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C H A P T E R 2
Transformers

Before we proceed with a study of electric machinery, it is desirable to discuss
certain aspects of the theory of magnetically coupled circuits, with emphasis on
transformer action. Although the static transformer is not an energy conversion

device, it is an indispensable component in many energy conversion systems. A signif-
icant component of ac power systems, it makes possible electric generation at the most
economical generator voltage, power transfer at the most economical transmission
voltage, and power utilization at the most suitable voltage for the particular utiliza-
tion device. The transformer is also widely used in low-power, low-current electronic
and control circuits for performing such functions as matching the impedances of a
source and its load for maximum power transfer, isolating one circuit from another,
or isolating direct current while maintaining ac continuity between two circuits.

The transformer is one of the simpler devices comprising two or more electric
circuits coupled by a common magnetic circuit. Its analysis involves many of the
principles essential to the study of electric machinery. Thus, our study of the trans-
former will serve as a bridge between the introduction to magnetic-circuit analysis of
Chapter 1 and the more detailed study of electric machinery to follow.

2.1 INTRODUCTION TO TRANSFORMERS
Essentially, a transformer consists of two or more windings coupled by mutual mag-
netic flux. If one of these windings, the primary, is connected to an alternating-voltage
source, an alternating flux will be produced whose amplitude will depend on the pri-
mary voltage, the frequency of the applied voltage, and the number of turns. A portion
of this flux, referred to as mutual flux, will link a second winding, the secondary,1 and

1 It is conventional to think of the “input” to the transformer as the primary and the “output” as the
secondary. However, in many applications, power can flow either way and the concept of primary and
secondary windings can become confusing. An alternate terminology, which refers to the windings as
“high-voltage” and “low-voltage,” is often used and eliminates this confusion.
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will induce a voltage in it whose value will depend on the number of secondary turns
as well as the magnitude of the mutual flux and the frequency. The voltage ratio, or
ratio of transformation, between the two windings can be varied by proportioning the
number of primary and secondary turns.

The essence of transformer action requires only the existence of time-varying
mutual flux linking two windings. Such action can occur for two windings coupled
through air. However, coupling between the windings can be made much more effec-
tive through the use of a core of iron or other ferromagnetic material because most of
the flux will be confined to a definite, high-permeability path linking the windings.
Such a transformer is commonly called an iron-core transformer. Most transformers
are of this type. The following discussion is concerned almost wholly with iron-core
transformers.

As discussed in Section 1.4, to reduce the losses caused by eddy currents in the
core, the magnetic circuit in a transformer usually consists of a stack of thin lami-
nations. Two common types of construction are shown schematically in Fig. 2.1. In
the core type (Fig. 2.1a) the windings are wound around two legs of a rectangular
magnetic core; in the shell type (Fig. 2.1b) the windings are wound around the center
leg of a three-legged core. Silicon-steel laminations of thickness 0.014 in (0.55 mm)
are commonly used for transformers operating at frequencies below a few hundred
hertz. Silicon steel has the desirable properties of low cost, low core loss, and high
permeability at high flux density. The cores of small transformers used in commu-
nication circuits at high frequencies and low energy levels are sometimes made of
compressed powdered ferromagnetic alloys known as ferrites.

In each of these configurations, most of the flux is confined to the core and
therefore links both windings. The windings also produce additional flux, known as
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Figure 2.1 Schematic views of (a) core-type and (b) shell-type
transformers.
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Figure 2.2 A self-protected distribution transformer typical of
sizes 2 to 25 kVA, 7200:240/120 V. Only one high-voltage
insulator and lightning arrester are needed because one side of
the 7200-V line and one side of the primary are grounded.

leakage flux, which links one winding without linking the other. Although leakage
flux is a small fraction of the total flux, it plays an important role in determining
the behavior of the transformer. In practical transformers, leakage is reduced by
subdividing the windings into sections placed as close together as possible. In the
core-type construction, each winding consists of two sections, one section on each of
the two legs of the core, the primary and secondary windings being concentric coils.
In the shell-type construction, variations of the concentric-winding arrangement may
be used or the windings may consist of a number of thin “pancake” coils assembled
in a stack with primary and secondary coils interleaved.

Figure 2.2 shows the internal construction of a distribution transformer such as is
used in public utility systems to provide the appropriate voltage for use by residential
consumers. A large power transformer is shown in Fig. 2.3.

2.2 NO-LOAD CONDITIONS
Figure 2.4 shows in schematic form a transformer with its secondary circuit open and
an alternating voltage v1 applied to its primary terminals. To simplify the drawings, it is
common on schematic diagrams of transformers to show the primary and secondary
windings as if they were on separate legs of the core, as in Fig. 2.4, even though
the windings are actually interleaved in practice. As discussed in Section 1.4, a small
steady-state current iϕ , called the exciting current, flows in the primary and establishes
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Figure 2.3 A 230 kV Y - 115 kV Y, 100/133/167 MVA
Autotransformer. (Photo courtesy of SPX Transformer
Solutions, Inc.)
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Figure 2.4 Transformer with open secondary.

an alternating flux in the magnetic circuit.2 This flux induces an emf3 e1 in the primary
equal to

e1 = dλ1

dt
= N1

dϕ

dt
(2.1)

2 In general, the exciting current corresponds to the net ampere-turns (mmf) acting to produce the flux in
the magnetic circuit and it is not possible to distinguish whether it flows in the primary or secondary
winding or partially in each winding.
3 As discussed in Chapter 1, the term emf (electromotive force) is often used instead of induced voltage
to represent that component of voltage due to a time-varying flux linkage.
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where

λ1 = flux linkage of the primary winding

ϕ = flux in the core linking both windings

N1 = number of turns in the primary winding

The voltage e1 is in volts when ϕ is in webers. This emf, together with the voltage drop
in the primary resistance R1 (shown schematically as a series resistance in Fig. 2.4),
must balance the applied voltage v1; thus

v1 = R1iϕ + e1 (2.2)

Note that for the purposes of the current discussion, we are neglecting the effects of
primary leakage flux, which will add an additional induced-emf term in Eq. 2.2. In
typical transformers, this flux is a small percentage of the core flux, and it is quite
justifiable to neglect it for our current purposes. It does, however, play an important
role in the behavior of transformers and is discussed in some detail in Section 2.4.

In most large transformers, the no-load resistance drop is very small indeed,
and the induced emf e1 very nearly equals the applied voltage v1. Furthermore, the
waveforms of voltage and flux are very nearly sinusoidal. The analysis can then be
greatly simplified, as we have shown in Section 1.4. Thus, if the instantaneous flux
ϕ is

ϕ = φmax sin ωt (2.3)

the induced voltage e1 is

e1 = N1
dϕ

dt
= ωN1φmax cos ωt (2.4)

where φmax is the maximum value of the flux and ω = 2π f , the frequency being
f Hz. For the current and voltage reference directions shown in Fig. 2.4, the induced
emf leads the flux by 90◦. The rms value of the induced emf e1 is

E1 = 2π√
2

f N1φmax =
√

2 π f N1φmax (2.5)

As can be seen from Eq. 2.2, if the resistive voltage drop is negligible, the counter
emf equals the applied voltage. Under these conditions, if a sinusoidal voltage is
applied to a winding, a sinusoidally varying core flux must be established whose
maximum value φmax satisfies the requirement that E1 in Eq. 2.5 equal the rms value
V1 of the applied voltage; thus

φmax = V1√
2π f N1

(2.6)

Under these conditions, the core flux is determined solely by the applied voltage,
its frequency, and the number of turns in the winding. This important relation applies
not only to transformers but also to any device operated with a sinusoidally-alternating
impressed voltage, as long as the resistance and leakage-inductance voltage drops are
negligible. The core flux is fixed by the applied voltage, and the required exciting
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current is determined by the magnetic properties of the core; the exciting current
must adjust itself so as to produce the mmf required to create the flux demanded
by Eq. 2.6.

The importance and utility of this concept cannot be over-emphasized. It is often
extremely useful in the analysis of electric machines which are supplied from single or
poly-phase voltage sources. To a first approximation, the winding resistance can often
be neglected and, in spite of additional windings (for example the shorted windings on
the rotor of induction machines as will be seen in Chapter 6), the flux in the machine
will be determined by the applied voltage and the winding currents must adjust to
produce the corresponding mmf.

Because of the nonlinear magnetic properties of iron, the waveform of the exciting
current differs from the waveform of the flux; the exciting current for a sinusoidal
flux waveform will not be sinusoidal. This effect is especially pronounced in closed
magnetic circuits such as are found in transformers. In magnetic circuits where the
reluctance is dominated by an air gap with its linear magnetic characteristic, such
as is the case in many electric machines, the relationship between the net flux and
the applied mmf is relatively linear and the exciting current will be much more
sinusoidal.

In the case of a closed magnetic circuit, a curve of the exciting current as a func-
tion of time can be found graphically from the ac hysteresis loop, as is discussed in
Section 1.4 and shown in Fig. 1.11. If the exciting current is analyzed by Fourier-
series methods, it is found to consist of a fundamental component and a series of odd
harmonics. The fundamental component can, in turn, be resolved into two compo-
nents, one in phase with the counter emf and the other lagging the counter emf by 90◦.
The in-phase component supplies the power absorbed by hysteresis and eddy-current
losses in the core. It is referred to as core-loss component of the exciting current. When
the core-loss component is subtracted from the total exciting current, the remainder
is called the magnetizing current. It comprises a fundamental component lagging the
counter emf by 90◦, together with all the harmonics. The principal harmonic is the
third. For typical power transformers, the third harmonic is usually about 40 percent
of the exciting current.

Except in problems concerned directly with the effects of harmonic currents,
the peculiarities of the exciting-current waveform usually need not be taken into
account, because the exciting current itself is small, especially in large transformers.
For example, the exciting current of a typical power transformer is about 1 to 2 percent
of full-load current. Consequently the effects of harmonics are usually swamped out
by the sinusoidal-currents supplied to other linear elements in the circuit. The exciting
current can then be represented by an equivalent sinusoidal current which has the same
rms value and frequency and produces the same average power as the actual exciting
current.

Such a representation is essential to the construction of a phasor diagram, which
represents the phase relationship between the various voltages and currents in a system
in vector form. Each signal is represented by a phasor whose length is proportional to
the amplitude of the signal and whose angle is equal to the phase angle of that signal
as measured with respect to a chosen reference signal. In Fig. 2.5, the phasors Ê1
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Î c

Îϕ
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Figure 2.5 No-load phasor
diagram.

and �̂ respectively, represent the complex amplitudes of the rms-induced emf and the
flux. The phasor Î ϕ represents the complex amplitude of the rms equivalent sinusoidal
exciting current. It lags the induced emf Ê1 by a phase angle θc. Also shown in the
figure is the phasor Î c, in phase with Ê1, which is the core-loss component of the
exciting current, The component Î m, in phase with the flux, represents an equivalent
sine wave current having the same rms value as the magnetizing current.

The core loss Pcore, equal to the product of the in-phase components of Ê1 and
Î ϕ , is given by

Pcore = E1 Iϕ cos θc = E1 Ic (2.7)

Typical exciting volt-ampere and core-loss characteristics of high-quality silicon
steel used for power and distribution transformer laminations are shown in Figs. 1.12
and 1.14.

EXAMPLE 2.1

In Example 1.8 the core loss and exciting voltamperes for the core of Fig. 1.15 at Bmax = 1.5 T
and 60 Hz were found to be

Pcore = 16 W (V I )rms = 20 VA

and the induced voltage was V = 274/
√

2 = 194 V rms when the winding had 200 turns.
Find the power factor, the core-loss current Ic, and the magnetizing current Im.

■ Solution
Power factor: cos θc = 16

20
= 0.80 (lag) thus θc = −36.9◦

Note that we know that the power factor is lagging because the system is inductive.

Exciting current: Iϕ = (V I )rms
V

= 0.10 A rms
Core-loss component: Ic = Pcore

V
= 0.082 A rms

Magnetizing component: Im = Iϕ × sin θc = 0.060 A rms
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2.3 EFFECT OF SECONDARY CURRENT;
IDEAL TRANSFORMER

As a first approximation to a quantitative theory, consider a transformer with a primary
winding of N1 turns and a secondary winding of N2 turns, as shown schematically in
Fig. 2.6. Notice that the secondary current is defined as positive out of the winding;
thus positive secondary current produces an mmf in the opposite direction from that
created by positive primary current. Let the properties of this transformer be ideal-
ized under the assumption that winding resistances are negligible, that all the flux is
confined to the core and fully links both windings (i.e., leakage flux is assumed neg-
ligible), that there are no losses in the core, and that the permeability of the core is so
high that only a negligible exciting mmf is required to establish the flux. These prop-
erties are closely approached but never actually attained in practical transformers. A
hypothetical transformer having these properties is often called an ideal transformer.

Under the above assumptions, when a time-varying voltage v1 is impressed on
the primary terminals, a core flux ϕ must be established such that the counter emf e1

equals the impressed voltage v1. Thus

v1 = e1 = N1
dϕ

dt
(2.8)

The core flux also links the secondary and produces an induced emf e2, and an equal
secondary terminal voltage v2, given by

v2 = e2 = N2
dϕ

dt
(2.9)

From the ratio of Eqs. 2.8 and 2.9,

v1

v2
= N1

N2
(2.10)

Thus an ideal transformer transforms voltages in the direct ratio of the turns in its
windings.

Now let a load which draws a current i2 be connected to the secondary. The load
current thus produces an mmf N2i2 in the secondary. Since the impressed primary
voltage sets the core flux as specified by Eq. 2.8, the core flux is unchanged by the
presence of a load on the secondary. Furthermore, since the net exciting mmf acting

N1

N2

i1

�

+
v1

i2

v2

�

+
Load

ϕ

Figure 2.6 Ideal transformer and load.
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on the core (equal to N1i1 − N2i2) must remain negligible, the primary and secondary
currents must satisfy the relationship

N1i1 − N2i2 = 0 (2.11)

From Eq. 2.11 we see that a compensating primary mmf must result to cancel that of
the secondary. Hence

N1i1 = N2i2 (2.12)

From this discussion, we see that the requirement that the core flux and hence
the corresponding net mmf remain unchanged is the means by which the primary
“knows” of the presence of load current in the secondary; any change in mmf flowing
in the secondary as the result of a load must be accompanied by a corresponding
change in the primary mmf. Note that for the reference directions shown in Fig. 2.6
the mmfs of i1 and i2 are in opposite directions and therefore compensate.

From Eq. 2.12

i1

i2
= N2

N1
(2.13)

Thus an ideal transformer transforms currents in the inverse ratio of the turns in its
windings.

