Chapter Outline

34.1 Transport in Invertebrates

- A. Transport Mechanisms
 - 1. Unicellular protozoa make exchanges directly with the environment across the plasma membrane.
 - 2. Some multicellular animals lack an internal transport system and they can live without it.
 - 3. The larger invertebrates usually have circulatory systems—either an open system or a closed system.
- B. Invertebrates Without a Circulatory System
 - 1. Sea anemones and planaria are organisms with a sac body plan that makes a circulatory system unnecessary.
 - 2. Sea anemone cells are part of an external layer or gastrovascular cavity and diffusion supplies all of the nutrients.
 - 3. Planaria have a trilobed gastrovascular cavity and a small, flat body where diffusion meets these needs.
 - 4. Pseudocoelomates such as nematodes use the body cavity to transport fluids.
 - 5. Echinoderms rely on movement of coelomic fluid as a circulatory system.
- C. Invertebrates with an Open or a Closed System Circulatory System
 - 1. In a **circulatory system**, a pumping heart moves one of two types of circulatory fluids.
 - a. **Blood** is a circulatory fluid contained within blood vessels
 - b. **Hemolymph** is a circulatory fluid which flows into the hemocoel of certain arthropods and molluscs; it is a mixture of blood and interstitial fluid.
 - 2. Certain arthropods and molluscs have an **open circulatory system**.
 - a. Hemolymph is pumped by the heart into the body cavity or sinuses.
 - b. Hemolymph bathes the internal organs and then drains back to the heart.
 - c. In grasshoppers, a dorsal heart pumps hemolymph into an aorta, which empties into the **hemocoel**.
 - d. Hemolymph is colorless (it lacks hemoglobin or other respiratory pigments); a system of tracheae provides oxygen.
 - 3. Some invertebrates, including earthworms and cephalopods, have a **closed circulatory system** in which blood never leaves the heart or vessels.
 - a. Valves prevent any backward flow of the blood as it moves through vessels.
 - b. Earthworms have five pairs of anterior lateral vessels that pump blood to every segment.
 - c. Blood moves in capillaries where an exchange with tissue fluid takes place before returning in veins.
 - d. Earthworms have a red respiratory pigment **hemoglobin** dissolved in the blood, not inside blood cells
 - e. With no special cavity for gas exchange, the gas must diffuse across a moist body wall.

34.2 Transport in Vertebrates

- A. Closed Circulatory System
 - 1. Vertebrates have a closed circulatory system called a **cardiovascular system**.
 - 2. The muscular **heart** keeps blood circulating through the animal body.
 - a. The **atrium** is a chamber of the heart that receives blood.
 - b. The **ventricles** pump blood into arteries.
 - 3. There are three kinds of blood vessels: **arteries** carry the blood away from the heart, **capillaries** are where the exchange with tissue fluid takes place, and **veins** return the blood to the heart.
 - a. Arteries
 - 1) have thick walls and are resilient.
 - 2) expand to accommodate sudden increase in blood volume that results after heart contraction.
 - 3) divide into small arterioles.
 - b. Arterioles constriction and dilation are regulated by nervous system to regulate blood pressure.
 - c. Capillaries are microscopic blood vessels with a wall formed of one layer of simple squamous cells.
 - 1) Capillary beds are so prevalent that, in humans, all cells are within 60–80 μm of a capillary.

- 2) Only 5% of the capillaries are open at one time; if an animal eats, the capillary beds of the digestive system open.
- 3) Capillaries are so narrow that red blood cells must pass through them in single file.
- 4) Gas, nutrient, and waste exchange occurs across the thin walls.
- d. The **venules** are vessels that take blood from capillaries and join to form a **vein**.
- e. **Veins** transport blood toward the heart.
 - 1) Wall of a vein is much thinner than that of arteries; there is low blood pressure.
 - 2) One-way valves open in direction of heart; close to prevent backflow.

B. Comparison of Circulatory Pathways

- 1. In vertebrates, there are three different types of circulatory pathways.
- 2. Fishes have a one-circuit (single-loop circulatory) pathway.
 - a. Heart has a single atrium and ventricle and pumps the blood under pressure to the gills.
 - b. Blood in the gills is oxygenated.
 - c. After passing through gills, blood is under reduced pressure and flow.
- 3. Other vertebrates have a two-circuit (double-loop circulatory) pathway to breathe air on land.
 - a. The **systemic circulation** transports the blood to tissues.
 - b. The **pulmonary circulation** pumps the blood to lungs.
- 4. In amphibians and most reptiles, the heart has two atria but a single ventricle.
- 5. The hearts of some reptiles and all birds and mammals are divided into two halves.
 - With two atria and two ventricles, the oxygenated blood is always separate from the deoxygenated blood.
 - b. The right ventricle pumps blood to the lungs; the ventricle pumps blood to the rest of the body.
 - c. This arrangement provides adequate blood pressure for both the pulmonary and the systemic circulations.

