
Computer Networks: An Open Source Approach

1

Solutions to Selected Exercises of Open Source Implementations

Open Source Implementation 2.1: 8B/10B Encoder

Exercises

Find the code segment in 8b10_enc.vhd related to 3B/4B coding switch in Figure 2.14

and show us which line of code controls the output timing, i.e., falling or rising edge

of the clk signal.

Answer (1 hour):

Line 270:

elsif SBYTECLK'event and SBYTECLK ='0' //0 means falling edge

Open Source Implementation 2.2: IEEE 802.11a Transmitter with OFDM

Exercises

Calculate the output bits and states when one encodes these bits using the

convolutional encoder in Figure 2.46. Summarize in Table 2.9 how the state and

output value change with each iteration.

Answer (2 hours):

Iteration 1 2 3 4 5 6 7 8 9 10

Input bit 0 1 1 0 1 1 0 0 0 0

Shift Regs

[543210]

000000 000000 100000 110000 011000 101100 110110 011011 001101 000110

Output

[A,B]

00 11 10 10 11 01 00 01 00 10

Open Source Implementation 3.1: Checksum

Exercises

1. The TTL field of an IP packet is subtracted by 1 when the IP packet passed through a

router, and thus the checksum value after the subtraction must be changed. Please find an

efficient algorithm to re-compute the new checksum value. (Hint: see RFC 1071 and 1141)

2. Explain why the IP checksum does not cover the payload in its computation.

Answer (1.5 hours):

1. See RFC 1071 and 1141 for details.

Let C be the original checksum and C’ be the new one. Let m be the original

16-bit integer that consists of the TTL field and the protocol id field (see the IPv4

header) and m’ be the integer of the same fields but with TTL decreased by 1.

For 2's complement machines, the new 1’s complement of the checksum can be

computed using follow equation:

~C' = ~(C + (-m) + m') = ~C + (m - m') = ~C + m + ~m'

Computer Networks: An Open Source Approach

2

2. IP checksum only provides extra protection on the IP header. The payload is left to

the transport layer to protect.

Open Source Implementation 3.2: CRC32

Exercises

1. Could the algorithm in eth_src.v be easily implemented in software? Justify your

answer.

2. Why do we use CRC-32 rather than the checksum computation in the link layer?

Answer (1 hour):

1. Yes, but the performance is not as good due to its bit-oriented operations where

each operation would cost an instruction cycle if implemented in software.

2. CRC is more robust to a number of errors than checksum and easy to implement

in hardware.

Open Source Implementation 3.3: Link-Layer Packet Flows in Call Graphs

Exercises

Explain why the CPU load could be lowered if using the new net_rx_action()function

at high traffic loads.

Answer (1 hour):

With the old net_rx_action()function, each arriving frame would trigger a hardware

interrupt, which increases CPU load during heavy traffic. With the new

net_rx_action()function, only the first frame of a burst of frames would trigger an

interrupt. For the subsequent frames, the kernel calls net_rx_action() to poll the

arriving frames.

Open Source Implementation 3.4: PPP Drivers

Exercises

Discuss why the PPP functions are implemented in software, while the Ethernet

functions are implemented in hardware.

Answer (0.5 hour):

There are no time-critical operations in PPP, while in Ethernet there are several

time-critical operations such as inter-frame gap, jamming time, and back-off time.

Only time-critical operations need to be implemented in hardware.

Open Source Implementation 3.5: CSMA/CD

Exercises

1. If the Ethernet MAC operates in the full-duplex mode (very common at present),

which components in the design should be disabled?

Computer Networks: An Open Source Approach

3

2. Since the full-duplex mode has a simpler design than the half-duplex mode, and

the former’s efficiency is higher than the latter’s, why do we still bother

implementing half duplex mode in the Ethernet MAC?

Answer (0.5 hour):

1. In the TX module, disable the monitoring of CarrierSense and Collision signals.

2. The Ethernet interface might be attached to a hub instead of a switch. If it is a hub,

the interface must work in the half-duplex mode.

Open Source Implementation 3.6: IEEE 802.11 MAC Simulation with NS-2

Exercises

1. Why is the send() function called from recv()?

2. Why should a sending frame wait for a random period of time?

Answer (1 hour):

1. recv() handles an incoming frame from both physical layer and upper layer, and

send() is called by recv() when there is a frame to transmit.

2. To reduce the probability of repeated collisions during retransmissions.

Open Source Implementation 3.7: Self-Learning Bridging

Exercises

1. Trace the source code and find out how the aging timer works.

2. Find out how many entries are there in the fdb hash table of your Linux kernel

source.

Answer (1 hour):

1. We use the aging timer to set the length of time that an entry can stay in the MAC

address table, from the time the entry was used or last updated.

2. #define BR_HASH_BITS 8

#define BR_HASH_SIZE (1 << BR_HASH_BITS)

Thus, the size is 2^8 = 256.

Open Source Implementation 3.8: Spanning Tree

Exercises

1. Briefly describe how the BPDU frame is propagated along the topology of

spanning trees.

2. Study the br_root_selection() function to see how a new root is selected.

Answer (2 hours):

1. The root bridge generates a hello BPDU to its children periodically while the

other switches receive the BPDU from the root port, update the topology

information, and the forward the BPDU to the other ports.

Computer Networks: An Open Source Approach

4

2. This function, br_root_selection() in net/bridge/br_stp.c, selects the root port of a

bridge. The function iterates over all ports, starting with the smallest port number,

and it checks for whether the conditions for the root port are met

(br_should_become_root_port()).Subsequently, the path cost to the root bridge is

compared. If the costs are equal, then the information from the net_bridge_port

structure is considered.

Open Source Implementation 3.9: Probing I/O ports, Interrupt Handling and

DMA

Exercises

1. Explain how tasklet is scheduled by studying the tasklet_schedule() function call.

2. Enumerate a case in which polling is preferable than interrupting.

Answer (2 hours):

1. The scheduled tasklets are held in two per-processor structures (linked lists of

tasklet_struct structures): tasklet_vec (regular) and tasklet_hi_vec (high priority).

To schedule a tasklet use tasklet_schedule():

 If state is TASKLET_STATE_SCHED, it is already scheduled, so the

function can return.

 Save state of interrupt system, and disable local interrupts.

 Add tasklet to head of the tasklet_vec or tasklet_hi_vec, which is unique to

each processor on the system.

 Raise the TASKLET_SOFTIRQ or HI_SOFTIRQ so tasklet can execute in

the near future by do_softirq().

 Restore interrupts to their previous state and return.

2. Consider a router that is connected to a WAN via a channel service unit/data

service unit (CSU/DSU). The router and CSU/DSU may be connected via a V.35

interface cable. If a loss of physical connectivity occurs between the router and the

CSU/DSU (say the cable is broken or has been pulled out inadvertently), the

router software should be signaled. Interrupts appear to be the best option here.

However, spurious and transient loss of physical connectivity should be

distinguished from the permanent loss of connectivity. So the communications

software may need to poll for the status of the connection periodically once it has

been signaled via the interrupt about the loss of connectivity.

Open Source Implementation 3.10: The Network Device Driver in Linux

Exercises

1. Explain how the frame on the network device is moved into the sk_buff structure

Computer Networks: An Open Source Approach

5

(see ne2k_pci_block_input()).

2. Find out the data structure in which a device is registered.

Answer (1.5 hours):

1. When the network interface receives the frame, it will notify the kernel with an

interrupt. The kernel then calls the corresponding handler, ei_interrupt(). The

ei_interrupt() function determines which type the interrupt is, and calls the

ei_receive() function because the interrupt stands for frame reception. The

ei_receive() function will call ne2k_pci_block_input() to move the frame from the

network interface to the system memory and fill the frame into the sk_buff

structure. The netif_rx() function will pass the frame to the upper layer, and the

kernel then proceeds to the next task.

2. The data structure in which a device is registered is: net_device

The net_device data structure is associated with the information about a network

device. When a network interface is initialized, the space of this structure for that

interface is allocated and registered.

Open Source Implementation 4.1: IP-Layer Packet Flows in Call Graphs

Exercises

Trace the source code along the reception path and transmission path to observe the

details of function calls on these two paths.

Answer (1.5 hours):

Reception path

 In net_dev_init(), the queue->backlog_dev.poll is initialized as

follows:queue->backlog_dev.poll = process_backlog.

 net_rx_action() is the interrupt handling routine for the interrupt

Computer Networks: An Open Source Approach

6

NET_RX_SOFTIRQ. It will check the poll_list to see if a device if waiting for

polling. If yes, the registered routine for the device is called; otherwise, the

system will call the default routine process_backlog().

 process_backlog() will call__skb_dequeue to retrieve SKB from the device,

and then call netif_receive_skb().

 netif_receive_skb() will decide when to send the packet. If forwarding is

required, netif_receive_skb() will pass the packet to the bridge. Otherwise,

the packet is passed to process routine for upper layer protocols. For example,

it will call ip_rcv() to pass the packet to the IP protocol.

 ip_rcv() will call the NF_HOOK function. When it finishes, it will call the

ok_fn() which is link to the ip_rc_finish() function.

 In ip_rcv_finish(), ip_route_input() is called to perform routing. If the result of

routing is to forward the packet to next hop (router), then ip_forward() is

called. Otherwise, the input pointer points the ip_local_deliver() function.

 In ip_local_deliver(), there is also a NF_HOOK function. It eventually calls

the ip_local_deliver_finish() function (hooked to ok_fu()).

 The ip_local_deliver_finish() will the upper layer protocol function to further

process the packet. The upper layer protocol can be found by

skb->nh.iph->protocol(). Finally, it uses following statement to call the upper

layer protocol handler: ret = ipprot->handler(skb). For example, for UDP, the

handler is udp_rcv(). Therefore, it will call the udp_rcv() function.

UDP:

 udp_sendmsg() calls dp_push_pending_frames() for simple encapsulation.

 udp_push_pending_frames() first calls ip_push_pending_frames(). After that ,

it calls ip_local_out()- > __ip_local_out- > dst_output.

TCP:

 When sending data through a TCP socket, tcp_sendmsg() is called to send data

in units of segment.

 tcp_sendmsg() first checks if the data needs to be sending immediately (even

the size of data is less than MSS) using the forced_push() function. If yes, it

calls tcp_sendmsg()->__tcp_push_pending_frames-

>tcp_write_xmit()->tcp_transmit_skb(). Otherwise, it call

tcp_push_one()->tcp_transmit_skb()-> icsk->icsk_af_ops->queue_xmit(skb,

0)->ip_queue_xmit.