Also notice from Eqs. 2.10 and 2.13 that

v1i1 = v2i2 (2.14)

i.e., the instantaneous power input to the primary equals the instantaneous power
output from the secondary, a necessary condition because all dissipative and energy
storage mechanisms in the transformer have been neglected.

An additional property of the ideal transformer can be seen by considering the
case of a sinusoidal applied voltage and an impedance load. The circuit is shown in
simplified form in Fig. 2.7a, in which the dot-marked terminals of the transformer
correspond to the similarly marked terminals in Fig. 2.6. Because all the voltages and
currents are sinusoidal, the voltages and currents are represented by their complex
amplitudes. The dot markings indicate terminals of corresponding polarity; i.e., if
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Figure 2.7 Three circuits which are identical at the terminal a-b when the transformer is ideal.
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one follows through the primary and secondary windings of Fig. 2.6, beginning at
their dot-marked terminals, one will find that both windings encircle the core in the
same direction with respect to the flux. Therefore, if one compares the voltages of the
two windings, the voltages from a dot-marked to an unmarked terminal will be of the
same instantaneous polarity for primary and secondary. In other words, the voltages
V̂1 and V̂2 in Fig. 2.7a are in phase. Also currents Î 1 and Î 2 are in phase as seen from
Eq. 2.12. Note again that the polarity of Î 1 is defined as into the dotted terminal and
the polarity of Î 2 is defined as out of the dotted terminal.

The circuits of Fig. 2.7 let us investigate the impedance transformation properties
of the ideal transformer. In phasor form, Eqs. 2.10 and 2.13 can be expressed as

V̂1 = N1

N2
V̂2 and V̂2 = N2

N1
V̂1 (2.15)

Î 1 = N2

N1
Î 2 and Î 2 = N1

N2
Î 1 (2.16)

From these equations

V̂1

Î 1
=

(
N1

N2

)2 V̂2

Î 2
(2.17)

We note that the load impedance Z2 is related to the secondary voltages and
currents as

Z2 = V̂2

Î 2
(2.18)

where Z2 is the complex impedance of the load. Thus, from Eqs. 2.17 and 2.18, we
see that the impedance Z1 seen at the terminals a-b is equal to

Z1 = V̂1

Î 1
=

(
N1

N2

)2

Z2 (2.19)

and consequently we see that from the primary terminals a-b, an impedance Z2 in
the secondary circuit can be replaced by an equivalent impedance Z1 in the primary
circuit satisfying the relationship

Z1 =
(

N1

N2

)2

Z2 (2.20)

The three circuits of Fig. 2.7 are indistinguishable as far as their performance
viewed from terminals a-b is concerned. Transferring an impedance from one side
of a transformer to the other in this fashion is called referring the impedance to the
other side; impedances transform as the square of the turns ratio. In a similar manner,
voltages and currents can be referred to one side or the other by using Eqs. 2.15 and
2.16 to evaluate the equivalent voltage and current on that side.

To summarize, in an ideal transformer, voltages are transformed by the direct
ratio of turns, currents by the inverse ratio, impedances by square of the turns-ratio
and power and voltamperes are unchanged.
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Figure 2.8 Equivalent circuits for Example 2.2. (a) Impedance in series with the secondary.
(b) Impedance referred to the primary.

EXAMPLE 2.2

The equivalent circuit of Fig. 2.8a shows an ideal transformer with an impedance R2 + j X2 =
1 + j4 	 connected in series with the secondary. The turns ratio N1/N2 = 5:1. (a) Draw an
equivalent circuit with the series impedance referred to the primary side. (b) For a primary
voltage of 120 V rms and a short connected across the secondary terminals (V2 = 0), calculate
the primary current and the current flowing in the short.

■ Solution

a. The new equivalent is shown in Fig. 2.8b. The secondary impedance is referred to the
primary by the turns ratio squared. Thus

R′
2 + j X ′

2 =
(

N1

N2

)2

(R2 + j X2)

= 25 + j100 	

b. From Eq. 2.20, a short at terminals A-B will appear as a short at the primary of the ideal
transformer in Fig. 2.8b since the zero voltage of the short is reflected by the turns ratio
N1/N2 to the primary. Hence the primary current will be given by

Î 1 = V̂1

R′
2 + j X ′

2

= 120

25 + j100
= 0.28 − j1.13 A rms

corresponding to a magnitude of 1.16 A rms. From Eq. 2.13, the secondary current will
equal N1/N2 = 5 times that of the current in the primary. Thus the current in the short
will have a magnitude of 5(1.16) = 5.8 A rms.

Practice Problem 2.1

Repeat part (b) of Example 2.2 for a series impedance R2 + j X2 = 0.05+ j0.97 	 and a turns
ratio of 14:1.

Solution
The primary current is 0.03 − j0.63 A rms, corresponding to a magnitude of 0.63 A rms. The
current in the short will be 14 times larger and thus will be of magnitude 8.82 A rms.
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2.4 TRANSFORMER REACTANCES
AND EQUIVALENT CIRCUITS

The departures of an actual transformer from those of an ideal transformer must be
included to a greater or lesser degree in most analyses of transformer performance.
A more complete model must take into account the effects of winding resistances,
leakage fluxes, and finite exciting current due to the finite (and indeed nonlinear)
permeability of the core. In some cases, the capacitances of the windings also have
important effects, notably in problems involving transformer behavior at frequencies
above the audio range or during rapidly changing transient conditions such as those
encountered in power system transformers as a result of voltage surges caused by
lightning or switching transients. The analysis of these high-frequency problems is
beyond the scope of the present treatment however, and accordingly capacitances of
the windings will be neglected.

Two methods of analysis by which departures from the ideal can be taken into
account are (1) an equivalent-circuit technique based on physical reasoning and (2) a
mathematical approach based on the classical theory of magnetically coupled circuits.
Both methods are in everyday use, and both have very close parallels in the theories
of rotating machines. Because it offers an excellent example of the thought process
involved in translating physical concepts to a quantitative theory, the equivalent-circuit
technique is presented here.

To begin the development of a transformer equivalent circuit, we first consider
the primary winding. The total flux linking the primary winding can be divided into
two components: the resultant mutual flux, confined essentially to the iron core and
produced by the combined mmfs of the primary and secondary currents, and the
primary leakage flux, which links only the primary. These components are identified
in the schematic transformer shown in Fig. 2.9, where for simplicity the primary and

1

×

21

×

2

Resultant mutual flux, ϕ

Secondary

leakage flux

Primary

leakage flux

Figure 2.9 Schematic view of mutual and leakage fluxes in a
transformer. The “X” and the dot indicate current directions in the
various coils.
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secondary windings are shown on opposite legs of the core. In an actual transformer
with interleaved windings, the details of the flux distribution are more complicated,
but the essential features remain the same.

The leakage flux induces voltage in the primary winding which adds to that
produced by the mutual flux. Because the leakage path is largely in air, this flux and
the voltage induced by it vary linearly with primary current Î 1. It can therefore be
represented by a primary leakage inductance Ll1 (equal to the leakage-flux linkages
with the primary per unit of primary current). The corresponding primary leakage
reactance Xl1 is found as

Xl1 = 2π f Ll1 (2.21)

In addition, there will be a voltage drop in the primary resistance R1 (not shown in
Fig. 2.9).

We now see that the primary terminal voltage V̂1 consists of three components:
the Î 1 R1 drop in the primary resistance, the j Î 1 Xl1 drop arising from primary leakage
flux, and the emf Ê1 induced in the primary by the resultant mutual flux. Fig. 2.10a
shows an equivalent circuit for the primary winding which includes each of these
voltages.
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Îϕ

R2
Xl2

Ê2
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Î 1

�

+

�

+

�

+

�

+

�

+

�

+

�

+

�

+

�

+

�

+
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Figure 2.10 Steps in the development of the transformer equivalent circuit.
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The resultant mutual flux links both the primary and secondary windings and is
created by their combined mmfs. It is convenient to treat these mmfs by considering
that the primary current must meet two requirements of the magnetic circuit: It must
not only produce the mmf required to produce the resultant mutual flux, but it must
also counteract the effect of the secondary mmf which acts to demagnetize the core.
An alternative viewpoint is that the primary current must not only magnetize the
core, it must also supply current to the load connected to the secondary. According
to this picture, it is convenient to resolve the primary current into two components:
an exciting component and a load component. The exciting component Î ϕ is defined
as the additional primary current required to produce the resultant mutual flux. It is a
nonsinusoidal current of the nature described in Section 2.2.4 The load component Î ′

2
is defined as the component current in the primary which would exactly counteract
the mmf of secondary current Î 2.

Since it is the exciting component which produces the core flux, the net mmf
must equal N1 Î ϕ and thus we see that

N1 Î ϕ = N1 Î 1 − N2 Î 2

= N1( Î ϕ + Î ′
2) − N2 Î 2 (2.22)

and from Eq. 2.22 we see that

Î ′
2 = N2

N1
Î 2 (2.23)

From Eq. 2.23, we see that the load component of the primary current equals the
secondary current referred to the primary as in an ideal transformer.

The exciting current can be treated as an equivalent sinusoidal current Î ϕ , in the
manner described in Section 2.2, and can be resolved into a core-loss component
Î c in phase with the emf Ê1 and a magnetizing component Î m lagging Ê1 by 90◦.
In the equivalent circuit of Fig. 2.10b the equivalent sinusoidal exciting current is
accounted for by means of a shunt branch connected across Ê1, comprising a core-
loss resistance Rc in parallel with a magnetizing inductance Lm whose reactance,
known as the magnetizing reactance, is given by

Xm = 2π f Lm (2.24)

In the equivalent circuit of Fig. 2.10b the power E2
1/Rc accounts for the core loss

due to the resultant mutual flux. Rc, also referred to as the magnetizing resistance,
together with Xm forms the excitation branch of the equivalent circuit, and we will
refer to the parallel combination of Rc and Xm as the magnetizing impedance Zϕ .
When Rc is assumed constant, the core loss is thereby assumed to vary as E2

1 . Strictly
speaking, the magnetizing reactance Xm varies with the saturation of the iron. How-
ever, Xm is often assumed constant and the magnetizing current is thereby assumed
to be independent of frequency and directly proportional to the resultant mutual flux.

4 In fact, the exciting current corresponds to the net mmf acting on the transformer core and cannot, in
general, be considered to flow in the primary alone. However, for the purposes of this discussion, this
distinction is not significant.
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Both Rc and Xm are usually determined at rated voltage and frequency; they are then
assumed to remain constant for the small departures from rated values associated with
normal operation.

We will next add to our equivalent circuit a representation of the secondary
winding. We begin by recognizing that the resultant mutual flux �̂ induces an emf
Ê2 in the secondary, and since this flux links both windings, the induced-emf ratio
must equal the winding turns ratio, i.e.,

Ê1

Ê2
= N1

N2
(2.25)

just as in an ideal transformer. This voltage transformation and the current transfor-
mation of Eq. 2.23 can be accounted for by introducing an ideal transformer in the
equivalent circuit, as in Fig. 2.10c. Just as is the case for the primary winding, the
emf Ê2 is not the secondary terminal voltage because of the secondary resistance R2

and because the secondary current Î 2 creates secondary leakage flux (see Fig. 2.9).
The secondary terminal voltage V̂2 differs from the induced voltage Ê2 by the voltage
drops due to secondary resistance R2 and secondary leakage reactance Xl2 (corre-
sponding to the secondary leakage inductance Ll2) as in the portion of the complete
transformer equivalent circuit (Fig. 2.10c) to the right of Ê2.

From the equivalent circuit of Fig. 2.10, the actual transformer therefore can be
seen to be equivalent to an ideal transformer plus external impedances. By referring
all quantities to the primary or secondary, the ideal transformer in Fig. 2.10c can be
moved out to the right or left, respectively, of the equivalent circuit. This is almost
invariably done, and the equivalent circuit is usually drawn as in Fig. 2.10d, with the
ideal transformer not shown and all voltages, currents, and impedances referred to
either the primary or secondary winding. Specifically, for Fig. 2.10d,

X ′
l2

=
(

N1

N2

)2

Xl2 (2.26)

R′
2 =

(
N1

N2

)2

R2 (2.27)

and

V ′
2 = N1

N2
V2 (2.28)

The circuit of Fig. 2.10d is called the equivalent-T circuit for a transformer.
In Fig. 2.10d, in which the secondary quantities are referred to the primary, the

referred secondary values are indicated with primes, for example, X ′
l2 and R′

2, to dis-
tinguish them from the actual values of Fig. 2.10c. In the discussion that follows we
almost always deal with referred values, and the primes will be omitted. One must sim-
ply keep in mind the side of the transformers to which all quantities have been referred.

EXAMPLE 2.3

A 50-kVA 2400:240-V 60-Hz distribution transformer has a leakage impedance of 0.72 +
j0.92 	 in the high-voltage winding and 0.0070 + j0.0090 	 in the low-voltage winding. At
rated voltage and frequency, the impedance Zϕ of the shunt branch (equal to the impedance of
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a

Zl1 
= 0.72 + j0.92

Zϕ = 632 + j4370

Zl2 
= 0.70 + j0.90

b

c′

d′

c

d

(a)

c

Zl1 
= 0.0072 + j0.0092

Zϕ = 6.32 + j43.7

Zl2 
= 0.0070 + j0.0090

d

a′

b′

a

b

(b)

Figure 2.11 Equivalent circuits for transformer of Example 2.3 referred to (a) the high-voltage side and (b) the
low-voltage side.

Rc and j Xm in parallel) accounting for the exciting current is 6.32 + j43.7 	 when viewed
from the low-voltage side. Draw the equivalent circuit referred to (a) the high-voltage side and
(b) the low-voltage side, and label the impedances numerically.

■ Solution
The circuits are given in Fig. 2.11a and b, respectively, with the high-voltage side numbered 1
and the low-voltage side numbered 2. The voltages given on the nameplate of a power system
transformer are based on the turns ratio and neglect the small leakage-impedance voltage drops
under load. Since this is a 10-to-1 transformer, impedances are referred by multiplying or
dividing by 100; for example, the value of an impedance referred to the high-voltage side is
greater by a factor of 100 than its value referred to the low-voltage side.

The ideal transformer may be explicitly drawn, as shown dotted in Fig. 2.11, or it may be
omitted in the diagram and remembered mentally, making the unprimed letters the terminals.
If this is done, one must of course remember to refer all connected impedances and sources to
be consistent with the omission of the ideal transformer.

Practice Problem 2.2

If 2,400 V rms is applied to the high-voltage side of the transformer of Example 2.3, calculate the
magnitude of the current into the magnetizing impedance Zϕ in Figs. 2.11a and b respectively.

Solution
The current through Zϕ is 0.543 A rms when it is referred to the high-voltage side as in Fig. 2.11a
and 5.43 A rms when it is referred to the low-voltage side.