34.3 Transport in Humans

A. The Human Heart

- 1. The pumping of the heart keeps the blood moving in arteries.
- 2. Skeletal muscle contraction is responsible for the blood movement in veins.
- 3. The **heart** is a cone-shaped, muscular organ about the size of a fist.
- 4. It is located between lungs directly behind the sternum and is tilted so that apex is directed to left.
- 5. The **myocardium** is a major portion of the heart consisting mostly of cardiac muscle; its muscle fibers are branched and tightly joined together.
- 6. The heart lies within a pericardium sac that contains pericardial fluid which provides cushioning.
- 7. The **endocardium** lines the inner surface of the heart; it consists of connective tissue and endothelial tissue.
- 8. An internal wall called the **septum** separates the heart into right and left halves.
- 9. The heart has two upper, thin-walled atria and two lower, thick-walled ventricles.
 - a. The atria receive blood from the venous portion of the cardiovascular system.
 - The atria are much smaller and weaker than the muscular ventricles but hold the same volume of blood.
 - c. The **ventricles** pump blood into the arterial portion of the cardiovascular system.
- 10. Heart valves direct the flow of blood and prevent any backward movement.
 - a. Valves are supported by strong fibrous tendons (**chordae tendineae**) attached to muscular projections of ventricular walls; they prevent valves from inverting.
 - Atrioventricular valves between the atria and ventricles prevent any back flow from the ventricle to the atrium.
 - The right atrioventricular (tricuspid) valve on right side of the heart consists of three cusps or flaps.
 - d. The **left atrioventricular** (bicuspid or mitral) valve on left side consists of two cusps or flaps.

- e. **Semilunar valves** resembling half-moons are located between a ventricle and an artery that prevents any back flow from the artery to the ventricle.
 - 1) The **pulmonary semilunar valve** lies between the right ventricle and the pulmonary trunk.
 - 2) The aortic semilunar valve lies between the left ventricle and the aorta.

B. Path of Blood Through the Heart

- 1. The route of blood through the heart is as follows.
 - a. Oxygen-poor blood enters the right atrium from both the superior vena cava and the inferior vena
 - b. The right atrium sends blood through the right atrioventricular (tricuspid) valve to the right ventricle.
 - c. The right ventricle sends blood through the pulmonary semilunar valve into the pulmonary trunk and arteries to the lungs.
 - d. Oxygen-rich blood returns from the lungs through pulmonary veins and is delivered to the left atrium.
 - e. The left atrium sends blood through the left atrioventricular (bicuspid or mitral) valve to the left ventricle.
 - f. The left ventricle sends blood through the aortic semilunar valve into the aorta and on to the body proper.
- 2. The heart is therefore a double pump serving the lungs and body circulations simultaneously.
- 3. Since the left side has the harder job of pumping blood throughout the body, its walls are thicker.
- 4. Blood pressure then decreases as the cross-sectional area of the arteries and arterioles increases.

