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454 C H A P T E R  4 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Solve Problems 12–15 for x to three significant digits.

12. 13.

14. 15.

Evaluate Problems 16–19 to four significant digits using a
calculator.

16. 17.

18. 19.

20. Write as a single log: 

21. Write in terms of ln x and ln y: 

Solve Problems 22–34 for x exactly. Do not use a calculator or
table.

22.

23.

24. 25.

26. 27.

28. 29.

30. 31.

32. 33.

34.

Solve Problems 35–44 for x to three significant digits.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

Solve Problems 45–50 for x exactly. Do not use a calculator or
table.

45.

46.

47.

48.

49. 50. ln (log x) � 1(log x)3 � log x9

ln (2x � 1) � ln (x � 1) � ln x

ln (x � 3) � ln x � 2 ln 2

log x � log 3 � log 4 � log (x � 4)

log 3x2 � log 9x � 2

ex � e�x

2
� 152x�3 � 7.08

0.01 � e�0.05x4,000 � 2,500(e0.12x)

25 � 5(2x)x �
ln 4

ln 2.31

x � log (2.156 � 10�7)ln x � �3.218

x � log5 23x � 2(101.32)

ln x � 0

10log10 x � 33logx e
5 � 5

log16 x � 3
2logx 9 � �2

log1/4 16 � x2x2e�x � 18e�x

5 � 1
2e

x � 17
24 � 3x � 2

4x�1 � 21�xex2�3 � e2x

log (x2 � 3) � 2 log (x � 1)

ln (2x � 1) � ln (x � 3)

ln x
3

y

log x � 3 log y � 1
2 log z

e
 � e�


2

ln 2

log (�e)ln 


log x � 2.013ln x � �0.015 73

e x � 143,00010x � 17.5

In Problems 51 and 52, simplify.

51.

52.

In Problems 53–56, use a graphing calculator to help you draw
the graph of each function. Then find the domain and range,
intercepts, and asymptotes. Round all approximate values to
two decimal places.

53. 54.

55. 56.

57. If the graph of is reflected through the line 
the graph of what function is obtained? Discuss the func-
tions that are obtained by reflecting the graph of 
through the x axis and the y axis.

58. Approximate all real zeros of to
three decimal places.

59. Find the coordinates of the points of intersection of
and to three decimal places.

Solve Problems 60–63 for the indicated variable in terms of the
remaining symbols.

60. for I (sound intensity)

61. for x (probability)

62. for I (x-ray intensity)

63. for n (finance)

64. (A) Explain why the equation has ex-
actly one solution.

(B) Find the solution of the equation to three decimal places.

65. Write in an exponential form free of
logarithms; then solve for y in terms of the remaining
symbols.

66. For graph f and on the same coordinate
system. What are the domains and ranges for f and 

67. Explain why 1 cannot be used as a logarithmic base.

68. Prove that for any positive M, N, and 
(Hint: Start by writing

and and changing each to exponen-
tial form.)

v � logb Nu � logb M
logb MN � logb M � logb N.

b (b � 1),

f �1?
f �1f (x) � log2 x,

ln y � �5t � ln c

e�x/3 � 4 ln (x � 1)

r � P 
i

1 � (1 � i)�n

x � �
1

k
 ln 

I

I0

y �
112


e�x2/2

D � 10 log 
I

I0

g(x) � 8 log xf (x) � 10x�3

f (x) � 4 � x2 � ln x

y � ex

y � x,y � ex

N �
100

1 � 3e�ty � ln (x � 1)

f (t) � 10e�0.08ty � 2x�1

(e x � e�x)(e x � e�x) � (e x � e�x)2

(e x � 1)(e�x � 1) � e x(e�x � 1)

B

C

(4–5)x � 1.24

(4–3)x � 0.984 (4–3)x � 103

(4–5)x � 11.9

1.145 (4–3)

2.211 (4–3) 11.59 (4–1)

Not defined (4–3)