 The ip_queue_xmit() function will also call ip_local_out().

 Eventually, the dst_output() function is called which calls

Computer Networks: An Open Source Approach

7

skb->dst->output(skb). For IP packets, it will cann ip_output().

 The ok_fn of one of the NF_HONOK_COND hooks of ip_output() is

ip_finish_output().

 ip_finish_output() will then call ip_finish_output2()-> hh->hh_output(skb).

After calling hh->hh_output(skb),

dev_queue_xmit()->dev_hard_start_xmit().dev_hard_start_xmit() is called to

check if GSO(Generic Segmentation Offload) is required. GSO denotes

offload the segmentation operation to the network interface card (NIC). If not,

or no segmentation is required, it will then call dev->hard_start_xmit(skb)

which hands the segment to the NIC. Otherwise, the packet is divided into

several segments.

Open Source Implementation 4.2: IPv4 Packet Forwarding

Exercises

1. Use an example to trace __ip_route_output_key() and write down how routing

cache is searched.

2. Trace fib_lookup() to explore how FIB is searched.

Answer (3 hours):

IPV4

ip_route_output_slow()

ip_route_output_flow()

ip_queue_xmit()

rt_hash_code()

fib_lookup()

__ip_route_output_key()

IPv4

Computer Networks: An Open Source Approach

8

__ip_route_output_key()

 rt_hash_code : returns a hash value which will be used by

__ip_route_output_key() to look for routing information from the cache.

 ip_route_output_slow: it calls fib_lookup() to look up the routing table and store

the result into cache.

 fib_lookup: will look up the routing table.

 The ip_route_output_key() function will call rt_hash_code() first to obtain a hash

value. The rt_hash_code() will use source and destination addresses as the input

to the hash function. The hash value is then used to search the rt_hash_table, i.e.,

the routing cache. If found, it returns 0. If not, ip_route_output_slow() is called.

ip_route_output_slow() will call fib_lookup() to look up the routing entry

through FIB. The result is also put into the routing cache.

fib_lookup:

 ip_route_output_slow: If routing cannot be found in the routing cache and the

destination address is not a multicast address, then ip_route_output_slow() is

called which in term calls fib_lookup() to look up the route in FIB and store the

result into the routing cache.

 fib_lookup: fib_lookup() first checks routing policy based on source address,

destination address, service type, forwarding tag, and I/O device. If successful, it

calls tb_lookup() to retrieve the corresponding routing table and then calls

tb_lookupt() to search the table. If successful, the routing policy and routing

information will be used.

 FIB is the data structure for storing the detailed routing information. When a

route is found through FIB, it will also be stored into the route cache.

 ip_route_input() handles the incoming IP packets. If the packet is destined to

upper layer protocol, it passes the packet to upper layer. Otherwise, it is

forwarded to the next hop.

 ip_queue_xmit() is called to send out an IP packet..

Open Source Implementation 4.3: IPv4 Checksum in Assembly

Exercises

Write a program to compute IP checksum and verify the correctness of the program

by comparing to a real IP packet captured by the wireshark software.

Answer (1.5 hours):

(1) Checksum algorithm from RFC1071:

{

http://lxr.linux.no/linux+v2.6.17.7/net/ipv4/+code=tb_lookup
http://lxr.linux.no/linux+v2.6.17.7/net/ipv4/+code=tb_lookup

Computer Networks: An Open Source Approach

9

 /* Compute Internet Checksum for "count" bytes

 * beginning at location "addr".

 */

 register long sum = 0;

 while(count > 1) {

 /* This is the inner loop */

 sum += * (unsigned short) addr++;

 count -= 2;

 }

 /* Add left-over byte, if any */

 if(count > 0)

 sum += * (unsigned char *) addr;

 /* Fold 32-bit sum to 16 bits */

 while (sum>>16)

 sum = (sum & 0xffff) + (sum >> 16);

 checksum = ~sum;

 }

(2)

We use the captured packets by Wireshark for reference.

How to compute:

(1) Divide the header into 16-bit blocks. Use 2’s complement addition to add all

16-bit blocks (8 blocks), store the result in a 32-bit word.

(2) Add the carry (bits higher than the 16
th

 bit) back to the 16-bit result

(3) Compute the 1’s complement of the 16-bit result

Example:

“2a67” is the result. Set it to zero

before we compute the checksum.

Computer Networks: An Open Source Approach

10

(1)

4 5 0 0

0 0 d 3

 0 1 8 4

 0 0 0 0

 8 0 1 1

 0 0 0 0

 8 c 7 1

 7 a 8 d

 8 c 7 1

+) 7 a b f

 2 d 5 9 6

(2)

d 5 9 6

+) 0 0 0 2

 d 5 9 8

(3)

~(d 5 9 8)= 2 a 6 7

Open Source Implementation 4.4: IPv4 Fragmentation

Exercises

Computer Networks: An Open Source Approach

11

Use wireshark to capture some IP fragments and observe identifier, more flag, and

offset fields in their headers.

Answer (1 hour):

In the following example, we observe a packet with identification 0x116e is

fragmented into three fragments (frame 45~47). As we can see from the captured

fragments, the more bit of the first two fragments are set to 1 while that of the last

fragment is set to zero. Offest of these three fragments are 0, 1480, 2960, respectively.

 Identification Flag Offset

1 0x116e(4462) 02 0

2 0x116e(4462) 02 1480

3 0x116e(4462) 00 2960

Computer Networks: An Open Source Approach

12

Open Source Implementation 4.5: NAT

Exercises

Trace adjust_tcp_sequence() and explain how to adjust sequence number of TCP

packets when packets are changed due to address translation.

Answer (1.5 hours):

 As seen in the above figure, mangle_rfc959_packet() will modify the FTP

commands according to the new IP address and port number. It then calls

nf_nat_mangle_tcp_packet() to modify the packet content. If the length of the

new packet is different from the original packet, it sets the

IPS_SEQ_ADJUST_BIT flag and then calls adjust_tcp_sequence().

 In adjust_tcp_sequence(), this_way is a variable of data type ip_nat_seq.

It first checks the following condition:

if (this_way->offset_before == this_way->offset_after ||

before(this_way->correction_pos, seq))

adjust_tcp_sequence()

http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=this_way
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=offset_before
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=offset_before
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=offset_before
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=this_way
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=offset_after
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=before
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=this_way
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=correction_pos
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=seq

Computer Networks: An Open Source Approach

13

 If offset_before==offset_after, it means the packet has not been initialized;

 The before() function will calculate and check whether correction_pos – seq is

less than 0; if yes,it means seq is larger than correction_pos, the packet needs to

be corrected.

If the condition is true,

 this_way->correction_pos = seq;

 Set correction_pos to seq,

 this_way->offset_before = this_way->offset_after;

Set offset_before to offset_after;

 this_way->offset_after += sizediff;

 The offset_after is increased by rep_len - match_len.

Open Source Implementation 4.6: ARP

Exercises

The function, __neigh_lookup(), is a common function which implements hash

buckets. Use free text search or cross reference tool to find out which functions call

__neigh_lookup(). Trace neigh_lookup() and explain how to lookup an entry from

hash buckets.

Answer (1 hour):

(1) arp_process() function calls __niegh_lookp() function to search the hash_buckets

using source IP address as the hash key.

(2) arp_process() first calls __niegh_lookp() to find the corresponding entry in the arp

table. It then calls neigh_update() to update the status of this entry.

 Data structure of a Hash Table

A hash table consists of an array of buckets, each bucket consists of a list of

slots, each slot can store a record of data.

struct nf_nat_seq{

position of the last TCP sequence

number modification

u_int32_t correction_pos;

/* sequence number offset before

and after last modification */

int16_t offset_before, offset_after;

 }

http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=this_way
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=correction_pos
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=seq
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=this_way
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=offset_before
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=this_way
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=offset_after
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=this_way
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=offset_after
http://lxr.linux.no/linux+v2.6.18.7/net/ipv4/netfilter/+code=sizediff

Computer Networks: An Open Source Approach

14

In neigh_lookup(), the hash(pkey, dev) is called to obtain the index of the bucket

where pkey is the source IP address and dev is the network interface device.

hash_buckets[hash_val] is the list of slots which have records that have the same hash

value. By matching the pkey with the primary key of each slot, the correct record will

be returned if match is found. Otherwise, it returns NULL.

Source code of neigh_lookup() is given as follows:

static inline struct neighbour *
344 __neigh_lookup(struct neigh_table *tbl, const void *pkey, struct net_device *dev,
int creat)
345 {
346 struct neighbour *n = neigh_lookup(tbl, pkey, dev);
347
348 if (n || !creat)
349 return n;
350
351 n = neigh_create(tbl, pkey, dev);
352 return IS_ERR(n) ? NULL : n;
353 }

struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,

342 struct net_device *dev)

343 {

344 struct neighbour *n;

345 int key_len = tbl->key_len;

346 u32 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;

347

348 NEIGH_CACHE_STAT_INC(tbl, lookups);

349

350 read_lock_bh(&tbl->lock);

351 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {

352 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {

353 neigh_hold(n);

354 NEIGH_CACHE_STAT_INC(tbl, hits);

355 break;

356 }

357 }

358 read_unlock_bh(&tbl->lock);