C. The Heartbeat

- 1. Heart contracts (beats) about 70 times a minute and each heartbeat lasts about 0.85 seconds.
- 2. The heartbeat or cardiac cycle consists of phases.
- 3. The atria contract first while the ventricles relax (0.15 sec.), then the ventricles contract while atria relax (0.30 sec.), and then all chambers rest (0.40 sec.).
- 4. **Systole** refers to the contraction of heart chambers and **diastole** is the relaxation of heart chambers.
- 5. The heart is in diastole about 50% of the time.
- 6. The short systole of the atria is needed only to send blood into the ventricles.
- 7. When the term "systole" is used alone, it refers to left ventricle systole.
- 8. When the heart beats, the familiar **lub-dub** sound is heard as the valves of the heart close.
 - a. **Lub** is caused by the vibrations of the heart when the atrioventricular valves close.
 - b. **Dub** is heard when the vibrations occur due to the closing of semilunar valves.
- 9. A **pulse** is a wave effect that passes down the walls of arterial blood vessels when the aorta expands and then almost immediately recoils following ventricular systole.
- 10. Since there is one arterial pulse per ventricular systole, the arterial pulse rate can be used to determine the heart rate.
- 11. Rhythmic contraction of the heart is due to the cardiac conduction system.
 - a. The **sinoatrial (SA) node** is the "pacemaker" found in the upper dorsal wall of the right atrium; it initiates the heartbeat by sending out an excitatory impulse every 0.85 seconds to cause the atria to contract.
 - b. The **atrioventricular (AV) node** is found in the base of the right atrium very near the septum; when stimulated by impulses from the SA node, it sends out impulses through the septum to cause the ventricles to contract.
 - c. Although the beat of the heart is intrinsic, it is regulated by the nervous system which can increase or decrease the heartbeat rate.
- 12. An **electrocardiogram** (ECG) is a recording of the electrical changes that occur in the myocardium during a cardiac cycle; it is used as a diagnostic tool to identify abnormal cardiac function.
- 13. Normal Cardiac Cycle
 - a. The **P** wave represents excitation and occurs just before atrial contraction.
 - b. The **QRS complex** signals that the ventricles are about to contract.
 - c. The electrical changes that occur as the ventricular muscle fibers recover produce the T wave.
- 14. Ventricular fibrillation is uncoordinated contraction of the ventricles; with the application of a strong electric current, the SA node may reestablish a coordinated beat.

D. Vascular Pathways

- 1. The human cardiovascular system has two major circular pathways.
- 2. The Pulmonary Circuit
 - a. The **pulmonary circuit** circulates blood to the lungs where blood is oxygen-rich.
 - b. Oxygen-poor blood from the body collects in the right ventricle, which pumps it to **pulmonary trunk**.
 - c. The pulmonary trunk divides into right and left pulmonary arteries to carry blood to each lung.
 - d. In the lungs, carbon dioxide (CO₂) is unloaded and O₂ is picked up by blood.
 - e. Oxygen-rich blood from the lungs is returned through **pulmonary veins** to the left atrium.
- 3. The Systemic Circuit
 - a. The aorta and vena cavae are main pathways for blood in systemic circuit.
 - b. Transport of oxygenated blood moves from the left ventricle through the aorta out to all tissues.
 - c. Deoxygenated blood returns from all tissues via vena cava.
 - d. In a systemic circuit, arteries contain bright red oxygen-rich blood; the veins contain dull red oxygen-poor blood that appears blue when viewed through the skin.
- 4. The **coronary arteries** serve the heart muscle itself.
 - a. Coronary arteries originate from the base of the aorta just above the aortic semilunar valve.
 - b. Coronary arteries lie on the external surface of the heart; they branch into arterioles and capillaries.
 - c. Capillary beds enter the venules that join to form the cardiac veins.
 - d. Coronary veins collect oxygen-poor blood from the capillaries and empty into the right atrium.
- 5. The **portal system** is a pathway of blood flow that begins and ends in capillaries.
 - a. The **hepatic portal vein** transports blood from capillaries in small intestinal villi to capillaries in liver.
 - b. The hepatic vein leaves the liver and enters the inferior vena cava.

E. Blood Pressure

- 1. **Systolic pressure** results from blood being forced into the arteries during ventricular systole.
- 2. **Diastolic pressure** is pressure in arteries during ventricular diastole.
- 3. Human **blood pressure** is measured as the force pushing against the wall of the brachial artery of the upper arm.
 - a. Blood pressure is measured by a **sphygmomanometer** which has a pressure cuff.
 - Clinical blood pressure measures pressures produced by contraction and relaxation of right ventricle.
 - c. Blood pressure is stated in millimeters of mercury (e.g., 120/80 mm Hg) for systolic/diastolic.
- 4. As blood flows from the aorta into arteries and arterioles, the blood pressure falls.
- 5. The difference in pressure between systolic and diastolic pressures gradually diminishes.
- 6. Capillaries have a slow, even blood flow due to the high total cross-sectional area.
 - a. The total length of human capillaries is estimated at 60,000 miles.
 - b. Most of this distance is due to quantity of capillaries.
- 7. Blood pressure in the veins is low and cannot move blood back to heart, especially from the limbs.
- 8. Skeletal muscle contraction on the walls of veins with **valves**, preventing backflow of blood, is responsible for the flow of blood in veins.
- 9. Varicose veins are abnormal dilations that develop when the valves become weak and ineffective.

34.4 Cardiovascular Disorders

A. Cardiovascular Disease

- 1. Cardiovascular disease (CVD) is the leading cause of untimely death in Western countries.
- 2. The risk of CVD can be reduced by following guidelines for a heart-healthy life-style.

