
1 The Foundations: Logic and Proofs

Introduction
This  chapter  describes  how  Mathematica  can  be  used  to  further  your  understanding  of  logic  and
proofs. In particular, we describe how to construct truth tables, check the validity of logical arguments,
and verify logical equivalence. In the final two sections, we provide examples of how Mathematica can
be used as part of proofs, specifically to find counterexamples, carry out proofs by exhaustion, and to
search for witnesses for existence proofs.

1.1 Propositional Logic
In this section, we will discuss how to use Mathematica to explore propositional logic. Specifically, we
will see how to use logical connectives, describe the connection between logical implication and condi-
tional statements in a program, show how Mathematica can be used to create truth tables for compound
propositions, and demonstrate how Mathematica can be used to carry out bit operations.
In  Mathematica,  the  truth  values  true  and  false  are  represented  by  the  symbols  True  and  False.
Propositions can be represented by symbols (variables) such as p, q, or prop1. Note that if you have
not yet made an assignment to a symbol, entering it will return the name.

In[1]:= prop1

Out[1]= prop1

Once you have assigned a value, Mathematica will evaluate the symbol to the assigned value whenever
it appears.

In[2]:= prop1 = True

Out[2]= True

In[3]:= prop1

Out[3]= True

You  can  cause  Mathematica  to  “forget”  the  assigned  value  using  either  the  function  Clear  or  the
Unset  (=.)  operator.  Both of  the expressions below have the effect  of  removing the assigned value
from the symbol prop1. Neither expression returns an output.

In[4]:= Clear@prop1D

In[5]:= prop1 =.



Logical Connectives
Mathematica  supports  all  of  the  basic  logical  operators  discussed  in  the  textbook.  We  illustrate  the
logical  operators  of  negation  (Not,  !),  conjunction  (And,  &&),  disjunction  (Or,  ||),  exclusive  or
(Xor), implication (Implies), and the biconditional (Equivalent). Note that these are referred to
as Boolean operators, and expressions formed from them are Boolean expressions. 
For all of the operators, you can enter expressions in standard form, that is, by putting the names of the
operators at the head of an expression with truth values or other expressions as operands. For example,
the computations T fi F, T fl HF fl TL, and T Å⊕ T are shown below.

In[6]:= Or@True, FalseD

Out[6]= True

In[7]:= Implies@True, And@False, TrueDD

Out[7]= False

In[8]:= Xor@True, TrueD

Out[8]= False

For  negation,  conjunction,  and  disjunction,  you  can  use  the  infix  operators  !,  &&,  and  ||  instead.
These are common symbols  used in place of  ¬,  fl,  and fi  that  can be easily typed on a standard key-
board. The computations below show Ÿ T and HT fiFL flT using the operators !, &&, and ||.

In[9]:= ! True

Out[9]= False

In[10]:= HTrue »» FalseL && True

Out[10]= True

Mathematica also allows you to enter and compute with expressions using the traditional symbols. You
enter the symbol by pressing the escape key, followed by a sequence identifying the symbol, and then
the  escape  key  once  again.  Mathematica  refers  to  this  as  an  alias.  For  example,  entering  ÂandÂ
produces the traditional symbol for conjunction.

In[11]:= True Ï False

Out[11]= False

An alias  is  the  only  way  to  produce  an  infix  implication  operator,  via  Â=>Â  (escape  followed  by
equals and the greater than sign and terminating with escape).