2.5 ENGINEERING ASPECTS OF
TRANSFORMER ANALYSIS

In engineering analyses involving the transformer as a circuit element, it is customary
to adopt one of several approximate forms of the equivalent circuit of Fig. 2.10 rather
than the full circuit. The approximations chosen in a particular case depend largely
on physical reasoning based on orders of magnitude of the neglected quantities. The
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Figure 2.12 Approximate transformer equivalent circuits.

more common approximations are presented in this section. In addition, test methods
are given for determining the transformer constants.

The approximate equivalent circuits commonly used for constant-frequency
power transformer analyses are summarized for comparison in Fig. 2.12. All quanti-
ties in these circuits are referred to either the primary or the secondary, and the ideal
transformer is not shown.

Computations can often be greatly simplified by moving the shunt branch repre-
senting the exciting current out from the middle of the T circuit to either the primary or
the secondary terminals, as in Fig. 2.12a and b. These forms of the equivalent circuit
are referred to as cantilever circuits. The series branch is the combined resistance
and leakage reactance of the primary and secondary, referred to the same side. This
impedance is sometimes called the equivalent series impedance and its components
the equivalent series resistance Req and equivalent series reactance Xeq, as shown in
Fig. 2.12a and b.

As compared to the equivalent-T circuit of Fig. 2.10d, the cantilever circuit is
in error in that it neglects the voltage drop in the primary or secondary leakage
impedance caused by the exciting current. Because the impedance of the exciting
branch is typically quite large in large power transformers, the corresponding exciting
current is quite small. This error is insignificant in most situations involving large
transformers.

EXAMPLE 2.4

Consider the equivalent-T circuit of Fig. 2.11a of the 50-kVA 2400:240 V distribution trans-
former of Example 2.3 in which the impedances are referred to the high-voltage side. (a) Draw
the cantilever equivalent circuit with the shunt branch at the high-voltage terminal. Calculate
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Req =
1.42 �

Xeq = 

1.82 �

Zϕ = 632 + j4370 �

a

b

c

d

Figure 2.13 Cantilever equivalent
circuit for Example 2.4.

and label Req and Xeq. (b) With the low-voltage terminal open-circuit and 2400 V applied to the
high-voltage terminal, calculate the voltage at the low-voltage terminal as predicted by each
equivalent circuit.

■ Solution

a. The cantilever equivalent circuit is shown in Fig. 2.13. Req and Xeq are found simply as
the sum of the high- and low-voltage winding series impedances of Fig. 2.11a

Req = 0.72 + 0.70 = 1.42 	

Xeq = 0.92 + 0.90 = 1.82 	

b. For the equivalent-T circuit of Fig. 2.11a, the voltage at the terminal labeled c′-d′ will be
given by

V̂c′-d′ = 2400

(
Zϕ

Zϕ + Z l1

)
= 2399 + j0.3 V

with an rms magnitude of 2399 V. Reflected to the low-voltage terminals by the low- to
high-voltage turns ratio, this in turn corresponds to a voltage of 239.9 V.

Because the magnetizing impedance is connected directly across the high-voltage ter-
minals in the cantilever equivalent circuit of Fig. 2.13, there will be no voltage drop across
any series leakage impedance and the predicted secondary voltage will be 240 V. These two
solutions differ by 0.025 percent, well within reasonable engineering accuracy and clearly
justifying the use of the cantilever equivalent circuit for analysis of this transformer.

Further analytical simplification results from neglecting the exciting current en-
tirely, as in Fig. 2.12c, in which the transformer is represented as an equivalent series
impedance. If the transformer is large (several hundred kilovoltamperes or more),
the equivalent resistance Req is small compared with the equivalent reactance Xeq

and can frequently be neglected, giving the equivalent circuit of Fig. 2.12d. The cir-
cuits of Fig. 2.12c and d are sufficiently accurate for most ordinary power-system
problems and are used in all but the most detailed analyses. Finally, in situations
where the currents and voltages are determined almost wholly by components exter-
nal to the transformer or when a high degree of accuracy is not required, the entire
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transformer impedance can be neglected and the transformer considered to be ideal,
as in Section 2.3.

The circuits of Fig. 2.12 have the additional advantage that the total equivalent
resistance Req and equivalent reactance Xeq can be found from a very simple test in
which one terminal is short-circuited. On the other hand, the process of determining
the individual leakage reactances X l1 and X l2 and a complete set of parameters for the
equivalent-T circuit of Fig. 2.10c is more difficult. Example 2.4 illustrates that, due
to the voltage drop across leakage impedances, the ratio of the measured voltages of
a transformer will not be identically equal to the idealized voltage ratio which would
be measured if the transformer were ideal. In fact, without some apriori knowledge
of the turns ratio (based for example upon knowledge of the internal construction of
the transformer), it is not possible to make a set of measurements which uniquely
determine the turns ratio, the magnetizing inductance, and the individual leakage
impedances.

It can be shown that, with respect to terminal measurements, neither the turns
ratio, the magnetizing reactance, or the leakage reactances are unique characteristics
of a transformer equivalent circuit. For example, the turns ratio can be chosen arbi-
trarily and for each choice of turns ratio, there will be a corresponding set of values
for the leakage and magnetizing reactances which matches the measured character-
istic. Each of the resultant equivalent circuits will have the same electrical terminal
characteristics, a fact which has the fortunate consequence that any self-consistent
set of empirically determined parameters will adequately represent the transformer.

EXAMPLE 2.5

The 50-kVA 2400:240-V transformer whose parameters are given in Example 2.3 is used to
step down the voltage at the load end of a feeder whose impedance is 0.30 + j1.60 	. The
voltage Vs at the sending (primary) end of the feeder is 2400 V.

Find the voltage at the secondary terminals of the transformer when the load connected
to its secondary draws rated current from the transformer and the power factor of the load is
0.80 lagging. Neglect the voltage drops in the transformer and feeder caused by the exciting
current.

■ Solution
The equivalent circuit with all quantities referred to the high-voltage (primary) side of the
transformer is shown in Fig. 2.14a, where the transformer is represented by its equivalent
impedance, as in Fig. 2.12c. From Fig. 2.11a, the value of the equivalent impedance is Zeq =
1.42 + j1.82 	 and the combined impedance of the feeder and transformer in series is Z =
1.72 + j3.42 	. From the transformer rating, the load current referred to the high-voltage side
is I = 50,000/2400 = 20.8 A.

Note that the power factor is defined at the load side of the transformer and hence defines
the phase angle θ between the load current Î and the voltage V̂ 2 where

θ = − cos−1 (0.80) = −36.87◦

Thus

Î = 20.8 e− j36.87◦
A
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Figure 2.14 (a) Equivalent circuit and (b) phasor diagram for Example 2.5.

From the equivalent-circuit of Fig. 2.11 we see that

V̂ 2 = V̂s − Z Î = 2400 − (1.72 + j3.42) × 20.8 e− j36.87◦

= 2329 e− j0.87◦
V

Although an algebraic solution of the complex equation is often the simplest and most
direct way to obtain a solution, it is sometimes useful to solve these type of problems with the aid
of a phasor diagram. We will illustrate this with a phasor diagram referred to the high-voltage
side as shown in Fig. 2.14b. From the phasor diagram

Ob =
√

V 2
s − (bc)2 and V2 = Ob − ab

Note that

bc = I X cos θ − I R sin θ ab = I R cos θ + I X sin θ

where R and X are the combined transformer and feeder resistance and reactance, respectively.
Thus

bc = 20.8(3.42)(0.80) − 20.8(1.72)(0.60) = 35.5 V

ab = 20.8(1.72)(0.80) + 20.8(3.42)(0.60) = 71.4 V

Substitution of numerical values shows that V2 = 2329 V, referred to the high-voltage
side. The actual voltage at the secondary terminals is 2329/10, or

V2 = 233 V

Practice Problem 2.3

Repeat Example 2.5 for a load which draws rated current from the transformer with a power
factor of 0.8 leading.

Solution

V2 = 239 V

Two very simple tests serve to determine the parameters of the equivalent circuits
of Fig. 2.10 and 2.12. These consist of measuring the input voltage, current, and power
at one side of the transformer, first with the second side short-circuited and then with
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Figure 2.15 Equivalent circuit with short-circuited secondary. (a) Complete equivalent circuit.
(b) Cantilever equivalent circuit with the exciting branch at the transformer secondary.

the second side open-circuited. Note that, following common practice, the transformer
voltage ratio is used as the turns ratio when referring parameters from side to side for
the purposes of parameter determination.

Short-Circuit Test The short-circuit test can be used to find the equivalent series
impedance Req + j Xeq. Although the choice of winding to short-circuit is arbitrary,
for the sake of this discussion we will consider the short circuit to be applied to the
transformer secondary and voltage applied to primary. For convenience, the high-
voltage side is usually taken as the primary in this test. Because the equivalent series
impedance in a typical transformer is relatively small, typically an applied primary
voltage on the order of 10 to 15 percent or less of the rated value will result in rated
current.

Figure 2.15a shows the equivalent circuit with transformer secondary impedance
referred to the primary side and a short circuit applied to the secondary. The short-
circuit impedance Zsc looking into the primary under these conditions is

Zsc = R1 + j Xl1 + Zϕ(R2 + j Xl2)

Zϕ + R2 + j Xl2

(2.29)

Because the impedance Zϕ of the exciting branch is much larger than that of the
secondary leakage impedance (which will be true unless the core is heavily saturated
by excessive voltage applied to the primary; certainly not the case here), the short-
circuit impedance can be approximated as

Zsc ≈ R1 + j Xl1 + R2 + j Xl2 = Req + j Xeq (2.30)

Note that the approximation made here is equivalent to the approximation made
in reducing the equivalent-T circuit to the cantilever equivalent. This can be seen
from Fig. 2.15b; the impedance seen at the input of this equivalent circuit is clearly
Zsc = Zeq = Req + j Xeq since the exciting branch is directly shorted out by the short
on the secondary.

Typically the instrumentation used for this test will measure the rms magnitude
of the applied voltage Vsc, the short-circuit current Isc, and the power Psc. Based upon
these three measurements, the equivalent resistance and reactance (referred to the
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primary) can be found from

|Zeq| = |Zsc| = Vsc

Isc
(2.31)

Req = Rsc = Psc

I 2
sc

(2.32)

Xeq = Xsc = √|Zsc|2 − R2
sc (2.33)

where the notation | | indicates the magnitude of the enclosed complex quantity. The
equivalent impedance can, of course, be referred from one side to the other in the
usual manner.

Note that the short-circuit test does not provide sufficient information to deter-
mine the individual leakages impedances of the primary and secondary windings. On
the occasions when the equivalent-T circuit in Fig. 2.10d must be used, approximate
values of the individual primary and secondary resistances and leakage reactances
can be obtained by assuming that R1 = R2 = 0.5Req and X l1 = X l2 = 0.5Xeq when
all impedances are referred to the same side. Strictly speaking, of course, it is possible
to measure R1 and R2 directly by a dc resistance measurement on each winding (and
then referring one or the other to the other side of the ideal transformer). However, as
has been discussed, no such simple test exists for the leakage reactances Xl1 and Xl2 .

Open-Circuit Test The open-circuit test is performed with the secondary open-
circuited and a voltage impressed on the primary. Under this condition an exciting
current of a few percent of full-load current (less on large transformers and more on
smaller ones) is obtained. Typically, the test is conducted at rated voltage to insure
that the core, and hence the magnetizing reactance, will be operating at a flux level
close to that which will exist under normal operating conditions. If the transformer is
to be used at other than its rated voltage, the test should be done at that voltage. For
convenience, the low-voltage side is usually taken as the primary in this test. If the
primary is chosen to be the opposite winding from that of the short-circuit test, one
must of course be careful to refer the various measured impedances to the same side
of the transformer in order to obtain a self-consistent set of parameter values.

Figure 2.16a shows the equivalent circuit with the transformer secondary
impedance referred to the primary side and with the secondary open-circuited. The
open-circuit impedance Zoc looking into the primary under these conditions is

Zoc = R1 + j Xl1 + Zϕ = R1 + j Xl1 + Rc ( j Xm)

Rc + j Xm
(2.34)

Because the impedance of the exciting branch is quite large, the voltage drop in the
primary leakage impedance caused by the exciting current is typically negligible, and
the primary impressed voltage V̂oc very nearly equals the emf Êoc induced by the
resultant core flux. Similarly, the primary I 2

oc R1 loss caused by the exciting current is
negligible, so that the power input Poc very nearly equals the core loss E2

oc/Rc. As a
result, it is common to ignore the primary leakage impedance and to approximate the
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Figure 2.16 Equivalent circuit with open-circuited secondary. (a) Complete equivalent
circuit. (b) Cantilever equivalent circuit with the exciting branch at the transformer primary.

open-circuit impedance as being equal to the magnetizing impedance

Zoc ≈ Zϕ = Rc( j Xm)

Rc + j Xm
(2.35)

Note that the approximation made here is equivalent to the approximation made in
reducing the equivalent-T circuit to the cantilever equivalent circuit of Fig. 2.16b; the
impedance seen at the input of this equivalent circuit is clearly Zϕ since no current
will flow in the open-circuited secondary.

As with the short-circuit test, typically the instrumentation used for this test
will measure the rms magnitude of the applied voltage, Voc, the open-circuit current
Ioc, and the power Poc. Neglecting the primarily leakage impedance and based upon
these three measurements, the magnetizing resistance and reactance (referred to the
primary) can be found from

Rc = V 2
oc

Poc
(2.36)

|Zϕ| = Voc

Ioc
(2.37)

Xm = 1√
(1/|Zϕ|)2 − (1/Rc)

2
(2.38)

The values obtained are, of course, referred to the side used as the primary in this
test.

The open-circuit test can be used to obtain the core loss for efficiency computa-
tions and to check the magnitude of the exciting current. Sometimes the voltage at the
terminals of the open-circuited secondary is measured as a check on the turns ratio.

Note that, if desired, a slightly more accurate calculation of Xm and Rc can be
found by retaining the measurements of R1 and Xl1 obtained from the short-circuit test
(referred to the proper side of the transformer) and basing the derivation on Eq. 2.34.
However, such additional effort is rarely necessary for the purposes of engineering
accuracy.
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EXAMPLE 2.6

With the instruments located on the high-voltage side and with the low-voltage side short-
circuited, the short-circuit test readings for the 50-kVA 2400:240-V transformer of Example 2.3
are 48 V, 20.8 A, and 617 W. An open-circuit test with the low-voltage side energized gives
instrument readings on that side of 240 V, 5.41 A, and 186 W. Determine the efficiency and
the voltage regulation of the transformer operating at full load, 0.80 power factor lagging.