B. Hypertension

- 1. An estimated 20% of Americans suffer from **hypertension** or high blood pressure.
- 2. Women have this condition if their blood pressure is significantly higher than 160/95; men under the age of 45 if over 130/90, and beyond the age of 45 if above 140/95.
- 3. The diastolic pressure is emphasized when medical treatment is considered.
- 4. Hypertension may not be detected until a stroke or heart attack occurs.

- 5. Two genes are involved in hypertension for some individuals.
 - a. One gene codes for angiotensinogen, a plasma protein converted to a vasoconstrictor byproduct of a second gene.
 - b. Persons with this form of hypertension may one day be cured by gene therapy.

C. Atherosclerosis

- 1. Hypertension is seen in individuals with **atherosclerosis**, formerly called arteriosclerosis.
- 2. Soft masses of fatty materials, mostly cholesterol, accumulate beneath the inner linings of arteries.
- 3. As this plaque accumulates, it protrudes into a vessel and interferes with blood flow.
- 4. Atherosclerosis develops in early adulthood but the symptoms may not appear until age 50 or older.
- 5. Plaque can cause a blood clot to form on irregular arterial walls.
- 6. As long as a clot remains stationary, it is a **thrombus**.
- 7. If a clot dislodges, it is an **embolus**, a blood clot that moves in the blood.
- 8. In some families, atherosclerosis is inherited as **familial hypercholesterolemia**.

D. Stroke and Heart Attack

- 1. Stroke, heart attack, and aneurysm are associated with hypertension and atherosclerosis.
- 2. Strokes can result in paralysis or death; a small cranial arteriole bursts or is blocked by an embolus.
 - a. Stroke is also called a cardiovascular accident (CVA).
 - b. Whether paralysis or death occurs depends on the extent of the portion of the brain that lacks O₂.
 - c. Warning symptoms that foretell stroke include: numbness in hands or face, difficulty speaking, blindness in one eye, etc.
- 3. A myocardial infarction (MI) is also called **heart attack**.
 - a. This occurs when a portion of heart muscle dies due to a lack of O_2 .
 - b. A partially blocked coronary artery causes angina pectoris causing pains or a flash of burning.
 - c. Nitroglycerin and related drugs dilate the blood vessels and relieve pain.
 - d. One cause of heart attacks is blockage of the coronary arteries due to a thromboembolism.

34.5 Blood, a Transport Medium

- A. The blood of mammals has two components: plasma and formed elements (cells and platelets).
 - 1. Plasma contains water and many types of molecules, including nutrients, wastes, salts, and proteins.
 - 2. Salts and proteins buffer the blood.
 - a. They effectively keep the blood pH near 7.4.
 - b. They maintain the blood osmotic pressure so water has a tendency to enter capillaries.
 - 3. Some plasma proteins are involved in blood clotting.
 - 4. Some plasma proteins assist in transporting large organic molecules in the blood.
 - a. Lipoproteins that transport cholesterol are globulins.
 - b. **Albumin**, a common plasma protein, transports bilirubin, a breakdown product of hemoglobin.

B. Formed Elements

- 1. Formed elements are of three types: red blood cells (RBCs), white blood cells (WBCs), and platelets.
- 2. Red Blood Cells
 - a. Red blood cells (erythrocytes) are small biconcave disks.
 - b. When mature, RBCs lack a nucleus and contain hemoglobin.
 - c. There are 6 million RBCs per mm³ of whole blood.
 - d. Each RBC contains about 250 million hemoglobin molecules.
 - 1) **Hemoglobin** contains four globin protein chains, each with an iron-containing heme group.
 - 2) The iron atom of a heme group loosely binds with an O_2 molecule; thus, blood carries oxygen.
 - 3) Anemia is either a lack of enough RBC or insufficient hemoglobin; an individual suffers from a tired, run-down feeling.
 - e. RBCs are manufactured in the red bone marrow of the skull, ribs, vertebrae, and the ends of long bones.
 - f. The growth factor **erythropoietin** is produced when an enzyme from the kidneys acts on a precursor made by the liver and stimulates production of red blood cells; as a drug it helps people with anemia.
 - g. Before being released from bone marrow, the RBCs lose their nucleus and synthesize hemoglobin.
 - h. Red blood cells have a life span of about 120 days; then they are destroyed chiefly in liver and spleen.

- i. When the RBCs are destroyed, the hemoglobin is released; the iron is recovered and returned to bone marrow where it is reused.
- j. The heme portions undergo chemical degradation and are excreted by the liver as bile pigments; it colors the feces.

