CHAPTER 21 VIRUSES, BACTERIA AND ARCHAEA

Chapter Outline

21.0 The Viruses

- A. Viruses are not organisms; they
 - 1. are noncellular;
 - 2. cannot metabolize;
 - 3. cannot respond to stimuli;
 - 4. multiply only within living cells by parasitizing the synthetic machinery of the infected cell; and
 - 5. evolve as a result of mutation and natural selection
 - 6. All viruses are infectious.
 - 7. In 1884, Pasteur suspected something smaller than bacteria caused rabies; he chose Latin term for "poison."
 - 8. In 1892, Russian biologist Dimitri Ivanowsky, working with tobacco mosaic virus, confirmed Pasteur's hypothesis that an infectious agent smaller than a bacterium existed.
 - 9. With the invention of the electron microscope, these infectious agents could be seen for the first time.

B. Viral Structure

- 1. A virus is similar in size to a large protein, generally smaller than 200 nm in diameter.
 - 2. Many viruses can be purified and crystallized, and the crystals stored for long periods of time.
 - 3. Viral crystals become infectious when the viral particles they contain invade host cells.
 - 4. All viruses have at least two parts:
 - a. An outer **capsid** is composed of protein subunits.
 - b. An inner core contains either DNA (deoxyribonucleic acid) or RNA (ribonucleic acid), but not both.
 - The viral genome at most has several hundred genes; a human cell contains thousands of genes.
 - 2) The viral envelope is usually partly host plasma membrane with viral glycoprotein spikes.
 - Viral particles have proteins, especially enzymes (e.g., polymerases), to produce viral DNA or RNA
 - 5. The classification of viruses is based on
 - a. their type of nucleic acid, including whether it is single-stranded or double-stranded;
 - b. their size and shape; and
 - c. the presence or absence of an outer envelope.

C. Parasitic Nature

- 1. Viruses are **obligate intracellular parasites** that cannot multiply outside a living cell.
 - a. Animal viruses in laboratories are raised in live chick embryos or in cell tissue culture.
 - b. Viruses infect all sorts of cells, from bacteria to human cells, but are very specific.
 - 1) Tobacco mosaic virus only infects certain plants.
 - 2) The rabies virus infects only mammals.
 - 3) The AIDS virus, HIV, infects only certain human blood cells.
 - 4) Hepatitis virus invades only liver tissues.
 - 5) Polio virus only reproduces in spinal nerve cells.
- 2. Virus Evolution
 - a. Viruses are likely to have originated from the very cells that they infect.
 - b. Therefore, nucleic acids originated from the host cell genome.
 - c. Therefore, viruses evolved after cells came into existence; new viruses are probably evolving now.
- 3. Viruses often mutate; therefore, it is correct to say that they evolve.
 - a. Those that mutate are troublesome; a vaccine effective today may not be effective tomorrow.
 - b. Influenza (flu) viruses mutate regularly.

D. Viral Reproduction

1. Viruses gain entry into and are specific to a particular host cell because portions of the capsid (or spikes of the envelope) adhere to specific receptor sites on host cell surface.

- 2. Viral nucleic acid then enters a cell, where viral genome codes for production of protein units in the capsid.
- 3. A virus may have genes for a few special enzymes needed for the virus to reproduce and exit from a host cell.
- 4. Virus relies on host cell enzymes, ribosomes, transfer RNA (tRNA), and ATP for its own replication.
- 5. A virus takes over the metabolic machinery of the host cell when it reproduces.

