CHAPTER 4 CELL STRUCTURE AND FUNCTION

Chapter Outline

4.1 Cellular Level of Organization

A. Cell Theory

- 1. In 1830s, Matthias Schleiden studying plants and Theodor Schwann studying animals independently declared these organisms were made of cells.
- 2. All organisms, both unicellular or multicellular, are made up of cells.
- 3. Cells are the smallest units of living matter and are the structural and functional units of all organisms.
- 4. Cells are capable of self-reproduction; Rudolf Virchow declared cells come only from preexisting cells.

B. Cell Size

- 1. Cells range in size from a frog's egg (one millimeter) down to one micrometer.
- 2. Cells need a surface area of plasma membrane large enough to adequately exchange materials.
- 3. Surface-area-to-volume ratio requires that cells be small.
 - a. As cells get larger in volume, surface area relative to volume decreases.
 - b. Size limits how large the actively metabolizing cells can become.
 - c. Cells that need greater surface area use modifications such as folding, microvilli, etc.

C. Microscopy of Today

- 1. **Bright-field microscope** uses light rays focused by glass lenses.
- 2. **Transmission electron microscope** (TEM) uses electrons passing through specimen; focused by magnets.
- 3. Scanning electron microscope (SEM) uses electrons scanned across metal-coated specimen.
- 4. **Magnification** is a function of wavelengths; the shorter wavelengths of electrons allow greater magnification.
- 5. **Resolution** is the minimum distance between two objects before they are seen as one larger object.
- 6. **Immunofluorescence microscopy** uses fluorescent antibodies to reveal proteins in cells.
- 7. **Confocal microscopy** uses laser beam to focus on shallow plane; this forms a series of optical sections
- 8. **Video-enhanced contrast microscopy** accentuates the light and dark regions and may use a computer to contrast regions with false colors.
- 9. **Bright-field, phase contrast, differential interference** and **darkfield** are different types of light microscopy that improve our ability to see various features.

4.2 Prokaryotic Cells

A. Types of Prokaryotic Cells

- 1. All prokaryotic cells lack a nucleus and are smaller and simpler than eukaryotic cells.
- 2. Prokaryotic cells were the first cells and date back to earliest evolutionary history.
- 3. Because they are biochemically different, prokaryotes are divided into two domains: Bacteria and Archaea.

B. The Structure of Bacteria

- 1. Most bacteria average 1–1.4 μm wide and 2–6 μm long, just visible with light microscopes.
- 2. Bacteria occur in three basic shapes: spherical coccus, rod-shaped bacillus, and spiral spirillum.
- Cell Envelope
 - a. A plasma membrane is the same as eukaryotic cells: a phospholipid bilayer.
 - b. The plasma membrane can form internal pouches called mesosomes that increase surface area for enzymes and metabolism.
 - c. A cell wall holds the shape of the cell ans is strengthened by **peptidoglycan**.
 - d. A glycocalyx is a layer of polysaccharides on the outside of the cell wall; it is called a capsule if organized and not easily washed off.

4. Cytoplasm

- a. The **cytoplasm** contains a semifluid solution with enzymes that carry on the chemical reactions that maintain the bacterium.
- b. The **nucleoid** is a region that contains the genes in a single, circular DNA molecule.
- c. **Plasmids** are small accessory rings of DNA aside from the nucleoid.
- d. **Ribosomes** are particles with two subunits that synthesize proteins.
- e. Inclusion bodies are stored granules of substances in the cytoplasm..
- f. **Cyanobacteria** are bacteria that photosynthesize; they lack chloroplasts but have thylakoid membranes with chlorophyll and other pigments.

5. Appendages

- a. Motile bacteria usually have **flagella**; the filament, hook and basal body work to rotate the flagellum like a propeller to move through fluid medium.
- b. **Fimbriae** are short appendages that help them attach to an appropriate surface.
- c. Sex pili are tubes used by bacteria to pass DNA from cell to cell.