■ Solution
From the short-circuit test, the magnitude of the equivalent impedance, the equivalent resistance,
and the equivalent reactance of the transformer (referred to the high-voltage side as denoted
by the subscript H) are

|Zeq,H| = 48

20.8
= 2.31 	 Req,H = 617

20.82
= 1.42 	

Xeq,H = √
2.312 − 1.422 = 1.82 	

Operation at full-load, 0.80 power factor lagging corresponds to a current of

IH = 50000

2400
= 20.8 A

and an output power

Poutput = Pload = (0.8)50000 = 40000 W

Note that the short-circuit test was conducted at rated current and hence the full-load I 2 R
loss will equal that of the short-circuit test. Similarly, the open-circuit test was conducted at
rated voltage and hence the full-load core loss is equal to that of the open-circuit test. As a
result, the total loss under this operating condition is equal to the sum of the winding loss

Pwinding = I 2
H Req,H = 20.82(1.42) = 617 W

and the open-circuit core loss

Pcore = 186 W

Thus

Ploss = Pwinding + Pcore = 803 W

and the power input to the transformer is

Pinput = Poutput + Ploss = 40803 W

The efficiency of a power conversion device is defined as

efficiency = Poutput

Pinput

= Pinput − Ploss

Pinput

= 1 − Ploss

Pinput

which can be expressed in percent by multiplying by 100 percent. Hence, for this operating
condition

efficiency = 100%

(
Poutput

Pinput

)
= 100%

(
40000

40000 + 803

)
= 98.0%

The voltage regulation of a transformer is defined as the change in secondary terminal
voltage from no load to full load and is usually expressed as a percentage of the full-load value.
In power systems applications, regulation is one figure of merit for a transformer; a low value
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indicates that load variations on the secondary of that transformer will not significantly affect
the magnitude of the voltage being supplied to the load. It is calculated under the assumption that
the primary voltage remains constant as the load is removed from the transformer secondary.

The equivalent circuit of Fig. 2.12c will be used with all quantities referred to the high-
voltage side. The primary voltage is assumed to be adjusted so that the secondary terminal
voltage has its rated value at full load, or V2H = 2400 V. For a load of rated value and 0.8 power
factor lagging (corresponding to a power-factor angle θ = −cos−1 (0.8) = −36.9◦), the load
current will be

Î H =
(

50 × 103

2400

)
e− j36.9◦ = 20.8 e− j36.9◦ = 16.6 − j12.5 A

The required value of the primary voltage V1H can be calculated as

V̂1H = V̂2H + Î H(Req,H + j Xeq,H)

= 2400 + (16.6 − j12.5) (1.42 + j1.82)

= 2446 e j0.29◦
V

The magnitude of V̂1H is 2446 V. If this voltage were held constant and the load removed,
the secondary voltage on open circuit would rise to 2446 V referred to the high-voltage side.
Then

Regulation =
(

2446 − 2400

2400

)
× 100% = 1.92%

Practice Problem 2.4

Repeat the voltage-regulation calculation of Example 2.6 for a load of 50 kW (rated load, unity
power factor).

Solution

Regulation = 1.24%

2.6 AUTOTRANSFORMERS; MULTIWINDING
TRANSFORMERS

The principles discussed in previous sections have been developed with specific ref-
erence to two-winding transformers. They are also applicable to transformers with
other winding configurations. Aspects relating to autotransformers and multiwinding
transformers are considered in this section.

2.6.1 Autotransformers

In Fig. 2.17a, a two-winding transformer is shown with N1 and N2 turns on the
primary and secondary windings respectively. Substantially the same transformation
effect on voltages, currents, and impedances can be obtained when these windings
are connected as shown in Fig. 2.17b. However, note that in Fig. 2.17b, winding bc is



Umans-3930269 book December 14, 2012 11:56

88 CHAPTER 2 Transformers

N1 + N2

a

N2

N1

b

c

N1 N2

(a) (b)

Figure 2.17 (a) Two-winding transformer.
(b) Connection as an autotransformer.

common to both the primary and secondary circuits. This type of transformer is called
an autotransformer. It is similar to a normal transformer connected in a special way,
with the exception that the windings must be appropriately insulated for the operating
operating voltage.

One important difference between the two-winding transformer and the auto-
transformer is that the windings of the two-winding transformer are electrically iso-
lated whereas those of the autotransformer are connected directly together. Also, in
the autotransformer connection, winding ab must be provided with extra insulation
since it must be insulated against the full maximum voltage of the autotransformer.
Autotransformers have lower leakage reactances, lower losses, and smaller exciting
current and cost less than two-winding transformers when the voltage ratio does not
differ too greatly from 1:1.

The following example illustrates the benefits of an autotransformer for those
situations where electrical isolation between the primary and secondary windings is
not an important consideration.

EXAMPLE 2.7

The 2400:240-V 50-kVA transformer of Example 2.6 is connected as an autotransformer, as
shown in Fig. 2.18a, in which ab is the 240-V winding and bc is the 2400-V winding. (It is
assumed that the 240-V winding has enough insulation to withstand a voltage of 2640 V to
ground.)

a. Compute the voltage ratings VH and VX of the high- and low-voltage sides, respectively,
for this autotransformer connection.

b. Compute the kVA rating as an autotransformer.
c. Data with respect to the losses are given in Example 2.6. Compute the full-load efficiency

as an autotransformer operating with a rated load of 0.80 power factor lagging.

■ Solution

a. Since the 2400-V winding bc is connected to the low-voltage circuit, VL = 2400 V. When
Vbc = 2400 V, a voltage Vab = 240 V in phase with Vbc will be induced in winding ab
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+

Figure 2.18 (a) Autotransformer connection for
Example 2.7. (b) Currents under rated load.

(leakage-impedance voltage drops being neglected). The voltage of the high-voltage side
therefore is

VH = Vab + Vbc = 2640 V

b. From the rating of 50 kVA as a normal two-winding transformer, the rated current of
the 240-V winding is 50,000/240 = 208 A. Since the high-voltage lead of the
autotransformer is connected to the 240-V winding, the rated current IH at the
high-voltage side of the autotransformer is equal to the rated current of the 240-V winding
or 208 A. The kVA rating as an autotransformer therefore is

VH IH

1000
= 2640 × 208

1000
= 550 kVA

Note that, in this connection, the autotransformer has an equivalent turns ratio of
2640/2400. Thus the rated current at the low-voltage winding (the 2400-V winding in this
connection) must be

IL =
(

2640

2400

)
208 A = 229 A

At first, this seems rather unsettling since the 2400-V winding of the transformer has a
rated current of 50 kVA/2400 V = 20.8 A. Further puzzling is that fact that this
transformer, whose rating as a normal two-winding transformer is 50 kVA, is capable of
handling 550 kVA as an autotransformer.

The higher rating as an autotransformer is a consequence of the fact that not all the
550 kVA has to be transformed by electromagnetic induction. In fact, all that the
transformer has to do is to boost a current of 208 A through a potential rise of 240 V,
corresponding to a power transformation capacity of 50 kVA. This fact is perhaps best
illustrated by Fig. 2.18b which shows the currents in the autotransformer under rated
conditions. Note that the windings carry only their rated currents in spite of higher rating
of the transformer.
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c. When it is connected as an autotransformer with the currents and voltages shown in
Fig. 2.18, the losses are the same as in Example 2.6, namely 803 W. But the output as an
autotransformer at full load, 0.80 power factor is 0.80 × 550,000 = 440,000 W. The
efficiency therefore is (

1 − 803

440,803

)
100% = 99.82%

The efficiency is so high because the losses are those corresponding to transforming only
50 kVA.

Practice Problem 2.5

A 450-kVA, 460-V:7.97-kV transformer has an efficiency of 97.8 percent when supplying a
rated load of unity power factor. If it is connected as a 7.97:8.43-kV autotransformer, calculate
its rated terminal currents, rated kVA, and efficiency when supplying a unity-power-factor load.

Solution
The rated current at the 8.43-kV terminal is 978 A, at the 7.97-kV terminal is 1034 A and the
transformer rating is 8.25 MVA. Its efficiency supplying a rated, unity-power-factor load is
99.88 percent.

From Example 2.7, we see that when a transformer is connected as an auto-
transformer as shown in Fig. 2.17, the rated voltages of the autotransformer can be
expressed in terms of those of the two-winding transformer as

Low-voltage:

VLrated = V1rated (2.39)

High-voltage:

VHrated = V1rated + V2rated =
(

N1 + N2

N1

)
VLrated (2.40)

The effective turns ratio of the autotransformer is thus (N1 + N2)/N1. In addition,
the power rating of the autotransformer is equal to (N1 + N2)/N2 times that of the
two-winding transformer, although the actual power processed by the transformer
will not increase over that of the standard two-winding connection.

2.6.2 Multiwinding Transformers

Transformers having three or more windings, known as multiwinding or multicircuit
transformers, are often used to interconnect three or more circuits which may have
different voltages. For these purposes a multiwinding transformer costs less and is
more efficient than an equivalent number of two-winding transformers. Transformers
having a primary and multiple secondaries are frequently found in multiple-output dc
power supplies for electronic applications. Distribution transformers used to supply
power for domestic purposes usually have two 120-V secondaries connected in series.



Umans-3930269 book December 14, 2012 11:56

2.7 Transformers in Three-Phase Circuits 91

Circuits for lighting and low-power applications are connected across each of the
120-V windings, while electric ranges, domestic hot-water heaters, clothes-dryers,
and other high-power loads are supplied with 240-V power from the series-connected
secondaries.

Similarly, a large distribution system may be supplied through a three-phase
bank of multiwinding transformers from two or more transmission systems having
different voltages. In addition, the three-phase transformer banks used to interconnect
two transmission systems of different voltages often have a third, or tertiary, set of
windings to provide voltage for auxiliary power purposes in substations or to sup-
ply a local distribution system. Static capacitors or synchronous condensers may be
connected to the tertiary windings for power factor correction or voltage regulation.
Sometimes 
-connected tertiary windings are put on three-phase banks to provide a
low-impedance path for third harmonic components of the exciting current to reduce
third-harmonic components of the neutral voltage.

Some of the issues arising in the use of multiwinding transformers are associated
with the effects of leakage impedances on voltage regulation, short-circuit currents,
and division of load among circuits. These problems can be solved by an equivalent-
circuit technique similar to that used in dealing with two-circuit transformers.

The equivalent circuits of multiwinding transformers are more complicated than
in the two-winding case because they must take into account the leakage impedances
associated with each pair of windings. Typically, in these equivalent circuits, all
quantities are referred to a common base, either by use of the appropriate turns ratios
as referring factors or by expressing all quantities in per unit. The exciting current
usually is neglected.

2.7 TRANSFORMERS IN THREE-PHASE
CIRCUITS

Three single-phase transformers can be connected to form a three-phase transformer
bank in any of the four ways shown in Fig. 2.19. In all four parts of this figure, the wind-
ings at the left are the primaries, those at the right are the secondaries, and each primary
winding in one transformer corresponds to the secondary winding drawn parallel to it.
Also shown are the voltages and currents resulting from balanced impressed primary
line-to-line voltages V and line currents I when the ratio of primary-to-secondary
turns N1/N2 = a and ideal transformers are assumed.5 Note that the rated voltage
and current at the primary and secondary of the three-phase transformer bank depend
upon the connection used but that the rated kVA of the three-phase bank is three times
that of the individual single-phase transformers, regardless of the connection.

The Y-
 connection is commonly used in stepping down from a high voltage
to a medium or low voltage. One reason is that a neutral is thereby provided for
grounding on the high-voltage side, a procedure which can be shown to be desirable
in many cases. Conversely, the 
-Y connection is commonly used for stepping up to

5 The relationship between three-phase and single-phase quantities is discussed in Appendix A.
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Figure 2.19 Common three-phase transformer connections; the transformer windings
are indicated by the heavy lines.

a high voltage. The 
-
 connection has the advantage that one transformer can be
removed for repair or maintenance while the remaining two continue to function as
a three-phase bank with the rating reduced to 58 percent of that of the original bank;
this is known as the open-delta, or V , connection. The Y-Y connection is seldom used
because of difficulties with exciting-current phenomena.6

Instead of three single-phase transformers, a three-phase bank may consist of one
three-phase transformer having all six windings on a common multi-legged core and
contained in a single tank. Advantages of three-phase transformers over connections
of three single-phase transformers are that they cost less, weigh less, require less floor
space, and have somewhat higher efficiency. A photograph of the internal parts of a
three-phase transformer is shown in Fig. 2.20.

Circuit computations involving three-phase transformer banks under balanced
conditions can be made by dealing with only one of the transformers or phases and
recognizing that conditions are the same in the other two phases except for the phase
displacements associated with a three-phase system. It is usually convenient to carry
out the computations on a single-phase (per-phase-Y, line-to-neutral) basis, since
transformer impedances can then be added directly in series with transmission line
impedances. The impedances of transmission lines can be referred from one side of
the transformer bank to the other by use of the square of the ideal line-to-line voltage
ratio of the bank. In dealing with Y-
 or 
-Y banks, all quantities can be referred to
the Y-connected side. In dealing with 
-
 banks in series with transmission lines, it is
convenient to replace the 
-connected impedances of the transformers by equivalent
Y-connected impedances. It can be shown that a balanced 
-connected circuit of

6 Because there is no neutral connection to carry harmonics of the exciting current, harmonic voltages are
produced which significantly distort the transformer voltages.
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Figure 2.20 Internal view of a three-phase, 480V-Y/208V-
,
112-kVA transformer.

Z
 	/phase is equivalent to a balanced Y-connected circuit of ZY 	/phase if

ZY = 1

3
Z
 (2.41)

EXAMPLE 2.8

Three single-phase, 50-kVA 2400:240-V transformers, each identical with that of Example 2.6,
are connected Y-
 in a three-phase 150-kVA bank to step down the voltage at the load end
of a feeder whose impedance is 0.15 + j1.00 	/phase. The voltage at the sending end of the
feeder is 4160 V line-to-line. On their secondary sides, the transformers supply a balanced
three-phase load through a feeder whose impedance is 0.0005 + j0.0020 	/phase. Find the
line-to-line voltage at the load when the load draws rated current from the transformers at a
power factor of 0.80 lagging.

