CHAPTER 26 NUTRITION AND TRANSPORT IN PLANTS

Chapter Outline

26.1 Plant Nutrition and Soil

A. Early Views

- 1. Ancient Greeks considered plants "soil-eaters" that converted soil into plant tissue.
- 2. The 17th Century Dutchman Jean-Baptiste Van Helmont conducted an experiment.
 - a. He planted a five pound young willow tree in a pot with 200 pounds of soil.
 - b. After five years of watering, the tree weighed 170 pounds but only a few ounces of soil was missing.
 - c. He concluded the increase in tree weight came from water; he was unaware of substances in air.

B. Essential Inorganic Nutrients

- 1. Essential inorganic nutrients (e.g., carbon, hydrogen, oxygen) comprise 96% of plant dry weight.
 - a. Carbon dioxide is the source of carbon for a plant.
 - b. Water is the source of hydrogen.
 - c. Oxygen can come from either atmospheric oxygen, carbon dioxide, or water.
- 2. **Essential nutrient**s must fulfill the following criteria.
 - a. They have an identifiable nutritional role.
 - b. No other element can substitute and fulfill the same role.
 - c. A deficiency of the element causes the plant to die.
- 3. These elements are divided into **macronutrients** and **micronutrients** by concentration in plant tissue.
- 4. **Beneficial nutrients** are elements required for or improving growth of a particular plant.
 - a. Horsetails require silicon as a mineral nutrient.
 - b. Sugar beets show better growth in the presence of sodium.
 - c. Soybeans use nickel when root nodules are present.

C. Determination of Essential Nutrients

- 1. When a plant is burned, most mineral elements (except for nitrogen) remain in the ash.
- 2. **Hydroponics** is the preferred method for determining plant mineral requirements.
 - a. Hydroponics is cultivation of plants in water.
 - b. Nutrient requirements of plants are determined by omitting a mineral and observing the effects.
 - c. If plant growth suffers, it can be concluded that the omitted mineral is a required nutrient.
 - d. This works for macronutrients but impurities make micronutrient measurement difficult.

D. Soil Formation

- 1. Soil formation begins with weathering of rock by freezing, glacier flow, stream flow, and chemicals.
- 2. Lichens and mosses grow on barren rock and trap particles and leave decaying tissues.
- 3. Decayed organic matter (humus) takes time to accumulate; its acidity leaches minerals from rocks.
- 4. Depending on parent material and weathering, a centimeter of soil may develop within 15 years.

E. The Nutritional Function of Soil

- 1. Soil consists of soil particles, decaying organic matter, living organisms, air and water.
- 2. The best soil includes particles of different sizes; this provides critical air spaces.
- 3. Soil Particles
 - a. Particles vary by size.
 - 1) Sand particles are larger: 0.05–2.0 mm in diameter.
 - 2) Sand particles are medium sized: 0.002–0.05 mm in diameter.
 - 3) Clay particles are smallest: below 0.002 mm in diameter.
 - b. Sandy soils lose water too readily; clay packs tight to hold water and clumps in your hand.
 - c. Clay particles are negatively charged and attract positively charged ions (e.g., calcium [Ca²⁺] and potassium [K⁺]).

- d. In acidic soils, hydrogen ions replace positively charged nutrients and the nutrient ions float free and are leached; this is why acid rain kills trees.
- e. Clay cannot retain negatively charged NO₃⁻, and the nitrogen content of clay soil is low.
- f. Loam (a mixture of the three soil particles) retains water and nutrients; roots take up oxygen in the air spaces.

4. Humus

- a. A mixture of 10–20% humus mixed with a top layer of soil particles is best for plants.
- b. Humus keeps soil loose and crumbly, decreases runoff and aerates soil.
- c. Humus is acidic and retains positively charged minerals for plants to use later.
- d. Bacteria and fungi break down organic matter in humus and return inorganic nutrients to plants.

5. Living Organisms

- a. Small plants play a major role in formation of soil from rock and in succession.
- b. Roots of larger plants penetrate the soil and weather rocks.
- c. Larger moles and badgers and smaller earthworms help turn over the soil.
- d. Soil animals, from mites to millipedes help break down leaves and other plant remains.
- e. Fungi, protozoa, algae and bacteria complete decomposition.
- f. Soil bacteria make nitrate available to plants.
- g. Some soil organisms (roundworms and insects) are crop pests that feed on roots.