359 return n;

http://www.gelato.unsw.edu.au/lxr/ident?i=neighbour
http://www.gelato.unsw.edu.au/lxr/source/include/net/neighbour.h#L344
http://www.gelato.unsw.edu.au/lxr/ident?i=__neigh_lookup
http://www.gelato.unsw.edu.au/lxr/ident?i=neigh_table
http://www.gelato.unsw.edu.au/lxr/ident?i=net_device
http://www.gelato.unsw.edu.au/lxr/ident?i=dev
http://www.gelato.unsw.edu.au/lxr/source/include/net/neighbour.h#L345
http://www.gelato.unsw.edu.au/lxr/source/include/net/neighbour.h#L346
http://www.gelato.unsw.edu.au/lxr/ident?i=neighbour
http://www.gelato.unsw.edu.au/lxr/ident?i=neigh_lookup
http://www.gelato.unsw.edu.au/lxr/ident?i=dev
http://www.gelato.unsw.edu.au/lxr/source/include/net/neighbour.h#L347
http://www.gelato.unsw.edu.au/lxr/source/include/net/neighbour.h#L348
http://www.gelato.unsw.edu.au/lxr/source/include/net/neighbour.h#L349
http://www.gelato.unsw.edu.au/lxr/source/include/net/neighbour.h#L350
http://www.gelato.unsw.edu.au/lxr/source/include/net/neighbour.h#L351
http://www.gelato.unsw.edu.au/lxr/ident?i=neigh_create
http://www.gelato.unsw.edu.au/lxr/ident?i=dev
http://www.gelato.unsw.edu.au/lxr/source/include/net/neighbour.h#L352
http://www.gelato.unsw.edu.au/lxr/ident?i=IS_ERR
http://www.gelato.unsw.edu.au/lxr/ident?i=NULL
http://www.gelato.unsw.edu.au/lxr/source/include/net/neighbour.h#L353
http://www.gelato.unsw.edu.au/lxr/ident?i=neighbour
http://www.gelato.unsw.edu.au/lxr/ident?i=neigh_lookup
http://www.gelato.unsw.edu.au/lxr/ident?i=neigh_table
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L342
http://www.gelato.unsw.edu.au/lxr/ident?i=net_device
http://www.gelato.unsw.edu.au/lxr/ident?i=dev
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L343
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L344
http://www.gelato.unsw.edu.au/lxr/ident?i=neighbour
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L345
http://www.gelato.unsw.edu.au/lxr/ident?i=key_len
http://www.gelato.unsw.edu.au/lxr/ident?i=key_len
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L346
http://www.gelato.unsw.edu.au/lxr/ident?i=u32
http://www.gelato.unsw.edu.au/lxr/ident?i=hash
http://www.gelato.unsw.edu.au/lxr/ident?i=dev
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L347
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L348
http://www.gelato.unsw.edu.au/lxr/ident?i=NEIGH_CACHE_STAT_INC
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L349
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L350
http://www.gelato.unsw.edu.au/lxr/ident?i=read_lock_bh
http://www.gelato.unsw.edu.au/lxr/ident?i=lock
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L351
http://www.gelato.unsw.edu.au/lxr/ident?i=next
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L352
http://www.gelato.unsw.edu.au/lxr/ident?i=dev
http://www.gelato.unsw.edu.au/lxr/ident?i=dev
http://www.gelato.unsw.edu.au/lxr/ident?i=memcmp
http://www.gelato.unsw.edu.au/lxr/ident?i=key_len
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L353
http://www.gelato.unsw.edu.au/lxr/ident?i=neigh_hold
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L354
http://www.gelato.unsw.edu.au/lxr/ident?i=NEIGH_CACHE_STAT_INC
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L355
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L356
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L357
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L358
http://www.gelato.unsw.edu.au/lxr/ident?i=read_unlock_bh
http://www.gelato.unsw.edu.au/lxr/ident?i=lock
http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L359

Computer Networks: An Open Source Approach

15

360 }

dev: device (Driver Model device interface)

pkey: source IP address

Open Source Implementation 4.7: DHCP

Exercises

Trace ic_bootp_recv() and explain how the option field of DHCP is processed.

Search IETF RFC documents to find out newly defined DHCP options after RFC

2132.

Answer (1.5 hours):

(1) The additional configuration information is handled by ic_do_bootp_ext().

Currently, only code 1 (subnet mask), 3 (default gateway), 6(DNS server), 12(host

name), 15(domain name), 17(root path), 26(interface MTU), 42(NIS domain name),

are processed.

 16 0 8 23

Code (53) Length(1) Type(1-7)

Let us use subnet mask as an example. In ic_bootp_recv(), it calls ic_do_bootp_ext()

with a parameter *opt which points to the address of the “Code” field of the header of

DHCP option field. The ic_do_bootp_ext() functionuses a switch statement to process

the code (i.e., *opt). Based on the code, it then pass the type field as the parameter to

be passed to the external function. For example, for code=1 (i.e., subnet mask), it calls

memcpy(&ic_netmask, ext+1, 4) to set the pointer to the Type field.

(2)
Code: 0 Pad Option

Code: 1 Subnet Mask

Code: 2 Time Offset

Code: 3 Routers

Code: 4 Time Server Option

Code: 5 Name Server Option

Code: 6 Domain Name Servers

Code: 7 Log Server Option

Code: 8 Cookie Server Option

Code: 9 LPR Server Option

Code: 10 Impress Server Option

Code: 11 Resource Location Server Option

Code: 12 Host Name

Code: 13 Boot File Size Option

Code: 14 Merit Dump File

Code: 15 Domain Name

Code: 16 Swap Server

Code: 17 Root Path

http://www.gelato.unsw.edu.au/lxr/source/net/core/neighbour.c#L360

Computer Networks: An Open Source Approach

16

Code: 18 Extensions Path

Code: 19 IP Forwarding Enable/Disable Option

Code: 20 Non-Local Source Routing Enable/Disable

Code: 21 Policy Filter Option

Code: 22 Maximum Datagram Reassembly Size

Code: 23 Default IP Time-to-Live

Code: 24 Path MTU Aging Timeout Option

Code: 25 Path MTU Plateau Table Option

Code: 26 Interface MTU

Code: 27 All Subnet are Local Option

Code: 28 Broadcast Address Option

Code: 29 Perform Mask Discovery Option

Code: 30 Mask Supplier Option

Code: 31 Perform Router Discovery Option

Code: 32 Router Solicitation Address Option

Code: 33 Static Route Option

Code: 34 Trailer Encapsulation Option

Code: 35 ARP Cache Timeout Option

Code: 36 Ethernet Encapsulation Option

Code: 37 TCP Default TTL Option

Code: 38 TCP Keepalive Interval Option

Code: 39 TCP Keepalive Garbage Option

Code: 40 NIS Domain Name

Code: 41 NIS Option

Code: 42 Network Time Protocol Servers Option

Code: 43 Vender-specific information

Code: 44 NetBIOS over TCP/IP Name Server

Code: 45 NetBIOS over TCP/IP Datagram Distribu. Server

Code: 46 NetBIOS over TCP/IP Node Type Server

Code: 47 NetBIOS over TCP/IP Scope Server

Code: 48 X Window System Font Server

Code: 49 X Window System Display Manager

Code: 50 Requested IP Address (DHCPDISCOVER)

Code: 51 IP Address Lease Time

Code: 52 Option Overload

Code: 53 Message Type

Code: 54 Server Identifier

Code: 55 Parameter Request List

Code: 56 Error Message

Code: 57 Maximum DHCP Message Size

Code: 58 Renewal (T1) Time Value

Code: 59 Rebinding (T2) Time Value

Code: 60 Vendor class identifier

Code: 61 Client-identifier

Code: 64 Network Information Service+ Domain Option

Code: 65 Network Information Service+ Option

Code: 66 TFTP server name

Code: 67 Bootfile name

Code: 68 Mobile IP Home Agent

Code: 69 SMTP Server Option

Computer Networks: An Open Source Approach

17

Code: 70 POP3 Server Option

Code: 71 NNTP Server Option

Code: 72 Default WWW Server Option

Code: 73 Default Finger Server Option

Code: 74 Default IRC Server Option

Code: 75 StreetTalk Server Option

Code: 76 SYMA Server Option

Code: 255 End Option

Open Source Implementation 4.8: ICMP

Exercises

Write a pseudo code for the traceroute program given that you are able to call the

ICMP functions in the kernel.

Answer (0.5 hour):

Procedure traceroute {

 For (ttl=1; ttl<256; ttl++) {

 Send an ICMP echo request message to the destination with TTL=ttl;

 If an ICMP echo reply message is received {

 exit(0); //destination has reached

 }

 else if an ICMP time exceeded message is received {

 printout the source address of the ICMP time exceeded message

(router)

and the latency from the packet until the ICMP message is received

 }

 else check unexpected error

 }

}

Open Source Implementation 4.9: RIP

Exercises

Trace route_node_get() and explain how to find the route_node based on the prefix.

Answer (0.5 hour):

Source code: /zebra-0.95a/lib/table.c

The route_node_get() function will retrieve the routing information from the routing

table. Two parameters are passed to the function: table (struct route_table *table) and

p (struct prefix *p). In this function, three variable of data type struct route_node* are

declared: new, node, and match. node is set to table -> top. The

prefix_match(&node->p) function is used to check if the prefix is same as the node’s

prefix. The p.prefixlen is used to check if the node exist.

Computer Networks: An Open Source Approach

18

Open Source Implementation 4.10: OSPF

Exercises

Trace the source code of Zebra and explain how the shortest path tree of each area is

maintained.

Answer (1 hour):

Source code: /zebra-0.95a/ospfd/ospf_spf.c

The Dijkstra’s algorithm is implemented in ospf_spf_calculate() (Calculating

shortest-path tree for each area). A router will build a shortest path tree rooted at itself.

When it receives link state advertisement, it calls ospf_spf_calculate(). Based on the

algorithm we shown in the text, it maintains a list of nodes to be added to the tree. It

calls ospf_spf_next() and ospf_vertex_add_parent() to get the next node to be added

to the tree, i.e., the node with minimum cost in the list. It then calls ospf_spf_register()

to add the node to the shortest path tree.

After removing the node from the list and adding it to the shortest path tree, it

continues calling ospf_spf_next() to get next node until the list is empty.

Open Source Implementation 4.11: BGP

Exercises

In this exercise, you are asked to explore the prefix length distribution of current BGP

routing table. First, browsing the URL at http://thyme.apnic.net/current/, you will find

some interesting analysis of BGP Routing Table seen by APNIC routers. In particular,

“number of prefixes announced per prefix length” will let you know the number of

routing entries of a backbone router and the distribution of prefix length of these

routing entries.

1. How many routing entries does a backbone router own on the day you visit the

URL?

2. Draw a graph to show the distribution of prefix length (length varies from 1 to 32)

in a logarithmic scale because the number of prefixes announced varies from 0 to

tens of thousands.

Answer (0.5 hour):

1. In May 2010, the routing entries are more than 320,000 already.

2. As that of statistics retrieved in May 2010:

Computer Networks: An Open Source Approach

19

Open Source Implementation 4.12: Mrouted

Exercises

Trace the following three functions accept_report(), update_route(), and

accept_prune() in the source code of mrouted and draw their flow charts, respectively.

Compare the flow charts you draw with the DVMRP protocol introduced in this

section.

Answer (6 hours):

flow chart for accept_report():

report arrived

vif marked

as a blaster?

queue it

and return

datalen = -datalen

queue_blaster_report()
Yes

No

Computer Networks: An Open Source Approach

20

flow chart for update_route():

process it instead

of queuing it

if address is the

valid neighbor?

prepare for a sequence

of ordered route update

process a route report

for a single origin

update_neighbor()

start_route_updates())

update_route()

end

No

Yes

process a report

 create the new

route entry

come from

neighbor?

compare the metric

information

Unreachable

modify kernel

table entry

update_table_entry()

end

No

Yes

find_route()

create_route()

Computer Networks: An Open Source Approach

21

flow chart for accept_prune():

Open Source Implementation 5.1: Transport-Layer Packet Flows in Call Graphs

Exercises

1. With the call graph shown in Figure 5.3, you can trace udp_sendmsg() and

tcp_sendmsg() to figure out how exactly these functions are implemented.