C. The Structure of Archaea

- 1. In addition to spheres, rods, and spirals, Archaea can also be lobed, plate-shaped, and just irregular.
- 2. The cell was has various polysaccharides rather than peptidoglycan.
- 3. The DNA and RNA base sequences are closer to eukaryotes than bacteria.
- 4. Many Archaea are found in extremely salty or hot environments and may have been the first cells.

4.3 Eukaryotic Cells

A. Eukaryotic Cells

- 1. Eukaryotic cells are members of the domain Eukarya, including kingdoms Fungi, Animalia, Plantae, and Protista.
- 2. A membrane-bounded **nucleus** houses DNA.
- 3. The nucleus may have originated as an invagination of the plasma membrane.

B. The **Cytoplasm** and the Organelles

- Eukaryotic cells have a cytoplasm that includes everything outside the nucleus and inside the plasma membrane.
- 2. The cytoplasm is compartmentalized with small organelles that perform special functions.
- 3. The mitochondria and chloroplasts are unique in being self-sufficient and having their own genetic material.
- 4. Other organelles communicate with each other and exchange products in transport vesicles.

C. The Cytoskeleton

- 1. The **cytoskeleton** is a lattice of protein fibers that maintains the shape of the cell.
- 2. Protein fibers serve as tracts of transport for vesicles that travel between organelles.

D. The Outer Boundary

- 1. The plasma membrane separates cell contents from the environment and regulates passage into and out of the cell.
- 2. The plasma membrane is a phospholipid bilayer (this will be detailed in Chapter 5).
- 3. Proteins within the membrane can be receptors that bind to vesicles or molecules.
- 4. In plant cells, the outer boundary includes a cell wall with cellulose fibers (in contrast to the bacterial cell wall).
- 5. A cell wall does not interfere with the function of the cell membrane.

E. The Nucleus

1. Structures

- a. The nucleus has a diameter of about 5 μm .
- b. **Chromatin** is a threadlike material that coils into chromosomes just before cell division occurs; contains DNA, protein, and some RNA.
- c. **Nucleoplasm** is the semifluid medium of nucleus.
- d. Chromosomes are rodlike structures formed during cell division; it is coiled or folded chromatin.
- e. **The nucleolus** is a dark-staining spherical body inside the nucleus; it is the site where rRNA joins proteins to form ribosomes.
- f. The nucleus is the site of DNA and determines characteristics of the cell by coding for proteins.

- g. The **nuclear envelope** is a double membrane separating nucleoplasm from cytoplasm.
- h. **Nuclear pores** (100 nm) in the nuclear membrane permit passage of proteins into the nucleus and mRNA and ribosomal subunits out of the nucleus.

F. Ribosomes

- 1. Ribosomes of eukaryotic cells are 20 nm by 30 nm; ribosomes in prokaryotic cells are slightly smaller.
- 2. Ribosomes are composed of a large and a small subunit.
- 3. Each subunit has its own mix of proteins and rRNA.
- 4. In eukaryotic cells, **polyribosomes** are several ribosomes synthesizing same protein; they may be attached to ER or may float free.
- 5. Ribosomes attached to ER depend on an ER signal sequence to bind to a receptor protein.
- 6. Ribosomes coordinate the assembly of amino acids into polypeptide chains; this protein synthesis results in new proteins within the interior of the ER.

E. The Endomembrane System

- 1. Endomembrane system is a series of intracellular membranes that compartmentalize the cell.
- 2. This system compartmentalizes a cell into particular regions; vesicles transport molecules in the cell.

3. Endoplasmic Reticulum

- a. Endoplasmic reticulum (ER) is system of membrane channels continuous with outer membrane of the nuclear envelope.
- b. **Rough ER** is studded with ribosomes on the cytoplasm side; it is the site where proteins are synthesized and enter the ER interior for processing and modification.
- c. **Smooth ER** is continuous with rough ER but lacks ribosomes; it is a site of various synthetic processes, detoxification, and storage; smooth ER forms **transport vesicles**.