(4–3)log 
xy 31z

(4–3)3 ln x � ln y

(4–5)x � 4

(4–5)x � 2

(4–5)x � 3, �1

(4–5)x � ln 2/ln 3

(4–5)x � 1

(4–5)x � ln 7

(4–5)x � 3, �3
(4–5)x � �2

(4–5)x �
1

3

(4–5)x � 64

(4–5)x � e
(4–5)x � 33

(4–5)x � 1

(4–1)x � 41.8 (4–3)x � 1.95

(4–3)x � 0.0400 (4–3)x � �6.67

(4–3)x � 1.66 (4–5)x � 2.32

(4–5)x � 3.92 (4–5)x � 92.1

(4–5)x � 2.11 (4–5)x � 0.881

(4–5)x � 300

(4–5)x � 2

(4–5)x � 1

(4–5)x �
3 � 113

2

(4–5)x � 1, 103, 10�3 (4–5)x � 10e

(4–1)e�x � 1

(4–1)2 � 2e�2x

0.018, 2.187 (4–5)

(1.003, 0.010), (3.653, 4.502) (4–5)

(4–5)I � I0(10D/10)

(4–5)x � �2�2 ln (12
y)

(4–5)I � I0(e�kx)

0.258 (4–5)

(4–5)y � ce�5t
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APPLICATIONS

Solve these application problems algebraically or graphically,
whichever seems more appropriate.

69. POPULATION GROWTH Many countries have a population
growth rate of 3% (or more) per year. At this rate, how many
years will it take a population to double? Use the annual com-
pounding growth model Compute the answer
to three significant digits.

70. POPULATION GROWTH Repeat Problem 69 using the con-
tinuous compounding growth model 

71. CARBON 14-DATING How many years will it take for
carbon-14 to diminish to 1% of the original amount after the
death of a plant or animal? Use the formula 
Compute the answer to three significant digits.

72. MEDICINE One leukemic cell injected into a healthy mouse
will divide into two cells in about day. At the end of the day
these two cells will divide into four. This doubling continues un-
til 1 billion cells are formed; then the animal dies with leukemic
cells in every part of the body.

(A) Write an equation that will give the number N of leukemic
cells at the end of t days.

(B) When, to the nearest day, will the mouse die?

73. MONEY GROWTH Assume $1 had been invested at an an-
nual rate of 3% compounded continuously in the year A.D. 1.
What would be the value of the account in the year 2011? Com-
pute the answer to two significant digits.

74. PRESENT VALUE Solving for P, we obtain
which is the present value of the amount A due in t

years if money is invested at a rate r compounded continuously.

(A) Graph 

(B) What does it appear that P tends to as t tends to infinity?
[Conclusion: The longer the time until the amount A is due,
the smaller its present value, as we would expect.]

75. EARTHQUAKES The 1971 San Fernando, California, earth-
quake released joules of energy. Compute its mag-
nitude on the Richter scale using the formula 
where joules. Compute the answer to one decimal
place.

76. EARTHQUAKES Refer to Problem 75. If the 1906 San Fran-
cisco earthquake had a magnitude of 8.3 on the Richter scale,
how much energy was released? Compute the answer to three
significant digits.

77. SOUND If the intensity of a sound from one source is
100,000 times that of another, how much more is the decibel
level of the louder sound than the softer one? Use the formula
D � 10 log (I/I0).

E0 � 104.40
M � 2

3 log (E/E0),
1.99 � 1014

P � 1,000(e�0.08t ), 0 	 t 	 30.

P � Ae�rt,
A � Pert

1
2

A � A0e�0.000124t.

P � P0ert.

P � P0(1 � r)t.

78. MARINE BIOLOGY The intensity of light entering water is
reduced according to the exponential function

where I is the intensity d feet below the surface, is the inten-
sity at the surface, and k is the coefficient of extinction. Mea-
surements in the Sargasso Sea in the West Indies have indicated
that half the surface light reaches a depth of 73.6 feet. Find k,
and find the depth at which 1% of the surface light remains.
Compute answers to three significant digits.

