CHAPTER 9

P.P.9. 1 amplitude $=\mathbf{3 0}$
phase $=-75^{\circ}$
angular frequency $(\omega)=4 \pi=12.57 \mathbf{r a d} / \mathrm{s}$
$\operatorname{period}(\mathrm{T})=\frac{2 \pi}{\omega}=0.5 \mathrm{~s}$
frequency $(\mathrm{f})=\frac{1}{\mathrm{~T}}=\mathbf{2} \mathbf{H z}$
P.P.9. $2 \quad i_{1}=-4 \sin \left(\omega t+55^{\circ}\right)=4 \cos \left(\omega t+55^{\circ}+90^{\circ}\right)$

$$
\mathrm{i}_{1}=4 \cos \left(\omega \mathrm{t}+145^{\circ}\right), \quad \omega=377 \mathrm{rad} / \mathrm{s}
$$

Compare this with

$$
\mathrm{i}_{2}=5 \cos \left(\omega \mathrm{t}-65^{\circ}\right)
$$

indicates that the phase angle between i_{1} and i_{2} is

$$
145^{\circ}+65^{\circ}=210^{\circ}
$$

Thus, $\quad \mathbf{i}_{\mathbf{1}}$ leads $\mathbf{i}_{\mathbf{2}}$ by $\mathbf{2 1 0}{ }^{\circ}$
P.P.9.3 (a) $\quad(5+\mathrm{j} 2)(-1+\mathrm{j} 4)=-5+\mathrm{j} 20-\mathrm{j} 2-8=-13+\mathrm{j} 18$

$$
5 \angle 60^{\circ}=2.5+\mathrm{j} 4.33
$$

$$
(5+\mathrm{j} 2)(-1+\mathrm{j} 4)-5 \angle 60^{\circ}=-15.5+\mathrm{j} 13.67
$$

$$
[(5+\mathrm{j} 2)(-1+\mathrm{j} 4)-5 \angle 60]^{*}=\mathbf{- 1 5 . 5}-\mathbf{j} 13.67=\mathbf{2 0 . 6 7} \angle \mathbf{2 2 1 . 4 1}{ }^{\circ}
$$

(b) $3 \angle 40^{\circ}=2.298+\mathrm{j} 1.928$
$10+\mathrm{j} 5+3 \angle 40^{\circ}=12.298+\mathrm{j} 6.928=14.115 \angle 29.39^{\circ}$
$-3+\mathrm{j} 4=5 \angle 126.87^{\circ}$
$\frac{10+\mathrm{j} 5+3 \angle 40^{\circ}}{-3+\mathrm{j} 4}=\frac{14.115 \angle 29.39^{\circ}}{5 \angle 126.87^{\circ}}=2.823 \angle-97.48^{\circ}$
$2.823 \angle-97.48^{\circ}=-0.3675-\mathrm{j} 2.8$
$10 \angle 30^{\circ}=8.66+\mathrm{j} 5$
$\frac{10+\mathrm{j} 5+3 \angle 40^{\circ}}{-3+\mathrm{j} 4}+10 \angle 30^{\circ}+\mathrm{j} 5=\mathbf{8 . 2 9 3}+\mathbf{j} 7.2$
P.P.9.4 (a) $\quad v=7 \cos \left(2 t+40^{\circ}\right)$

The phasor form is

$$
V=7 \angle 40^{\circ} V
$$

(b) \quad Since $-\sin (A)=\cos \left(A+90^{\circ}\right)$,

$$
\begin{aligned}
& \mathrm{i}=-4 \sin \left(10 \mathrm{t}+10^{\circ}\right)=4 \cos \left(10 \mathrm{t}+10^{\circ}+90^{\circ}\right) \\
& \mathrm{i}=4 \cos \left(10 \mathrm{t}+100^{\circ}\right)
\end{aligned}
$$

The phasor form is

$$
I=4 \angle 100^{\circ} A
$$

P.P.9.5 (a) Since $-1=1 \angle \pm 180^{\circ}$ (we can use either sign)

$$
\mathbf{V}=-25 \angle 40^{\circ}=25 \angle\left(40^{\circ}-180^{\circ}\right)=25 \angle-140^{\circ}
$$

The sinusoid is

$$
\mathrm{v}(\mathrm{t})=\mathbf{2 5} \cos \left(\omega \mathrm{t}-\mathbf{1 4 0}^{\circ}\right) \mathrm{V} \text { or } \mathbf{2 5} \cos \left(\omega \mathrm{t}+\mathbf{2 2 0 ^ { \circ }}\right) \mathrm{V}
$$

