CHAPTER 2 BASIC CHEMISTRY

Chapter Outline

2.1 Chemical Elements

A. Matter

- 1. Matter takes up space and has mass.
- 2. All living and nonliving matter is composed of 92 naturally-occurring basic elements.
- 3. Elements cannot be broken down to substances with different chemical or physical properties.
- 4. Six elements (C, H, N, O, P, S) make up 98% of living things.

B. Atomic Structure

- 1. Chemical and physical properties of atoms (e.g., mass) depend on the subatomic particles.
 - a. Different atoms contain specific numbers of protons, neutrons, and electrons.
 - b. Protons and neutrons are in nucleus of atoms; electrons move around nucleus.
 - c. **Protons** are positively charged particles; neutrons have no charge; both have about 1 atomic mass unit of weight.
 - d. **Electrons** are negatively charged particles.
- 2. The **atomic mass** of an atom is about equal to the sum of its protons and neutrons.
- 3. All atoms of an element have the same number of protons, the atom's **atomic number**.

C. The Periodic Table

- 1. The periodic table shows how various characteristics of atoms recur.
- 2. The table is arranged in order of atomic number, with periods in horizontal rows and groups in vertical columns.

D. Isotopes

- 1. **Isotopes** are atoms with the same number of protons but differ in number of neutrons; e.g., a carbon atom has six protons but may have more or less than usual six neutrons.
- 2. A carbon with eight rather than six neutrons is unstable; it releases rays and subatomic particles and is a radioactive isotope.
- 3. Low levels of radiation such as radioactive iodine or glucose allow researchers to trace the location and activity of the atom in living tissues; therefore these isotopes are called "tracers."
- 4. High levels of radiation can cause cancerous tissues and destroy cells; careful use of radiation in turn can sterilize products and kill cancer cells.

E. Electrons and Energy

- 1. Electrons occupy an orbital at some level near or distant from the nucleus of the atom.
- 2. An orbital is a volume off space where an electron is most likely to be found; an orbital contains no more than two electrons.
- 3. The more distant the orbital, the more energy it takes to stay in the orbital.
- 4. When atoms absorb energy during photosynthesis, electrons are boosted to higher energy levels.
- 5. The innermost shell of an atom is complete with two electrons; all other shells are complete with eight electrons.

2.2 Elements and Compounds

A. Compounds

- 1. When two or more different elements react or bond together, they form a **compound** (e.g., H₂O).
- 2. A molecule is the smallest part of a compound that has the properties of the compound.
- 3. Electrons possess energy and bonds that exist between atoms in molecules contain energy.

B. Ionic Bonding

- 1. Ionic bonds form when electrons are transferred from one atom to another.
- 2. Losing or gaining electrons, atoms participating in ionic reactions fill outer shells, and are more stable.
- 3. Example: sodium with one less electron has positive charge; chlorine has extra electron that has negative charge. Such charged particles are called **ions.**
- 4. Attraction of oppositely charged ions holds the two atoms together in an ionic bond.

C. Covalent Bonding

- Covalent bonds result when two atoms share electrons so each atom has octet of electrons in the outer shell.
- 2. Hydrogen can give up an electron to become a hydrogen ion (H⁺) or share an electron with another atom to complete its outer shell of two electrons.
- 3. **Structural formulas** represent shared atom as a line between two atoms; e.g., single covalent bond (H-H), double covalent bond (O=O), and triple covalent bond (N = N).
- 4. Three dimensional shape of molecules is not represented by structural formulas but shape is critical in understanding the biological action of molecules: action of insulin, HIV receptors, etc.

D. Nonpolar and Polar Covalent Bonds

- 1. In **nonpolar covalent bonds**, sharing of electrons is equal.
- 2. With **polar covalent bonds**, the sharing of electrons is unequal.
 - a. In water molecule (H_2O) , sharing of electrons by oxygen and hydrogen is not equal; the oxygen atom with more protons dominates the H_2O association.
 - b. Attraction of an atom for electrons in a covalent bond is called **electronegativity**; oxygen atom is more electronegative than hydrogen atom.
 - c. Oxygen in water molecule, more attracted to electron pair, assumes small negative charge.