79. WILDLIFE MANAGEMENT A lake formed by a newly con-
structed dam is stocked with 1,000 fish. Their population is ex-
pected to increase according to the logistic curve

where N is the number of fish, in thousands, expected after t
years. The lake will be open to fishing when the number of fish
reaches 20,000. How many years, to the nearest year, will this
take?

MODELING AND DATA ANALYSIS

80. MEDICARE The annual expenditures for Medicare (in bil-
lions of dollars) by the U.S. government for selected years since
1980 are shown in Table 1. Let x represent years since 1980.

(A) Find an exponential regression model of the form 
for these data. Round to three significant digits. Estimate (to
the nearest billion) the total expenditures in 2010 and in 2020.

(B) When (to the nearest year) will the total expenditures
reach $900 billion?

Table 1 Medicare Expenditures

Year Billion $

1980 37

1985 72

1990 111

1995 181

2000 225

2005 342

Source: U.S. Bureau of the Census

y � abx

N �
30

1 � 29e�1.35t

I0

I � I0e�kd

23.4 years (4–2)

23.1 years (4–2)

37,100 years (4–2)

(or N � 4t)N � 22t

15 days (4–2)

(4–2)1.5 � 1026 dollars

6.6 (4–4)

0

or (4–4)7.08 � 1016 joules1016.85

The level of the louder sound is 50 decibels more. (4–4)

(4–4)k � 0.00942, d � 489 feet

3 years (4–2)

2015 (4–2)

*
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81. AGRICULTURE The total U.S. corn consumption (in millions
of bushels) is shown in Table 2 for selected years since 1975. Let
x represent years since 1900.

(A) Find a logarithmic regression model of the form
for these data. Round to four significant digits.

Estimate (to the nearest million) the total consumption in 1996
and in 2010.

(B) The actual consumption in 1996 was 1,583 million
bushels. How does this compare with the estimated consump-
tion in part A? What effect will this additional 1996 informa-
tion have on the estimate for 2010? Explain.

y � a � b ln x

Table 2 Corn Consumption

Total consumption
Year (million bushels)

1975 522

1980 659

1985 1,152

1990 1,373

1995 1,690

Source: U.S. Department of Agriculture

CHAPTER 4

ZZZ GROUP ACTIVITY Comparing Regression Models

We have used polynomial, exponential, and logarithmic regression models to fit curves to data sets. And there
are other equations that can be used for curve fitting (the TI-84 graphing calculator has 12 different equations on
its STAT-CALC menu). How can we determine which equation provides the best fit for a given set of data? There
are two principal ways to select models. The first is to use information about the type of data to help make a
choice. For example, we expect the weight of a fish to be related to the cube of its length. And we expect most
populations to grow exponentially, at least over the short term. The second method for choosing among equa-
tions involves developing a measure of how closely an equation fits a given data set. This is best introduced
through an example. Consider the data set in Figure 1, where L1 represents the x coordinates and L2 represents
the y coordinates. The graph of this data set is shown in Figure 2. Suppose we arbitrarily choose the equation

to model these data (Fig. 3).y1 � 0.6x � 1

0

0

10

10

0

0

10

10

Z Figure 1 Z Figure 2 Z Figure 3 y1 � 0.6x � 1.

To measure how well the graph of fits these data, we examine the difference between the y coordinates in
the data set and the corresponding y coordinates on the graph of (L3 in Figs. 4 and 5). Each of these differ-y1

y1
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ences is called a residual. The most commonly accepted measure of the fit provided by a given model is the sum of
the squares of the residuals (SSR). Computing this quantity is a simple matter on a graphing calculator (Fig. 6).

0

0

10

10

Z Figure 5 Here � is L2 
and n is L3.

Z Figure 4 Z Figure 6 Two ways to
calculate SSR.

(A) Find the linear regression model for the data in Figure 1, compute the SSR for this equation, and compare it
with the one we computed for y1.

