CHAPTER 28 REPRODUCTION IN PLANTS

Chapter Outline

28.1 Reproductive Strategies

A. Life Cycles

- 1. In contrast to animals with one type of adult generation, flowering plants exhibit an **alternation of generations life cycle** that includes a diploid and a haploid generation.
- 2. The **sporophyte** is a diploid generation in an alternation of generations life cycle.
 - a. A sporophyte produces haploid spores by meiotic division.
 - b. Spores develop into a haploid gametophyte.
- 3. A **gametophyte** is a haploid generation in an alternation of generations life cycle.
 - a. A gametophyte produces haploid gametes by mitotic division; gametes fuse to form diploid zygote.
 - b. The zygote undergoes mitotic cell division to develop into the sporophyte.
- 4. A flower produces two types of spores, microspores and megaspores.
 - a. A **microspore** is a plant spore that develops into a microgametophyte.
 - 1) The **male gametophyte** is a pollen grain; wind or animals carry it to megagametophyte.
 - 2) When mature, its nonflagellated sperm cells travel down pollen tube to megagametophyte.
 - b. A **megaspore** is a plant spore that develops into a **female gametophyte**, the embryo sac which remains within a sporophyte plant.
- 5. In flowering plants, the diploid sporophyte is **dominant** (longer lasting); it is what we commonly recognize.
- 6. The sporophyte is the generation that contains vascular tissue and has other adaptations suitable to living on land, including production of flowers.
- 7. Flowers are unique to angiosperms; aside from producing the spores and protecting gametophytes, flowers attract pollinators and produce fruits to enclose the seeds.

B. Flowers

- 1. A **flower** is the reproductive organ of a flowering plant; it develops in response to environmental signals.
- 2. The shoot apical meristem stops forming leaves to form flowers; axillary buds can become flowers directly.
- 3. Monocot flower parts are in threes or multiples; eudicot flower parts are in fours or fives or multiples.
- 4. **Sepals** are leaflike, usually green; this outermost whorl protects the bud as a flower develops within.
- 5. **Petals** are interior to sepals; coloration accounts for attractiveness of many flowers.
 - a. The size, shape, and color of a flower are attractive to a specific pollinator.
 - b. Wind-pollinated flowers often have no petals at all.
- 6. Grouped about a pistil are **stamens**, stalked structures that have two parts.
 - a. The **anther** is a saclike container within which pollen grains develop.
 - b. A **filament** is a slender stalk that supports the anther.
- 7. The **carpel** is the vaselike structure located at the center of a flower; carpels usually has three parts.
 - a. The **stigma** is an enlarged sticky knob on end of a style; stigma serves to receive pollen grains.
 - b. The **style** is a slender stalk that connects stigma with the **ovary**.
 - c. The **ovary** is an enlarged base of a carpel that contains a number of **ovules**.
- 8. Not all flowers have sepals, petals, stamens, and a pistil.
 - a. Complete flowers have sepals, petals, stamens, and a pistil; incomplete flowers do not.
 - b. **Bisexual flowers** have both stamens and a pistil.
 - c. Staminate flowers have only stamens.
 - d. Carpellate flowers have only carpels.
- 9. If staminate and carpellate flowers are on same plant, the plant is **monoecious.**
- 10. If staminate and carpellate flowers are on different plants, the plant is **dioecious**.

C. From Spores to Gametes

1. In plants, the sporophyte produces haploid spores by meiosis; in animals, meiosis produces gametes.

- 2. Flowering plants are heterosporous, producing microspores and megaspores that become spermbearing pollen grains and egg-bearing embryo sacs, respectively.
- 3. Production of the Male Gametophyte
 - a. Microspores are produced in the anthers of flowers.
 - b. An anther has four pollen sacs; each contains many microsporocytes (microspore mother cells).
 - c. Microsporocytes undergo meiotic cell division to produce four haploid **microspores**.
 - d. The haploid nucleus then divides mitotically forming two cells enclosed in a finely sculptured wall; this is a **pollen grain** containing a tube cell and a generative cell.
 - e. The larger tube cell will eventually form the pollen tube.
 - f. Eventually each generative cell will divide mitotically to form two sperm.
 - g. One both events have occurred, the pollen grain is the mature male gametophyte.

5. Pollination

- a. Walls separating the pollen sacs in the anther break down when the pollen grains are to be released.
- b. The shape and pattern of pollen grains is distinctive and allows close identification.
- c. Pollen grains have strong walls resistant to chemicals and also become readily fossilized.
- d. **Self-pollination** is transfer of pollen from anther to stigma of the same plant.
- e. **Cross pollination** is transfer of pollen from anther of one plant to stigma of another plant; plants often have mechanisms that promote cross pollination such as the carpel only maturing after anthers have released their pollen.
- f. Using a pollinator to carry pollen from flower to flower of only one species increases the efficiency.
- g. Secretion of nectar is one way to attract certain pollinators, and they may be adapted to reach only one type of flower.