In[12]:= False fl False

Out[12]= True

In  this  manual,  we will  typically  not  use  aliases  as  part  of  commands,  since  it  is  more  difficult  for  a
reader  to  imitate  such  commands.  However,  for  convenience,  we  include  a  table  of  the  operators
defined in the textbook along with their names in Mathematica and their infix representations with and
without aliases. 

name function without alias alias symbol
negation Not ! ÂnotÂ Ÿ

conjunction And && ÂandÂ Ï

exclusive or Xor ÂxorÂ „
disjunction Or »» ÂorÂ Í

biconditional Equivalent ÂequivÂ Í
implication Implies Â=>Â fl

2   Chapter01.nb



name function without alias alias symbol
negation Not ! ÂnotÂ Ÿ

conjunction And && ÂandÂ Ï

exclusive or Xor ÂxorÂ „
disjunction Or »» ÂorÂ Í

biconditional Equivalent ÂequivÂ Í
implication Implies Â=>Â fl

Note that the symbol for exclusive or used by Mathematica differs from that in the textbook. Also, the
order  in  which  the  operators  appear  in  the  table  above  is  the  order  of  precedence  that  the  operators
have in Mathematica. Observe that the order of the biconditional and implication are the reverse of the
order  specified in the textbook.  It  is  always a good idea to use parentheses liberally whenever prece-
dence is in doubt.

Conditional Statements
We saw above that Mathematica includes the operator Implies for evaluating logical implication. In
mathematical  logic,  “if  p,  then  q”  has  a  very  specific  meaning,  as  described  in  detail  in  the  text.  In
computer  programming,  and  Mathematica  in  particular,  conditional  statements  also  appear  very  fre-
quently, but have a slightly different meaning.
From the perspective of logic, a conditional statement is, like any other proposition, a sentence that is
either true or false. In most computer programming languages, when we talk about a conditional state-
ment,  we  are  not  referring  to  a  kind  of  proposition.  Rather,  conditional  statements  are  used  to  selec-
tively  execute  portions  of  code.  Consider  the  following  example  of  a  function,  which  adds  1  to  the
input value if the input is less than or equal to 5 and not otherwise.

In[13]:= ifExample@x_D := If@x § 5, x + 1, xD

(To type the inequality into Mathematica, you type “x<=5”. The graphical front end will automatically
turn  the  key  combination  “<=”  into  §,  unless  you  have  set  options  to  prevent  it  from doing  so.)  We
now see that this function works as promised.

In[14]:= ifExample@3D

Out[14]= 4

In[15]:= ifExample@7D

Out[15]= 7

Because this is our first Mathematica function, let’s spend a moment breaking down the general struc-
ture before detailing the workings of the conditional statement. First we have the name of the function,
ifExample. Note that symbols for built-in Mathematica functions typically begin with capital letters,
so making a habit of naming functions you define with initial letters lower case helps ensure that you
won’t accidentally try to assign to a built-in function. 
Following  the  name  of  the  function,  we  specify  the  arguments  that  will  be  accepted  by  the  function
enclosed in brackets. The underscore (_), referred to as Blank, tells Mathematica that this is a parame-
ter and that the symbol preceding the underscore is the name that will be used to refer to the parameter. 
Then comes the operator :=, the delayed assignment operator. The difference between using Set (=)
and SetDelayed  (:=)  is  that  the  delayed assignment  ensures  that  Mathematica  does  not  attempt  to
evaluate  the  function  definition  until  the  function  is  actually  invoked.   SetDelayed  (:=)  should  be
used when you define a function, while Set (=) is appropriate for assigning values to variables.

Chapter01.nb  3



Then comes the operator :=, the delayed assignment operator. The difference between using Set (=)
and SetDelayed  (:=)  is  that  the  delayed assignment  ensures  that  Mathematica  does  not  attempt  to
evaluate  the  function  definition  until  the  function  is  actually  invoked.   SetDelayed  (:=)  should  be
used when you define a function, while Set (=) is appropriate for assigning values to variables.
On  the  right  hand  side  of  the  delayed  assignment  operator  is  the  expression  that  tells  Mathematica
what to do with the argument.  In this case,  the body of the function makes use of the If  function to
choose between two possible results. Note that we provided three arguments, separated by commas, to
If. The first argument, x<=5, specifies the condition. Mathematica evaluates this expression to deter-
mine which of  the  branches,  that  is  which of  the  other  two arguments,  to  execute.  If  the  condition is
true, then Mathematica evaluates the second argument, x+1, and this is the value of the function. This
is traditionally called the “then” clause. If the condition specified in the first argument is false, then the
third argument, called the “else” clause, is evaluated.
It  is  important  to  be  aware  of  two additional  variations  on the  If  function.  First,  you are  allowed to
omit  the  “else”  and  provide  only  two  arguments.  As  you  can  see  in  the  example  below,  when  the
condition  is  false,  Mathematica  appears  to  return  nothing.  In  fact,  the  expression  returns  the  special
symbol Null, which does not produce output.