2. Explain what the two big “while” loops in tcp_sendmsg() are intended for?

Besides, why are such loop structures not shown in udp_sendmsg()?

Answer (0.5 hour):

tcp_sendmsg():

report arrived

check if any more packets

need to be sent the vif

send a prune message

then upstream

update_kernel()

SUBS_ARE_PRUNED()

Rsrr_cache_send()

send_prune()

end

find the subnet

for the prune

find_src_grp()

update the ttl

values for each vif

prun_add_ttls()

update the kernel cache with all the

routes hanging off the group entry

send route change notification

to reservation protocol

Computer Networks: An Open Source Approach

22

 err = -EPIPE;

 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))

 goto do_error;

 while (--iovlen >= 0) {

 int seglen = iov->iov_len;

 unsigned char __user *from = iov->iov_base;

 iov++;

 while (seglen > 0) {

 int copy;

 skb = tcp_write_queue_tail(sk);

 ...

 }

 }

The first while loop checks if the queue is full. If not, i.e., iovlen >= 0, then it

continues. The second while loop checks if the there are still data to be sent, i.e.,

seglen > 0. If yes, it continues writing the data to the tail of the queue of the

socket.

udp_sendmsg():

Since there is no flow control when sending data using UDP, udp_sendmsg() does

notcheck whether the queue is full. It simply sends the data to the queue of the

socket. No while loop is used in udp_sendmsg().

Open Source Implementation 5.2: UDP and TCP Checksum

Exercises

If you look at the definition of sk_buff in the sk_buff, you may find its memory space

is shared with another two variables: csum_start and csum_offset. Could you figure

out the usages of the two variables and why both variables share the same 4-byte

space with csum?

Answer (3 hours):

 csum_start is the offset from the address of skb->head to the address of the

checksum field. csum_soffset is the offset from the beginning of the address of

checksum to the end.

 Before version 2.6.22, the Linux kernel sets the csum and csum_offset to be an

union data structure (shared memory). The rationale is that they will not be used

simultaneously. The csum is a temporary variable for calculating the checksum

while csum_offset is the offset of the checksum field after checksum is computed.

Therefore, they will not be used simultaneously.

 After version 2.6.22, csum_start,csum_offset, and csum are declared as an union

Computer Networks: An Open Source Approach

23

data structure for the same reason: they will not be used simultaneously. The

calculation result temporarily stored in csum will be copied to checksum.

Therefore, the 4-byte memory of csum can be used by csum_start and

csum_offset(csum_start and csum_offset each requires 16 bits).

Open Source Implementation 5.3: TCP Sliding Window Flow Control

Exercises

In tcp_snd_test(), there is another function tcp_init_tso_segs() called before the three

check functions mentioned above. Explain what this function is for.

Answer (1 hour):

static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb,

 unsigned int mss_now)

{

 int tso_segs = tcp_skb_pcount(skb);

 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {

 tcp_set_skb_tso_segs(sk, skb, mss_now);

 tso_segs = tcp_skb_pcount(skb);

 }

 return tso_segs;

}

TSO denotes “TCP Segmentation Offload.” tcp_init_tso_segs() calls tcp_skb_pcount()

to obtain the value of GSO(Generic Segmentation Offload). If tso_segs equals to 0 or

it is larger than 1 but the value of GSO is different from MSS, it calls

tcp_set_skb_tso_segs() to recalculate the value of tso_segs. The new value of tso_segs

is returned as a parameter to the tcp_write_xmit() function. This would allow NIC to

know the value of the offload in order to speed up the processing of the packet.

Open Source Implementation 5.4: Tcp Slow Start and Congestion Avoidance

Exercises

The current implementation in tcp_cong.c provides a flexible architecture that allows

replacing the Reno’s slow-start and congestion-avoidance with others.

1. Explain how this allowance is achieved.

2. Find an example from the kernel source code which changes the Reno algorithm

through this architecture.

Answer (2 hours):

1. To replace the Reno’s congestion control with a new one, we can set new

cong_avoid, ssthresh functions into the tcp_reno data structure:

struct tcp_congestion_ops tcp_reno

http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_congestion_ops
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_reno

Computer Networks: An Open Source Approach

24

The tcp_reno_cong_avoid() function starts from line 359 in tcp_cong.c:
void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)

 360{

 361 struct tcp_sock *tp = tcp_sk(sk);

 362

 363 if (!tcp_is_cwnd_limited(sk, in_flight))

 364 return;

 365

 366 /* In "safe" area, increase. */

 367 if (tp->snd_cwnd <= tp->snd_ssthresh)

 368 tcp_slow_start(tp);

 369

 370 /* In dangerous area, increase slowly. */

 371 else if (sysctl_tcp_abc) {

 372 /* RFC3465: Appropriate Byte Count

 373 * increase once for each full cwnd acked

 374 */

 375 if (tp->bytes_acked>=tp->snd_cwnd*tp->mss_cache) {

 376 tp->bytes_acked-=tp->snd_cwnd*tp->mss_cache;

 377 if (tp->snd_cwnd < tp->snd_cwnd_clamp)

 378 tp->snd_cwnd++;

 379 }

 380 } else {

 381 tcp_cong_avoid_ai(tp, tp->snd_cwnd);

 382 }

 383}

This function is set to the cong_avoid field of the tcp_reno data structure.

struct tcp_congestion_ops tcp_reno = {

 .flags = TCP_CONG_NON_RESTRICTED,

 .name = "reno",

 .owner = THIS_MODULE,

 .ssthresh = tcp_reno_ssthresh,

 .cong_avoid = tcp_reno_cong_avoid,

 .min_cwnd = tcp_reno_min_cwnd,

http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_reno_cong_avoid
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=sock
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=sk
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=u32
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=ack
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=u32
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=in_flight
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L360
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L361
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_sock
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_sk
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=sk
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L362
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L363
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_is_cwnd_limited
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=sk
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=in_flight
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L364
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L365
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L366
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L367
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=snd_cwnd
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=snd_ssthresh
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L368
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_slow_start
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L369
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L370
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L371
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=sysctl_tcp_abc
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L372
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L373
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L374
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L375
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=bytes_acked
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=snd_cwnd
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=mss_cache
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L376
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=bytes_acked
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=snd_cwnd
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=mss_cache
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L377
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=snd_cwnd
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=snd_cwnd_clamp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L378
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=snd_cwnd
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L379
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L380
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L381
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_cong_avoid_ai
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=snd_cwnd
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L382
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_cong.c#L383

Computer Networks: An Open Source Approach

25

};

We can do the same change for TCP Vegas. In tcp_vegas.c, we can replace the

cong_avoid field of the tcp_vegas data structure with the new function..

static struct tcp_congestion_ops tcp_vegas = {

 .flags = TCP_CONG_RTT_STAMP,

 .init = tcp_vegas_init,

 .ssthresh = tcp_reno_ssthresh,

 .cong_avoid = tcp_vegas_cong_avoid,

 .min_cwnd = tcp_reno_min_cwnd,

 .pkts_acked = tcp_vegas_pkts_acked,

 .set_state = tcp_vegas_state,

 .cwnd_event = tcp_vegas_cwnd_event,

 .get_info = tcp_vegas_get_info,

 .owner = THIS_MODULE,

 .name = "vegas",

};

Open Source Implementation 5.5: TCP Retransmit Timer

Exercises

Figure 5.27 shows how to update srtt and mdev based on m and their previous values.

Then, do you know where and how the initial values of srtt and mdev are given?

Answer (2 hours):

In tcp_clean_rtx_queue(), seq_rtt is set to -1 as follows:
static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,

3177 u32 prior_snd_una)

3178{

3179 struct tcp_sock *tp = tcp_sk(sk);

3180 const struct inet_connection_sock *icsk = inet_csk(sk);

3181 struct sk_buff *skb;

3182 u32 now = tcp_time_stamp;

3183 int fully_acked = 1;

3184 int flag = 0;

3185 u32 pkts_acked = 0;

3186 u32 reord = tp->packets_out;

3187 u32 prior_sacked = tp->sacked_out;

http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_clean_rtx_queue
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=sock
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=sk
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=prior_fackets
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L3177
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=u32
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=prior_snd_una
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L3178
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L3179
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_sock
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_sk
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=sk
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L3180
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=inet_connection_sock
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=icsk
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=inet_csk
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=sk
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L3181
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=sk_buff
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=skb
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L3182
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=u32
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=now
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_time_stamp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L3183
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=fully_acked
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L3184
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=flag
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L3185
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=u32
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=pkts_acked
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L3186
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=u32
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=reord
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=packets_out
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L3187
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=u32
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=prior_sacked
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=sacked_out

Computer Networks: An Open Source Approach

26

3188 s32 seq_rtt = -1;

The call flow eventually will call tcp_rtt_estimator()where srtt and mdev are set based

on m:

else {

 664 /* no previous measure. */

 665 tp->srtt = m << 3; /* take the measured time to be rtt */

 666 tp->mdev = m << 1; /* make sure rto = 3*rtt */

 667 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));

 668 tp->rtt_seq = tp->snd_nxt;

 669 }

Open Source Implementation 5.6: TCP Persistence Timer and Keepalive Timer

Exercises

Could you read net/ipv4/tcp_timer.c to figure out where and how the

tcp_probe_timer() routine is hooked? Is it directly hooked on a timer_list structure

just as tcp_keepalive_timer()?