■ Solution
For the given connection, the rated line-line voltage at the high-voltage terminals of the three-
phase transformer bank will

√
3 2400 ≈ 4160 V. Thus, the transformer bank will have an rated

turns ratio of 4160/240. The computations can be made on a single-phase basis by referring
everything to the high-voltage, Y-connected side of the transformer bank. The voltage at the
sending end of the feeder is equivalent to a source voltage Vs of

Vs = 4160√
3

≈ 2400 V line-to-neutral

From the transformer rating, the rated current on the high-voltage side is 20.8 A/phase Y.
The low-voltage feeder impedance referred to the high voltage side by means of the square of
the rated turns ratio

Z lv,H =
(

4160

240

)2

(0.0005 + j0.0020) = 0.15 + j0.60 	
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and the combined series impedance of the high- and low-voltage feeders referred to the high-
voltage side is thus

Z feeder,H = 0.30 + j1.60 	/phase Y

Because the transformer bank is Y-connected on its high-voltage side, its equivalent single-
phase series impedance is equal to the single-phase series impedance of each single-phase
transformer as referred to its high-voltage side. This impedance was originally calculated in
Example 2.4 as

Zeq,H = 1.42 + j1.82 	/phase Y

Due to the choice of values selected for this example, the single-phase equivalent circuit
for the complete system is identical to that of Example 2.5, as can been seen with specific
reference to Fig. 2.14a. In fact, the solution on a per-phase basis is exactly the same as the
solution to Example 2.5, whence the load voltage referred to the high-voltage side is 2329 V
to neutral. The actual line-neutral load voltage can then be calculated by referring this value to
the low-voltage side of the transformer bank as

Vload = 2329

(
240

4160

)
= 134 V line-to-neutral

which can be expressed as a line-to-line voltage by multiplying by
√

3

Vload = 134
√

3 = 233 V line-to-line

Note that this line-line voltage is equal to the line-neutral load voltage calculated in
Example 2.5 because in this case the transformers are delta connected on their low-voltage side
and hence the line-line voltage on the low-voltage side is equal to the low-voltage terminal
voltage of the transformers.

Practice Problem 2.6

Repeat Example 2.8 with the transformers connected Y-Y and all other aspects of the problem
statement remaining unchanged.

Solution
405 V line-line

EXAMPLE 2.9

The three transformers of Example 2.8 are reconnected 
-
 and supplied with power through a
2400-V (line-to-line) three-phase feeder whose reactance is 0.80 	/phase as shown in Fig. 2.21.
At its sending end, the feeder is connected to the secondary terminals of a three-phase Y-
-
connected transformer whose rating is 500 kVA, 24 kV:2400 V (line-to-line). The equivalent
series impedance of the sending-end transformer is 0.17+ j0.92 	/phase referred to the 2400-V
side. The voltage applied to the primary terminals of the sending-end transformer is 24.0 kV
line-to-line.

A three-phase short circuit occurs at the 240-V terminals of the receiving-end transformers.
Compute the steady-state short-circuit current in the 2400-V feeder phase wires, in the primary
and secondary windings of the receiving-end transformers, and at the 240-V terminals.
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24 kV : 2.4 kV 2.4 kV : 240 V

Sending
end

Receiving
end

Feeder
Y

Figure 2.21 One-line diagram for Example 2.9 .

■ Solution
The computations will be made on an equivalent line-to-neutral basis with all quantities referred
to the 2400-V feeder. The source voltage then is

2400√
3

= 1385 V line-to-neutral

From Eq. 2.41, the single-phase-equivalent series impedance of the 
-
 transformer seen
at its 2400-V side is

Zeq = Req + j Xeq = 1.42 + j1.82

3
= 0.47 + j0.61 	/phase

The total series impedance to the short circuit is then the sum of this impedance, that of
sending-end transformer and the reactance of the feeder

Z tot = (0.47 + j0.61) + (0.17 + j0.92) + j0.80 = 0.64 + j2.33 	/phase

which has a magnitude of

|Z tot| = 2.42 	/phase

The magnitude of the phase current in the 2400-V feeder can now simply be calculated
as the line-neutral voltage divided by the magnitude of the series impedance

Current in 2400-V feeder = 1385

2.42
= 572 A

and, as is shown in Fig. 2.19c, the winding current in the 2400-V winding of the receiving-end
transformer is equal to the phase current divided by

√
3 or

Current in 2400-V windings = 572√
3

= 330 A

while the current in the 240-V windings is 10 times this value

Current in 240-V windings = 10 × 330 = 3300 A

Finally, again with reference to Fig. 2.19c, the phase current at the 240-V terminals into
the short circuit is given by

Current at the 240-V terminals = 3300
√

3 = 5720 A

Note of course that this same result could have been computed simply by recognizing that the
turns ratio of the 
-
 transformer bank is equal to 10:1 and hence, under balanced-three-phase
conditions, the phase current on the low voltage side will be 10 times that on the high-voltage
side.
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Practice Problem 2.7

Repeat Example 2.9 under the condition that the three transformers are connected 
-Y instead
of 
-
 such that the short low-voltage side of the three-phase transformer is rated 416 V
line-to-line.

Solution

Current in 2400-V feeder = 572 A

Current in 2400-V windings = 330 A

Current in 416-V windings = 3300 A

Current at the 416-V terminals = 3300A

2.8 VOLTAGE AND CURRENT
TRANSFORMERS

Transformers are often used in instrumentation applications to match the magnitude
of a voltage or current to the range of a meter or other instrumentation. For example,
most 60-Hz power-systems’ instrumentation is based upon voltages in the range of
0-120 V rms and currents in the range of 0–5 A rms. Since power system voltages
range up to 765-kV line-to-line and currents can be 10s of kA, some method of
supplying an accurate, low-level representation of these signals to the instrumentation
is required.

One common technique is through the use of specialized transformers known as
potential transformers or PTs and current transformers or CTs. If constructed with
a turns ratio of N1:N2, an ideal potential transformer would have a secondary volt-
age equal in magnitude to N2/N1 times that of the primary and identical in phase.
Similarly, an ideal current transformer would have a secondary output current equal
to N1/N2 times the current input to the primary, again identical in phase. In other
words, potential and current transformers (also referred to as instrumentation trans-
formers) are designed to approximate ideal transformers as closely as is practically
possible.

The equivalent circuit of Fig. 2.22 shows a transformer loaded with an impedance
Zb = Rb+ j Xb at its secondary. For the sake of this discussion, the core-loss resistance
Rc has been neglected; if desired, the analysis presented here can be easily expanded to
include its effect. Following conventional terminology, the load on an instrumentation
transformer is frequently referred to as the burden on that transformer, hence the
subscript ′b′. To simplify our discussion, we have chosen to refer all the secondary
quantities to the primary side of the ideal transformer.

Consider first a potential transformer. Ideally it should accurately measure voltage
while appearing as an open circuit to the system under measurement, i.e., drawing
negligible current and power. Thus, its load impedance should be “large” in a sense
we will now quantify.
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Figure 2.22 Equivalent circuit for an instrumentation
transformer.

First, let us assume that the transformer secondary is open-circuited (i.e.,
|Zb| = ∞). In this case we can write that

V̂2

V̂1
=

(
N2

N1

)
j Xm

R1 + j (X1 + Xm)
(2.42)

From this equation, we see that a potential transformer with an open-circuited sec-
ondary has an inherent error (in both magnitude and phase) due to the voltage drop of
the magnetizing current through the primary resistance and leakage reactance. To the
extent that the primary resistance and leakage reactance can be made small compared
to the magnetizing reactance, this inherent error can be made quite small.

The situation is worsened by the presence of a finite burden. Including the effect
of the burden impedance, Eq. 2.42 becomes

V̂2

V̂1
=

(
N2

N1

)
Zeq Z ′

b

(R1 + j X1)(Zeq + Z ′
b + R′

2 + j X ′
2)

(2.43)

where

Zeq = j Xm(R1 + j X1)

R1 + j (Xm + X1)
(2.44)

and

Z ′
b =

(
N1

N2

)2

Zb (2.45)

is the burden impedance referred to the transformer primary.
From these equations, it can be seen that the characteristics of an accurate poten-

tial transformer include a large magnetizing reactance (more accurately, a large mag-
netizing impedance since the effects of core loss, although neglected in the analysis
presented here, must also be minimized) and relatively small winding resistances and
leakage reactances. Finally, as will be seen in Example 2.10, the burden impedance
must be kept above a minimum value to avoid introducing excessive errors in the
magnitude and phase angle of the measured voltage.

EXAMPLE 2.10

A 2400:120-V, 60-Hz potential transformer has the following parameter values (referred to the
2400-V winding):

X1 = 143 	 X ′
2 = 164 	 Xm = 163 k	

R1 = 128 	 R′
2 = 141 	
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(a) Assuming a 2400-V input, which ideally should produce a voltage of 120 V at the
low-voltage winding, calculate the magnitude and relative phase-angle errors of the secondary
voltage if the secondary winding is open-circuited. (b) Assuming the burden impedance to be
purely resistive (Zb = Rb), calculate the minimum resistance (maximum burden) that can be
applied to the secondary such that the magnitude error is less than 0.5 percent. (c) Repeat part
(b) but find the minimum resistance such that the phase-angle error is less than 1.0 degree.

■ Solution

a. This problem is most easily solved using MATLAB.† From Eq. 2.42 with V̂1 = 2400 V,
the following MATLAB script gives

V̂2 = 119.90 � 0.045◦ V

which corresponds to a magnitude error of less than 0.1% and a phase angle error of
0.045◦.

Here is the MATLAB script:

clc

clear

%PT parameters

R1 = 128;

X1 = 143;

Xm = 163e3;

N1 = 2400;

N2 = 120;

N = N1/N2;

%Primary voltage

V1 = 2400;

%Secondary voltage

V2 = V1*(N2/N1)*(j*Xm/(R1+ j*(X1+Xm)));

magV2 = abs(V2);

phaseV2 = 180*angle(V2)/pi;

fprintf(’\nMagnitude of V2 = %g [V]’,magV2)

fprintf(’\n and angle = %g [degrees]\n\n’,phaseV2)

b. Here, again, it is relatively straight forward to write a MATLAB script to implement
Eq. 2.43 and to calculate the percentage error in the magnitude of voltage V̂2 as compared
to the 120 Volts that would be measured if the PT were ideal. The resistive burden Rb

can be initialized to a large value and then reduced until the magnitude error reaches

† MATLAB is a registered trademark of The MathWorks, Inc.
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0.5 percent. The result of such an analysis would show that the minimum resistance is
162.5 	, corresponding to a magnitude error of 0.50 percent and a phase angle of 0.22◦.
(Note that this appears as a resistance of 65 k	 when referred to the primary.)

c. The MATLAB script of part (b) can be modified to search for the minimum resistive
burden that will keep the phase angle error less than 1.0 degrees. The result would show
that the minimum resistance is 41.4 	, corresponding to a phase angle of 1.00◦ and a
magnitude error of 1.70 percent.

Practice Problem 2.8

Using MATLAB, repeat parts (b) and (c) of Example 2.10 assuming the burden impedance is
purely reactive (Zb = j Xb) and finding the corresponding minimum impedance Xb in each
case.

Solution
The minimum burden reactance which results in a secondary voltage magnitude within 0.5 per-
cent of the expected 120 V is Xb = 185.4 	, for which the phase angle is 0.25◦. The minimum
burden reactance which results in a secondary voltage phase-angle of within 1.0◦ of that of the
primary voltage is Xb = 39.5 	, for which the voltage-magnitude error is 2.0 percent.

Consider next a current transformer. An ideal current transformer would accu-
rately measure current while appearing as a short circuit to the system under measure-
ment, i.e., developing negligible voltage drop and drawing negligible power. Thus,
its load impedance should be “small” in a sense we will now quantify.

Let us begin with the assumption that the transformer secondary is short-circuited
(i.e., |Zb| = 0). In this case we can write that

Î 2

Î 1
=

(
N1

N2

)
j Xm

R′
2 + j (X ′

2 + Xm)
(2.46)

Based upon an argument similar to that used in the discussion of a potential
transformer, Eq. 2.46 shows that a current transformer with a shorted secondary has
an inherent error (in both magnitude and phase) due to the fact that some of the primary
current is shunted through the magnetizing reactance and does not reach the secondary.
To the extent that the magnetizing reactance can be made large in comparison to the
secondary resistance and leakage reactance, this error can be made quite small.

A finite burden appears in series with the secondary impedance and increases the
error. Including the effect of the burden impedance, Eq. 2.46 becomes

Î 2

Î 1
=

(
N1

N2

)
j Xm

Z ′
b + R′

2 + j (X ′
2 + Xm)

(2.47)

From these equations, it can be seen that an accurate current transformer should
have a large magnetizing impedance and relatively small winding resistances and
leakage reactances. In addition, as is seen in Example 2.11, the burden impedance
on a current transformer must be kept below a maximum value to avoid introducing
excessive additional magnitude and phase errors in the measured current.
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EXAMPLE 2.11

A 800:5-A, 60-Hz current transformer has the following parameter values (referred to the
800-A winding):

X1 = 44.8 μ	 X ′
2 = 54.3 μ	 Xm = 17.7 m	

R1 = 10.3 μ	 R′
2 = 9.6 μ	

Assuming that the high-current winding is carrying a current of 800 amperes, calculate the
magnitude and relative phase of the current in the low-current winding if the load impedance
is purely resistive with Rb = 2.5 	.

■ Solution
The secondary current can be found from Eq. 2.47 by setting Î 1 = 800 A and R′

b = (N1/N2)
2 Rb=

0.097 m	. The following MATLAB script gives

Î 2 = 4.98 � 0.346◦ A

Here is the MATLAB script:

clc

clear

%CT parameters

R_2p = 9.6e-6;

X_2p = 54.3e-6;

X_m = 17.7e-3;

N_1 = 5;

N_2 = 800;

N = N_1/N_2;

%Load impedance

R_b = 2.5;

X_b = 0;

Z_bp = N\^{}2*(R_b + j * X_b);

% Primary current

I1 = 800;

%Secondary current

I2 = I1*N*j*X_m/(Z_bp + R_2p + j*(X_2p + X_m));

magI2 = abs(I2);

phaseI2 = 180*angle(I2)/pi;

fprintf(’\nSecondary current magnitude = %g [A]’,magI2)

fprintf(’\n and phase angle = \%g [degrees]\n$\n’,phaseI2)
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Practice Problem 2.9

For the current transformer of Example 2.11, find the maximum purely reactive burden Zb =
j Xb such that, for 800 A flowing in the transformer primary, the secondary current will be
greater than 4.95 A (i.e., there will be at most a 1.0 percent error in current magnitude).

Solution
Xb must be less than 3.19 	

2.9 THE PER-UNIT SYSTEM
Electric power systems typically consist of the interconnection of a large number
of generators, transformers, transmission lines and loads (a large fraction of which
include electric motors). The characteristics of these components vary over a large
range; with voltages ranging from hundreds of volts to hundreds of kilovolts and power
ratings ranging from kilowatts to hundreds of megawatts. Power-system analyses,
and indeed analyses of individual power-system components are often carried out
in per-unit form, i.e., with all pertinent quantities expressed as decimal fractions of
appropriately chosen base values. All the usual computations are then carried out in
these per-unit values instead of the familiar volts, amperes, ohms, and so on.