(b) $\quad \mathbf{I}=\mathrm{j}(12-\mathrm{j} 5)=5+\mathrm{j} 12=13 \angle 67.38^{\circ}$

The sinusoid is

$$
i(t)=13 \cos \left(\omega t+67.38^{\circ}\right) A
$$

P.P.9.6 Let $\mathrm{v}(\mathrm{t})=-10 \sin \left(\omega \mathrm{t}-30^{\circ}\right)+20 \cos \left(\omega \mathrm{t}+45^{\circ}\right)$

$$
=10 \cos \left(\omega \mathrm{t}-30^{\circ}+90^{\circ}\right)+20 \cos \left(\omega \mathrm{t}+45^{\circ}\right)
$$

Taking the phasor of each term

$$
\begin{aligned}
& \mathbf{V}=10 \angle 60^{\circ}+20 \angle 45^{\circ} \\
& \mathbf{V}=5+\mathrm{j} 8.66+14.142+\mathrm{j} 14.142 \\
& \mathbf{V}=19.142+\mathrm{j} 22.8=29.77 \angle 49.98^{\circ}
\end{aligned}
$$

Converting \mathbf{V} to the time domain

$$
v(t)=29.77 \cos \left(\omega t+49.98^{\circ}\right) V
$$

P.P.9. 7 Given that

$$
2 \frac{\mathrm{dv}}{\mathrm{dt}}+5 \mathrm{v}+10 \int \mathrm{vdt}=50 \cos \left(5 \mathrm{t}-30^{\circ}\right)
$$

we take the phasor of each term to get

$$
\begin{aligned}
& 2 j \omega \mathbf{V}+5 \mathbf{V}+\frac{10}{j \omega} \mathbf{V}=50 \angle-30^{\circ}, \quad \omega=5 \\
& \mathbf{V}[j 10+5-\mathrm{j}(10 / 5)]=\mathbf{V}(5+\mathrm{j} 8)=50 \angle-30^{\circ} \\
& \mathbf{V}=\frac{50 \angle-30^{\circ}}{5+\mathrm{j} 8}=\frac{50 \angle-30^{\circ}}{9.434 \angle 58^{\circ}} \\
& \mathbf{V}=5.3 \angle-88^{\circ}
\end{aligned}
$$

Converting \mathbf{V} to the time domain

$$
v(t)=5.3 \cos \left(5 t-88^{\circ}\right) V
$$

P.P.9.8 For the capacitor,
$\mathbf{V}=\mathbf{I} /(\mathrm{j} \omega \mathrm{C}), \quad$ where $\mathbf{V}=10 \angle 30^{\circ}, \omega=100$
$\mathbf{I}=\mathrm{j} \omega \mathrm{C} \mathbf{V}=(\mathrm{j} 100)\left(50 \times 10^{-6}\right)\left(10 \angle 30^{\circ}\right)$
$\mathbf{I}=50 \angle 120^{\circ} \mathrm{mA}$
$\mathrm{i}(\mathrm{t})=\mathbf{5 0} \boldsymbol{\operatorname { c o s }}\left(\mathbf{1 0 0} \mathrm{t}+\mathbf{1 2 0}^{\circ}\right) \mathbf{m A}$
P.P.9.9 $\quad V_{s}=20 \angle 30^{\circ}$,
$\omega=10$

$$
\begin{aligned}
& \mathbf{Z}=4+j \omega L=4+j 2 \\
& \mathbf{I}=\mathbf{V}_{\mathrm{s}} / \mathbf{Z}=\frac{20 \angle 30^{\circ}}{4+\mathrm{j} 2}=\frac{20 \angle 30^{\circ}(4-\mathrm{j} 2)}{16+4}=4.472 \angle 3.43^{\circ} \\
& \mathbf{V}=\mathrm{j} \omega \mathrm{~L} \mathbf{I}=\mathrm{j} 2 \mathbf{I}=\left(2 \angle 90^{\circ}\right)\left(4.472 \angle 3.43^{\circ}\right)=8.944 \angle 93.43^{\circ}
\end{aligned}
$$