Answer (3 hours):

Data structure of timer_list is given as follows:

Related call flow is given as follows:

struct timer_list {

 struct list_head entry;

 unsigned long expires;

void (*function)(unsigned long);

unsigned long data;

struct tvec_t_base_s *base; 18};

http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L3188
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=s32
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=seq_rtt
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L664
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L665
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=srtt
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=m
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L666
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=mdev
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=m
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L667
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=mdev_max
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=rttvar
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=max
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=mdev
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tcp_rto_min
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=sk
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L668
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=rtt_seq
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=tp
http://lxr.linux.no/linux+v2.6.31/net/ipv4/+code=snd_nxt
http://lxr.linux.no/linux+v2.6.31/net/ipv4/net/ipv4/tcp_input.c#L669
http://lxr.linux.no/linux+v2.6.18.7/include/linux/+code=timer_list
http://lxr.linux.no/linux+v2.6.18.7/include/linux/+code=timer_list
http://lxr.linux.no/linux+v2.6.18.7/include/linux/+code=list_head
http://lxr.linux.no/linux+v2.6.18.7/include/linux/+code=entry
http://lxr.linux.no/linux+v2.6.18.7/include/linux/+code=expires
http://lxr.linux.no/linux+v2.6.18.7/include/linux/+code=function
http://lxr.linux.no/linux+v2.6.18.7/include/linux/+code=data
http://lxr.linux.no/linux+v2.6.18.7/include/linux/+code=tvec_t_base_s
http://lxr.linux.no/linux+v2.6.18.7/include/linux/+code=base
http://lxr.linux.no/linux+v2.6.18.7/include/linux/include/linux/timer.h

Computer Networks: An Open Source Approach

27

 Firstly, we can see that tcp_init_xmit_timers() calls inet_csk_init_xmit_timers().

It is the main function to hook the timer_list.

 In inet_csk_init_xmit_timers(), it calls setup_timer() which in turn calls

tcp_write_timer() and tcp_keepalive_timer(). The former hooks the struct

timer_list icsk_retransmit_timer while the later hooks the struct timer_list

icsk_delack_timer. That is, tcp_keepalive_timer is directly hooked to the

timer_list . For tcp_probe_timer(), it is called indirectly through

tcp_write_timer(), not directly hooked to the timer_list .

 In net/ipv4/tcp_timer.c,tcp_write_timer() will call tcp_probe_timer().

Specifically, it is the “case ICSK_TIME_PROBEO” of the switch (event)

statement. The case is true under zero window probe.

static void tcp_probe_timer(struct sock *sk)

{

struct inet_connection_sock *icsk = inet_csk(sk);

 struct tcp_sock *tp = tcp_sk(sk);

 int max_probes;

 if (tp->packets_out || !tcp_send_head(sk)) {

 /* if tp->packets_out is not zero, the timer is set already */

 /* tcp_send_head() checks if there are data to be sent */

 icsk->icsk_probes_out = 0;

 /* number of probes sent */

 return;

 }

 max_probes = sysctl_tcp_retries2;

tcp_probe_timer

tcp_write_timer

tcp_send_probe0

tcp_init_xmit_timers

inet_csk_init_xmit_timers

setup_timer

Computer Networks: An Open Source Approach

28

 /* set the maximum number of probes to be sent */

 if (sock_flag(sk, SOCK_DEAD)) { /* is the socket closed? */

 const int alive = ((icsk->icsk_rto << icsk->icsk_backoff) < TCP_RTO_MAX);

 /* calculate the value of alive */

 max_probes = tcp_orphan_retries(sk, alive);

 if (tcp_out_of_resources(sk, alive || icsk->icsk_probes_out <= max_probes))

 return;

 }

Open Source Implementation 5.7: Socket Read/Write Inside out

Exercises

As shown in Figure 5.41, the structure proto in the structure sock provides a list of

function pointers which link to the necessary operations of a socket, e.g. connect,

sendmsg, and recvmsg. By linking different sets of functions to the list, a socket can

send or receive data over different protocols. Find out and read the function sets of

other protocols such as UDP.

Answer (0.5 hour):

UDP: at ipv4/udp.c

udp_prot proto

udp_lib_close close

ip4_datagram_connect connect

udp_disconnect disconnect

udp_ioctl ioctl

udp_destroy_sock destroy

udp_setsockopt setsockopt

udp_getsockopt getsockopt

udp_sendmsg sendmsg

udp_recvmsg recvmsg

udp_sendpage sendpage

udp_queue_rcv_skb backlog_rcv

udp_lib_hash hash

udp_lib_unhash unhash

udp_v4_get_port get_port

&dup_memory_allocated memory_allocated

sysctl_udp_mem sysctl_mem

&sysctl_udp_wmem_min sysctl_wmem

Computer Networks: An Open Source Approach

29

&sysctl_udp_rmem_min sysctl_rmem

sizeof(struct udp_sock) obj_size

udp_hash h.udp_hash

compat_udp_setsockopt compat_setsockopt

compat_udp_getsockopt compat_getsockopt

DCCP: at net/dccp/ipv4.c

inet_dccp_ops proto

PF_INET family

THIS_MODULE owner

inet_release release

inet_bind bind

inet_stream_connect connect

sock_no_socketpair socketpair

inet_accept accept

inet_getname getname

dccp_poll poll

inet_ioctl ioctl

inet_dccp_listen listen

inet_shutdown shutdown

sock_common_setsockopt setsockopt

sock_common_getsockopt getsockopt

inet_sendmsg sendmsg

sock_common_recvmsg recvmsg

sock_no_mmap mmap

sock_no_sendpage sendpage

compat_sock_common_setsockopt compat_setsockopt

compat_sock_common_getsockopt compat_getsockopt

Open Source Implementation 5.8: Bypassing the Transport Layer

Exercises

Modify and compile the above example to dump the fields of the MAC header into a

file and identify the transport protocol for each received packet. Note that you need to

have the root privilege of the machine to run this.

Answer (1 hour):

#include <stdio.h>
#include <unistd.h>

Computer Networks: An Open Source Approach

30

#include <sys/socket.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <netinet/in.h>
#include <linux/if_ether.h>
#include <net/ethernet.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <net/if.h>
#include <stdlib.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <string.h>
#include <netinet/ip.h>

int main()
{
 int n;
 int fd;
 char buf[2048];

 unsigned char *ethHead;

 struct ether_header *peth;
 struct iphdr *pip;

 if((fd=socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL))) == -1)
 {
 printf("fail to open socket\n");
 return 1;
 }
 while(1)
 {
 n = recvfrom(fd, buf, sizeof(buf), 0, 0, 0);
 ethHead = buf;

 if(n>0)
 printf("\nrecv %d bytes\n", n);

 /* Adapt the MAC addr. */
 printf("Source MAC addr.:
%02x:%02x:%02x:%02x:%02x:%02x\t", ethHead[0], ethHead[1], ethHead[2],
ethHead[3], ethHead[4], ethHead[5]);
 printf("Dest. MAC addr.:
%02x:%02x:%02x:%02x:%02x:%02x\t", ethHead[6], ethHead[7], ethHead[8],
ethHead[9], ethHead[10], ethHead[11]);

 peth = (struct ether_header *)ethHead;
 ethHead = ethHead+sizeof(struct ether_header);
 pip = (struct iphdr *)ethHead;
 ethHead = ethHead+sizeof(struct ip);
 /* Adapt protocol type */
 switch(pip->protocol)
 {

Computer Networks: An Open Source Approach

31

 case IPPROTO_TCP:
 printf("TCP packets\n");
 break;
 case IPPROTO_UDP:
 printf("UDP packets\n");
 break;
 case IPPROTO_ICMP:
 printf("ICMP packets\n");
 break;
 default:
 printf("Unknown packets\n");
 break;
 }
 }
 return 0;
}

Experiment results:
===
=====
recv 60 bytes
Source MAC addr.: 00:0c:29:5e:02:8d Dest. MAC addr.: 00:05:5d:f4:c0:57
TCP packets

recv 298 bytes
Source MAC addr.: 00:05:5d:f4:c0:57 Dest. MAC addr.: 00:0c:29:5e:02:8d
TCP packets
===
=====

Reference:

http://lazyflai.blogspot.com/2009/02/linuxsniffer.html

http://blog.csdn.net/haoahua/archive/2008/12/24/3597247.aspx

Open Source Implementation 5.9: Making Myself Promiscuous

Exercises

Take a look on network device drivers to figure out how ndo_change_rx_flags() and

ndo_set_rx_mode() are implemented. If you cannot find out their implementations,

then where is the related code in the driver to enable the promiscuous mode?

Answer (2 hours):

net/8021q/vlan_dev.c

static void vlan_dev_change_rx_flags(struct net_device *dev, int change)

{

 struct net_device *real_dev = vlan_dev_info(dev)->real_dev;

 if (change & IFF_ALLMULTI)

 dev_set_allmulti(real_dev, dev->flags & IFF_ALLMULTI ? 1 : -1);

 if (change & IFF_PROMISC)

 dev_set_promiscuity(real_dev, dev->flags & IFF_PROMISC ? 1 : -1);

}

http://lazyflai.blogspot.com/2009/02/linuxsniffer.html
http://blog.csdn.net/haoahua/archive/2008/12/24/3597247.aspx

Computer Networks: An Open Source Approach

32

static void vlan_dev_set_rx_mode(struct net_device *vlan_dev)

{

 dev_mc_sync(vlan_dev_info(vlan_dev)->real_dev, vlan_dev);

 dev_unicast_sync(vlan_dev_info(vlan_dev)->real_dev, vlan_dev);

}

These functions in vlan_dev.c are for implementation of virtual LAN. In

vlan_dev_change_rx_flags(), the passed in parameter “change” together with the

IFF_PROMISC flag decide whether to change the NIC to promiscuous mode. The

actual setting of NIC is done by the dev_set_promiscuity() function.

Open Source Implementation 5.10: Linux Socket Filter

Exercises

If you read the man page of tcpdump, you will find that tcpdump can generate the

BPF code in the styles of human readable or C program fragment, according to your

given filtering conditions, e.g. tcpdump –dd host 192.168.1.1. Figure out the

generated BPF code first. Then, write a program to open a raw socket (see Open

Source Implementation 5.8), turn on the promiscuous mode (see Open Source

Implementation 5.9), use setsockopt to inject the BPF code into BPF, and then

observe whether you indeed receive from the socket only the packets matching the

given filter.