There are a number of advantages to the use of the per-unit system. One is that,
when expressed in per-unit based upon their rating, the parameter values of machines
and transformers typically fall in a reasonably narrow numerical range. This both
permits a quick “sanity check” of parameter values as well enables “back-of-the en-
velope” estimates of parameter values which are otherwise not available. A second
advantage is that when transformer equivalent-circuit parameters are converted to their
per-unit values, the ideal transformer turns ratio becomes 1:1 and hence the ideal trans-
former can be eliminated from the equivalent circuit. This greatly simplifies analyses
since it eliminates the need to refer impedances to one side or the other of transformers.

Quantities such as voltage V , current I , power P , reactive power Q, voltamperes
VA, resistance R, reactance X , impedance Z , conductance G, susceptance B, and
admittance Y can be translated to and from per-unit form as follows:

Quantity in per unit = Actual quantity

Base value of quantity
(2.48)

where “Actual quantity” refers to the value in volts, amperes, ohms, and so on. To
a certain extent, base values can be chosen arbitrarily, but certain relations between
them must be observed for the normal electrical laws to hold in the per-unit system.
Thus, for a single-phase system, the power base (total, real and reactive power) is
related to the base voltage and base current as

VAbase (Pbase, Qbase) = Vbase × Ibase (2.49)

and the impedance base (complex, real and reactive) is related to the base voltage and
base current as

Zbase (Rbase, Xbase) = Vbase

Ibase
(2.50)
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The net result is that only two independent base quantities can be chosen arbitrarily;
the remaining quantities are determined by the relationships of Eqs. 2.49 and 2.50. In
typical usage, values of VAbase and Vbase are chosen first; values of Ibase and all other
quantities in Eqs. 2.49 and 2.50 are then uniquely established.

The value of VAbase must be the same over the entire system under analysis.
As can be seen with reference to the equivalent circuit of Fig. 2.10c, if the base
voltages of the primary and secondary are chosen to be in the ratio of the turns of
the ideal transformer, the per-unit ideal transformer will have a unity turns ratio and
hence can be eliminated. Usually the rated or nominal voltages of the respective sides
are chosen as the base values. Although, as we have seen, transformer equivalent-
circuit parameters values vary by the square of the turns ratio as they are reflected
from one side of the transformer to the other, the per-unit impedances will be the same
independent of the side of the transformer from which they are initially calculated. This
is consistent with the unity-turns-ratio per-unit ideal transformer and is automatically
accounted for by using Eqs. 2.49 and 2.50 to determine the per-unit values.

If these rules are followed, the procedure for performing system analyses in
per-unit can be summarized as follows:

1. Select a VA base and a base voltage at some point in the system.

2. Convert all quantities to per unit on the chosen VA base and with a voltage
base that transforms as the turns ratio of any transformer which is encountered
as one moves through the system.

3. Perform a standard electrical analysis on the resultant electric circuit with all
quantities in per unit.

4. When the analysis is completed, all quantities can be converted back to real
units (e.g., volts, amperes, watts, etc.) by multiplying their per-unit values by
their corresponding base values.

When only one electric device, such as a transformer, is involved, the device’s own
rating is generally used for the volt-ampere base. When their parameters are expressed
in per-unit on their rating as a base, the characteristics of power and distribution
transformers do not vary much over a wide range of ratings. For example, the exciting
current is often between 0.02 and 0.06 per unit (2 percent to 6 percent of rated current)
or less on the largest transformers, the equivalent resistance is usually between 0.005
and 0.02 per unit (the smaller values applying to large transformers), and the equivalent
reactance is usually between 0.05 and 0.10 per unit ( with the larger values applying to
large high-voltage transformers as required to limit short-circuit currents). Similarly,
the per-unit values of synchronous- and induction-machine parameters fall within a
relatively narrow range. The reason for this is that the physics behind each type of
device is the same and, in a crude sense, they can each be considered to be simply
scaled versions of the same basic device. As a result, when normalized to their own
rating, the effect of the scaling is eliminated and the result is a set of per-unit parameter
values which is quite similar over the whole size range of that device.

Often, manufacturers supply device parameters in per unit on the device base.
When several devices are involved, however, an arbitrary choice of volt-ampere base
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must usually be made, and that value must then be used for the overall system. As a
result, when performing a system analysis, it may be necessary to convert the supplied
per-unit parameter values to per-unit values on the base chosen for the analysis. The
following relations can be used to convert per-unit (pu) values from one base to
another:

(P, Q, VA)pu on base 2 = (P, Q, VA)pu on base 1

[
VAbase 1

VAbase 2

]
(2.51)

(R, X, Z)pu on base 2 = (R, X, Z)pu on base 1

[
(Vbase 1)

2VAbase 2

(Vbase 2)2VAbase 1

]
(2.52)

Vpu on base 2 = Vpu on base 1

[
Vbase 1

Vbase 2

]
(2.53)

Ipu on base 2 = Ipu on base 1

[
Vbase 2VAbase 1

Vbase 1VAbase 2

]
(2.54)

EXAMPLE 2.12

The equivalent circuit for a 100-MVA, 7.97-kV:79.7-kV transformer is shown in Fig. 2.23a.
The equivalent-circuit parameters are:

XL = 0.040 	 XH = 3.75 	 Xm = 114 	

RL = 0.76 m	 RH = 0.085 	

Note that the magnetizing inductance has been referred to the low-voltage side of the equivalent
circuit. Convert the equivalent circuit parameters to per unit using the transformer rating as
base.

■ Solution
The base quantities for the transformer are:

Low-voltage side:

VAbase = 100 MVA Vbase = 7.97 kV

and from Eqs. 2.49 and 2.50

Rbase = Xbase = V 2
base

VAbase

= 0.635 	

High-voltage side:

VAbase = 100 MVA Vbase = 79.7 kV

and from Eqs. 2.49 and 2.50

Rbase = Xbase = V 2
base

VAbase

= 63.5 	
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RL

(0.76 m�)

XL

(0.040 �)

RH

(0.085 �)

XH

(3.75 �)Xm

(114 �)

7.99 kV : 79.7 kV

(a)

RL

(0.0012 pu)

XL

(0.0630 pu)

RH

(0.0013 pu)

XH

(0.0591 pu)Xm

(180 pu)

1 : 1

(b)

(c)

RL

(0.0012 pu)

XL

(0.0630 pu)

Xm

(180 pu)

XH

(0.0591 pu)

RH

(0.0013 pu)

Figure 2.23 Transformer equivalent circuits for Example 2.12.
(a) Equivalent circuit in actual units. (b) Per-unit equivalent circuit with
1:1 ideal transformer. (c) Per-unit equivalent circuit following
elimination of the ideal transformer.

The per-unit values of the transformer parameters can now be calculated by division by
their corresponding base quantities.

XL = 0.040

0.635
= 0.0630 per unit

XH = 3.75

63.5
= 0.0591 per unit

Xm = 114

0.635
= 180 per unit

RL = 7.6 × 10−4

0.635
= 0.0012 per unit

RH = 0.085

63.5
= 0.0013 per unit

Finally, the voltages representing the turns ratio of the ideal transformer must each be di-
vided by the base voltage on that side of the transformer. Thus the turns ratio of 7.97-kV:79.7-kV
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becomes in per unit

Per-unit turns ratio =
(

7.97 kV

7.97 kV

)
:

(
79.7 kV

79.7 kV

)
= 1 : 1

The resultant per-unit equivalent circuit is shown in Fig. 2.23b. Because it has unity turns ratio,
there is no need to keep the ideal transformer and hence this equivalent circuit can be reduced
to the form of Fig. 2.23c.

EXAMPLE 2.13

The exciting current measured on the low-voltage side of a 50-kVA, 2400:240-V transformer
is 5.41 A. Its equivalent impedance referred to the high-voltage side is 1.42 + j1.82 	. Using
the transformer rating as the base, express in per unit on the low- and high-voltage sides (a) the
exciting current and (b) the equivalent impedance.

■ Solution
The base values of voltages and currents are

Vbase,H = 2400 V Vbase,L = 240 V Ibase,H = 20.8 A Ibase,L = 208 A

where subscripts H and L indicate the high- and low-voltage sides, respectively.
From Eq. 2.50

Zbase,H = 2400

20.8
= 115.2 	 Zbase,L = 240

208
= 1.152 	

a. From Eq. 2.48, the exciting current in per unit referred to the low-voltage side can be
calculated as:

Iϕ,L = 5.41

208
= 0.0260 per unit

The exciting current referred to the high-voltage side is 0.541 A. Its per-unit value is

Iϕ,H = 0.541

20.8
= 0.0260 per unit

Note that, as expected, the per-unit values are the same referred to either side,
corresponding to a unity turns ratio for the ideal transformer in the per-unit transformer.
This is a direct consequence of the choice of base voltages in the ratio of the transformer
turns ratio and the choice of a constant volt-ampere base.

b. From Eq. 2.48 and the value for Zbase

Zeq,H = 1.42 + j1.82

115.2
= 0.0123 + j0.0158 per unit

The equivalent impedance referred to the low-voltage side is 0.0142 + j0.0182	. Its
per-unit value is

Zeq,L = 0.142 + 0.0182

1.152
= 0.0123 + j0.0158 per unit

The per-unit values referred to the high- and low-voltage sides are the same, the
transformer turns ratio being accounted for in per unit by the base values. Note again that
this is consistent with a unity turns ratio of the ideal transformer in the per-unit
transformer equivalent circuit.
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Practice Problem 2.10

A 15-kVA 120:460-V transformer has an equivalent series impedance of 0.018 + j0.042 per
unit. Calculate the equivalent series impedance in ohms (a) referred to the low-voltage side and
(b) referred to the high-voltage side.

Solution

Zeq,L = 0.017 + j0.040 	 and Zeq,H = 0.25 + j0.60 	

When they are applied to the analysis of three-phase systems, the base values for
the per-unit system are chosen so that the relations for a balanced three-phase system
hold between them:

(Pbase, Qbase, VAbase)3−phase = 3VAbase, per phase (2.55)

In dealing with three-phase systems, VAbase, 3−phase, the three-phase volt-ampere base,
and Vbase, 3−phase = Vbase, l−l, the line-to-line voltage base are usually chosen first. The
base values for the phase (line-to-neutral) voltage then follows as

Vbase, l−n = 1√
3

Vbase, l−l (2.56)

Note that the base current for three-phase systems is equal to the phase current,
which is the same as the base current for a single-phase (per-phase) analysis. Hence

Ibase, 3−phase = Ibase, per phase = VAbase, 3−phase√
3 Vbase, 3−phase

(2.57)

Finally, the three-phase base impedance is chosen to the be the single-phase base
impedance. Thus

Zbase, 3−phase = Zbase, per phase

= Vbase, l−n

Ibase, per phase

= Vbase, 3−phase√
3Ibase, 3−phase

= (Vbase, 3−phase)
2

VAbase, 3−phase
(2.58)

The equations for conversion from base to base, Eqs. 2.51 through 2.54, apply
equally to three-phase base conversion. Note that the factors of

√
3 and 3 relating


 to Y quantities of volts, amperes, and ohms in a balanced three-phase system are
automatically taken care of in per unit by the base values. Three-phase problems can
thus be solved in per unit as if they were single-phase problems and the details of
transformer (Y vs 
 on the primary and secondary of the transformer) and impedance
(Y vs 
) connections disappear, except in translating volt, ampere, and ohm values
into and out of the per-unit system.
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EXAMPLE 2.14

Rework Example 2.9 in per unit, specifically calculating the short-circuit phase currents which
will flow in the feeder and at the 240-V terminals of the receiving-end transformer bank.
Perform the calculations in per unit on the three-phase, 150-kVA, rated-voltage base of the
receiving-end transformer.

■ Solution
We start by converting all the impedances to per unit. The impedance of the 500-kVA,
24 kV:2400 V sending end transformer is 0.17 + j0.92 	/phase as referred to the 2400-V
side. From Eq. 2.58, the base impedance corresponding to a 2400-V, 150-kVA base is

Zbase = 24002

150 × 103
= 38.4 	

From Example 2.9, the total series impedance is equal to Z tot = 0.64 + j2.33 	/phase and
thus in per unit it is equal to

Z tot = 0.64 + j2.33

38.4
= 0.0167 + j0.0607 per unit

which is of magnitude

|Z tot| = 0.0629 per unit

The voltage applied to the high-voltage side of the sending-end transformer is Vs =
24.0 kV = 1.0 per unit on a rated-voltage base and hence the short-circuit current will equal

Isc = Vs

|Z tot| = 1.0

0.0629
= 15.9 per unit

To calculate the phase currents in amperes, it is simply necessary to multiply the per-unit
short-circuit current by the appropriate base current. Thus, at the 2400-V feeder the base current
is

Ibase, 2400−V = 150 × 103

√
3 2400

= 36.1 A

and hence the feeder current will be

Ifeeder = 15.9 × 36.1 = 574 A

The base current at the 240-V secondary of the receiving-end transformers is

Ibase, 240−V = 150 × 103

√
3 240

= 361 A

and hence the short-circuit current is

I240−V secondary = 15.9 × 361 = 5.74 kA

As expected, these values are equivalent within numerical accuracy to those calculated in
Example 2.9.
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Practice Problem 2.11

Calculate the magnitude of the short-circuit current in the feeder of Example 2.9 if the 2400-
V feeder is replaced by a feeder with an impedance of 0.07 + j0.68 	/phase. Perform this
calculation on the 500-kVA, rated-voltage base of the sending-end transformer and express
your solution both in per unit and in amperes per phase.

Solution
Short-circuit current = 5.20 per unit = 636 A

EXAMPLE 2.15

A three-phase load is supplied from a 2.4-kV:460-V, 250-kVA transformer whose equivalent
series impedance is 0.026 + j0.12 per unit on its own base. The load voltage is observed to
be 438 V line-line, and it is drawing 95 kW at unity power factor. Calculate the voltage at the
high-voltage side of the transformer. Perform the calculations on a 460-V, 100-kVA base.