It turns out that among all possible linear polynomials, the linear regression model minimizes the sum of the
squares of the residuals. For this reason, the linear regression model is often called the least-squares line. A
similar statement can be made for polynomials of any fixed degree. That is, the quadratic regression model min-
imizes the SSR over all quadratic polynomials, the cubic regression model minimizes the SSR over all cubic
polynomials, and so on. The same statement cannot be made for exponential or logarithmic regression models.
Nevertheless, the SSR can still be used to compare exponential, logarithmic, and polynomial models.

(B) Find the exponential and logarithmic regression models for the data in Figure 1, compute their SSRs, and
compare with the linear model.

(C) National annual advertising expenditures for selected years since 1950 are shown in Table 1 where x is years
since 1950 and y is total expenditures in billions of dollars. Which regression model would fit this data best:
a quadratic model, a cubic model, or an exponential model? Use the SSRs to support your choice.

Table 1 Annual Advertising Expenditures, 1950–2005

x (years) 0 5 10 15 20 25 30 35 40 45 50 55

y (billion $) 5.7 9.2 12.0 15.3 19.6 27.9 53.6 94.8 128.6 160.9 243.3 271.1

Source: U.S. Bureau of the Census

CHAPTERS 3–4 Cumulative Review

Work through all the problems in this cumulative review and
check answers in the back of the book. Answers to all review
problems are there, and following each answer is a number in
italics indicating the section in which that type of problem is
discussed. Where weaknesses show up, review appropriate
sections in the text.

1. Let P(x) be the polynomial whose graph is shown in the
figure on the next page.

(A) Assuming that P(x) has integer zeros and leading coeffi-
cient 1, find the lowest-degree equation that could produce
this graph.

A
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(B) Describe the left and right behavior of P(x).

2. Draw the graph of a polynomial with lowest possible
degree that has zeros �5, 1, and 6, and has a negative lead-
ing coefficient.

3. Match each equation with the graph of f, g, m, or n in the
figure.

(A) (B) 

(C) (D) 

4. For and use
synthetic division to divide P(x) by D(x), and write the an-
swer in the form 

5. Let What are the zeros of
P(x)?

6. Let How do you know that
P(x) has at least one real zero between 1 and 2?

7. Let Find all rational zeros for
P(x).

8. Solve for x.

(A) (B) 

9. Simplify using properties of exponents.

(A) (B) 

10. Solve for x exactly. Do not use a calculator or a table.

(A) (B) (C) logx 4 � �2log3 81 � xlog3 x � 2

e3x

e�2x(2e x )3

y � ln xy � 10x

P(x) � x3 � x2 � 10x � 8.

P(x) � 4x3 � 5x2 � 3x � 1.

P(x) � 2(x � 2)(x � 3)(x � 5).

P(x) � D(x)Q(x) � R.

D(x) � x � 3,P(x) � 3x3 � 5x2 � 18x � 3

�3

�4.5

3

4.5

m

f

n

g

y � (4
3)

x � (3
4)

xy � (3
4)

x � (4
3)

x

y � (4
3)

xy � (3
4)

x

�5

5�5

5

x

P(x)

11. Solve for x to three significant digits.

(A) (B) 

(C) (D) 

In Problems 12 and 13, translate each statement into an equation
using k as the constant of proportionality.

12. E varies directly as p and inversely as the cube of x.

13. F is jointly proportional to and and inversely propor-
tional to the square of r.

14. Explain why the graph in the figure is not the graph of a
polynomial function.

15. Explain why the graph in the figure is not the graph of a
rational function.

16. The function f subtracts the square root of the domain ele-
ment from three times the natural log of the domain ele-
ment. Write an algebraic definition of f.

17. Write a verbal description of the function

18. Let 

(A) Find the domain and the intercepts for f.

(B) Find the vertical and horizontal asymptotes for f.

(C) Sketch the graph of f. Draw vertical and horizontal
asymptotes with dashed lines.

19. Find all zeros of and specify
those zeros that are x intercepts.

20. Solve 

21. If find using the remain-
der theorem and synthetic division.

22. One of the zeros of is
Find all others.x � �1.

P(x) � 3x3 � 7x2 � 18x � 8

P(1
2)P(x) � 2x3 � 5x2 � 3x � 2,

(x3 � 4x)(x � 4) 	 0.

