CHAPTER 7 PHOTOSYNTHESIS

Chapter Outline

7.1 Photosynthetic Organisms

- A. Photosynthesis Transforms Solar Energy
 - 1. Photosynthetic organisms (algae, plants, and cyanobacteria) transform solar energy into carbohydrates.
 - 2. If all carbohydrates produced were converted to coal, it would fill 100 cars per second.
 - 3. Except for the rare life based on chemosynthetic organisms, all food chains can be traced back to photosynthesizers.
 - 4. Organic molecules built by photosynthesis provide both the building blocks and energy for cells.
- B. Flowering Plants as Photosynthesizers
 - 1. Raw materials for photosynthesis are carbon dioxide and water.
 - 2. Roots absorb the water and move it up vascular tissue in the stem until it reaches the leaf veins.
 - 3. Carbon dioxide enters a leaf through small openings called stomata.
 - 4. Carbon dioxide and water then diffuse into the chloroplasts, organelles that carry on photosynthesis.
 - 5. In chloroplasts, a double membrane encloses a fluid-filled space called the **stroma**.
 - 6. Even more internal membranes within stroma form flattened sacs called **thylakoids**, which are sometimes organized into stacks called **grana**.
 - 7. Spaces within all thylakoids are connected and form an inner compartment or thylakoid space.
 - 4. Chlorophylls and other pigments involved in absorption of solar energy reside within thylakoid membranes; these pigments absorb solar energy, energize electrons prior to reduction of CO₂ to a carbohydrate.

7.2 Plants as Solar Energy Converters

A. Solar Radiation

- 1. Only 42% of solar radiation that hits the earth's atmosphere reaches surface; most is visible light.
- 2. Higher energy wavelengths are screened out by ozone layer in upper atmosphere.
- 3. Lower energy wavelengths are screened out by water vapor and CO_2 .
- 4. Both the organic molecules within organisms and processes such as vision and photosynthesis are adapted to the radiation that is most prevalent in the environment.

B. Photosynthetic Pigments

- 1. Photosynthetic pigments use primarily the **visible light** portion of the electromagnetic spectrum.
- 2. Pigments found in chlorophyll absorb various portions of visible light; this is their absorption spectrum.
- 3. Two major photosynthetic pigments are **chlorophyll** a and **chlorophyll** b.
- 4. Both chlorophylls absorb violet, blue, and red wavelengths best.
- 5. Very little green light is absorbed; most is reflected back; this is why leaves appear green.
- 6. Carotenoids are yellow-orange pigments which absorb light in violet, blue, and green regions.
- 7. When chlorophyll breaks down in fall, the yellow-orange pigments in leaves show through.
- 8. Absorption and action spectrum
 - a. A **spectrophotometer** measures the amount of light that passes through a sample of pigments.
 - 1) As different wavelengths are passed through, some are absorbed.
 - 2) Graph of percent of light absorbed at each wavelength is **absorption spectrum.**
 - b. Action spectrum
 - 1) Photosynthesis produces oxygen; production of oxygen is used to measure the rate of photosynthesis.
 - 2) Oxygen production and, therefore, photosynthetic activity is measured for plants under each specific wavelength; plotted on a graph, this produces an **action spectrum.**
 - 3) Since the action spectrum resembles absorption spectrum, this indicates that chlorophylls contribute to photosynthesis.

C. Photosynthetic Reaction

 In 1930 C. B. van Niel showed that O₂ given off by photosynthesis comes from water and not from CO₂.

- 2. The net equation reads: $6CO_2$ plus $6H_2O$ forms $C_6H_{12}O_6$ plus $6O_2$.
- 3. This is better generalized as: CO₂ plus H₂O forms CH₂O plus O₂ where CH₂O is a generalized carbohydrate.

D. Two Sets of Reactions

- 1. In 1905, F. F. Blackman proposed two sets of reactions for photosynthesis.
- 2. **Light reactions** cannot take place unless light is present.
 - a. Light reactions are the energy-capturing reactions.
 - b. Chlorophyl within thylakoid membranes absorbs solar energy and energizes electrons.
 - c. Energized electrons move down the electron transport system; energy is captures and used for ATP production.
 - d. Energized electrons are also taken up by NADP⁺, becoming NADPH.

3. Calvin Cycle Reactions

- a. These reactions take place in the stroma; can occur in either the light or the dark.
- b. These are synthesis reactions that use NADPH and ATP to reduce CO₂.