■ Solution
The 460-V side base impedance for the transformer is

Zbase, transformer = 4602

250 × 103
= 0.846 	

while that based upon a 100-kVA base is

Zbase, 100−kVA = 4602

100 × 103
= 2.12 	

Thus, from Eq. 2.52 the per-unit transformer impedance on a 100-kVA base is

Z transformer = (0.026 + j0.12)

(
0.864

2.12

)
= 0.0106 + j.0489 per unit

The per-unit load voltage is

V̂load = 438

460
= 0.952 � 0◦ per unit

where the load voltage has been chosen as the reference for phase-angle calculations.
The per-unit load power is

Pload = 95

100
= 0.95 per unit

and hence the per-unit load current, which is in phase with the load voltage because the load is
operating at unity power factor, is

Î load = Pload

Vload

= 0.95

0.952
= 0.998 � 0◦ per unit

Thus we can now calculate the high-side voltage of the transformer

V̂H = V̂load + Î load Z transformer

= 0.952 + 0.998 × (0.0106 + j0.0489)

= 0.963 + j0.0488 = 0.964 � 29.0◦ per unit

Thus the high-side voltage is equal to 0.964 × 2400 V = 2313 V (line-line).
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Practice Problem 2.12

Repeat Example 2.15 if the 250-kV three-phase transformer is replaced by a 150-kV transformer
also rated at 2.4-kV:460-V and whose equivalent series impedance is 0.038 + j0.135 per unit
on its own base. Perform the calculations on a 460-V, 100-kVA base.

Solution

High-side voltage = 0.982 per unit = 2357 V (line-line)

2.10 SUMMARY
Although not an electromechanical device, the transformer is a common and in-
dispensable component of ac systems where it is used to transform voltages, cur-
rents, and impedances to appropriate levels for optimal use. For the purposes of
our study of electromechanical systems, transformers serve as valuable examples
of the analysis techniques which will be employed. They offer us opportunities to
investigate the properties of magnetic circuits, including the concepts of mmf, mag-
netizing current, and magnetizing, mutual, and leakage fluxes and their associated
inductances.

In both transformers and rotating machines, a magnetic field is created by the
combined action of the currents in the windings. In an iron-core transformer, most
of this flux is confined to the core and links all the windings. This resultant mutual
flux induces voltages in the windings proportional to their number of turns and is
responsible for the voltage-changing property of a transformer. In rotating machines,
the situation is similar, although there is an air gap which separates the rotating and
stationary components of the machine. Directly analogous to the manner in which
transformer core flux links the various windings on a transformer core, the mutual flux
in rotating machines crosses the air gap, linking the windings on the rotor and stator.
As in a transformer, the mutual flux induces voltages in these windings proportional
to the number of turns and the time rate of change of the flux.

A significant difference between transformers and rotating machines is that in ro-
tating machines there is relative motion between the windings on the rotor and stator.
This relative motion produces an additional component of the time rate of change of the
various winding flux linkages. As will be discussed in Chapter 3, the resultant voltage
component, known as the speed voltage, is characteristic of the process of electrome-
chanical energy conversion. In a static transformer, however, the time variation of flux
linkages is caused simply by the time variation of winding currents; no mechanical
motion is involved, and no electromechanical energy conversion takes place.

The resultant core flux in a transformer induces a counter emf in the primary
which, together with the primary resistance and leakage-reactance voltage drops,
must balance the applied voltage. Since the resistance and leakage-reactance voltage
drops usually are small, the counter emf must approximately equal the applied voltage
and the core flux must adjust itself accordingly. Exactly similar phenomena must take
place in the armature windings of an ac motor; the resultant air-gap flux wave must
adjust itself to generate a counter emf approximately equal to the applied voltage. In
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both transformers and rotating machines, the net mmf produced by all of the currents
must accordingly adjust itself to create the resultant flux required by this voltage
balance.

In a transformer, the secondary current is determined by the voltage induced in
the secondary, the secondary leakage impedance, and the electric load. As we will
see, in an induction motor, the secondary (rotor) current is determined by the voltage
induced in the secondary, the secondary leakage impedance, and the mechanical load
on its shaft. Essentially the same phenomena take place in the primary winding of
the transformer and in the armature (stator) windings of induction and synchronous
motors. In all three the story remains the same; the primary, or armature, current
must adjust itself so that the combined mmf of all currents creates the flux required
by the applied voltage and as a result, a change in the load current will result in a
corresponding change in the primary current.

In addition to the useful mutual fluxes, in both transformers and rotating ma-
chines there are leakage fluxes which link individual windings without linking oth-
ers. Although the detailed picture of the leakage fluxes in rotating machines is more
complicated than that in transformers, their effects are essentially the same. In both,
leakage fluxes produce leakage-reactance voltage drops in the windings and typi-
cally reduce the mutual flux below the level which would otherwise be produced
by the applied voltage. In both, the reluctances of the leakage-flux paths are domi-
nated by that of a path through air, and hence the leakage fluxes are nearly linearly
proportional to the currents producing them. Leakage reactances therefore are often
assumed to be constant, independent of the degree of saturation of the main magnetic
circuit.

Further examples of the basic similarities between transformers and rotating
machines can be cited. Except for friction and windage, the losses in transformers
and rotating machines are essentially the same. Tests for determining the losses and
equivalent circuit parameters are similar: an open-circuit, or no-load, test gives in-
formation regarding the excitation requirements and core losses (along with friction
and windage losses in rotating machines), while a short-circuit test together with dc
resistance measurements gives information regarding leakage reactances and wind-
ing resistances. Modeling of the effects of magnetic saturation is another example:
In both transformers and ac rotating machines, the leakage reactances are usually as-
sumed to be unaffected by saturation, and the saturation of the main magnetic circuit
is assumed to be determined by the resultant mutual or air-gap flux.

2.11 CHAPTER 2 VARIABLES
λ Flux linkages [Wb]
ω Angular frequency [rad/sec]
ϕ, φmax Magnetic flux [Wb]
�̂ Magnetic flux, complex amplitude [Wb]
θ Phase angle [rad]
Bmax Peak flux density [T]
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e Electromotive force (emf), induced voltage [V]
E Voltage [V]
Ê EMF, voltage, complex amplitude [V]
f Frequency [Hz]
i , I Current [A]
iϕ Exciting current [A]
Î Current, complex amplitude [A]
Î c Core-loss component of exciting current, complex amplitude [A]
Î m Magnetizing current, complex amplitude [A]
Î ϕ Exciting current, complex amplitude [A]
L Inductance [H]
N Number of turns
Q Reactive power [VAR]
R Resistance [	]
Rbase Base resistance [	]
t Time [sec]
v, V Voltage [V]
Vbase Base voltage [V]
V̂ Voltage, complex amplitude [V]
V A = Voltamperes [VA]
X Reactance [	]
Z Impedance [	]
Z
 Delta-equivalent line-neutral impedance [	/phase]
Zϕ Exciting impedance [	]
ZY Y-equivalent line-neutral impedance [	/phase]

Subscripts:

φ Exciting
b Burden
base Base quantity
c Core
eq Equivalent
H High-voltage side
l Leakage
l-n Line-to-neutral
L Low-voltage side
m Magnetizing
max Maximum
oc Open circuit
pu Per unit
rms Root mean square
s Sending
sc Short circuit
tot Total
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2.12 PROBLEMS
2.1 A transformer is made up of a 1150-turn primary coil and an open-circuited

80-turn secondary coil wound around a closed core of cross-sectional area
56 cm2. The core material can be considered to saturate when the rms applied
flux density reaches 1.45 T. What maximum 60-Hz rms primary voltage is
possible without reaching this saturation level? What is the corresponding
secondary voltage? How are these values modified if the applied frequency is
lowered to 50 Hz?

2.2 A magnetic circuit with a cross-sectional area of 20 cm2 is to be operated at
60 Hz from a 115-V rms supply. Calculate the number of turns such that the
peak core magnetic flux density is 1.6 T.

2.3 A transformer is to be used to transform the impedance of a 75-	 resistor to
an impedance of 300 	. Calculate the required turns ratio, assuming the
transformer to be ideal.

2.4 A 150 	 resistor is connected to the secondary of a transformer with a turns
ratio of 1:4 (primary to secondary). A 12 V rms, 1 kHz voltage source is
connected to the primary. (a) Assuming the transformer to be ideal, calculate
the primary current and the resistor voltage and power. (b) Repeat this
calculation assuming that the transformer has a leakage inductance of 340 μH
as referred to the primary.

2.5 A load consisting of a 5 	 resistor in series with a 2.5 mH inductor is
connected to the low-voltage winding of a 20:120 V transformer. A 110 V
rms, 50-Hz supply is connected to the high-voltage winding. Assuming the
transformer to be ideal, calculate the rms load current and the rms current
which will be drawn from the supply.

2.6 A source which can be represented by a 12 V rms voltage source in series
with a resistance of 1.5 k	 is connected to a 75-	 load resistance through an
ideal transformer. Calculate the value of turns ratio for which maximum
power is supplied to the load and the corresponding load power? Using
MATLAB, plot the the power in milliwatts supplied to the load as a function
of the transformer ratio, covering ratios from 1.0 to 10.0.

2.7 Repeat the calculations of Problem 2.6 with the source resistance replaced by
a 1.5 k	 inductive reactance.

2.8 A single-phase 60-Hz transformer has a nameplate voltage rating of 7.97
kV:120 V based on its known winding turns ratio. The manufacturer
calculates that the primary (7.97-kV) leakage inductance is 193 mH and the
primary magnetizing inductance is 167 H. For an applied primary voltage of
7970 V at 60 Hz, calculate the resultant open-circuit secondary voltage.

2.9 The manufacturer calculates that the transformer of Problem 2.8 has a
secondary leakage inductance of 44 μH.

a. Calculate the magnetizing inductance as referred to the secondary side.

b. A voltage of 120 V, 60 Hz is applied to the secondary. Calculate (i) the
resultant open-circuit primary voltage and (ii) the secondary current
which would result if the primary were short-circuited.
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2.10 A 230-V:6.6-kV, 50-Hz, 45 kVA transformer has a magnetizing reactance (as
measured from the 230-V terminals) of 46.2 	. The 230-V winding has a
leakage reactance of 27.8 m	 and the 6.6-kV winding has a leakage reactance
of 25.3 	.

a. With the secondary open-circuited and 230 V applied to the primary
(230-V) winding, calculate the primary current and the secondary voltage.

b. With the secondary short-circuited, calculate the primary voltage which
will result in rated current in the primary winding. Calculate the
corresponding current in the secondary winding.

2.11 The transformer of Problem 2.10 is to be used on a 60-Hz system.

a. Calculate the magnetizing reactance referred to the low-voltage winding
and the leakage reactance of each winding.

b. With 240 V applied to the low-voltage (primary) winding and with the
secondary winding open-circuited, calculate the primary-winding current
and the secondary voltage.

2.12 A 460-V:2400-V transformer has a series leakage reactance of 39.3 	 as
referred to the high-voltage side. A load connected to the low voltage side is
observed to draw 42 kW at unity power factor and the voltage is measured to
be 447 V. Calculate the corresponding voltage and power factor as measured
at the high-voltage terminals.

2.13 The 460-V:2400-V transformer of Problem 2.12 is to be operated from a
50-Hz source. A unity-power-factor load connected to the low-voltage side is
observed to draw 34.5 kW, unity-power-factor load at a voltage of 362 V.
Calculate the voltage applied to the transformer high-voltage winding.

2.14 The resistances and leakage reactances of a 40-kVA 60-Hz 7.97-kV-V:240-V
single-phase distribution transformer are

R1 = 41.6 	 R2 = 37.2 m	

X l1 = 42.1 	 X l2 = 39.8 m	

where subscript 1 denotes the 7.97-kV winding and subscript 2 denotes the
240-V winding. Each quantity is referred to its own side of the transformer.

a. Draw the equivalent circuit referred to (i) the high- and (ii) the
low-voltage sides. Label the impedances numerically.

b. Consider the transformer to deliver its rated kVA to a load on the
low-voltage side with 240 V across the load. (i) Find the high-side
terminal voltage for a load power factor of 0.87 power factor lagging.
(ii) Find the high-side terminal voltage for a load power factor of 0.87
power factor leading.

c. Consider a rated-kVA load connected at the low-voltage terminals.
Assuming the load voltage to remain constant at 240 V, use MATLAB to
plot the high-side terminal voltage as a function of the power-factor angle
as the load power factor varies from 0.6 leading through unity power
factor to 0.6 lagging.
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2.15 Repeat the calculations of Problem 2.14 for a 75-kVA, 50-Hz, 3.81-kV:230-V
single-phase distribution transformer whose resistances and leakage
reactances are

R1 = 4.85 	 R2 = 16.2 m	

X l1 = 4.13 	 X l2 = 16.9 m	

where subscript 1 denotes the 3.81-kV winding and subscript 2 denotes the
230-V winding. Each quantity is referred to its own side of the transformer.
The load in parts (b) and (c) should be assumed to be operating at a voltage of
230 V.

2.16 A single-phase load is supplied through a 35-kV feeder whose impedance is
90 + j320 	 and a 35-kV: 2400-V transformer whose equivalent series
impedance is 0.21 + j1.33 	 referred to its low-voltage side. The load is
135 kW at 0.78 leading power factor and 2385 V.

a. Compute the voltage at the high-voltage terminals of the transformer.

b. Compute the voltage at the sending end of the feeder.

c. Compute the power and reactive power input at the sending end of the
feeder.

2.17 Write a MATLAB script to (a) repeat the calculations of Problem 2.16 for
power factors of 0.78 leading, unity and 0.78 lagging assuming the load power
remains constant at 135 kW and the load voltage remains constant at 2385 V.
(b) Use your MATLAB script to plot (versus power factor angle) the
sending-end voltage required to maintain a load voltage of 2385 V as the
power factor varies from 0.7 leading through unity to 0.7 lagging.

2.18 Repeat Example 2.6 with the transformer operating at full load and unity
power factor.

2.19 A 450-kVA 50-Hz single-phase transformer with a 11-kV primary winding
draws 0.33 A and 2700 W at no load, rated voltage and frequency. Another
transformer has a core with all its linear dimensions

√
2 times as large as the

corresponding dimensions of the first transformer. The core material and
lamination thickness are the same in both transformers. (a) If the primary
windings of both transformers have the same number of turns, what impressed
primary voltage will result in the same flux density in the core. (b) With the
primary excited by the voltage found in part (a), calculate the primary current
and power.

2.20 The nameplate on a 25-MVA, 60-Hz single-phase transformer indicates that it
has a voltage rating of 8.0-kV:78-kV. A short-circuit test from the high-voltage
side (low-voltage winding short circuited) gives readings of 4.53 kV, 321 A,
and 77.5 kW. An open-circuit test is conducted from the low-voltage side and
the corresponding instrument readings are 8.0 kV, 39.6 A, and 86.2 kW.

a. Calculate the equivalent series impedance of the transformer as referred to
the high-voltage terminals.

b. Calculate the equivalent series impedance of the transformer as referred to
the low-voltage terminals.
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c. Making appropriate approximations, draw a T equivalent circuit for the
transformer.

2.21 Perform the calculations of Problem 2.20 for a 175-kVA, 50-Hz single-phase
transformer with a voltage rating of 3.8-kV:6.4-kV. An open-circuit test is
conducted from the low-voltage side and the corresponding instrument
readings are 3.8 kV, 0.58 A, and 603 W. Similarly, a short-circuit test from the
high-voltage side (low-voltage winding short-circuited) gives readings of
372 V, 27.3 A, and 543 W.