4. The Golgi Apparatus

- a. The Golgi apparatus is named for Camillo Golgi, who discovered it in 1898.
- b. The Golgi apparatus consists of a stack of 3–20 slightly curved saccules.
- c. The Golgi apparatus receives protein-filled vesicles that bud from the ER.
- d. Vesicle fuses with the membrane of a Golgi apparatus or moves to the outer face after proteins are repackaged.
- e. Vesicles formed from the membrane of outer face of the Golgi apparatus then move to different locations in a cell; at the plasma membrane they discharge their contents as **secretions**, a process called exocytosis because substances exit the cytoplasm.

5. Lysosomes

- a. Lysosomes are membrane-bounded vesicles produced by the Golgi apparatus and contain digestive enzymes.
- b. Lysosomes contain powerful digestive enzymes that are highly acidic.
- Macromolecules enter a cell by vesicle formation; lysosomes fuse with vesicles and digest the contents of the vesicle.
- d. White blood cells that engulf bacteria use lysosomes to digest bacteria.
- e. Autodigestion occurs when lysosomes digest parts of cells.
- f. **Apoptosis** is programmed cell death, a normal part of development (e.g., tadpole tail absorption, degeneration of webbing between human fingers).

6. Endomembrane System Summary

- a. Proteins produced in rough ER and lipids from smooth ER are carried in vesicles to the Golgi apparatus.
- b. The Golgi apparatus modifies these products and then sorts and packages them into vesicles that go to various cell destinations.
- c. Secretory vesicles carry products to the membrane where exocytosis produces secretions.
- d. Lysosomes fuse with incoming vesicles and digest macromolecules.

F. Peroxisomes

- a. **Peroxisomes** are membrane-bounded vesicles that contain specific enzymes.
- b. Peroxisome action always results in production of hydrogen peroxide.
- c. Hydrogen peroxide (H_2O_2) is broken down to water and oxygen by **catalase.**
- d. Peroxisomes in the liver produce bile salts from cholesterol and also break down fats.

- e. Missing or inactive lysosomal enzymes cause serious childhood diseases; the boy in the movie *Lorenzo's Oil* is an example.
- f. Peroxisomes also occur in germinating seeds where they convert oils into sugars used as nutrients by growing plant and in leaves where they give off CO₂ that can be used in photosynthesis.

G. Vacuoles

- a. Vacuoles in some protists are specialized and include water-regulating contractile vacuoles.
- b. In plants, a large prominent vacuole is water-filled and gives support to cell.
- c. The central plant stores water, sugars, salts, pigments, and toxic substances to protect plant from herbivores.
- d. A central vacuole eventually stores plant wastes since no system for excreting wastes occurs in plants.

H. Energy-Related Organelles

- 1. **Chloroplasts** and mitochondria are membranous organelles that serve as sites of photosynthesis and cellular respiration, respectively.
 - a. Photosynthesis is represented by the equation:
 - solar energy + carbon dioxide + water → carbohydrate + oxygen
 - b. Cellular respiration is represented by the equation:
 - carbohydrate + oxygen → energy + carbon dioxide + water + energy (in ATP)
 - In eukaryotes, photosynthesis occurs in chloroplasts and cellular respiration occurs in mitochondria.
 - d. Only plants, algae, and certain bacteria are capable of carrying on photosynthesis.

2. Chloroplasts

- a. Chloroplasts are a type of **plastid**; plastids in a plant species all contain copies of the same DNA.
- b. Chloroplasts are twice as wide and five times as long as mitochondria.
- c. Chloroplast is bounded by a double membrane organized into flattened disc-like sacs called thylakoids formed from a third membrane.
- d. Chlorophyll and other pigments that capture energy are located within the thylakoid membrane.
- e. Chloroplasts have both their own DNA and ribosomes, supporting the endosymbiotic hypothesis.