3. Production of the Female Gametophyte

- a. The ovary contains one or more ovules.
- b. An ovule is covered by parenchymal cells except for one small opening, the micropyle.
- c. One parenchyma cell enlarges to become a **megasporocyte** that undergoes meiotic cell division to produce four haploid **megaspores**.
- d. Three megaspores are nonfunctional; one megaspore nucleus divides mitotically into eight nuclei in a female gametophyte.
- e. When cell walls form around the nuclei later, there are seven cells, one of which is binucleate.
- f. The female gametophyte (or embryo sac) consists of seven cells:
 - 1) one egg cell,
 - 2) two synergid cells,
 - 3) one central cell with two polar nuclei, and
 - 4) three antipodal cells.

4. Fertilization

- a. When a pollen grain lands on a stigma, it germinates, forming a pollen tube.
- b. A germinated pollen grain, containing a tube cell and two sperm, is the mature **male gametophyte**.
- c. As a pollen tube grows, it passes between the cells of the stigma and the style to reach the micropyle of an ovule.
- d. **Double fertilization** occurs after the release of both sperm cells into the ovule.
- e. One sperm nucleus unites with the egg nucleus, forming a 2n zygote.
- f. The other sperm nucleus migrates and unites with the polar nuclei of the central cell, forming a 3n endosperm nucleus.
- g. The zygote divides mitotically to become the **embryo**; the endosperm nucleus divides mitotically to become the **endosperm**.
- h. The **embryo**, in most plants, is a young sporophyte.
- i. The **endosperm** is tissue that will nourish the embryo and seedling as they undergo development.

28.2 Seed Development

A. Stages

- 1. Development of the seed is the next event.
- 2. Plant growth and development involves cell division, cell elongation, and differentiation of cells into tissues and then organs.

B. Development of the Eudicot Embryo

- 1. Immediately after double fertilization, the endosperm nucleus divides to produce a mass of endosperm surrounding the embryo.
- 2. The single-celled zygote also divides, but asymmetrically, forming two parts: **embryo** and **suspensor**, which anchors the embryo and transfers nutrients to it from the sporophyte plant.
- 3. Globular Stage
 - a. During this stage, the proembryo is a ball of cells.
 - b. The root-shoot axis is established; cells near the suspensor will become a root, those at the opposite end will become a shoot.
 - c. The outermost cells become dermal tissue; by dividing with the cell plate perpendicular to the surface, they produce one outer cell layer.
 - d. Dermal tissue prevents dessication and also has stomata that regulate gas exchange.
- 4. The Heart-shaped and Torpedo-shaped Embryos
 - a. The embryo has a heart-shape when the cotyledons appear; it then grows to a torpedo shape.
 - b. With elongation, the root and shoot apical meristems are distinguishable.
 - c. Ground meristem responsible for most of the interior of the embryo is also present now.

5. The Mature Embryo

- a. After differentiation into embryo and suspensor, one or two **cotyledons** develop.
- b. The embryo continues to differentiate into three parts.
- c. The **epicotyl** is between the cotyledons and first leaves; it contributes to shoot development.
- d. The **hypocotyl** is below the cotyledon and contributes to stem development.
- e. The **radicle** is below the hypocotyl and contributes to root development.
- f. The cotyledons are quite noticeable in a eudicot embryo, and may fold over.

C. Monocots Versus Eudicots

- 1. Monocot Embryo Only Has One Cotyledon
 - a. In monocots, the cotyledon rarely stores food.
 - b. It absorbs food molecules from the endosperm and passes them to embryo.
- 2. The Eudicot Embryo Has Two Cotyledons
 - a. During development of a eudicot embryo, cotyledons usually store the nutrients the embryo uses.
 - b. The endosperm seemingly disappears as the nutrients are consumed.

28.3 Fruit Types and Seed Dispersal

A. Fruits

- 1. A **fruit** is a mature ovary that encloses seeds; sometimes they retain other flower parts.
- 2. Fruits serve to protect and disperse offspring.
- 3. The fruit protects the peach seed well but makes germination difficult; the peas escape easily but are lightly protected.