2.22 A voltage of 7.96 kV is applied to the low-voltage winding of a
7.96 kV:39.8 kV, 60 Hz, 10 MVA single-phase transformer with the
high-voltage winding open-circuited and the resultant current is 17.3 A and
power is 48.0 kW. The low-voltage winding is then short-circuited and a
voltage of 1.92 kV applied to the high-voltage winding results in a current of
current of 252 A and a power of 60.3 kW.

a. Calculate the parameters of the cantilever equivalent circuits of
Figs. 2.12a and b as referred to the transformer high-voltage winding.

b. Calculate the cantilever equivalent-circuit parameters as referred to the
transformer low-voltage winding.

c. With the transformer carrying rated load and rated voltage at its
low-voltage terminal, calculate the power dissipated in the transformer.

2.23 The following data were obtained on a 2.5 MVA, 50-Hz, 19.1-kV:3.81-kV
single-phase transformer tested at 50 Hz:

Voltage, Current, Power,
V A kW

LV winding with HV terminals open-circuited 3810 9.86 8.14
HV winding with LV terminals short-circuited 920 141 10.3

a. Calculate the parameters of the cantilever equivalent circuits of
Figs. 2.12a and b as referred to the transformer high-voltage winding.

b. Calculate the cantilever equivalent-circuit parameters as referred to the
transformer low-voltage winding.

c. With the transformer carrying rated load and rated voltage at its
low-voltage terminal, calculate the power dissipated in the transformer.

2.24 Write a MATLAB script to calculate the parameters for the cantilever
transformer equivalent circuits of Figs. 2.12a and b with the parameters
referred to the high-voltage winding based upon the following test data:

■ Voltage, current and power from an open-circuit test conducted from the
low-voltage winding (high-voltage winding open-circuited).

■ Voltage, current and power from a short-circuit test conducted from the
low-voltage winding (high-voltage winding short-circuited).

Test your script on the measurements made on the transformer of
Problem 2.22.
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2.25 The high-voltage winding of the transformer of Problem 2.22 is replaced by
an otherwise identical winding of twice the number of turns with wire of half
the cross-sectional area.

a. Calculate the rated voltage and power of this modified transformer.

b. With the high-voltage winding open-circuited and with rated voltage
applied to the low-voltage winding, calculate the current and power
supplied to the low-voltage winding.

c. With the low-voltage winding short-circuited, calculate the voltage
applied to the high-voltage winding that will result in a short-circuit
power dissipation of 60.3 kW.

d. Calculate the cantilever-equivalent-circuit parameters of this transformer
referred to (i) the low-voltage side and (ii) the high-voltage side.

2.26 (a) Determine the efficiency and voltage regulation of the transformer of
Problem 2.20 if it is supplying rated load (unity power factor) at rated voltage
at its low-voltage terminals. (b) Repeat part (a), assuming the load to be at 0.9
power factor leading.

2.27 Assume the transformer of Problem 2.23 to be operating at rated voltage and
with a load that draws rated current at its low-voltage terminals. Write a
MATLAB script to plot (a) the efficiency and (b) the voltage regulation of the
transformer as the as a function of the load power-factor as the power factor
varies from 0.75 lagging through unity through 0.75 leading.

2.28 The following data were obtained for a 25-kVA, 60-Hz, 2400:240-V
distribution transformer tested at 60 Hz:

Voltage, Current, Power,
V A W

LV winding with HV terminals open-circuited 240 1.37 139
HV winding with LV terminals short-circuited 67.8 10.1 174

a. Compute the transformer efficiency when the tranformer is operating at
rated terminal voltage with an 0.85 power-factor (lagging) load at its
secondary terminal that draws full-load current.

b. The transformer is observed to be operating with rated voltage at both its
primary and secondary terminals and supplying a load at its secondary
terminals which draws rated current. Calculate the power factor of the
load. (HINT: Use MATLAB to search for the solution).

2.29 A 150-kVA, 240-V:7970-V, 60-Hz single-phase distribution transformer has
the following parameters referred to the high-voltage side:

R1 = 2.81 	 X1 = 21.8 	

R2 = 2.24 	 X2 = 20.3 	

Rc = 127 k	 Xm = 58.3 k	
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Assume that the transformer is supplying its rated kVA at its low-voltage
terminals. Write a MATLAB script to determine the efficiency and regulation
of the transformer for any specified load power-factor (leading or lagging).
You may use reasonable engineering approximations to simplify your
analysis. Use your MATLAB script to determine the efficiency and regulation
for a load power-factor of 0.92 leading.

2.30 A 45-kVA, 120-V:280-V single-phase transformer is to be connected as a
280-V:400-V autotransformer. Determine the voltage ratings of the high- and
low-voltage windings for this connection and the kVA rating of the
autotransformer connection.

2.31 A 120:480-V, 10-kVA single-phase transformer is to be used as an
autotransformer to supply a 480-V circuit from a 600-V source. When it is
tested as a two-winding transformer at rated load, unity power factor, its
efficiency is 0.982.

a. Make a diagram of connections as an autotransformer.

b. Determine its kVA rating as an autotransformer.

c. Find its efficiency as an autotransformer when operating with a load of
rated kVA and 0.93 power factor leading and 480 V connected to the
low-voltage winding.

2.32 Consider the 8-kV:78-kV, 25-MVA transformer of Problem 2.20 connected as
a 78-kV:86-kV autotransformer.

a. Determine the voltage ratings of the high-and low-voltage windings for
this connection and the MVA rating of the autotransformer connection.

b. Calculate the efficiency of the transformer in this connection when it is
supplying its rated load at unity power factor.

2.33 Write a MATLAB script whose inputs are the rating (voltage and kVA) and
rated-load, unity-power-factor efficiency of a single-phase transformer and
whose output is the transformer rating and rated-load, unity-power-factor
efficiency when connected as an autotransformer. Exercise your program on
the autotransformer of Problem 2.32.

2.34 The high-voltage terminals of a three-phase transformer bank of three single-
phase transformers are supplied from a three-wire, three-phase 13.8-kV (line-
to-line) system. The low-voltage terminals are to be connected to a three-wire,
three-phase substation load drawing up to 4500 kVA at 2300 V line to line.
Specify the required voltage, current, and kVA ratings of each transformer
(both high- and low-voltage windings) for the following connections:

High-voltage Low-voltage
Windings Windings

a. Y 

b. 
 Y
c. Y Y
d. 
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2.35 Three 75-MVA single-phase transformers, rated at 39.8-kV:133-kV, are to be
connected in a three-phase bank. Each transformer has a series impedance of
0.97 + j11.3	 referred to its 133-kV winding.

a. If the transformers are connected Y-Y, calculate (i) the voltage and power
rating of the three-phase connection, (ii) the equivalent impedance as
referred to its low-voltage terminals, and (iii) the equivalent impedance as
referred to its high-voltage terminals.

b. Repeat part (a) if the transformer is connected Y on its low-voltage side
and 
 on its high-voltage side.

2.36 Repeat the calculations of Problem 2.35 for three 225-kVA, 277-V:7.97-kV
transformers whose series impedances is 3.1 + j21.5 m	 referred to its
low-voltage winding.

2.37 Repeat Example 2.8 for a load drawing rated current from the transformers at
unity power factor.

2.38 A three-phase Y-Y transformer is rated at 25 MVA, 13.8-kV:69-kV and has a
single-phase equivalent series impedance 62 + j388 m	 referred to the
low-voltage winding.

a. A three-phase short circuit is applied to the low-voltage winding.
Calculate the voltage applied to the high-voltage winding which will
result in rated current into the short circuit.

b. The short circuit is removed and a three-phase load is connected to the
low-voltage winding. With rated voltage applied to the high-voltage
winding, the input power to the transformer is observed to be 18 MW at
0.75 power-factor lagging. Calculate the line-line terminal voltage at the
load.

2.39 A three-phase Y-
 transformer is rated 225-kV:24-kV, 400 MVA and has a
single-phase equivalent series reactance of 6.08 	 as referred to its
high-voltage terminals. The transformer is supplying a load of 375 MVA at
0.89 power factor leading at a voltage of 24 kV (line to line) on its
low-voltage side. It is supplied from a feeder whose impedance is
0.17 + j2.2 	 connected to its high-voltage terminals. For these conditions,
calculate (a) the line-to-line voltage at the high-voltage terminals of the
transformer and (b) the line-to-line voltage at the sending end of the
feeder.

2.40 Assume the apparent power of the load in the system of Problem 2.39 to
remain constant at 375 MVA. Write a MATLAB script to calculate the
line-to-line voltage which must be applied to the sending end of the feeder to
maintain the load voltage at 24 kV line-to-line as a function of the load power
factor. Plot the sending-end voltage as a function of power factor angle for
power factors in range from 0.3 lagging to unity to 0.3 leading.

2.41 A 
-Y connected bank of three identical 150-kVA, 2400-V:120-V, 60-Hz
transformers is supplied at its high-voltage terminals through a feeder whose
impedance is 6.4 + j154 m	 per phase. The voltage at the sending end of the
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feeder is held constant at 2400 V line to line. The results of a single-phase
short-circuit test on one of the transformers with its low-voltage terminals
short-circuited are

VH = 131 V IH = 62.5 A P = 1335 W

a. Calculate the series impedance of this three-phase transformer bank as
referred to its high-voltage terminal.

b. Determine the line-to-line voltage supplied to the feeder when the
transformer bank delivers rated current at rated voltage to a balanced
three-phase unity power factor load at its low-voltage terminal.

2.42 A 13.8-kV:120-V 60-Hz potential transformer has the following parameters as
seen from the high-voltage (primary) winding:

X1 = 6.88 k	 X ′
2 = 7.59 k	 Xm = 6.13 M	

R1 = 5.51 k	 R′
2 = 6.41 k	

a. Assuming that the secondary is open-circuited and that the primary is
connected to a 13.8-kV source, calculate the magnitude and phase angle
(with respect to the high-voltage source) of the voltage at the secondary
terminals.

b. Calculate the magnitude and phase angle of the secondary voltage if a 750
	 resistive load is connected to the secondary terminals.

c. Repeat part (b) if the burden is changed to a 750 	 reactance.

2.43 For the potential transformer of Problem 2.42, find the maximum reactive
burden (minimum reactance) which can be applied at the secondary
terminals such that the voltage magnitude error does not exceed
0.75 percent.

2.44 Consider the potential transformer of Problem 2.42 with connected to a
13.8 kV source.

a. Use MATLAB to plot the percentage error in voltage magnitude as a
function of the magnitude of the burden impedance (i) for a resistive
burden of 100 	 ≤ Rb ≤ 2000 	 and (ii) for a reactive burden of
100 	 ≤ Xb ≤ 2000 	. Plot these curves on the same axis.

b. Next plot the phase error in degrees as a function of the magnitude of the
burden impedance (i) for a resistive burden of 100 	 ≤ Rb ≤ 2000 	 and
(ii) for a reactive burden of 100 	 ≤ Xb ≤ 2000 	. Again, plot these
curves on the same axis.

2.45 A 150-A:5-A, 60-Hz current transformer has the following parameters as seen
from the 150-A (primary) winding:

X1 = 1.70 m	 X ′
2 = 1.84 m	 Xm = 1728 m	

R1 = 306 μ	 R′
2 = 291 μ	
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a. Assuming a current of 150 A in the primary and that the secondary is
short-circuited, find the magnitude and phase angle of the secondary
current.

b. Repeat the calculation of part (a) if the CT is shorted through a 0.1-m	

burden.

2.46 Consider the current transformer of Problem 2.45.

a. Use MATLAB to plot the percentage error in current magnitude as a
function of the magnitude of the burden impedance (i) for a resistive
burden of 50 μ	 ≤ Rb ≤ 200 μ	 and (ii) for a reactive burden of
50 μ	 ≤ Xb ≤ 200 μ	. Plot these curves on the same axis.

b. Next plot the phase error in degrees as a function of the magnitude of the
burden impedance (i) for a resistive burden of 50 μ	 ≤ Rb ≤ 200 μ	 and
(ii) for a reactive burden of burden of 50 μ	 ≤ Xb ≤ 200 μ	. Again, plot
these curves on the same axis.

2.47 A 15-kV:175-kV, 225-MVA, 60-Hz single-phase transformer has primary and
secondary impedances of 0.0029 + j0.023 per unit each. The magnetizing
impedance is j172 per unit. All quantities are in per unit on the transformer
base. Calculate the primary and secondary resistances and reactances and the
magnetizing reactance in ohms (referred to the low-voltage side).

2.48 Calculate the per-unit parameters for a cantilever equivalent circuit for the
transformer of Problem 2.20.

2.49 Calculate the per-unit parameters for a cantilever equivalent circuit for the
transformer of Problem 2.23.

2.50 The nameplate on a 7.97-kV:266-V, 25-kVA single-phase transformer
indicates that it has a series reactance of 7.5 percent (0.075 per unit).

a. Calculate the series reactance in ohms as referred to (i) the low-voltage
terminal and (ii) the high-voltage terminal.

b. If three of these transformers are connected in a three-phase Y-Y
connection, calculate (i) the three-phase voltage and power rating, (ii) the
per unit impedance of the transformer bank, (iii) the series reactance in
ohms as referred to the high-voltage terminal and (iv) the series reactance
in ohms as referred to the low-voltage terminal.

c. Repeat part (b) if the three transformers are connected in Y on their HV
side and 
 on their low-voltage side.

2.51 a. Consider the Y-Y transformer connection of Problem 2.50, part (b). If a
line-line voltage of 500 V is applied to the high-voltage terminals and the
three low-voltage terminals are short-circuited, calculate the magnitude of
the phase current in per unit and in amperes on (i) the high-voltage side
and (ii) the low-voltage side.

b. Repeat this calculation for the Y-
 connection of Problem 2.50, part (c).
2.52 A three-phase generator step-up transformer is rated 26-kV:345-kV, 850 MVA

and has a series impedance of 0.0025 + j0.057 per unit on this base. It is
connected to a 26-kV 800-MVA generator, which can be represented as a



Umans-3930269 book December 14, 2012 11:56

2.12 Problems 121

voltage source in series with a reactance of j1.28 per unit on the generator
base.

a. Convert the per unit generator reactance to the step-up transformer base.

b. The system is supplying 750 MW at 345 kV and 0.90 power factor leading
to the system at the transformer terminals. Draw a phasor diagram for this
condition, using the transformer high-side voltage as the reference phasor.

c. Calculate the generator terminal voltage and internal voltage behind its
reactance in kV for the conditions of part (b). Find the generator output
power in MW and the power factor.