E. Replication of Bacteriophages

- 1. **Bacteriophages** (phages) are viruses that parasitize a bacterial cell.
- 2. **Lytic cycle** is a bacteriophage "life" cycle of five stages where a virus takes over operation of the bacterium immediately upon entering it and then destroys the bacterium.
 - a. During **attachment**, portions of the capsid bind with receptors on the bacterial cell wall.
 - b. During **penetration**, a viral enzyme digests part of cell wall; the viral DNA is injected into a bacterial cell.
 - c. **Biosynthesis** involves synthesis of viral components and begins after the virus brings about inactivation of host genes not necessary to viral replication.
 - d. During **maturation**, viral DNA and capsids are assembled to produce several hundred viral particles and lysozyme, coded by the virus, is produced.
 - e. When lysozyme disrupts the cell wall, **release** of the viral particles occurs and the bacterial cell dies.
- 3. **Lysogenic cycle** is a cycle where the virus incorporates its DNA into the bacterium but only later does it produce phage.
 - a. Following attachment and penetration, viral DNA becomes integrated into bacterial DNA with no destruction of host DNA.
 - b. At this point the phage is **latent** and the viral DNA is called a **prophage**.
 - c. Prophage is replicated along with host DNA: all subsequent cells (lysogenic cells) carry a copy.
 - d. Certain environmental factors (e.g., ultraviolet radiation) induce prophage to enter the biosynthesis stage of the lytic cycle, followed by maturation and release.

F. Reproduction of Animal Viruses

- 1. Animal viruses replicate similarly to bacteriophages but there are modifications.
 - a. If the virus has an envelope, glycoprotein spikes allow it to adhere to plasma membrane receptors.
 - b. The virus genome covered by the capsid penetrates the host cell.
 - c. Once inside, the virus is uncoated as the envelope and capsid are removed.
 - d. Free of its covering, the viral genome (DNA or RNA) proceeds with biosynthesis.
 - e. Newly assembled viral particles are released by budding.
 - f. Components of viral envelopes (i.e., lipids, proteins, and carbohydrates) are obtained from the plasma or nuclear membrane of the host cell as the viruses leave.
- 2. **Retrovirus** is an RNA animal virus with a DNA stage.
 - a. Retroviruses contain reverse transcriptase that carries out reverse transcription producing cDNA.
 - b. Viral cDNA is integrated into host DNA and is replicated as host DNA replicates.
 - c. Viral DNA is transcribed; new viruses are produced by biosynthesis, maturation and release by budding.

G. Viral Infections

- 1. Viruses cause infectious diseases in plants and animals, including humans.
- 2. Some animal viruses are specific to human cells: papillomavirus, herpes virus, hepatitis virus, and adenoviruses, which can cause specific cancers.
- 3. Retroviruses include the AIDS viruses (e.g., HIV) and also cause certain forms of cancer.
- 4. Some viruses are cancer-producing because they bring with them **oncogenes**, normal genes transformed so that they can cause the cell to undergo repeated cell divisions.
- 5. In humans, viral diseases are controlled by preventing transmission, administering vaccines, and only recently by the administration of antiviral drugs.
- 6. Antibiotics do not cure viral infections because viruses use host cell enzymes, not their own enzymes; interfering with the enzyme kills the host cell.

- 7. Over a thousand plant viruses cause diseases; virus infections are difficult to distinguish from nutrient deficiencies and plants are propagated to stay free of virus infection.
- 8. **Viroids** are naked strands of RNA, a dozen of which cause crop diseases.
- 9. Prions are newly discovered disease agents that vary from viruses and bacteria.
 - a. Prions are proteins with a wrongly shaped tertiary structure that cause other proteins to distort.
 - b. Creutzfeldt-Jakob disease in humans and scrapie and mad cow disease (BSE) in cattle are due to prions.

21.2 The Prokaryotes

- A. Prokaryotes include the bacteria and archaea.
 - 1. Bacteria were discovered in the seventeenth century when Dutch naturalist Antonie van Leeuwenhoek examined scrapings from his teeth.
 - 2. The organisms Leeuwenhoek observed were thought to arise spontaneously from inanimate matter.
 - 3. Around 1850, Pasteur devised an experiment showing that the bacteria present in air contaminated the media
 - 4. A single spoonful of soil contains 10^{10} prokaryotes; these are the most numerous life forms.