B. Simple Fruits

- 1. Simple fruit develops from a single carpel or several united carpels of a compound ovary.
- 2. A pea pod breaks open on both sides and releases seeds; legumes are fruits that split to two sides when mature.
- 3. Legumes and cereal grains are examples of dry fruits; such fruits are mistaken for seeds because a dry pericarp adheres to the seed within.
- 4. For plants to be widely distributed, seeds have to be dispersed away from the parent plant.
 - a. Hooks and spines of clover, bur, and cocklebur attach to the fur of animals.
 - b. Woolly hairs, plumes, and wings disperse by wind.
- 5. A **fleshy fruit** has a fleshy pericarp (e.g., peach, plum, olive, grape, tomato, apple, and pear).
 - a. Birds and mammals eat fruits, including seeds, and defecate them at a distance.
 - b. Squirrels and other animals gather seeds and fruits and bury them some distance away.
- 6. An apple is an example of an accessory fruit; the bulk of the fruit is not from the ovary but from the receptacle; a cross-section shows it came from a compound ovary with several chambers.

C. Compound Fruits

- 1. A **compound fruit** develops from several individual ovaries.
- 2. An **aggregate fruit** develops from ovaries from a single flower (e.g., blackberry).
- 3. An aggregate fruit where each ovary becomes a one-seeded fruit is called an **achene** (e.g., strawberry).
- 4. A multiple fruit develops from ovaries from separate flowers fused together (e.g., pineapple).

D. Seed Germination

- 1. Seed germination occurs when growth and metabolic activity resume.
- 2. The embryo forms with both shoot and root apical meristem enclosed in a seed.
 - 1) Protoderm gives rise to the epidermis.
 - 2) Ground meristem produces the cells of the cortex and pith.
 - 3) Procambium produces vascular tissue.
- 3. Seeds retain their viability for varying times: maples seeds only last a week while lotus seeds are viable for hundreds of years.
- 4. Some seeds do not germinate until they have been dormant for a period of time.
 - a. Seed **dormancy** is a time during which no growth occurs even though conditions are favorable.
 - b. In temperate zones, seeds may have to be exposed to cold weather before dormancy is broken.
 - c. In deserts, germination requires rain; this ensures that seeds do not germinate until a favorable growing season has arrived.
- 5. **Germination** has environmental requirements.
 - a. Oxygen must be available for increased metabolism.
 - b. Adequate temperature allow enzymes to act.
 - c. Adequate moisture hydrates cells.
 - d. Light may also be required.
- 6. Respiration and metabolism continue throughout dormancy but at a reduced level.
- 7. Some seeds have a surface coating that attracts water; imbibing plant cells can swell dramatically.
- 8. Seeds that must be planted near the surface probably require light (e.g., lettuce).
- 9. When a seedling grows in the dark, it becomes long and spindly (etiolated); phytochrome induces normal growth in light.
- 10. Germination in Eudicots and Monocots
 - a. Prior to germination, a eudicot embryo consists of the following:
 - two cotyledons that supply nutrients to the embryo and seedling, but soon shrivel and disappear;
 - 2) a **plumule**—a rudimentary plant consists of an epicotyl bearing young leaves;
 - 3) the hypocotyl, which becomes the stem; and
 - 4) the radicle, which develops into roots.
 - b. As dicot seedling emerges, the shoot is hook-shaped to protect the delicate plumule.
 - c. In monocots, the endosperm is the food-storage tissue and the cotyledon does not have a storage role.
 - d. A monocot "seed" such as a corn kernel is actually the fruit and the outer covering is the pericarp.
 - e. The plumule and radicle are enclosed in protective sheaths, the **coleoptile** and the **coleoptile** are respectively.
 - f. The plumule and radicle burst through these coverings when germination occurs.

28.4 Asexual Reproduction in Plants

- A. Means of Asexual Propagation
 - 1. Plants contain nondifferentiated meristem tissue and often reproduce asexually by vegetative propagation.
 - 2. In asexual reproduction, offspring arise from a single parent and inherit genes of that parent only.
 - 3. **Vegetative propagation** utilizes the meristematic tissue of a parent plant.
 - a. Violet plants grow from nodes of rhizomes.
 - b. The nodes of stolons will produce strawberry plants.
 - c. Each eye of a potato plant tuber is a bud that produces a new plant.
 - d. Sweet potatoes can be propagated from their modified roots.
 - e. Many trees can be started from small "suckers."
 - 4. Stem cuttings have long been used to propagate a wide array of plants (e.g., sugarcane, pineapple).
 - 5. The discovery that auxin will cause roots to develop has expanded our ability to use stem cuttings.

