CHAPTER 18 PROCESS OF EVOLUTION

Chapter Outline

18.1 Evolution in a Genetic Context

A. What causes variations?

- 1. It was not until the 1930s that population geneticists were able to apply genetics to populations to recognize when evolution had occurred.
- 2. A **population** is all of the members of a single species occupying a certain area at the same time.
- 3. Evolution that occurs within a population is called **microevolution.**

B. Microevolution

- 1. **Population genetics** studies the variation in alleles in a gene pool.
- 2. The **gene pool** is the total of all the alleles in a population; it is described in terms of gene frequencies.
- 3. Neither dominance nor sexual reproduction changes allele frequencies.

4. The Hardy-Weinberg Law

- a. This law states an equilibrium of allele frequencies in a gene pool (using a formula $p^2 + 2pq + q^2$) remains in effect in each succeeding generation of a sexually reproducing population if five conditions are met.
 - No mutation: no allelic changes occur, or changes in one direction are balanced by changes in the other direction.
 - 2) No gene flow: migration of alleles into or out of the population does not occur.
 - 3) Random mating: individuals pair by chance and not according to their genotypes or phenotypes.
 - 4) No genetic drift: the population is large so changes in allele frequencies due to chance are insignificant.
 - 5) No selection: no selective force favors one genotype over another.
- b. In real life, conditions of the Hardy-Weinberg law are rarely if ever met, and allele frequencies in the gene pool of a population do change from one generation to the next, resulting in evolution.
- Any change of allele frequencies in a gene pool of a population signifies that evolution has occurred.
- d. The Hardy-Weinberg law tells us what factors cause evolution—those that violate the conditions listed
- e. A *Hardy-Weinberg equilibrium* provides a baseline by which to judge whether evolution has occurred.
- f. Hardy-Weinberg equilibrium is a constancy of gene pool frequencies that remains across generations.

5. Industrial Melanism

- a. The case of the peppered moths provides a case study in a shift in phenotype frequencies under selection
- b. Before trees became coated with soot from air pollution, the percentage of dark-colored moths was 10%.
- c. With birds acting as a selective agent, the light colored moths were reduced while dark-colored moths were better adapted to survive on the darkened trees.
- d. The last generation observed has 80% dark-colored moths.

C. Genetic Mutations

- 1. Natural populations contain high levels of allele variation.
 - a. Analysis of *Drosophila* enzymes indicates they have multiple alleles at least at 30% of their gene loci.
 - b. Similar results with other species indicates that allele variation is the rule in natural populations.
- 2. Gene mutations provide new alleles, and therefore are the ultimate source of variation.
 - a. A **gene mutation** is an alteration in the DNA nucleotide sequence of an allele.
 - b. Mutations may not immediately affect the phenotype.
 - c. Mutations can be beneficial, neutral, or harmful; a seemingly harmful mutation that requires *Daphnia* to live at higher temperatures becomes advantageous when the environment changes.
 - d. Specific recombinations of alleles may be more adaptive than other combinations.

D. Gene Flow

- 1. **Gene flow** moves alleles among populations by migration of breeding individuals.
- 2. Gene flow can increase variation within a population by introducing novel alleles produced by mutation in another population.
- 3. Continued gene flow decreases diversity among populations, causing gene pools to become similar.
- 4. Gene flow among populations can prevent speciation from occurring.

E. Nonrandom Mating

- 1. **Random mating** involves individuals pairing by chance, not according to genotype or phenotype.
- 2. **Nonrandom mating** involves inbreeding and assortative mating.
- 3. **Inbreeding** is mating between relatives to a greater extent than by chance.
 - a. Inbreeding does not change the allele frequencies.
 - b. However, inbreeding decreases the proportion of heterozygotes.
 - c. Inbreeding increases the proportions of both homozygotes at all gene loci.
- d. In human populations, inbreeding increases the frequency of recessive abnormalities.
- 4. **Assortative mating** occurs when individuals mate with those that have the same phenotype.
- a. Assortative mating divides a population into two phenotypic classes with reduced gene exchange.
- b. Homozygotes for gene loci that control a trait increase, and heterozygotes for these loci decrease.
- 5. **Sexual selection** occurs when males compete for the right to reproduce and the female selects males of a particular phenotype.