6. Soil Profiles

- a. The A horizon is the uppermost topsoil layer that contains litter and humus.
- b. The B horizon lacks organic matter but contains inorganic nutrients leached from the A horizon.
- c. The C horizon is weathered and shattered bedrock.
- d. Soil profiles vary by parent material, climate and ecosystem.
- e. Grassland soils have deep A horizons from turnover of decaying grasses and lack of leaching.
- f. Forest soils have thinner A horizons but enough inorganic nutrients for tree root growth.
- g. Tropical rain forest A horizons are shallow due to rapid decomposition; the B horizon is deeper due to extensive leaching.

7. Soil Erosion

- a. Erosion is caused by water or wind carrying away soil.
- b. Erosion removes 25 billion tons of topsoil worldwide annually.
- c. Deforestation and desertification contribute to erosion.
- d. U.S. farmlands lose soil faster than it is formed on one-third of cropland.

26.2 Uptake of Water and Minerals

A. Pathways

- 1. Minerals follow the path of water uptake.
 - a. Some mineral ions diffuse in between the cells.
 - b. Because of the impermeable **Casparian strip**, water must eventually enter the cytoplasm of endodermal cells.
 - c. Water can move directly into the cytoplasm of **root hair** epidermal cells and is transported across the cortex and endodermis of a root.
 - d. In contrast to water, minerals are actively taken up by plant cells.
 - e. Mineral nutrient concentration in roots may be 10,000 times more than in surrounding soil.
 - f. During transport throughout a plant, minerals can exit xylem and enter cells that require them.
- 2. Mineral ions cross plasma membranes by a chemiosmotic mechanism.
 - a. Plants absorb minerals in ionic form: nitrate (NO_3^-) , phosphate (HPO_4^-) , and potassium ions (K^+) ; all have difficulty crossing a charged plasma membrane.
 - b. It has long been known plants expend energy to actively take up and concentrate mineral ions.
 - c. A plasma membrane pump called a proton pump hydrolyzes ATP to transport H⁺ ions out of cell; this sets up an electrochemical gradient that causes positive ions to flow into cells.
 - d. Negative ions are carried across the plasma membrane in conjunction with H⁺ ions as H⁺ ions diffuse down their concentration gradient.

- B. Adaptations of Roots for Mineral Uptake
 - 1. Two symbiotic relationships are known to assist roots in acquiring nutrients.
 - 2. Legumes have **nodules** infected with the bacterium *Rhizobium*.
 - a. Plants cannot use atmospheric nitrogen because they lack enzymes to break the $N \equiv N$ bond.
 - b. *Rhizobium* makes nitrogen compounds available to plants in exchange for carbohydrates.
 - c. Bacteria live in **root nodules**—structures on plant roots that contain nitrogen-fixing bacteria.
 - d. Rhizobial bacteria reduce atmospheric nitrogen (N_2) to ammonium (NH_4^+) (nitrogen-fixation).
 - e. Other plants have a relationship with free-living, nitrogen-fixing microorganisms in soil.
 - 3. Most plants have **mycorrhizas**; those lacking mycorrhizas are limited in where they can grow.
 - a. Mycorrhizae are a mutualistic symbiotic relationship between soil fungi and plant roots.
 - b. The fungal hyphae may enter the cortex of roots but do not enter plant cells.
 - c. Ectomycorrhizae form a mantle exterior to the root, and they grow between cell walls.
 - d. Fungus increases the surface area for mineral and water uptake and breaks down organic matter.
 - e. In return the root furnishes the fungus with sugars and amino acids.
 - f. Orchid seeds are small with limited nutrients; they germinate only when invaded by mycorrhizae.
 - g. Nonphotosynthetic plants (e.g., Indian pipe) use mycorrhizae to extract nutrients from nearby trees.
 - 4. Some plants have poorly developed roots or no roots; other mechanisms supply minerals and water.
 - a. Epiphytes take nourishment from air; their attachment to other plants gives them support.
 - b. Parasitic plants (e.g., dodders, broomrapes, pinedrops) send out **haustoria** (rootlike projections) that grow into host and tap into xylem and phloem of host.
 - c. Venus's-flytrap and sundew obtains nitrogen and minerals as leaves capture and digest insects.