P(x) � (x3 � 4x)(x � 4),

f (x) �
2x � 8

x � 2
.

f (x) � 100e0.5x � 50.

x

y

�5

5�5

5

q2q1

ln x � 2.75log x � �1.25

e x � 87,50010x � 2.35

B

m g

n f (4–1)

�2, 3, 5 (3–1)

1, 2, �4 (3–4)

x � log y (4–3)x � ey

8e3x

9 4
(4–3)

1

2

(4–1)e5x

0.371 11.4

0.0562 15.6 (4–3)

(4–3)f(x) � 3 ln x � 1x

(3–3)[�4, 0 ]

and 4 (3–2)�2/3
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23. Which of the following is a factor of

(A) (B) 

24. Let 

(A) Graph P(x) and describe the graph verbally, including the
number of x intercepts, the number of turning points, and
the left and right behavior.

(B) Approximate the largest x intercept to two decimal places.

25. Let 

(A) Approximate the zeros of P(x) to two decimal places and
state the multiplicity of each zero.

(B) Can any of these zeros be approximated with the bisection
method? The MAXIMUM command? The MINIMUM
command? Explain.

26. Let 

(A) Use the upper and lower bound theorem to find the small-
est positive and largest negative integers that are upper
and lower bounds, respectively, for the real zeros of P(x).

(B) If k an integer, is the interval containing the
largest real zero of P(x), determine how many additional
intervals are required in the bisection method to approxi-
mate this zero to one decimal place.

(C) Approximate the real zeros of P(x) to two decimal places.

27. Find all zeros (rational, irrational, and imaginary) exactly
for 

28. Find all zeros (rational, irrational, and imaginary) exactly
for and factor P(x)
into linear factors.

Solve Problems 29–39 for x exactly. Do not use a calculator or
a table.

29. 30.

31. 32.

33. 34.

35.

36.

37.

38. 39.

Solve Problems 40–44 for x to three significant digits.

40. 41.

42. 43.

44.
ex � e�x

ex � e�x �
1

2

10e�0.5x � 1.64(2x) � 20

ln x � 1.45x � log3 41

4(ln x)2 � ln x2log (ln x) � �1

log x � log (x � 15) � 2

ln (2x2 � 2) � 2 ln (2x � 4)

ln (x � 4) � ln (x � 4) � 2 ln 3

log9 x � �3
2logx 104 � 4

eln x � 2.52x2e�x � xe�x � e�x

13
2 � 3x � 1

22x2

� 4x�4

P(x) � x4 � 5x3 � x2 � 15x � 12,

P(x) � 4x3 � 20x2 � 29x � 15.

(k, k � 1),

P(x) � x4 � 2x3 � 20x2 � 30.

P(x) � x5 � 8x4 � 17x3 � 2x2 � 20x � 8.

P(x) � x4 � 8x2 � 3.

x � 1x � 1

P(x) � x25 � x20 � x15 � x10 � x5 � 1

In Problems 45–49, use a graphing calculator to draw the graph
of each function. The find the domain and range, intercepts, and
asymptotes. Round all approximate values to two decimal
places.

45. 46.

47. 48.

49.

50. If the graph of is reflected through the line 
the graph of what function is obtained? Discuss the func-
tions that are obtained by reflecting the graph of in
the x axis and in the y axis.

51. (A) Explain why the equation has exactly one
solution.

(B) Approximate the solution of the equation to two decimal
places.

In Problems 52 and 53, factor each polynomial in two ways:
(A) As a product of linear factors (with real coefficients) and

quadratic factors (with real coefficients and imaginary zeros)
(B) As a product of linear factors with complex coefficients

52.

53.