F. Genetic Drift

- 1. Genetic drift refers to changes in allele frequencies of a gene pool due to chance.
- 2. Genetic drift occurs in both large and small populations; large populations suffer less sampling error.
- 3. Genetic drift causes isolated gene pools to become dissimilar; some alleles are lost and others are *fixed* or are the only allele in the population.
 - a. Separate cypress groves in California show patchy variations.
 - b. Because there is no apparent adaptive advantage to the many variations, this has been attributed to genetic drift.
- Genetic drift occurs when founders start a new population, or after a genetic bottleneck with interbreeding.
 - a. The **bottleneck effect** prevents most genotypes from participating in production of the next generation.
 - 1) The bottleneck effect is caused by a severe reduction in population size due to a natural disaster, predation, or habitat reduction.
 - 2) The bottleneck effect causes a severe reduction in the total genetic diversity of the original gene pool.
 - 3) The cheetah bottleneck causes relative infertility because alleles were lost due to intense inbreeding when populations were reduced in earlier times.
 - b. The **founder effect** is an example of genetic drift where rare alleles or combinations occur in higher frequency in a population isolated from the general population.
 - 1) This is due to founding individuals containing a fraction of total genetic diversity of original population.
 - 2) Which particular alleles are carried by the founders is dictated by chance alone.
 - 3) As an example, dwarfism is much higher in a Pennsylvania Amish community due to a few German founders.

18.2 Natural Selection

- A. Natural selection is the process that results in adaptation of a population to the environment.
 - 1. Natural selection requires
 - a. variation (i.e., the members of a population differ from one another),
 - b. inheritance (i.e., many of the differences between individuals in a population are heritable genetic differences),
 - c. differential adaptedness (i.e., some differences affect how well an organism is adapted to its environment), and
 - d. differential reproduction (i.e., better adapted individuals are more likely to reproduce).
 - 2. **Fitness** is the extent to which an individual contributes fertile offspring to the next generation.
 - 3. **Relative fitness** compares the fitness of one phenotype to another.
- B. Types of Selection.
 - 1. **Directional selection** occurs when an extreme phenotype is favored; the distribution curve shifts that direction
 - a. A shift to dark-colored peppered moths from light-colored correlated with increasing pollution.
 - b. Drug-resistant strains of bacteria are a serious health threat and represent this type of selection.
 - b. Increases in insecticide-resistant mosquitoes and resistance of the malaria protozoan *Plasmodium* to medications are also examples of directional selection.
 - c. The gradual increase in the size of the modern horse, *Equus*, correlates with a change in the environment from forest-like conditions to grassland conditions.
 - 2. **Stabilizing selection** occurs when extreme phenotypes are eliminated and the intermediate phenotype is favored.
 - a. The average number of eggs laid by Swiss starlings is four or five.
 - b. If the female lays more or less than this number, fewer survive.
 - c. Genes determining the physiology of yolk production and behavior are involved in clutch size.
 - 3. **Disruptive selection** occurs when extreme phenotypes are favored and can lead to more than one distinct form.
 - a. British snails (Cepaea nemoralis) vary because a wide range causes natural selection to vary.
 - b. In forest areas, thrushes feed on snails with light bands.
 - c. In low-vegetation areas, thrushes feed on snails with dark shells that lack light bands.

C. Maintenance of Variations

- 1. Populations always show some genotypic variation; populations that lack variation may not be able to adapt to new conditions.
- 2. How is variation maintained in the face of constant selection pressure?
- 3. The following forces promote genetic variation.
 - a. Mutation creates new alleles and genetic recombination still combines these alleles.
 - b. Gene flow among small populations introduces new alleles.
 - c. Natural selection, such as disruptive selection, itself sometimes promotes variation.
- D. Diploidy and the Heterozygote
 - 1. Only alleles that cause phenotypic differences are subject to natural selection.
 - 2. In diploid organisms, a heterozygote shelters rare recessive alleles that would otherwise be selected out
 - 3. Even when selection reduces the recessive allele frequency from 0.9 to 0.1, the frequency in the heterozygote remains the same and remains a resource for natural selection in a new environment.