Therefore, $\quad v(t)=8.944 \sin \left(10 t+93.43^{\circ}\right) V$

$$
i(t)=4.472 \sin \left(10 t+3.43^{\circ}\right) A
$$

P.P.9. 10

Let $\quad \mathbf{Z}_{1}=$ impedance of the 1-mF capacitor in series with the $100-\Omega$ resistor
$\mathbf{Z}_{2}=$ impedance of the 1-mF capacitor
$\mathbf{Z}_{3}=$ impedance of the 8-H inductor in series with the $200-\Omega$ resistor
$\mathbf{Z}_{1}=100+\frac{1}{j \omega C}=100+\frac{1}{j(10)\left(1 \times 10^{-3}\right)}=80-j 100$
$\mathbf{Z}_{2}=\frac{1}{j \omega C}=\frac{1}{j(10)\left(1 \times 10^{-3}\right)}=-j 100$
$\mathbf{Z}_{3}=200+\mathrm{j} \omega \mathrm{L}=200+\mathrm{j}(10)(8)=200+\mathrm{j} 80$
$\mathbf{Z}_{\text {in }}=\mathbf{Z}_{1}+\mathbf{Z}_{2} \| \mathbf{Z}_{3}=\mathbf{Z}_{1}+\mathbf{Z}_{2} \mathbf{Z}_{3} /\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)$
$\mathbf{Z}_{\text {in }}=100-j 100+\frac{-j 100 x(200+j 80)}{-j 100+200+j 80}$
$\mathbf{Z}_{\text {in }}=100-\mathrm{j} 100+49.52-\mathrm{j} 95.04$
$\mathrm{Z}_{\text {in }}=[149.52-\mathrm{j} 195] \Omega$
P.P.9. 11 In the frequency domain, the voltage source is $\mathbf{V}_{\mathrm{s}}=20 \angle 100^{\circ}$ the $0.5-\mathrm{H}$ inductor is $\mathrm{j} \omega \mathrm{L}=\mathrm{j}(10)(0.5)=\mathrm{j} 5$ the $\frac{1}{20}-F$ capacitor is $\frac{1}{j \omega C}=\frac{1}{j(10)(1 / 20)}=-j 2$

Let $\quad \mathbf{Z}_{1}=$ impedance of the $0.5-\mathrm{H}$ inductor in parallel with the $10-\Omega$ resistor and $\quad \mathbf{Z}_{2}=$ impedance of the (1/20)-F capacitor

$$
\begin{aligned}
& \mathbf{Z}_{1}=10 \| \mathrm{j} 5=\frac{(10)(\mathrm{j} 5)}{10+\mathrm{j} 5}=2+\mathrm{j} 4 \\
& \mathbf{V}_{\mathrm{o}}=\mathbf{Z}_{2} /\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right) \mathbf{V}_{\mathrm{s}} \\
& \mathbf{V}_{\mathrm{o}}=\frac{-j 2}{2+j 4-j 2}\left(50 \angle 30^{\circ}\right)=\frac{-j\left(50 \angle 30^{\circ}\right)}{1+j}=\frac{50 \angle\left(30^{\circ}-90^{\circ}\right)}{\sqrt{2} \angle 45^{\circ}} \\
& \mathbf{V}_{\mathrm{o}}=35.36 \angle-105^{\circ} \\
& \mathbf{V}_{\mathrm{o}}(\mathrm{t})=\mathbf{3 5 . 3 6} \cos \left(\mathbf{1 0 t}-\mathbf{1 0 5}^{\circ}\right) \mathbf{V}
\end{aligned}
$$

P.P.9. 12 We need to find the equivalent impedance via a delta-to-wye transformation as shown below.

The total impedance from the source terminals is

$$
\begin{aligned}
& \mathbf{Z}=\mathbf{Z}_{\mathrm{cn}}+\left(\mathbf{Z}_{\mathrm{an}}+5-\mathrm{j} 2\right) \|\left(\mathbf{Z}_{\mathrm{bn}}+10\right) \\
& \mathbf{Z}=\mathbf{Z}_{\mathrm{cn}}+(5.32+\mathrm{j} 1.76) \|(9.76-\mathrm{j} 2.82) \\
& \mathbf{Z}=\mathbf{Z}_{\mathrm{cn}}+\frac{(5.32+\mathrm{j} 1.76)(9.76-\mathrm{j} 2.82)}{(5.32+\mathrm{j} 1.76)+(9.76-\mathrm{j} 2.82)} \\
& \mathbf{Z}=0.96-\mathrm{j} 0.72+3.744+\mathrm{j} 0.4074 \\
& \mathbf{Z}=4.704-\mathrm{j} 0.3126=4.714 \angle-3.802^{\circ}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \mathbf{I}=\mathbf{V} / \mathbf{Z}=\frac{45 \angle 30^{\circ}}{4.714 \angle-3.802^{\circ}} \\
& \mathbf{I}=\mathbf{9 . 5 4 6} \angle \mathbf{3 3 . \mathbf { 8 } ^ { \circ } \mathbf { A }}
\end{aligned}
$$

Let us now check this using PSpice. The solution produces the magnitude of $\mathrm{I}=$ $9.946 \mathrm{E}+00$, and the phase angle $=33.803 \mathrm{E}+00$, which agrees with the above answer.

