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Chapter 9 
MATLAB Problems 

 
9.1 Simulate the transmission of a single tone message in the presence of additive 

white gaussian noise (AWGN) to show the effects of low pass filtering on the 
signal’s power spectral density plot and the effects of the filter’s bandwidth on 
( )/

D
S N .   

(a) The system with a single tone sinusoidal input has the following parameters: 

 
(i) 1,  and  100,
(ii) 1st order LPF with 100 Hz,
(iii) coefficient of randn = 2.

m mA f
W

= =
=  

 
Plot both the noisy signal and its power spectral density.  You may have to 
expand the amplitude scale to see the noise component.  Then calculate a   
precise value of signal-to-noise ratio (SNR) at the destination.  You should 
run several trials and get an average destination SNR.   

 
(b) Repeat (a) except with 500 Hz, and then 1000 Hz.W W= =   Comment on 

how your results are affected by the LPF bandwidth. 
 
9.2 Repeat Prob. 9.1 except use a 5th order LPF.   Comment on to what degree the 

order of the LPF affects the calculated value of ( )/
D

S N .  How significant is the 

order with respect to ( )/
D

S N ? 
 
9.3 Repeat Prob. 9.1 except use a matched filter.  Compare the results of the matched 

filter against the results of Probs. 9.1 and 9.2. 
 

9.4 Consider gaussian monocycle pulse 
2( 0.5) /1000.5( )

100
ttx t e −−

= that has been 

corrupted by AWGN such that _ ( ) ( ) ( )x noisy t x t n t= +  and 0.5noiseσ = .    
 

(a) Write a program to obtain estimate ˆ( ) ( ) * _ ( )x t h t x noisy t=  using a first order 
butterworth LPF with 0f  the half power frequency of ( ).x t   Plot 

ˆ( ),  _ ( ),  and ( ).x t x noisy t x t    
 

(b) Repeat (a) using a matched filter. 
 

(c) For both parts (a) and (b) calculate ( )/
D

S N .  You should do several trials to 

obtain an average value of ( )/
D

S N .  Comment on your results. 
 
9.5 Repeat Prob. 9.4 except with gaussian pulse 

2( 1) /100( ) tx t e −= . 
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9.6 An ad hoc method of removing noise from the output of an analytical 
instrumentation system is the smoothing filter whereby the data is filtered using a 
weighted average algorithm.  One implementation is the processed data sample is 
a weighted average of the original sample and eight adjacent data points, the 
higher weight given to those points nearest to the sample of interest.  The 
smoothing operation is a form of interpolation.   
 
Consider an instrumentation system where the observed data consists of the ideal 
data sample plus noise or simply ( ) ( ) ( )y k x k n k= + .  The weighted average 
operation that estimates the ideal data point could be  

 
1 3 5 7ˆ( ) ( 4) ( 3) ( 2) ( 1)
64 64 64 64
32         + ( )
64
7 5 3 1         + ( 1) ( 2) ( 3) ( 4)
64 64 64 64

x k y k y k y k y k

y k

y k y k y k y k

= − + − + − + −

− + − + − + −

 

   
  Let 

2( 30) / 4( ) 2 ( )ky k e n k− −= +  where ( )n k  is gaussian noise with 2 1σ =  
(a) Write a program to simulate the noisy signal and implement the above 

smoothing filter to obtain estimate ˆ( )x k .  Plot ˆ( ),  ( ) and ( ). x k y k x k What 
is the shape of the filter’s impulse response function and the 
corresponding frequency response? 

 
(b) Repeat (a) except instead of the estimate based on the weighted average of 

the adjacent signals, use ordinary averaging where  
4

4

1ˆ( ) ( )
9 i

x k y k i
=−

= +∑  

 
(c) Repeat (a) except use a matched filter to obtain estimate ˆ( )x k . 
 
(d) Comment on our results and state any conclusions. 