- B. Tissue Culture of Plants
 - 1. In 1902, German botanist Gottleib Haberlandt suggested producing entire plants from tissues.
 - 2. **Tissue culture** is process of growing tissue artificially in a liquid or solid **culture** medium.
 - 3. Haberlandt stated plant cells were **totipotent**; each cell has full genetic potential of the organism.
 - 4. In 1958, Cornell botanist F. C. Steward grew a complete carrot plant from a tiny piece of phloem.
 - 5. When cultured cells were provided with sugars, minerals, vitamins, and cytokinin from coconut milk, the undifferentiated cells divide and initially formed a **callus**, an aggregation of undifferentiated cells.
 - 6. The callus then differentiated into shoot and roots and developed into a complete plant.
 - 7. **Micropropagation** is a commercial method of producing thousands to millions of identical seedlings, by tissue culture in limited space.
 - 8. **Meristem culture** micropropagates many new shoots from a single shoot apex culture in a medium with correct proportions of auxin and cytokinin.
 - a. Since the shoots are genetically identical, the adult plants that develop are clonal plants.
 - b. Clonal plants have the same genome and display the same traits.
 - c. Meristem culture generates meristem that is virus-free; the plants produced are also virus-free.
 - 9. Entire plants can be grown from single plant cells.
 - a. Enzymes can digest cell walls and produce naked plant cells called **protoplasts**.
 - b. Protoplasts regenerate a cell wall and begin cell division.
 - c. Clumps of cells can be manipulated to form **somatic embryos**.
 - d. Somatic embryos encapsulated in a hydrated gel ("artificial seeds") can be shipped anywhere.
 - e. Somatic embryos are cultured by the millions in large tanks (bioreactors).
 - f. Plants generated from somatic embryos vary because of mutations; these **somaclonal** variations may produce new traits.
 - 10. **Anther culture** cultures mature anthers in a medium of vitamins and growth regulators.
 - a. The haploid tube cells within a pollen grain divide, producing **proembryos** made of 20 to 40 cells.
 - b. Finally the pollen grains rupture, releasing haploid embryos.
 - 1) The researcher can then generate a haploid plant.
 - 2) Chemical agents are added to encourage chromosomal doubling; the resulting plants are diploid and homozygous for all alleles.
 - 3) This produces plants that express recessive alleles.
 - 11. **Cell suspension culture** uses rapidly growing calluses cut into small pieces and shaken in a liquid nutrient medium.
 - a. Single cells or small clumps form a suspension of cells; all produce the same chemicals as the entire plant.
 - b. This technique is a more efficient way of producing chemicals used in drugs, cosmetics, and agricultural applications than farming plants simply to acquire chemicals they produce.

C. Genetic Engineering of Plants

- 1. Traditionally hybridization (crossing different varieties or species) was used to produce new plants.
- 2. **Transgenic plants** carry foreign genes directly introduced into their cells.
- 3. Tissue Culture and Genetic Engineering
 - a. **Genetic engineering** alters genes of organisms so they have new and different traits.
 - b. Protoplasts in particular lend themselves to direct genetic engineering in tissue culture.
 - c. High voltage electric pulses create pores in plasma membrane so new DNA can be introduced.
 - d. When genes for production of firefly enzyme luciferinase were inserted into tobacco protoplasts, adult plants glowed when sprayed with the substrate luciferin.
 - e. Regeneration of cereal grains from protoplasts has been difficult; corn and wheat protoplasts produce infertile plants.
 - f. Foreign DNA can be inserted into a plasmid of *Agrobacterium*; this bacterium infects plant cells and can be used to deliver the recombinant DNA to target cells.
 - f. John C. Sanford and Theodore M. Klein of Cornell University developed a **gene gun** to bombard a callus with DNA coated metal particles; later, adult plants are generated.
 - g. Crops have been engineered to resist frost, fungal and viral infections, insect predation, and herbicides.
 - h. Future crops could have higher protein content and require less water and fertilizer.
 - i. Sequencing the genomes of a dicot *Arabidopsis thaliana* and rice will give a blueprint to the genes of other monocots and dicots.

4. Agricultural Plants with Improved Traits

- Corn, potato, soybean, and cotton plants have been engineered to be resistant to insect predation or herbicides.
- b. If the crops are resistant to herbicide and the weeds are not, then less tillage is needed.
- Salt-tolerant Arabidopsis has been developed by cloning a gene for sequestering sodium ions n a
 vacuole.
- d. Such techniques would allow development of crops that could grow where irrigation causes salinization.
- e. Genes from *Vernonia* and castor bean seeds have been inserted into soybeans to produce vernolic acid and ricinoleic acid used as hardeners in paints and plastics.
- f. Other genetic engineering goals could be the increase in productivity by altering water and carbon dioxide intake.
- g. Genetic engineering is attempting to improve efficiency of RuBP carboxylase and introduce C₄ photosynthesis to rice.

5. Commercial Products

- a. Corn has made antibodies to deliver radioisotopes to tumor cells.
- b. Soybeans make an antibody to treat genital herpes.
- c. Researchers can introduce a human gene into tobacco plants using tobacco mosaic virus.
- d. Tobacco plants produced antigens to treat non-Hodgkin's lymphoma.