B. Structure of Prokaryotes

- 1. Prokaryotes range in size from 1–10 μ m in length and from 0.7–1.5 μ m in width.
- 2. "Prokaryote" means "before a nucleus" and their cells lack a eukaryotic nucleus.
- 3. Prokaryotic fossils date back to 3.5 billion years ago.
- 4. Fossils indicate prokaryotes were alone on earth for 2 billion years; they evolved very diverse metabolic capabilities.
- 5. Prokaryotes adapted to most environments because they differ in the many ways they acquire and utilize energy.
- 6. Outside the plasma membrane of most cells is a rigid cell wall that keeps the cell from bursting or collapsing due to osmotic changes.
 - a. The cell wall is surrounded by an organized capsule called a glycocalyx and/or by a loose gelatinous sheath called a slime layer.
 - b. In parasitic forms, these outer coverings protect the cell from host defenses.
- 7. Some prokaryotes move using flagella.
 - a. The **flagellum** is a filament composed of three strands of the protein flagellin wound in a helix and inserted into a hook that is anchored by a basal body.
 - b. The flagellum is capable of 360° rotation which causes the cell to spin and move forward.
- 8. Many prokaryotes adhere to surfaces by means of fimbriae.
 - a. **Fimbriae** are short hairlike filaments extending from the surface.
 - b. The fimbriae of *Neisseria gonorrhoeae* allow it to attach to host cells and cause gonorrhea.
- 9. Prokaryotic cells lack the membranous organelles of eukaryotic cells.
- 10. Various metabolic pathways are located on the plasma membrane.
- 11. A **nucleoid** is a dense area in prokaryotes where the chromosome is located; it is a single circular strand of DNA.
- 12. **Plasmids** are accessory rings of DNA found in some prokaryotes; they can be extracted and used as vectors to carry foreign DNA into bacteria during genetic engineering procedures.
- 13. Protein synthesis in prokaryotic cells is carried out by thousands of ribosomes, which are smaller than eukaryotic ribosomes.

C. Reproduction in Prokaryotes

- 1. Binary fission is a splitting of a parent cell into two daughter cells; it is asexual reproduction in prokaryotes.
 - a. A single circular chromosome replicates; the two copies separate as the cell enlarges.
 - b. Newly formed plasma membrane and cell wall separate the cell into two cells.
 - c. Mitosis, which involves formation of a spindle apparatus, does not occur in prokaryotes.
- 2. Sources of Genetic Variation
 - a. Because prokaryotes have a short generation time, mutations are generated and distributed through a population more rapidly.
 - b. Prokaryotes are haploid; mutations are therefore immediately subjected to natural selection.

- c. In bacteria, genetic recombination can occur in three ways.
 - Conjugation occurs when a bacterium passes DNA to a second bacterium through a tube (sex pilus) that temporarily joins two cells; this occurs only between bacteria in the same or closely related species.
 - Transformation involves bacteria taking up free pieces of DNA secreted by live bacteria or released by dead bacteria.
 - 3) In **transduction**, the bacteriophage transfers portions of bacterial DNA from one cell to another.
- d. Plasmids can carry genes for resistance to antibiotics and transfer them between bacteria by any of these processes.

D. Endospore Formation

- 1. Some bacteria form resistant **endospores** in response to unfavorable environmental conditions.
- 2. Some cytoplasm and the chromosome dehydrate and are encased by three heavy, protective spore
- 3. The rest of the bacterial cell deteriorates and the endospore is released.
- 4. Endospores survive in the harshest of environments: desert heat and dehydration, boiling temperatures, polar ice, and extreme ultraviolet radiation.
- 5. Endospores also survive very long periods of time; anthrax spores 1,300 years old can cause disease.
- 6. When environmental conditions are again suitable, the endospore absorbs water and grows out of spore coat
- 7. In a few hours, newly emerged cells become typical bacteria capable of reproducing by binary fission.
- 8. Endospore formation is not reproduction but it is a means of survival and dispersal to new locations.