 
9.7 This problem is meant to illustrate what it means for noise to be “white”.  You 

have learned that ideal white noise is a theoretical signal that has equal power at 
all frequencies – a flat spectrum for frequencies on (-∞: ∞), and a corresponding 
autocorrelation of δ(τ).  Of course, this signal would have infinite power.  What is 
white noise other than a mathematical abstraction? 

 
Another way to describe white noise is to say that each of its samples is 
statistically independent.  For theoretical white noise, this holds no matter how 
fast the samples are taken.  However, in digital systems, we represent signals as 
series of samples that have been taken at a particular rate, the sampling frequency 

sf .  This is the highest frequency known to the system.  If a signal’s power rolls 
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off at a frequency higher than sf ,  it can still be considered white for practical 
analysis of the system. 

 
In this problem we will investigate the effect of sampling frequency on the power 
spectrum and the autocorrelation of a signal.  You should see that as the signal is 
sampled more slowly than its correlation time – the lag between samples that are 
statistically dependent – it approaches the ideal of white noise. 
 
(a) Create a random signal, then upsample it so that it has some known 

amount of correlation with itself.  Plot the signal, its power spectral 
density (PSD), and its autocorrelation function (ACF), taking care to label 
all the axes. 

  
(b) Now downsample your signal to a rate below your original upsampled 

rate.  The signal should now appear to be “white,” based on its PSD and 
ACF.  Plot the signal, its PSD, and its ACF.  Take care to label the axes 
properly. 

  
(c) Compare the two sets of plots and explain how the same signal can result  
 in such different spectra. 

 
9.8 Create three independent random signals, called A, B, and C.  Next, create the 
 signals x, y, and z as follows: 

 
;
;

5 ;

x A B
y B C
z C

= +
= +
= −

 

  
 Which of the signals x, y, and z, taken pairwise, are statistically independent?  
 Dependent?  Plot the cross-correlation function magnitudes of each pair to back 
 up your answers.  Size the axes on each plot the same so that the plots are 
 comparable. 
 
 
9.9 Create a series of 100 random numbers called 1z , and make a copy of it called 2z .  
 Next, add a new series of 50 random numbers to the beginning of 1.z  
 
 At what lag would you expect the peak of the cross-correlation between 1z  and 
 2z ?  Compute the cross-correlation and indicate where its peak(s) lie. 
 
 
9.10 Clipping a signal (for example, “railing out” an amplifier) can be considered a 
 type of noise, albeit a very predictable type of noise.  In this problem, we will see 
 that predictable and periodic noise are often worse than random noise when one is 
 looking for a signal’s frequency content. 
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 Create an oversampled signal which is the sum of two sinusoids, as shown: 
 
  fs = 10; % Hz 
  t = [0:1/fs:500]; % sec 
  x = sin(2*pi*t) + 0.6*sin(0.5*2*pi*t); 
 
 (a)  Where do you expect the peak(s) of the frequency spectrum of x?   
  Compute and plot the power spectral density of x. 
 
 (b)  Now, strongly clip this data to +/- 0.5 volts: 
 
  y = x; (x > 0.4) = 0.4; y(x < -0.4) = -0.4; 
   
  Do you expect to see the same PSD for y as for x?  If different, how? 
  Plot both x and y versus time, then plot the PSD for y.  Explain the  
  differences in the PSDs for x and y. 
 
 (c) Now modify x by adding random noise at the same amplitude level.  This  
  is called ‘dithering’ : 
 
   x_dithered = randn(1,N) + x; 
 
  Plot the new x versus time.  Where do you expect the frequency peaks to  
  be?  Plot the PSD for the new x. 
 
 (c)  Finally, strongly clip the randomized x signal as before.  Plot the new y  
  versus time as well as the PSD for the new y.  Are the peaks in the correct  
  place(s)?  Why do you think this works?  (Hint: look up the concept of  
  ‘dithering’.) 