E. Sickle-Cell Disease

- 1. In sickle-cell disease, heterozygotes are more fit in malaria areas because the sickle-cell trait does not express unless the oxygen content of the environment is low; but the malaria agent causes red blood cells to die when it infects them (loss of potassium).
- Some homozygous dominants are maintained in the population but they die at an early age from sicklecell disease.
- 3. Some homozygotes are maintained in the population for normal red blood cells, but they are vulnerable to malaria.

18.3 Speciation

- A. **Speciation** is the splitting of one species into two or more species or the transformation of one species into a new species over time; speciation is the final result of changes in gene pool allele and genotypic frequencies.
- B. What is a Species?
 - 1. Linnaeus separated species based on morphology; simply, their traits differed...
 - 2. A **biological species** is a category whose members are *reproductively isolated* from all other such groups.
 - 3. Gene flow occurs between populations of one species but not between populations of different species.
 - 4. Biochemical genetics uses DNA hybridization techniques to determine relatedness of organisms; the **phylogenetic species concept** uses DNA/DNA comparisons.
- C. Reproductive Isolating Mechanisms
 - 1. For two species to be separate, gene flow must not occur between them.
 - 2. A **reproductive isolating mechanism** is any structural, functional, or behavioral characteristic that prevents successful reproduction from occurring.
 - 3. **Prezygotic isolating mechanisms** are anatomical or behavioral differences between the members of two species that prevent mating or make it unlikely fertilization will take place if mating occurs.
 - a. **Habitat isolation** occurs when two species occupy different habitats, even within the same geographic range, so that they are less likely to meet and to attempt to reproduce.
 - b. **Temporal isolation** occurs when two species live in the same location, but each reproduces at a different time of year, and so they do not attempt to mate.
 - c. **Behavioral isolation** results from differences in mating behavior between two species.
 - d. **Mechanical isolation** is the result of differences between two species in reproductive structures or other body parts, so that mating is prevented.
 - e. **Gamete isolation** includes incompatibility of gametes of two different species so they cannot fuse to form a zygote; an egg may have receptors only for the sperm of its own species or a plant stigma prevents completion of pollination.
 - 4. **Postzygotic isolating mechanisms** prevent development of a hybrid after mating has taken place.
 - a. **Zygote mortality** is when **hybrids** (offspring of parents of two different species) do not live to reproduce.
 - b. **Hybrid sterility** occurs when the hybrid offspring are sterile (e.g., mules).
 - c. In \mathbf{F}_2 fitness, the offspring are fertile but the \mathbf{F}_2 generation is sterile.

D. Modes of Speciation

- 1. **Allopatric speciation** occurs when new species result from populations being separated by a geographical barrier that prevents their members from reproducing with each other.
 - a. First proposed by Ernst Mayr of Harvard University.
 - b. While geographically isolated, variations accumulate until the populations are reproductively isolated.
 - c. First postzygotic isolation occurs, then prezygotic reproductive isolation occurs.
- 2. **Sympatric speciation** would occur when members of a single population develop a genetic difference (e.g., chromosome number) that prevents them from reproducing with the parent type.
 - a. The main example of sympatric speciation is in plants.
 - b. Failure to reduce chromosome number produces polyploid plants that reproduce successfully only with polyploids.
 - c. Backcrosses with diploids are sterile.

E. Adaptive Radiation

- 1. **Adaptive radiation** is a rapid development from a single ancestral species of many new species.
- 2. The case of Darwin's finches illustrates the adaptive radiation of 13 species from one founder mainland finch.
- 3. On the Hawaiian Islands, a wide variety of honeycreepers descended from one goldfinchlike ancestor.
- 4. Hawaii is also the home of the silversword plants that radiated from ancestral tarweeds.