Answer (2 hours):

#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <netinet/in.h>
#include <linux/if_ether.h>
#include <net/ethernet.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <net/if.h>
#include <stdlib.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <string.h>
#include <netinet/ip.h>
#include <linux/filter.h>

int main()
{

Computer Networks: An Open Source Approach

33

 int n;
 int fd;
 char buf[2048];

 unsigned char *ethHead;

 struct ether_header *peth;
 struct iphdr *pip;

 struct ifreq ethreq;
 struct sock_fprog Filter;
 struct sock_filter code[] = {
 { 0x28, 0, 0, 0x0000000c },
 { 0x15, 0, 4, 0x00000800 },
 { 0x20, 0, 0, 0x0000001a },
 { 0x15, 8, 0, 0x8c71b3ff },
 { 0x20, 0, 0, 0x0000001e },
 { 0x15, 6, 7, 0x8c71b3ff },
 { 0x15, 1, 0, 0x00000806 },
 { 0x15, 0, 5, 0x00008035 },
 { 0x20, 0, 0, 0x0000001c },
 { 0x15, 2, 0, 0x8c71b3ff },
 { 0x20, 0, 0, 0x00000026 },
 { 0x15, 0, 1, 0x8c71b3ff },
 { 0x6, 0, 0, 0x00000060 },
 { 0x6, 0, 0, 0x00000000 },
 };

 if((fd=socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL))) == -1)
 {
 printf("fail to open socket\n");
 return 1;
 }
 /* set promiscuous mode*/
 strncpy(ethreq.ifr_name, "eth0", IFNAMSIZ);
 ioctl(fd, SIOCGIFFLAGS, ðreq);
 ethreq.ifr_flags |= IFF_PROMISC;
 ioctl(fd, SIOCGIFFLAGS, ðreq);

/* BPF */
Filter.len = 14;
Filter.filter = code;
setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, &Filter, sizeof(Filter));

 while(1)
 {
 n = recvfrom(fd, buf, sizeof(buf), 0, 0, 0);
 ethHead = buf;

 if(n>0)
 printf("\nrecv %d bytes\n", n);

 /* Adapt the MAC addr. */
 printf("Source MAC addr.:
%02x:%02x:%02x:%02x:%02x:%02x\t", ethHead[0], ethHead[1], ethHead[2],
ethHead[3], ethHead[4], ethHead[5]);
 printf("Dest. MAC addr.:

Computer Networks: An Open Source Approach

34

%02x:%02x:%02x:%02x:%02x:%02x\t", ethHead[6], ethHead[7], ethHead[8],
ethHead[9], ethHead[10], ethHead[11]);

 peth = (struct ether_header *)ethHead;
 ethHead = ethHead+sizeof(struct ether_header);
 pip = (struct iphdr *)ethHead;
 ethHead = ethHead+sizeof(struct ip);
 switch(pip->protocol)
 {
 case IPPROTO_TCP:
 printf("TCP packets\n");
 break;
 case IPPROTO_UDP:
 printf("UDP packets\n");
 break;
 case IPPROTO_ICMP:
 printf("ICMP packets\n");
 break;
 default:
 printf("Unknown packets\n");
 break;
 }
 }
 return 0;
}

Results of experiments:
===
=====
recv 92 bytes
Source MAC addr.: ff:ff:ff:ff:ff:ff Dest. MAC addr.: 00:30:6e:d7:a1:eb U
DP packets

recv 92 bytes
Source MAC addr.: ff:ff:ff:ff:ff:ff Dest. MAC addr.: 00:30:6e:d7:a1:eb U
DP packets

recv 92 bytes
Source MAC addr.: ff:ff:ff:ff:ff:ff Dest. MAC addr.: 00:30:6e:d7:a1:eb U
DP packets
===
=====

Reference:

http://www.360doc.com/content/061028/09/13362_243074.html

Open Source Implementation 6.1: BIND

Exercises

1. Find the .c file and the lines of code that implement the iterative resolution.

2. Find which RRs are looked up in forward query and reverse query, respectively, on

one of your local hosts.

3. Retrieve all RRs in your local name server with dig.

Answer (2 hours):

http://www.360doc.com/content/061028/09/13362_243074.html

Computer Networks: An Open Source Approach

35

1. bind-9.7.0b3\bin\named\query.c

 Implementation can be found in query_find(), at line 3709-5099.

 The iterative query is processed in line 4120-4188. The following

gives the operation overview: When NS receives an iterative query, it

checks its local database (cache) to see if it has the answer. If yes, it

returns the non-authoritative answer. If not, it returns a list of NSs in its

local cache that may know the answer. The requester can send requests

to these NSs for the desired answer.

2.

“forward query”:

As a forward query example, use the “dig www.cs.nctu.edu.tw” command to request

for the IP address of the domain name “www.cs.nctu.edu.tw”. The ANSWER

SECTION is given as follows:

;; ANSWER SECTION:

www.cs.nctu.edu.tw. 44 IN A 140.113.235.47

“reverse query”:

As a reverse query example, use “dig –x 140.113.235.47”to query the domain name of

the IP address 140.113.235.47. The ANSWER SECTION is given as follows:

;; ANSWER SECTION:

47.235.113.140.in-addr.arpa. 229179 IN PTR wwwcs.cs.nctu.edu.tw.

(3) To get all domain records (if allowed by administrator):

dig domain-name axfr

Open Source Implementation 6.2: qmail

Exercises

1. Find the .c files and the lines of code that implement qmail-smtpd, qmail-remote,

and qmail-pop3d.

2. Find the exact structure definition of the qmail queue in an object of the qmail

structure.

3. Find how e-mails are stored in the mailbox and mail directory.

Answer (4 hours):

1.

 implementing qmail-smtpd:

 qmail-smtpd.c 中

 line 65-69 “smtp_greet(code)”

 line 70-73 “smtp_help(arg)”

http://www.cs.nctu.edu/

Computer Networks: An Open Source Approach

36

 line 74-77 “smtp_quit(arg)”

 line 225-229 “smtp_helo(arg)”

 line 230-234 “smtp_ehlo(arg)”

 line 235-239 “smtp_rset(arg)”

 line 240-249 “smtp_mail(arg)”

 line 250-265 “smtp_rcpt(arg)”

 line 368-395 “smtp_data(arg)”

 line 411-421 “main()”

 implementing qmail-remote:

 qmail-remote.c

 line 89-93 “outhost()”

 line 97-104 “dropped()”

 line 134-141 “get(ch)”

 line 166-176 “outsmtptext()”

 line 178-190 “quit(prepend,append)”

 line 219-274 “smtp()”

 line 279-309 “addrmangle(saout,s,flagalias,flagcname)”

 line 311-327 “getcontrols()”

 line 329-427 “main(argc,argv)”

 implementing qmail-pop3d:

 qmail-pop3d.c

 line 149-162 “pop3_stat(arg)”

 line 164-170 “pop3_rset(arg)”

 line 172-178 “pop3_last(arg)”

 line 180-197 “pop3_quit(arg)”

 line 210-218 “pop3_dele(arg)”

 line 255-274 “pop3_top(arg)”

 line 290-306 “main(argc,argv)”

2.

qmail queue is defined as one of the records of the data structure “struct qmail”;

it is declared to be char buf[1024].

3.

The difference between mailbox and mail directory is that the former stores all mails

in a file while the later stores one mail in one file and all mails (files) in one

directory.

Open Source Implementation 6.3: Apache

Exercises

Computer Networks: An Open Source Approach

37

1. Find which .c file and lines of code implement prefork. When is prefork invoked?

2. Find which .c file and lines of code implement cookie persistence

3. Find which .c files and lines of code implement HTTP request handling and

response preparation.

Answer (1 hour):

1.

Implemented in Server/mpm/prefork.c(Line 1343):

static void prefork_hooks(apr_pool_t *p)

Invoked in Server/mpm/prefork.c (Line 1489):

module AP_MODULE_DECLARE_DATA mpm_prefork_module = {

 MPM20_MODULE_STUFF,

 ap_mpm_rewrite_args, /* hook to run before apache parses args */

 NULL, /* create per-directory config structure */

 NULL, /* merge per-directory config structures */

 NULL, /* create per-server config structure */

 NULL, /* merge per-server config structures */

 prefork_cmds, /* command apr_table_t */

 prefork_hooks, /* register hooks */

};

2.

Modules/metadata/Mod_usertrack.c (line 208)

static int spot_cookie(request_rec *r)

3.

In Modules/metadata/Mod_headers.c

Line 499: header_cmd().

Open Source Implementation 6.4: wu-ftpd

Exercises

1. How and where are the control and data connections of an FTP session handled

concurrently? Are they handled in the same process or two processes?

2. Find which .c file and lines of code implement active mode and passive mode.

When is the passive mode invoked?

Answer (2 hours):

1. When there is a need for data transfer, such as file transfer or list of a directory, the

data connection is established. During the data transfer, both data and control

connections will co-exist. The data connection is closed when the data transfer is

done. A new data connection will be established when a new data transfer is

requested. Both data and control connections are handled by the same process.

2. passive mode：

The default mode is active mode, so there is no dedicate function for active mode

FTP. Implementation of active mode starts from line 567 in the main() function.

The passive mode is implemented by the passive(void) function which can be

Computer Networks: An Open Source Approach

38

found in /src/Ftpd.c, line 160.

Open Source Implementation 6.5: Net-SNMP

Exercises

1. Find which .c files and lines of code implement set operation.

2. Find out the exact structure definition of an SNMP session.

Answer (2 hours):

1. The set operation is implemented by the function netsnmp_set() which could be

found at line 124 in Client_intf.c.

2.

/* Internal information about the state of the snmp session.*/

struct snmp_internal_session {
 netsnmp_request_list *requests; /* Info about outstanding requests */
 netsnmp_request_list *requestsEnd; /* ptr to end of list */
 int (*hook_pre) (netsnmp_session *, netsnmp_transport *,
 void *, int);
 int (*hook_parse) (netsnmp_session *, netsnmp_pdu *,
 u_char *, size_t);
 int (*hook_post) (netsnmp_session *, netsnmp_pdu *, int);
 int (*hook_build) (netsnmp_session *, netsnmp_pdu *,
 u_char *, size_t *);
 int (*hook_realloc_build) (netsnmp_session *,
 netsnmp_pdu *, u_char **,
 size_t *, size_t *);
 int (*check_packet) (u_char *, size_t);
 netsnmp_pdu *(*hook_create_pdu) (netsnmp_transport *,
 void *, size_t);
 u_char *packet;
 size_t packet_len, packet_size;
};

/* The list of active/open sessions. */
struct session_list {

 struct session_list *next;
 netsnmp_session *session;
 netsnmp_transport *transport;
 struct snmp_internal_session *internal;
};

Open Source Implementation 6.6: Asterisk

Exercises

1. Find which .c file and lines where sip_request_call() is registered as a callback

function.

2. Describe the sip_pvt structure and explain important variables in that structure.

3. Find which .c file and lines where the RTP/RTCP transport is establish for the SIP

session.

Computer Networks: An Open Source Approach

39

Answer (1 hour):

1. In Chan_sip.c, line 2311:

requester = sip_request_call, /* called with chan unlocked */

2. sip_pvt maintains information of a SIP connection, some of the important

variables are:

a. struct sip_pvt *next;

Points to the next SIP dialog

b. AST_STRING_FIELD(callid);

Stores the caller id

c. struct sip_socket socket;

The socket of this SIP dialog.