26.3 Transport Mechanisms in Plants

A. Transport Tissues

- 1. Vascular plants have transport tissues as an adaptation to living on land.
- 2. **Xylem** vascular tissue passively conducts water and mineral solutes from roots to leaves; it contains two types of conducting cells: tracheids and vessel elements.

a. Tracheids:

- 1) are hollow, nonliving cells with tapered overlapping ends;
- 2) are thinner and longer than vessel elements; and
- 3) water crosses the end and sidewalls because of pits in secondary cell wall.

b. Vessel elements:

- 1) are hollow, nonliving cells that lack tapered ends;
- 2) are wider and shorter than tracheids;
- 3) lack transverse end walls; and
- 4) form a continuous pipeline for water and mineral transport.
- 3. **Phloem** is vascular tissue that conducts organic solutes in plants mainly from leaves to roots; contains sieve-tube cells and companion cells.
 - a. **Sieve-tube cells** lack a nucleus, are arranged end to end and have channels in end walls (thus, the name "sieve-tube") through which plasmodesmata extend from one cell to another.
 - b. **Companion cells** connect to sieve-tube cells by numerous plasmodesmata, are smaller and more generalized than sieve-tube cells; they have a nucleus.
- 4. These transport systems rely on the mechanical properties of water.
 - a. **Diffusion** moves molecules from higher to lower concentrations.
 - b. Water potential considers both water pressure and osmotic pressure.
- 5. They also rely on the chemical properties of water: polarity of water and hydrogen bonding.

B. The Concept of Water Potential

- 1. Water flows from a region of higher **water potential** (the potential energy of water) to a region of lower **water potential**.
- 2. **Water potential** is a measure of the capacity to release or take up water; in cells, water potential includes the following:
 - a. **Pressure potential**, the effect that pressure has on water potential; water will move from a region of higher pressure to a region of lower pressure; and
 - b. **Osmotic potential**, the effect that solutes have on water potential; water tends to move by osmosis from an area of lower solute concentration to area of higher solute concentration.

- 3. Water flows by osmosis into a plant cell with greater solute concentration than a surrounding solution.
 - a. As water enters, pressure increases inside the cell; the strong plant cell wall allows water pressure to build up.
 - b. Pressure potential inside the cell increases and balances the osmotic potential outside cell; water stops entering.
 - c. **Turgor pressure** is the pressure potential that increases due to process of osmosis; it is critical to plants, since plants depend on it to maintain the turgidity of their bodies.
 - d. Wilted plant cells have insufficient turgor pressure and the plant droops.

C. Water Transport

- 1. Movement of water and minerals in a plant involves entry into roots, xylem, and leaves.
- 2. Water and minerals enter root cells before they reach xylem by the two routes already described.
- 3. Water entering root cells creates a positive pressure called root pressure.
 - a. **Root pressure** (primarily at night) tends to push xylem sap upward in a plant.
 - b. **Guttation** is the appearance of drops of water along the edge of leaves, as a result of water being forced out of leaf vein endings; it is the result of root pressure.
 - c. Root pressure is not a sufficient mechanism for water to rise to the tops of trees.

D. Cohesion-Tension Model of Xylem Transport

- Water and dissolved minerals must be transported upward from roots to xylem, perhaps as high as 90
 meters.
- 2. The **cohesion-tension model** states that transpiration creates a tension (i.e., a negative pressure) that pulls water upward in xylem.
- 3. Water molecules are *cohesive* with one another, *adhesive* with xylem walls.
- 4. **Transpiration** is a plant's loss of water to atmosphere through evaporation at leaf stomata.
- 5. **Cohesion** is the tendency of water molecules to cling together due to their forming hydrogen bonds.
- 6. **Adhesion** is the ability of water (a polar molecule) to interact with molecules comprising the walls of xylem vessels; adhesion gives a water column extra strength and prevents it from slipping back down.
- 7. In daytime, the negative water potential created by transpiration extends from leaves to roots; the water column must be continuous.
- 8. If a water column within xylem is broken by cutting a stem, the water column will drop back down the xylem vessel away from the site of breakage, making it more difficult for conduction to occur.
- 9. At least 90% of the water taken up by roots is lost through stomata by transpiration.
- 10. With plenty of water, stomata will remain open, allowing CO₂ to enter the leaf and photosynthesis to occur.
- 11. Transpiration exerts a driving force or **tension** that draws the water column up in vessels.
- 12. Under water stress, more water is lost through a leaf than can be brought up and the stomata close.
- 13. Photosynthesis requires CO₂ to enter the leaf; there must be sufficient water so stomata can remain open and allow CO₂ to enter.