White Blood Cells

- a. White blood cells (leukocytes) differ from RBCs in being larger and in having a nucleus.
- b. WBCs lack hemoglobin and appear translucent without staining.
- c. Granular leukocytes contain conspicuous granules in their cytoplasm and have a lobed nucleus.
 - 1) **Neutrophils** have granules that stain slightly pink; they are amoeboid, spherical cells that readily squeeze through capillary walls and phagocytize foreign material.
 - 2) Eosinophils have granules that take up the red dye eosin.
 - 3) **Basophils** have granules that take up a basic dye, staining them deep blue.
- d. A newly discovered stem cell growth factor (SGF) increases the production of all WBCs, which helps patients with low immunity.
- e. **Agranular leukocytes** lack granules in their cytoplasm and have a circular or indented nucleus.
 - 1) Monocytes are amoeboid and able to enter tissues where they transform into macrophages.
 - 2) **Macrophages** release white blood cell growth factors that increase the number of leukocytes.
 - 3) **Pus** is a thick, yellowish fluid that contains a large proportion of dead WBCs that have fought infection.
 - 4) **Lymphocytes** play a key role in fighting infection and include two types.
 - a) T cells are lymphocytes that directly attack virus-infected cells.
 - b) **B cells** can be stimulated to produce one type of **antibody** specific for one type of antigen.
 - 5) An **antigen** is any substance stimulating production of antibodies; antigen is foreign to the body.
 - 6) Antibodies combine with antigens to promote their being phagocytized by a macrophage.
 - 7) A person is actively immune when many B cells produce specific antibody for an infection.

4. Platelets

- a. Platelets (thrombocytes) result from fragmented giant cells (megakaryocytes) in the bone marrow.
- b. 200 billion platelets are produced a day; blood contains 150,000–300,000 platelets per mm³.
- c. Platelets are involved in blood clotting or coagulation.
- d. At least 12 clotting factors in the blood participate in blood clotting.
- e. Hemophilia is an inherited disorder where the liver is unable to produce one of the clotting factors.
- f. Minor bumps can cause internal bleeding; bleeding into the brain causes death in hemophilia.
- g. Vitamin K is necessary to produce prothrombin; deficiency of vitamin K causes hemorrhagic disorders.

5. Blood Clotting

- a. When a blood vessel is damaged, platelets clump at the site of the puncture and partially seal the leak.
- b. The platelets and damaged tissue cells release a **clotting factor** called **prothrombin activator**.
- With calcium ions, prothrombin activator catalyzes a reaction converting prothrombin to thrombin.
- d. Thrombin acts as an enzyme to sever two amino acid chains from each fibrinogen molecule.
- e. These activated fragments join end-to-end forming long threads of **fibrin**.
- f. Fibrin threads wind around the platelet plug and provide a framework for a clot.
- g. RBCs are trapped within the fibrin threads, making the clot appear red.
- h. When blood vessel repair is initiated, **plasmin** destroys the fibrin network and restores plasma fluidity
- i. When clotting occurs in test tube, a fluid **serum** collects above a clot; it has same composition as plasma except fibrinogen.

C. Capillary Exchange

- 1. Two forces control the movement of fluid through the capillary walls.
 - a. Osmotic pressure tends to cause water to move from tissue fluid to the blood.
 - b. **Blood pressure** tends to cause water to move from the blood to tissue fluid.

- c. At the arterial end of a capillary, blood pressure is higher than osmotic pressure: water exits and moves into tissues.
- d. Along the capillary, O_2 and nutrients diffuse out into the tissue fluid, while CO_2 and other metabolic wastes diffuse into the capillaries from the tissue fluid.
- 2. Midway along a capillary, there is no net movement of water.
- 3. The **tissue fluid** is intercellular fluid that surrounds the cells; the circulatory system exchanges materials with this fluid.
- 4. The exchange between the blood and tissue fluid occurs by diffusion through the one-cell-thick capillary walls.
 - a. At the venule end, osmotic pressure is higher than blood pressure and water moves back into
 - b. Almost the same amount of fluid that left the capillary returns to it; there is always some excess tissue fluid collected by the lymphatic capillaries.
- 5. The tissue fluid within lymphatic vessels is **lymph**.
- 6. Lymph returns to the systemic venous blood when lymphatic vessels enter the subclavian veins in the shoulder.
- 7. Not all capillary beds are open at the same time; precapillary sphincters shunt blood along various pathways.
- 8. Through capillary dilation and constriction, blood also distributes heat to body parts and conserves heat when cold.