3. In Rtp.c, line 2504:

struct ast_rtp *ast_rtp_new_with_bindaddr()

It establishes a RTP session by calling ast_rtp_new_init(rtp).

Open Source Implementation 6.7: Darwin

Exercises

1. Find out under what situation the DSS core server will put the

RTSPListenerSocket object into the fIdleHeap of IdleTaskThread for waiting.

2. Refer to the function Task::Signal(). Explain the procedure of assigning a Task

object to a TaskThread.

Answer (1.5 hours):

1. After accepting a new connection and creating a new RTSPSession object for this

connection, RTSPListenerSocket will check whether the number of RTSP

connections is over the maximum connection limit. If it is over the limit,

setIdleTimer() will be called to put RTSPListenerSocket into the fIdleHeap of the

IdleTaskThread for waiting. In this case, RTSPListenerSocket cannot accept any

new RTSP session anymore until it is assigned to one of the TaskThreads again.

The DSS uses this mechanism to control the maximum number of sessions.

2.

a. First, mask the input argument events with kAlive. And then store the

original fEvents to oldEvents and mask the events to fEvents atomically.

b. Check oldEvents. If oldEvents has kAlive masked, which means this task is

now inside the fTaskQueue of one of the TaskThreads, return directly,

because there is no need to put this task into the fTaskQueue of any

TaskThreads again.

c. If not, check if this task has a designated TaskThread. If it has, insert this task

Computer Networks: An Open Source Approach

40

into the fTaskQueue of the designated TaskThread and then return.

d. If no designated TaskThread assigned, add threadPicker by 1 atomically,

calculate the threadIndex (i.e., threadPicker mod number of TaskThreads,

making task assignment in a round-robin fashion) and finally insert this task

into the fTaskQueue of the TaskThread with threadIndex.

Open Source Implementation 6.8: BitTorrent

Exercises

1. Explore the locality by considering the round trip delay and changing the random

selection code in the getNextOptimisticPeer() function accordingly. For example, you

may give preference to peers with lower round trip delay.

2. Discuss why it is important to consider locality in choosing optimistic unchoked

peers. Note that optimistic unchoke plays an initiation role in finding potential

tit-for-tat peers.

Answer (1.5 hour) :

1.

The random selection code in the getNextOptimisticPeer() function is listed as

Computer Networks: An Open Source Approach

41

follows :

for (int i=0;i<num_needed && optimistics.size() > 0;i++){

int rand_pos = new Random().nextInt(optimistics.size());

 result.add(optimistics.remove(rand_pos));

 }

Replacing the original code with following instructions allows us to give

preference to peers with lower round trip delay :

//The method getRTT() implemented in DHTSpeedTesterImpl.java allows us to

//get the RTT of a neighbor peer’s RTT. The ping function is called by getRTT()

to

//measure the RTT of a neighbor peer.

 import com.aelitis.azureus.core.dht.speed.impl.DHTSpeedTesterImpl;

 long[] RTT = new long[optimistics.size()];

 ArrayList<PEPeer> RTTpeer = new ArrayList<PEPeer>(optimistics.size());

//For each peer in the list of optimistic peers, get its RTT and sort the list

//based on RTT, put the result to RTTpeer

for (int i=0;i< optimistics.size();i++){

 PEPeer peer = all_peers.get(i);

 potentialPing pp = (potentialPing) optimistic.get(i);

 int newRTT = pp.getRTT()

 updateLargestValueFirstSort(newRTT, RTT, peer, RTTpeer, 0);

 }

 //Sequentially output RTTpeer to the list of optimistic peers

for (int i=RTTpeer.size();i=RTTpeer.size()-num_needed;i--){

 result.add(RTTpeer.remove(i));

 }

2.

Two peers having shorter RTT implies that they are physically near to each other.

When selecting an optimistic peer, we actually give the peer a chance to receive data

from us. Since tit-for-tat is based on the amount of upload data from a neghbor peer,

we in turn get a better chance to become a tit-for-tat peer of the selected optimistic

peer. With goodwill, the selected optimistic peer will become our tit-for-tat peer later.

Therefore, considering locality in choosing optimistic unchoked peer also results in

better locality of tit-for-tat peers.

Open Source Implementation 7.1: Traffic Control Elements in Linux

Computer Networks: An Open Source Approach

42

Exercises

Could you re-configure your Linux kernel to install the TC modules and then figure

out how to setup these modules? In the following open source implementations in this

chapter, we shall detail several TC elements related to the text. Thus, it is a good time

here to prepare yourself with this exercise. You can find useful references in Further

Readings of this chapter.

Answer (1 hour):

Using make menuconfig->Code maturity level options->Prompt for development and

/or incomplete code/drivers

Open Source Implementation 7.2: Traffic Estimator

Exercises

1. Could you explain how Line 6 or 10 performs the EWMA operation? What is the

value of the historical parameter w used in the operation?

2. Could you read gen_estimator.c to find out how the gen_estimator of all flows are

grouped? Do you know why the parameter idx is counted from 2?

Answer (1.5 hours):

1.

4: brate = (nbytes - e->last_bytes)<<(7 - idx);

5: e->last_bytes = nbytes;

6: e->avbps += ((s64)brate - e->avbps) >> e->ewma_log;

7: e->rate_est->bps = (e->avbps+0xF)>>5;

(1) To evaluate EWMA:

avrate = avrate*(1-W) + rate*W

where W is chosen as negative power of 2: W = 2^(-ewma_log)

The resulting time constant is:

 T = A/(-ln(1-W))

(2) W is 2^(-ewma_log).

2.

Computer Networks: An Open Source Approach

43

(1) by linked list.

(2) We measure rate over A=(1<<interval) seconds. Minimal interval is

HZ/4=250msec (it is the greatest common divisor for HZ=100 and HZ=1024 8)),

maximal interval is (HZ*2^EST_MAX_INTERVAL)/4 = 8sec.

Open Source Implementation 7.3: Flow Identification

Exercises

1. Is there any reason that the destination IP address and port number are used in

hashing before the source IP address and port number?

2. Could you find what hash function is used for the identification by reading the

code in net/sched/cls_rsvp.h?

Answer (2 hours):

1.

 Usually, the local host is a client side which connects to a server. Therefore, there

could be several local ports that connect to the same server IP and its well known

port. If hashing on the source IP and port number, then the result will be unique.

As a consequence, there would be no feature of double-level hash. On the other

hand, if hashing on the destination IP and port number, more than one session will

hash to the same key (value) which is called the first-level hash. These sessions

could be distinguished by hashing on the source IP and port number, so called the

second-level hash. In this way, flow identification can be done using double-level

hash.

2.

 The two inline functions, hash_dst and hash_src in cls_rsvp.h, are main hash

functions used for identification. Both of them use the variable h which is the bit

string of the destination or source address as the key to the hash function. The hash

function performs some shift and OR operations on the key and then takes part of the

key value as the hash result. For example, in hash_dst, it first performs two shift and

OR operations: h ^= h>>16 and h ^= h>>8, and then returns (h ^ protocol ^ tunnelid)

& 0xFF) as the hash result.

Open Source Implementation 7.4: Token Bucket

Exercises

As mentioned in the beginning of the data structure, you can find another

implementation of token bucket in act_police.c. Explain how the token bucket is

implemented for that policer?

Answer (1 hour):

Computer Networks: An Open Source Approach

44

Flow control is done by the tcf_act_police() function. If the data rate of the flow is

larger than the threshold, i.e., police->tcf_rate_est.bps >= police->tcfp_ewma_rat, it

returns without sending packets. To send a packet, following three conditions must be

met:

1. qdisc_pkt_len(skb) <= police->tcfp_mtu

2. police->tcfp_R_tab != NULL

3. (toks|ptoks) >= 0

The first condition requires that the packet length is less than the MTU; the second

condition requires that the flow control table must exists; the third condition requires

that toks or ptoks must be greater or equal to zero.

Following codes are key implementation of flow control:
now = psched_get_time();

toks = psched_tdiff_bounded(now, police->tcfp_t_c,

 police->tcfp_burst);

if (police->tcfp_P_tab) {

 ptoks = toks + police->tcfp_ptoks;

 if (ptoks > (long)L2T_P(police,police->tcfp_mtu))

 ptoks = (long)L2T_P(police, police->tcfp_mtu);

 ptoks -= L2T_P(police, qdisc_pkt_len(skb));

}

“toks” records the accumulated amount of data that can be sent. When tcfp_P_tab is

activated, flow can be sent at the peak rate(police->tcfp_ptoks) for a time period of

ptoks. If tcfp_P_tab is not activated, it can sent data at mean rate(police->tcfp_burst).

When all of the data in the buffer have been sent, the residual time and rate are stored

back to toks and ptoks.

“act_police” is implemented similar to sch_tbf, it checks the size of packet and size of

the bucket to determine if data can be sent. One of the differences is that act_police

adopts spin lock to ensure that its variables will not be changed by other processes.

Open Source Implementation 7.5: Packet Scheduling

Exercises

1. Compared to the complicated PGPS, DRR is much easier both in its concept and

implementation. You can find its implementation in sch_drr.c. Please read the code

and explain how this simple yet useful algorithm is implemented.

2. There are several implementations of scheduling algorithms in the folder sched. For

each implementation, could you find its differentiation from others? Do all of them

http://lxr.linux.no/linux+v2.6.30/net/sched/+code=qdisc_pkt_len
http://lxr.linux.no/linux+v2.6.30/net/sched/+code=skb
http://lxr.linux.no/linux+v2.6.30/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.30/net/sched/+code=tcfp_mtu
http://lxr.linux.no/linux+v2.6.30/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.30/net/sched/+code=tcfp_R_tab
http://lxr.linux.no/linux+v2.6.30/net/sched/+code=NULL
http://lxr.linux.no/linux+v2.6.30/net/sched/+code=toks
http://lxr.linux.no/linux+v2.6.30/net/sched/+code=ptoks
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=now
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=psched_get_time
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=toks
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=psched_tdiff_bounded
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=now
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=tcfp_t_c
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=tcfp_burst
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=tcfp_P_tab
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=ptoks
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=toks
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=tcfp_ptoks
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=ptoks
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=L2T_P
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=tcfp_mtu
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=ptoks
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=L2T_P
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=tcfp_mtu
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=ptoks
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=L2T_P
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=qdisc_pkt_len
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=skb
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=tcfp_ptoks
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=police
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=tcfp_burst

Computer Networks: An Open Source Approach

45

belong to the fair-queuing scheduling?