54. G is directly proportional to the square of x. If 
when find G when 

55. H varies inversely as the cube of r. If when 
find H when 

56. Graph f and indicate any horizontal, vertical, or slant
asymptotes with dashed lines:

57. Solve 

58. Let Approx-
imate (to two decimal places) the x intercepts and the local
extrema.

59. Find a polynomial of lowest degree with leading coefficient
1 that has zeros (multiplicity 2), 0 (multiplicity 3), and

Leave the answer in factored form. What is the
degree of the polynomial?

60. If P(x) is a fourth-degree polynomial with integer coeffi-
cients and if i is a zero of P(x), can P(x) have any irrational
zeros? Explain.

61. Let 

(A) Use the upper and lower bound theorem to find the smallest
positive integer multiple of 10 and the largest negative integer

P(x) � x4 � 9x3 � 500x2 � 20,000.

3 � 5i.
�1

P(x) � x4 � 28x3 � 262x2 � 922x � 1,083.

x3 � x

x3 � 8
� 0.

f (x) �
x2 � 4x � 8

x � 2

r � 3.
r � 2,H � 162

x � 7.x � 5,
G � 10

P(x) � x4 � 23x2 � 50

P(x) � x4 � 9x2 � 18

e�x � ln x

y � ln x

y � x,y � ln x

N(t) �
6

2 � e�0.1t

h(x) � �2e�x � 3A(t) � 100e�0.3t

g(x) � ln(2 � x)f (x) � 31�x

(3–6)G � 19.6

(3–6)H � 48

C

x � 1  (3–2)

2.76

Upper bound: 4; lower bound: �6 

Four intervals

�5.68, 3.80 (3–3)

(4–5)x � 4, �2

(4–5)x � ln 6/ln 3

(4–5)x �
1

2
, �1

(4–5)x � 2.5

(4–5)x � 10
(4–5)x �

1

27

(4–5)x � 5

(4–5)x � 7

(4–5)x � 5

(4–5)x � e1/10

(4–5)x � 3.38 (4–5)x � 4.26

(4–5)x � 1, e1/2

(4–5)x � 2.32

(4–5)x � 3.67

(4–5)x � 0.549

1.31 (4–3)

(3–5)(��, �1 ] � [0, 1 ] � (2, �)
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multiple of 10 that are upper and lower bounds, respec-
tively, for the real zeros of P(x).

(B) Approximate the real zeros of P(x) to two decimal places.

62. Find all zeros (rational, irrational, and imaginary) exactly
for

and factor P(x) into linear factors.

63. Find rational roots exactly and irrational roots to two deci-
mal places for

64. Give an example of a rational function f (x) that satisfies the
following conditions: the real zeros of f are 5 and 8; 
is the only vertical asymptote; and the line is a hori-
zontal asymptote.

65. Use natural logarithms to solve for n.

66. Solve for y. Express the answer in a form
that is free of logarithms.

67. Solve for x.

68. Solve (to three decimal places)

APPLICATIONS

69. PROFIT ANALYSIS The daily profit in dollars made by the
snack bar at a small college can be modeled by the function

where x is the number of hours the snack bar is open per day.

(A) How many hours should the snack bar be open to maxi-
mize its profit?

(B) How long will the snack bar need to stay open to make a
profit of $300?

(C) For what range of hours will the snack bar at least break
even?

70. EFFICIENCY After learning how to solve a Rubik’s Cube puz-
zle, a student practices for 2 hours each week, trying to decrease
her best time to solve the puzzle. Suppose that the function

T(w) � 540 �
450w

w � 2

(0 	 x 	 12)P(x) � �4.8x3 � 47x2 � 35x � 40

4x

x2 � 1
6 3

y �
ex � 2e�x

2

ln y � 5x � ln A

A � P
(1 � i)n � 1

i

y � 3
x � 1

P(x) � x5 � 4x4 � x3 � 11x2 � 8x � 4

P(x) � x5 � 4x4 � 3x3 � 10x2 � 10x � 12

describes her best time in seconds after w weeks of practice.

(A) What was her best time after one week of practice?

(B) Find the horizontal asymptote of this rational function.
What does it tell you about this student’s performance?