E. Opening and Closing of Stomata

- 1. Each **stoma** has two **guard cells** with a pore between them.
- 2. Stomata open from turgor pressure when guard cells take up water; when they lose water, turgor pressure decreases and stomata close.
- 3. Guard cells are attached to each other at their ends; the inner walls are thicker than outer walls.
- 4. Radial expansion is prevented by cellulose microfibrils in the walls but outer walls can expand lengthwise.
- 5. As they take up water, they buckle out, thereby creating an opening between cells.
- 6. Since 1968, it has been known that when stomata open, there is accumulation of K^+ ions in guard cells.
- 7. A proton pump run by breakdown of ATP to ADP and P transports H^+ outside the cell; this establishes an electrochemical gradient allowing K^+ to enter by way of a channel protein.
- 8. The blue-light component of sunlight is a signal that can cause stomata to open.
 - a. There is evidence that flavin pigments absorb blue light.
 - b. This pigment sets in motion a cytoplasmic response activating the proton pump that causes K⁺ ions to accumulate in guard cells.
- 9. Evidence suggests a receptor in the plasma membrane of guard cells brings about inactivation of the proton pump when CO₂ concentration rises, as happens when photosynthesis ceases.

- 10. Abscisic acid (ABA) produced by cells in wilting leaves, also causes stomata to close; photosynthesis cannot occur but water is conserved.
- 11. In plants kept in dark, stomata open and close on a 24-hour basis as if responding to sunlight in daytime and the absence of sunlight at night; some sort of internal **biological clock** must keep time.

F. Organic Nutrient Transport

- 1. Marcello Malpighi (1679) suggested bark transferred sugars from leaves to roots.
 - a. He observed the results of removing a strip of bark from a tree (girdling).
 - b. Bark swells just above the cut and sugar accumulates in the swollen tissue.
 - c. Today, we know phloem was removed but xylem remained; therefore, phloem does transport sugars.
- 2. Radioactive tracer studies using ¹⁴C confirmed phloem transports organic nutrients.
 - a. When ¹⁴C-labeled carbon is supplied to mature leaves, radioactively labeled sugar moves to roots.
 - b. Similar studies confirm phloem transports amino acids, hormones, and mineral ions.
- Aphids Used in Study
 - a. It is difficult to take samples of sap from just the phloem cells without injuring the phloem.
 - b. Aphids (small insects) drive their mouth stylets into a sieve-tube cell; then samples are easily taken.
 - c. The aphid body is cut off; the stylet becomes a small needle from which phloem is collected.
 - d. Such research indicates sap can move through phloem from 60–100 cm per hour or more.

G. Pressure-Flow Model of Phloem Transport

- The **pressure-flow model** explains the transport of sap through sieve tubes by a positive pressure potential.
- 2. The buildup of water creates a positive **pressure potential** within the sieve tubes that moves water and sucrose to a sink (e.g., at the roots).
- 3. Pressure exists from the leaves to the roots; at the roots, sucrose is transported out and water also flows through due to the pressure.
- 4. Consequently, this pressure gradient causes a flow of water from leaves to roots.
- 5. The conducting cells of phloem are sieve tubes lined end to end.
- 6. Cytoplasm extends through the sieve plates of adjoining cells to form a continuous tube system.
- 7. During the growing season, leaves produce sugar.
- 8. Sucrose is actively transported into phloem by an electrochemical gradient established by a H⁺ pump.
- 9. Water flows passively into sieve tubes by osmosis.
- 10. A sink can be at the roots or any other part of the plant that requires nutrients.
- 11. Because phloem sap flows from source to sink, sap can move any direction along phloem.