E. Hydrogen Bonding

- 1. A **hydrogen bond** is weak attractive force between slightly positive hydrogen atom of one molecule and slightly negative atom in another or the same molecule.
- 2. Many hydrogen bonds taken together are relatively strong.
- 3. Hydrogen bonds between complex molecules of cells help maintain structure and function.

2.3. Chemistry of Water

A. First Cells Evolved in Water

- 1. All living things are 70–90% water.
- 2. Because water is a polar molecule, water molecules are hydrogen bonded to each other.
- 3. With hydrogen bonding, water is liquid between 0° C and 100 □ C which is critical for life.

B. Properties of Water

- 1. The temperature of liquid water rises and falls more slowly than that of most other liquids...
 - a. Calorie is amount of heat energy required to raise temperature of one gram of water 1° C.
 - b. Because water holds more heat, its temperature falls more slowly than other liquids; this protects organisms from rapid temperature changes and helps them maintain normal temperatures.

2. Water has a high **heat of vaporization**.

- a. Hydrogen bonds between water molecules require a large amount of heat to break.
- b. This property moderates earth's surface temperature; permits living systems to exist here.
- c. When animals sweat, evaporation of the sweat takes away body heat, thus cooling the animal.
- 3. Water is universal solvent, facilitates chemical reactions both outside of and within living systems...
 - a. Water is a **universal solvent** because it dissolves a great number of solutes.
 - b. Ionized or polar molecules attracted to water are hydrophilic.
 - c. Nonionized and nonpolar molecules that cannot attract water are hydrophobic.
- 4. Water molecules are cohesive and adhesive..

- a. Cohesion allows water to flow freely without molecules separating, due to hydrogen bonding.
- b. Adhesion is ability to adhere to polar surfaces; water molecules have positive, negative poles.
- c. Water rises up tree from roots to leaves through small tubes.
 - 1) Adhesion of water to walls of vessels prevents water column from breaking apart.
 - 2) Cohesion allows evaporation from leaves to pull water column from roots.
- 5. Water has a high surface tension measured by how difficult it is to break the surface of a liquid...
 - a. As with cohesion, hydrogen bonding causes water to have high surface tension.
 - b. Permits a rock to be skipped across pond surface; supports insect walking on water surface.
- 6. Unlike most substances, frozen water is less dense than liquid water. .
 - a. Below 4° C, hydrogen bonding becomes more rigid but more open, causing expansion.
 - b. Because ice is less dense, it floats; therefore, bodies of water freeze from the top down.
 - c. If ice was heavier than water, ice would sink and ponds would freeze solid.

C. Acids and Bases

- 1. Covalently bonded water molecules ionize; the atoms dissociate into ions.
- 2. When water ionizes or dissociates, it releases a small (10^7 moles/liter) but equal number of H⁺ and OH ions; thus, its *pH* is *neutral*.
- 3. Water dissociates into hydrogen and hydroxide ions: $H O H \rightarrow H^+ + OH^-$.
- 4. **Acid** molecules dissociate in water, releasing hydrogen ions (H^+) ions: $HCl \rightarrow H^+ + Cl^-$.
- 5. **Bases** are molecules that take up hydrogen ions or release hydroxide ions. NaOH \rightarrow Na⁺ + OH⁻.
- 6. The **pH scale** indicates acidity and basicity (alkalinity) of a solution. (Fig. 2.13)
 - a. Measure of free hydrogen ions as a negative logarithm of the H⁺ concentration (-log [H⁺]).
 - b. **pH** values range from 0 (10⁰ moles/liter; most acidic) to 14 (10¹⁴ moles/liter; most basic).
 - 1) One mole of water has 10^7 moles/liter of hydrogen ions; therefore, has neutral pH of 7.
 - 2) Acid is a substance with pH less than 7; base is a substance with pH greater than 7.
 - 3) As logarithmic scale, each lower unit has 10 times the amount of hydrogen ions as next higher pH unit; as move up pH scale, each unit has 10 times the basicity of previous unit.
- 7. **Buffers** keep pH steady and within normal limits in living organisms..
 - a. Buffers stabilize pH of a solution by taking up excess hydrogen (H⁺) or hydroxide (OH) ions.
 - b. Carbonic acid helps keep blood pH within normal limits: $H_2CO_3 \rightarrow H^+ + HCO_3$ -.