7.3 Light Reactions

A. Two Pathways

- 1. Two electron pathways operate in the thylakoid membrane: the noncyclic pathway and the cyclic pathway.
- 2. Both pathways produce ATP but only the noncyclic pathway also produces NADPH.
- 3. ATP production during photosynthesis is sometimes called photophosphorylation; therefore these pathways are also known as cyclic and noncyclic photophosphorylation.

B. Noncyclic Electron Pathway

- 1. This pathway occurs in the thylakoid membranes and requires participation of two light-gathering units: **photosystem I (PS I)** and **photosystem II (PS II)**.
- 2. A **photosystem** is a photosynthetic unit comprised of a pigment complex and electron acceptor; solar energy is absorbed and high-energy electrons are generated.
- 3. Each photosystem has a pigment complex composed of green chlorophyll *a* and chlorophyll *b* molecules and orange and yellow accessory pigments (e.g., carotenoid pigments).
- 4. Absorbed energy is passed from one pigment molecule to another until concentrated in reaction-center chlorophyll *a*.
- 5. Electrons in reaction-center chlorophyll *a* become excited; they escape to electron-acceptor molecule.
- 6. The noncyclic pathway begins with PSII; electrons move from H_2O through PS II to PS I and then on to $NADP^+$.
- 7. The PS II pigment complex absorbs solar energy; high-energy electrons (e⁻) leave the reaction-center chlorophyll *a* molecule.
- 8. PS II takes replacement electrons from H_2O , which splits, releasing O_2 and H^+ ions: $H_2O \oslash 2 H^+ + 2 e^- + \frac{1}{2} O_2$.
- 9. Oxygen is released as oxygen gas (O_2) .
- 10. The H⁺ ions temporarily stay within the thylakoid space and contribute to a H⁺ ion gradient.
- 11. As H⁺ flow down electrochemical gradient through ATP synthase complexes, chemiosmosis occurs.
- 12. Low-energy electrons leaving the electron transport system enter PS I.
- 13. When the PS I pigment complex absorbs solar energy, high-energy electrons leave reaction-center chlorophyll *a* and are captured by an electron acceptor.
- 14. The electron acceptor passes them on to NADP⁺.
- 15. NADP⁺ takes on an H⁺ to become NADPH: NADP⁺ + 2 e⁻ + H⁺ A NADPH.
- 16. NADPH and ATP produced by noncyclic flow electrons in thylakoid membrane are used by enzymes in stroma during light-independent reactions.

C. Cyclic Electron Pathway

- 1. The cyclic electron pathway begins when the PS I antenna complex absorbs solar energy.
- 2. High-energy electrons leave PS I reaction-center chlorophyll *a* molecule.

- 3. Before they return, the electrons enter and travel down an **electron transport system.**
 - a. Electrons pass from a higher to a lower energy level.
 - b. Energy released is stored in form of a hydrogen (H⁺) gradient.
 - c. When hydrogen ions flow down their electrochemical gradient through ATP synthase complexes, ATP production occurs.
 - d. Because the electrons return to PSI rather than move on to NADP⁺, this is why it is called cyclic and also why no NADPH is produced.
- 4. It is possible that in plants, the cyclic flow of electrons is utilized only when CO₂ is in such limited supply that carbohydrate is not being produced.
- 5. There is now no need for additional NADPH, which is produced only by the noncyclic electron pathway.

D. The Organization of the Thylakoid Membrane

- 1. PS II has a light-gathering antenna on an acceptor molecule for electron; it oxidizes H_2O and produces O_2 .
- 2. The electron transport system consists of cytochrome complexes and transports electrons and pumps H⁺ ions into the thylakoid space.
- 3. PS I has a light-gathering antenna and an acceptor molecule; it is associated with an enzyme that reduces NADP⁺ to NADPH.
- 4. ATP synthase complex has an H⁺ channel and ATP synthase; it produces ATP.

E. ATP Production

- 1. The thylakoid space acts as a reservoir for H⁺ ions; each time H₂O is split, two H⁺ remain.
- 2. Electrons move carrier-to-carrier, giving up energy used to pump H⁺ from the stroma into the thylakoid space.
- 3. Flow of H⁺ from high to low concentration across thylakoid membrane provides energy to produce ATP from ADP + P by using an ATP synthase enzyme
- 4. This is called **chemiosmosis** because ATP production is tied to an electrochemical gradient.