(C) Explain why the vertical asymptote is not relevant to this
problem.

71. SHIPPING A mailing service provides customers with rec-
tangular shipping containers. The length plus the girth of one of
these containers is 10 feet (see the figure). If the end of the con-
tainer is square and the volume is 8 cubic feet, find the dimen-
sions. Find rational solutions exactly and irrational solutions to
two decimal places.

72. GEOMETRY The diagonal of a rectangle is 2 feet longer than
one of the sides, and the area of the rectangle is 6 square feet.
Find the dimensions of the rectangle. Find rational solutions ex-
actly and irrational solutions to two decimal places.

73. ASTRONOMY The square of the time t required for a planet
to make one orbit around the sun varies directly as the cube of
its mean (average) distance d from the sun. Write the equation
of variation, using k as the constant of variation.

74. PHYSICS Atoms and molecules that make up the air con-
stantly fly about like microscopic missiles. The velocity v of a
particle at a fixed temperature varies inversely as the square root
of its molecular weight w. If an oxygen molecule in air at room
temperature has an average velocity of 0.3 mile/second, what
will be the average velocity of a hydrogen molecule, given that
the hydrogen molecule is one-sixteenth as heavy as the oxygen
molecule?

75. POPULATION GROWTH If the Democratic Republic of the
Congo has a population of about 60 million people and a dou-
bling time of 23 years, find the population in

(A) 5 years (B) 30 years

Compute answers to three significant digits.

76. COMPOUND INTEREST How long will it take money
invested in an account earning 7% compounded annually to
double? Use the annual compounding growth model

and compute the answer to three significant
digits.
P � P0(1 � r)t,

Length

x

x
y

Girth

t2 � kd3 (3–6)

1.2 miles per second (3–6)

69.8 million 148 million

(3–6)

Upper bound: 20; lower bound: �30

�26.98, �6.22, 7.23, 16.67 (3–3)

�2 (double), �1.88, 0.35, 1.53 (3–4)

(4–5)y � Ae5x

(3–5)(��, �1) � (�0.535, 1) � (1.869, �)

6.1 hours

4.3 or 7.6 hours

1.5 to 8.9 hours (3–1, 3–3)

390 seconds

1.79 feet by 3.35 feet (3–4)

10.2 years (4–1)
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77. COMPOUND INTEREST Repeat Problem 76 using the con-
tinuous compound interest model 

78. EARTHQUAKES If the 1906 and 1989 San Francisco earth-
quakes registered 8.3 and 7.1, respectively, on the Richter scale,
how many times more powerful was the 1906 earthquake than
the 1989 earthquake? Use the formula where

joules, and compute the answer to one decimal
place.

79. SOUND If the decibel level at a rock concert is 88, find
the intensity of the sound at the concert. Use the formula

where watts per square meter,
and compute the answer to two significant digits.

MODELING AND DATA ANALYSIS

80. Table 1 shows the life expectancy (in years) at birth for res-
idents of the United States from 1970 to 1995. Let x represent
years since 1970. Use the indicated regression model to esti-
mate the life expectancy (to the nearest tenth of a year) for a
U.S. resident born in 2010.

(A) Linear regression

(B) Quadratic regression

I0 � 10�12D � 10 log (I/I0),

E0 � 104.40
M � 2

3 log (E/E0),

P � P0ert.
(C) Cubic regression

(D) Exponential regression

Table 1

Year Life expectancy

1970 70.8

1975 72.6

1980 73.7

1985 74.7

1990 75.4

1995 75.9

2000 77.0

2005 77.7

Source: U.S. Census Bureau

81. Refer to Problem 80. The Census Bureau projected the life
expectancy for a U.S. resident born in 2010 to be 77.9 years.
Which of the models in Problem 80 is closest to the Census
Bureau projection?

9.90 years (4–1)

63.1 times as powerful (4–4)

(4–4)6.31 � 10�4 w/m2

78.9 years

78.0 years

79.1 years

79.1 years (3–1, 4–2)

Quadratic (3–1, 4–2)
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