Answer (3 hours):

1. DRR is able to schedule multiple queues, it uses drr_class to manage those queues. Each

queue is set to different class with different time quantum. Queues are served in a round

robin manner, but the amount of data can be served is determined by the time quantum. If

the queue is empty, DRR uses drr_change_class() to change the class of the queue and

drr_dequeue(struct Qdisc *sch) to remove the queue from service. DRR is able to serve

queues with different size of packets. The time quantum can be accumulated if it is not

used up at current round.

2. We give three scheduling examples as follows:

sch_fifo.c：FIFO (First In First Out) is the simplest scheduling rule. It does not

provide any fairness guarantee to flows.

sch_tbf.c：this implementation adopts token bucket for scheduling. The data rate

of each flow can be controlled by the token bucket such that the burst of one flow

cannot overwhelm the transmission resource. Fairness could be achieved by

proper setting of token bucket parameters, such as token rate and bucket size.

sch_prio.c：this implementation fulfils priority scheduling. Packets with higher

priority are send before that of lower priority. Fairness is not considered among

different priority queues.

Scheduling algorithms implemented under the sched directory do not all pursue

fair-queueing. For example, priority scheduling (sch_prio.c) may give more

bandwidth to high priority queues.

Open Source Implementation 7.6: Random Early Detection

Exercises

From /net/sched/ you can find a variant of RED, named generic RED (GRED),

implemented in sch_gred.c. Figure out how it works and how it differs from RED?

Answer (2 hours):

GRED is a multi-level RED variant written by Jamal Hadi Salim. Instead of physical

queue, it introduces the concept of ”Virtual Queue”(VQ). It can support up to 16

virtual queues. The RED algorithm is then implemented at each VQ. (It actually

supports two modes, the “standard mode” has VQ have its own independent average

queue estimate while the ‘RIO mode” couples average queue estimates from VQs.)

The tc_index of a skb indetifies which VQ this packet belongs to. The prio variable in

gred_sched_data does not represent the priority of the packet, it is a control parameter

of VQ implementation.

http://lxr.linux.no/linux+v2.6.32/net/sched/+code=drr_dequeue
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=Qdisc
http://lxr.linux.no/linux+v2.6.32/net/sched/+code=sch

Computer Networks: An Open Source Approach

46

Open Source Implementation 8.1: Hardware 3DES

Exercises

1. Point out which components in the design are likely to be inefficient if it were

implemented in software.

2. Find out in the code how the initial 56-bit key is transformed into the 48-bit keys

in each of the 16 iterations.

Answer (2.5 hours):

1. Bitwise permutation requires a significant number of cycles for copying and

normalization. Components in the design of 3DES include: Bitwise permutations

(P-boxes), substitutions (S-boxes), and linear mixing ((+) function). In software

even a simple bitwise permutation is relatively tricky and therefore leads to

several lines of code (at least in C/C++).

2.

i. trunk\VHDL\key_schedule.vhd

ii. Def: Ki is the i-th subkey. Ki is transformed by some bit-permutation of the input

key (key_input).

We know that the initial 64-bit key is transformed into a 56-bit key by discarding

every 8
th

 bit of the initial key. Thus, for each round, a 56-bit key is available. From

this 56-bit key, a different 48-bit sub-key is generated during each round using a

process called key transformation. For this, the 56-bit key is divided into two halves,

each of 28 bits. These halves are circularly shifted left by one or two positions,

depending on the round. For example, in rounds 1, 2, 9 or 16, the shift is done by only

one position. For other rounds, the circular shift is done by two positions. After an

appropriate shift, 48 of the 56 bits are selected. Since the key transformation process

involves permutation as well as selection of a 48-bit sub-set of the original 56-bit key,

it is called compression permutation. Because of this compression permutation

technique, a different subset of key bits gets used in each round which makes DES not

so easy to crack.

Open Source Implementation 8.2: MD5

Exercises

1. Numerical values in a CPU may be represented in little endian or big endian.

Explain how the md5.c program handles this disparity in representation for the

computation.

2. Compared with sha1_generic.c in the same directory, find where and how the

sha_tranform() function is implemented. What is the major difference between the

implementations of md5_transform() and sha_tranform()?

Answer (2 hours):

Computer Networks: An Open Source Approach

47

1. md5.c uses 2 functions: le32_to_cpu_array and cpu_to_le32_array to handle the

disparity in representation for the computation. Both the functions have 2

parameters: buf and words where buf is a buffer used to store a block and words

represents the number of words in buf.

2. The sha_transform function is implemented in lib/sha1.c. Major differences

between the implementations of md5_transform and sha_tranform are:

 The SHA-1 is an iterative algorithm that requires 80 transformation steps to

generate the final hash value (Message Digest – MD). In each transformation

step, a hash operation is performed that takes as inputs five 32-bit variables

(a,b,c,d,e), and two extra 32-bit words (one is the message schedule, Wt, which is

provided by the Padding Unit, and the other word is a constant, Kt, predefined by

the standard).

 As in SHA-1, MD5 focuses on the transformation of an initial input, through

iterative operations. MD5 produces a 128-bit MD, instead of the 160-bit hash

value of SHA-1. Additionally, there are still four rounds, consisting however of

16 operations each. There are four 32-bit (a,b,c,d) inputs and two extra 32-bit

values (one is the message schedule, Mt, which is provided by the Padding Unit,

and the other word is a constant, Lt, predefined by the standard) that are

transformed iteratively to produce the final MD.

Open Source Implementation 8.3: AH and ESP in IPsec

Exercises

1. Find in xfrm_input.c how the xfrm_input function determines the protocol type

and calls either the ah_input() or the esp_input() function.

2. Briefly describe how a specific open-source implementation of hash algorithm, eg.,

MD5 which consists of md5_init, md5_update and md5_final, is executed in

ah_mac_digest function.

Answer (2.5 hours):

1. The major flow related to calling ah_input or esp_input in xfrm_input is like:

while(…)

x = xfrm_state_lookup(net, daddr, spi, nexthdr, family);

…

nexthdr = x->type->input(x, skb);

}

Here, xfrm_state_lookup returns a variable x, which contains the function pointer,

i.e, x->type->input, pointing to either ah_input or esp_input. The return value is

determined by the nexthdr parameter. Initially, nexthdr is indicated by the caller of

xfrm_input. The caller decides the nexthdr by looking up the protocol field in an

Computer Networks: An Open Source Approach

48

IP packet. For example, when this field has a protocol number 50 (or 51), it

indicates the IP packet contains an ESP (or AH) payload. In case a nested IPSec

packet is encountered then the x->type->input parses the payload, and returns the

nexthdr variable matching the next header field in the payload.

2. There are three function pointers serving the INIT, UPDATE and FINAL functions

of a specific hash algorithm. They are stored by the ahp->tfm variable, for e.g.,

when using MD5, ahp->tfm->input points to the md5_init function. In

ah_mac_digest function, crypto_hash_init, crypto_hash_update and

crypto_hash_final invoke the ahp->tfm->input, update and final respectively. This

is how a specific hash algorithm is executed in ah_mac_digest function.

Open Source Implementation 8.4: Netfilter and iptables

Exercises

1. Indicate which function is eventually called to match the packet content in the

IPT_MATCH_ITERATE macro.

2. Find out where the ipt_do_table() function is called from the hooks.

Answer (1.5 hours):

1. do_match() function

IPT_MATCH_ITERATE macro matches the packet content

http://lxr.linux.no/#linux+v2.6.32/net/ipv4/netfilter/ip_tables.c LINE 172

2. The ipv4 netfilter hooks in nf_nat_standalone.c consist of the four functions:

nf_nat_in, nf_nat_out, nf_nat_local_fn and nf_nat_fn. They (except nf_nat_fn itself)

in turn call nf_nat_fn. Then, nf_nat_fn calls nf_nat_rule_find (in nf_nat_rule.c)

which finally calls ipt_do_table (in ip_tables.c).

Open Source Implementation 8.5: FireWall Toolkit (FWTK)

Exercises

1. Find out how the url_parse() and url_compare() functions are implemented in this

package.

2. Do you think the approach of rule matching is efficient? What are possible ways

to improve the efficiency?

Answer (2.5 hours):

1. url_parse(): parses to identify the scheme; three possibilities: (1) “:” followed by

the scheme, (2) “http*:” followed by the scheme, (3) no scheme.

url_compare(): returns 0 if an identical URL is found; compares pat_s and val_s

according to the type of the scheme and checks for port, user name, password, etc.

Returns 0 if all matched.

2. Defer the heaviest comparison, say on host name, to the last.

http://lxr.linux.no/#linux+v2.6.32/net/ipv4/netfilter/ip_tables.c

Computer Networks: An Open Source Approach

49

Open Source Implementation 8.6：ClamAV

Exercises

1. Find out how cli_filetype2()called by cli_magic_scandesc() identifies the file

types.

2. Find out the number of signatures associated with each file type (or the generic

type) in both scanning algorithms in your current version of ClamAV. (Hint: Use

‘sigtool’ to decompress the ClamAV Virus Databases files (*.cvd) and examine the

resulted Extended Signature Format files (*.ndb).)

Answer (1.5 hours):

1. The type=cli_filetype2(*ctx->fmap, ctx->engine) function will call cli_filetype()

to examine the buf of fmap and ftypes of engine by using memcmp() function.

After the examination, it can identify the file type of fmap.

2. 545,035 by sigtool –i *.cvd on version 0.95.3

Where ”sigtool --unpack *.cvd” is used to decode the cvd format to retireve

the individual *.ndb file, and ndb files are files that storing signatures.

Open Source Implementation 8.7：Snort

Exercises

1. List five preprocessors in Snort and study the execution flow of each one of them.

2. Find out what multiple-string matching algorithm is used for signature matching

in Snort and where the algorithm is implemented.

Answer (1.5 hours):

1. Frag3, Stream5, RPC Decode, DNS, SSL/TLS

2. Aho-Corasick

Open Source Implementation 8.8：SpamAssassin

Exercises

1. Why is SpamAssassin implemented in Perl rather than in C or C++?

2. Discuss the pros and cons of using Bayesian filtering compared with the

rule-based approaches.

Answer (0.5 hour):

1. Perl supports regular expression matching which is much needed.

2. Matching one keyword does not imply that the message is definitely a spam. It

requires probabilistic calculation to assess the chance of being a spam.

Remark:

 Bayesian filtering needs supervised learning. Users need to feed training data,

both spam and nonspam mails, to the filter first. After training, the effective blocking

Computer Networks: An Open Source Approach

50

rate could be as high as 90%.