7.4 The Calvin Cycle Reactions

A. Overview

- 1. The Calvin Cycle is a series of reactions producing carbohydrates.
- 2. The cycle is named for Melvin Calvin who used a radioactive isotope of carbon to trace the reactions.
- 3. The Calvin Cycle includes: carbon dioxide fixation, carbon dioxide reduction, and regeneration of RuBP.

B. Fixation of Carbon Dioxide

- 1. CO₂ fixation is the attachment of CO₂ to an organic compound called RuBP.
- 2. RuBP (ribulose bisphosphate) is a five-carbon molecule that combines with carbon dioxide.
- 3. The enzyme RuBP carboxylase (rubisco) speeds this reaction; this enzyme comprises 20–50% of the protein content of chloroplasts, probably since it is a slow enzyme.

C. Reduction of Carbon Dioxide

- 1. With reduction of carbon dioxide, a PGA (3-phosphoglycerate $[C_3]$) molecule forms.
- 2. Each of two PGA molecules undergoes reduction to PGAL in two steps.
- 3. Light-dependent reactions provide NADPH (electrons) and ATP (energy) to reduce PGA to PGAL.

D. Regeneration of RuBP

- 1. Every three turns of Calvin cycle, five molecules of PGAL are used to re-form three molecules of RuBP.
- 2. Every three turns of Calvin cycle, there is net gain of one PGAL molecule; five PGAL regenerate three molecules of RuBP.

E. The Importance of the Calvin Cycle

- 1. PGAL, the product of the Calvin Cycle can be converted into all sorts of other molecules.
- 2. Glucose phosphate is one result of PGAL metabolism; it is a common energy molecule.
- 3. Glucose phosphate is combined with fructose to form sucrose used by plants.
- 4. Glucose phosphate is the starting pint for synthesis of starch and cellulose.
- 5. The hydrocarbon skeleton of PGAL is used to form fatty acids and glycerol; the addition of nitrogen forms various amino acids.

7.5 Other Types of Photosynthesis

A. Photorespiraton

- In C₃ plants, the Calvin cycle fixes CO₂ directly; first molecule following CO₂ fixation is PGA, a C₃ molecule.
- 2. In hot weather, stomates close to save water; CO₂ concentration decreases in leaves; O₂ increases.
- 3. This is called "photorespiration" since oxygen is taken up and CO₂ is produced; this produces only one PGA.

B. C₄ Photosynthesis

- 1. In a C₃ plant, mesophyll cells contain well-formed chloroplasts, arranged in parallel layers.
- 2. In C₄ plants, bundle sheath cells as well as the mesophyll cells contain chloroplasts.
- 3. In C₄ leaf, mesophyll cells are arranged concentrically around the bundle sheath cells.
- 4. C₃ plants use RuBP carboxylase to fix CO₂ to RuBP in mesophyll; the first detected molecule is PGA.
- 5. C₄ plants use the enzyme PEP carboxylase (PEPCase) to fix CO₂ to PEP (phosphoenolpyruvate); the end product is oxaloacetate (a C₄ molecule).
- 6. In C₄ plants, CO₂ is taken up in mesophyll cells and malate, a reduced form of oxaloacetate, is pumped into the bundle-sheath cells; here CO₂ enters Calvin cycle.
- 7. In hot, dry climates, net photosynthetic rate of C_4 plants (e.g., corn) is 2–3 times that of C_4 plants.
- 8. Photorespiration does not occur in C₄ leaves because PEPCase does not combine with O₂; even when stomates are closed, CO₂ is delivered to Calvin cycle in bundle sheath cells.
- 9. C₄ plants have advantage over C₃ plants because in hot and dry weather, photorespiration does not occur (e.g., bluegrass [C₃] dominates lawns in early summer, crabgrass [C₄] takes over in hot midsummer).

C. CAM Photosynthesis

- 1. **CAM (crassulacean-acid metabolism)** plants form a C₄ molecule at night when stomates can open without loss of water; found in many succulent desert plants including the family Crassulacaeae.
- 2. At night, CAM plants use PEPCase to fix CO₂ by forming C₄ molecule stored in large vacuoles in mesophyll.
- 3. C₄ formed at night is broken down to CO₂ during the day and enters the Calvin cycle within the same cell, which now has NADPH and ATP available to it from the light-dependent reactions.
- 4. CAM plants open stomates only at night, allowing CO₂ to enter photosynthesizing tissues; during the day, stomates are closed to conserve water but CO₂ cannot enter photosynthesizing tissues.
- 5. Photosynthesis in a CAM plant is minimal, due to limited amount of CO₂ fixed at night; but this does allow CAM plants to live under stressful conditions.