E. Prokaryotic Nutrition

- 1. Bacteria differ in their need for, and tolerance of, oxygen (O₂).
 - a. **Obligate anaerobes** are unable to grow in the presence of O₂; this includes anaerobic bacteria that cause botulism, gas gangrene, and tetanus.
 - b. **Facultative anaerobes** are able to grow in either the presence or absence of gaseous O_2 .
 - c. Aerobic organisms (including animals and most prokaryotes) require a constant supply of O₂ to carry out cellular respiration.

2. Autotrophic Prokaryotes

- a. **Photoautotrophs** are photosynthetic and use light energy to assemble the organic molecules they require
 - 1) Primitive photosynthesizing bacteria (e.g., green sulfur bacteria and purple sulfur bacteria) use only photosystem I that contains **bacteriochlorophyll**; they do not give off O₂ because hydrogen sulfide (H₂S) is used as an electron and H⁺ donor instead of H₂O.
 - 2) Advanced photosynthesizing bacteria (e.g., cyanobacteria) use both photosystem I and II that contain the same types of chlorophylls found in plants; they do give off O₂ because H₂O is used as an electron and H⁺ donor.
- b. **Chemoautotrophs** make organic molecules by using energy derived from the oxidation of inorganic compounds in the environment.
 - 1) Deep ocean hydrothermal vents provide H₂S to form of chemosynthetic bacteria.
 - 2) The methanogens are chemosynthetic bacteria that produce methane (CH₄) from hydrogen gas and CO₂; ATP synthesis and CO₂ reduction are linked to this reaction and methanogens can decompose animal wastes to produce electricity as an ecological friendly energy source.
 - 3) Nitrifying bacteria oxidize ammonia (NH₃) to nitrites (NO₂) and nitrites to nitrates (NO₃).

4. Heterotrophic Prokaryotes

- a. Most free-living bacteria are **chemoheterotrophs** that take in pre-formed organic nutrients.
- b. As **aerobic saprotrophs**, there is probably no natural organic molecule that cannot be broken down by some prokaryotic species.
- e. Decomposers are critical in recycling materials in the ecosystem; they decomposing dead organic matter and make it available to photosynthesizers.

5. Commercial Uses

- a. Prokaryotes produce chemicals including ethyl alcohol, acetic acid, butyl alcohol, and acetones.
- b. Prokaryotic action produces butter, cheese, sauerkraut, rubber, cotton, silk, coffee and cocoa.
- c. Antibiotics are produced by some bacteria.

- 6. Some chemoheterotrophs are **symbiotic**, forming intimate, long-term relationships with members of other species; includes mutualistic, commensalistic, and parasitic relationships.
 - a. Mutualistic nitrogen-fixing *Rhizobium* bacteria live in nodules on roots of soybean, clover, and alfalfa where they reduce N₂ to ammonia for their host; bacteria use some of a plant's photosynthetically produced organic molecules.
 - b. Mutualistic bacteria that live in the intestines of humans benefit from undigested material and release vitamins K and B_{12} , which we use to produce blood components.
 - c. In the stomachs of cows and goats, mutualistic prokaryotes digest cellulose.
 - d. Commensalistic bacteria live in or on organisms of other species and cause them no harm.
 - e. Parasitic bacteria are responsible for a wide variety of infectious plant, animal and human diseases.

21.3 The Bacteria

A. Gram Stain and Shape

- 1. The Gram stain procedure (developed in the late 1880s by Hans Christian Gram) differentiates bacteria.
 - a. Gram-positive bacteria stain purple, whereas Gram-negative bacteria stain pink.
 - b. This difference is dependent on the thick or thin (respectively) peptidoglycan cell wall.
- 2. Bacteria and archaea have three basic shapes.
 - a. A **spirillum** is spiral-shaped.
 - b. A **bacillus** is an elongated or rod-shaped bacteria.
 - c. Coccus bacteria are spherical.
 - d. Cocci and bacilli tend to form clusters and chains of a length typical of the particular species.