P.P.9.13 To show that the circuit in Fig. (a) meets the requirement, consider the equivalent circuit in Fig. (b).

$$
\mathbf{Z}=-\mathrm{j} 10 \|(10-\mathrm{j} 10)=\frac{-\mathrm{j} 10(10-\mathrm{j} 10)}{10-\mathrm{j} 20}=\frac{-\mathrm{j}(10-\mathrm{j} 10)}{1-\mathrm{j} 2}=2-\mathrm{j} 6 \Omega
$$

(a)

(b)
$\mathbf{V}_{1}=\frac{2-j 6}{10+2-j 6}(60)=\frac{60}{3}(1-j)$
$\mathbf{V}_{\mathrm{o}}=\frac{-\mathrm{j} 10}{10-\mathrm{j} 10} \mathbf{V}_{1}=\left(\frac{-j}{1-j}\right)\left(\frac{60}{3}\right)(1-j)=-\mathrm{j} 20$
$\mathbf{V}_{\text {o }}=20 \angle-90^{\circ}$
This implies that the RC circuit provides a 90° lagging phase shift. The output voltage is $=\mathbf{2 0} \mathrm{V}$

P.P.9. 14

the $1-\mathrm{mH}$ inductor is $\mathrm{j} \omega \mathrm{L}=\mathrm{j}(2 \pi)\left(5 \times 10^{3}\right)\left(1 \times 10^{-3}\right)=\mathrm{j} 31.42$
the $2-\mathrm{mH}$ inductor is $\mathrm{j} \omega \mathrm{L}=\mathrm{j}(2 \pi)\left(5 \times 10^{3}\right)\left(2 \times 10^{-3}\right)=\mathrm{j} 62.83$
Consider the circuit shown below.

$$
\begin{aligned}
& \mathbf{Z}=10 \|(50+\mathrm{j} 62.83)=\frac{(10)(50+\mathrm{j} 62.83)}{60+\mathrm{j} 62.83} \\
& \mathbf{Z}=9.205+\mathrm{j} 0.833=9.243 \angle 5.17^{\circ} \\
& \mathbf{V}_{1}=\mathbf{Z} /(\mathbf{Z}+\mathrm{j} 31.42) \mathbf{V}_{\mathrm{i}}=\frac{9.243 \angle 5.17^{\circ}}{9.205+j 32.253}(10) \\
& =\left[\left(9.243 \angle 5.17^{\circ}\right) /\left(33.54 \angle 74.07^{\circ}\right)\right] 10=2.756 \angle-68.9^{\circ} \\
& \mathbf{V}_{\text {o }}=\frac{50}{50+\mathrm{j} 62.83} \mathbf{V}_{1}=\frac{50\left(2.756 \angle-68.9^{\circ}\right)}{80.297 \angle 51.49^{\circ}}=1.7161 \angle-120.39^{\circ}
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\text { magnitude }=\mathbf{1 . 7 1 6 1} \mathrm{V} \\
\text { phase }=\mathbf{1 2 0 . 3 9 ^ { \circ }} \\
\text { phase shift is lagging }
\end{gathered}
$$

$$
\text { P.P.9.15 } \quad \mathbf{Z}_{x}=\left(\mathbf{Z}_{3} / \mathbf{Z}_{1}\right) \mathbf{Z}_{2}
$$

$$
\begin{aligned}
& \mathbf{Z}_{3}=12 \mathrm{k} \Omega \\
& \mathbf{Z}_{1}=4.8 \mathrm{k} \Omega \\
& \mathbf{Z}_{2}=10+\mathrm{j} \omega \mathrm{~L}=10+\mathrm{j}(2 \pi)\left(6 \times 10^{6}\right)\left(0.25 \times 10^{-6}\right)=10+\mathrm{j} 9.425 \\
& \mathbf{Z}_{\mathrm{x}}=\frac{12 \mathrm{k}}{4.8 \mathrm{k}}(10+\mathrm{j} 9.425)=25+\mathrm{j} 23.5625 \Omega \\
& \mathrm{R}_{\mathrm{x}}=25, \quad \mathrm{X}_{\mathrm{x}}=23.5625=\omega \mathrm{L}_{\mathrm{x}} \\
& \mathrm{~L}_{\mathrm{x}}=\frac{X_{\mathrm{x}}}{2 \pi \mathrm{f}}=\frac{23.5625}{2 \pi\left(6 \times 10^{6}\right)}=0.625 \mu \mathrm{H}
\end{aligned}
$$

i.e. a $25-\Omega$ resistor in series with a $0.625-\mu \mathrm{H}$ inductor.