3. Mitochondria

- a. Mitochondria vary and may be longer and thinner or short and broad.
- b. Mitochondria also can be fixed in one location or form long, moving chains.
- Mitochondria have a double membrane; the inner membrane has folds (cristae) that project into the matrix.
- d. Mitochondria contain ribosomes and their own DNA, again supporting the endosymbiotic hypothesis.
- e. The matrix of the mitochondria is concentrated with enzymes that break down carbohydrates.
- f. ATP production occurs on the inner membrane (cristae).

G. The Cytoskeleton

- 1. **Cytoskeleton** is a network of connected filaments and tubules; it extends from the nucleus to the plasma membrane in eukaryotes.
 - a. Electron microscopy reveals an organized cytosol.
 - b. Immunofluorescence microscopy identifies protein fibers.
 - c. Elements of the cytoskeleton include: actin filaments, intermediate filaments, and microtubules.

2. Actin Filaments

- a. Actin filaments are long, thin fibers (about 7 nm in diameter) that occur in bundles or meshlike networks.
- b. The actin filament consists of two chains of globular actin monomers twisted to form a helix.
- c. Actin filaments play a structural role, forming a dense complex web just under the plasma membrane; this accounts for the formation of pseudopods in amoeboid movement.
- d. Actin filaments in microvilli of intestinal cells likely shorten or extend cell into intestine.
- e. In plant cells, they form tracks along which chloroplasts circulate.
- f. Actin filaments move by interacting with **myosin**: myosin combines with and splits ATP, binding to actin and changing configuration to pull actin filament forward.
- h. Similar action accounts for pinching off cells during cell division.

3. Intermediate Filaments

- a. Intermediate filaments are 8–11 nm in diameter, between actin filaments and microtubules in size.
- b. They are rope-like assemblies of fibrous polypeptides.
- c. Some support the nuclear envelope; others support plasma membrane and form cell-to-cell junctions.

4. Microtubules

- a. Microtubules are small hollow cylinders (25 nm in diameter and from 0.2–25 μm in length).
- b. Microtubules are composed of a globular protein **tubulin** that occurs as α tubulin and β tubulin.
- c. Assembly brings these two together as dimers and the dimers arrange themselves in rows.
- d. Regulation of microtubule assembly is under control of a microtubule organizing center (MTOC): a **centrosome**.
- e. Microtubules radiate from the MTOC, helping maintain shape of cells and acting as tracks along which organelles move.
- f. Similar to actin-myosin, the motor molecules kinesin and dynein are associated with microtubules.
- g. Different kinds of kinesin proteins specialize to move one kind of vesicle or cell organelle.
- h. Cytoplasmic dynein is similar to the molecule dynein found in flagella.

Cytoskeleton Overview

- a. The cytoskeleton is the cellular analogy to the bones and muscles of an animal.
- b. The cytoskeletal elements can rapidly assemble and disassemble, as during cell division.
- c. Temporary formation of a spindle distributes chromosomes in an orderly manner.

6. Centrioles

- a. Centrioles are short cylinders with a ring pattern (9 + 0) of microtubule triplets.
- b. In animal cells and most protists, centrosome contains two centrioles lying at right angles to each other.
- c. Plant and fungal cells have equivalent of a centrosome but it does not contain centrioles.
- d. Centrioles serve as **basal bodies** for cilia and flagella.

7. Cilia and Flagella

- a. **Cilia** are short, usually numerous hairlike projections that can move in an undulating fashion (e.g., *Paramecium*; lining of human upper respiratory tract).
- b. **Flagella** are longer, usually fewer, whip-like projections that move in whip-like fashion (e.g., sperm cells).
- c. Both have similar construction, but differ from prokaryotic flagella.
 - 1) Membrane-bounded cylinders enclose a matrix containing a cylinder of nine pairs of microtubules encircling two single microtubules (9 + 2 pattern of microtubules).
 - 2) Cilia and flagella move when the microtubules slide past one another.
 - Cilia and flagella have a basal body at base with same arrangement of microtubule triples as centrioles.
 - 4) Cilia and flagella grow by the addition of tubulin dimers to their tips.