B. Types of Bacteria

- 1. Earlier classification of bacteria was based on metabolism, nutrition, etc.
- 2. Work by Carl Woese since 1980 has revised bacterial taxonomy based on similarity of 16S rRNA.
- 3. Twelve groups are now recognized based on bacterial 16S ribosomal RNA sequences.

C. Cvanobacteria

- 1. **Cyanobacteria** are Gram-negative bacteria with a number of unusual traits.
- 2. They photosynthesize in same manner as plants; are responsible for introducing O₂ into the primitive atmosphere.
- 3. They were formerly mistaken for eukaryotes and classified with algae.
- 4. They have pigments that mask chlorophyll; they are not only blue-green but also red, yellow, brown, or black.
- 5. They are relatively large (1–50 μ m in width).
- 6. They can be unicellular, colonial, or filamentous.
- 7. Some move by gliding or oscillating.
- 8. Some possess heterocysts, thick-walled cells without a nucleoid, where nitrogen fixation occurs.
- 9. Cyanobacteria are common in fresh water, soil, on moist surfaces, and in harsh habitats (e.g., hot springs).
- 10. Some species are symbiotic with other organisms (e.g., liverworts, ferns, and corals).
- 11. **Lichens** are a symbiotic relationship where the cyanobacteria provide organic nutrients to the fungus and the fungus protects and supplies inorganic nutrients.
- 12. Cyanobacteria were probably the first colonizers of land during evolution.
- 13. Cyanobacteria "bloom" when nitrates and phosphates are released as wastes into water; when they die off, decomposing bacteria use up the oxygen and cause fish kills.

21.4 The Archaea

A. Relationship to Domain Bacteria and Domain Eukarya

- 1. **Archaea** are prokaryotes with molecular characteristics that distinguish them from bacteria and eukaryotes; their rRNA sequence is different from rRNA in bacteria.
- 2. Because archaea and some bacteria are both found in extreme environments (hot springs, thermal vents, salt basins), they may have diverged from a common ancestor.
- 3. Later, the eukarya split from the archaea; archaea and eukarya share some ribosomal proteins not found in bacteria; initiate transcription in the same manner, and have similar types of tRNAs.

B. Structure and Function

- 1. Archaea have unusual lipids in their plasma membranes that allow them to function at high temperatures: glycerol linked to hydrocarbons rather than fatty acids.
- 2. Cell walls of archaea do not contain the peptidoglycan found in bacterial cell walls.
- 3. Only some methanogens have the ability to form methane.
- 4. Most are chemoautotrophs; none are photosynthetic; this suggests chemoautotrophy evolved first.
- 5. Some are mutualistic or commensalistic but none are parasitic—none are known to cause disease.

C. Types of Archaea

- 1. Methanogens live under anaerobic environments (e.g., marshes) where they produce methane.
 - a. Methane is produced from hydrogen gas and carbon dioxide and is coupled to formation of ATP.
 - b. Methane released to the atmosphere contributes to the greenhouse effect.
 - c. About 65% of methane found in our atmosphere is produced by methanogenic archaea.
- 2. Halophiles require high salt concentrations (e.g., Great Salt Lake).
 - a. Their proteins have unique chloride pumps that use halorhodopsin to synthesize ATP in presence of light.
 - b. Usually they require 12–15% salt concentrations; ocean is only 3.5% salt.
- 3. Thermoacidophiles live under hot, acidic environments (e.g., geysers).
 - a. They survive best at temperatures above 80°C; some survive above boiling!
 - b. Metabolism of sulfides forms acidic sulfates; these bacteria grow best at pH of 1 to 2.