In[16]:= If@3 < 1, 5D

The second variation on If has four arguments. Mathematica is very strict with regards to conditional
statements. Specifically, it only evaluates the second argument if the result of evaluating the condition
is  the  symbol  True.  And  it  only  evaluates  the  third  argument  when  the  result  of  the  condition  is
False. But many expressions do not evaluate to either of these symbols. In these cases, Mathematica
returns the If function unevaluated. For example, in the expression below, the symbol z has not been
assigned a value and thus z>5 cannot be resolved to a truth value.

In[17]:= If@z > 5, 4, 11D

Out[17]= If@z > 5, 4, 11D

By specifying a fourth argument, you can give Mathematica explicit instructions on how to handle this
situation.

In[18]:= If@z > 5, 4, 11, 0D

Out[18]= 0

This fourth argument is useful if there is some question of whether or not Mathematica will be able to
resolve the condition into a truth value. We will typically not use the fourth argument, however, since
in nearly all cases, a failure to properly evaluate the condition indicates an error in either our function
definition or the input to it and providing the fourth argument will only hide such errors from us.

Evaluating Expressions
In the textbook, you saw how to construct truth tables by hand. Here we’ll see how to have Mathemat-
ica  create  them for  us.  We’ll  begin  by  considering  the  simplest  case  of  a  compound proposition:  the
negation of a single propositional variable.

In[19]:= prop2 := ! p

Note that we’ve defined the proposition prop2 as an expression in terms of the symbol p, which has
not been assigned. We can determine the truth value of prop2 in one of two ways. The obvious way is
to assign a truth value to p and then ask Mathematica for the value of prop2 as follows.
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Note that we’ve defined the proposition prop2 as an expression in terms of the symbol p, which has
not been assigned. We can determine the truth value of prop2 in one of two ways. The obvious way is
to assign a truth value to p and then ask Mathematica for the value of prop2 as follows.

In[20]:= p = False

Out[20]= False

In[21]:= prop2

Out[21]= True

The drawback of this approach, however, is that our variable p  is now identified with false and if we
want to use it as a name again, we need to manually unassign it.

In[22]:= p =.

The better approach is to use the ReplaceAll operator (/.). This function has a variety of uses, one
of which is to allow you to evaluate an expression for particular values of variables without the need to
assign (and then Clear)  values  to  the variables.  We first  demonstrate  its  use and then we’ll  explain
the syntax.

In[23]:= prop2 ê. p Ø True

Out[23]= False

On the  left  hand  side  of  the  /.  operator  is  the  expression  to  be  evaluated.  In  this  case,  we  have  the
symbol prop2  on the left,  which was assigned to be !p.  On the right  hand side of  the operator,  we
indicate the substitution to be made using the notation aØb, called a rule, to indicate that a is replaced
by b.  (Note that  you obtain the arrow by typing a hyphen followed by the greater  than symbol (->).
The Mathematica front end will automatically turn that into the arrow character.)
In  order  to  substitute  for  more  than  one  variable,  list  the  substitutions  as  rules  separated  by  commas
and enclosed in braces. The following evaluates the proposition pÏ HŸ qL for p true and q false.

In[24]:= p && H! qL ê. 8p Ø True, q Ø False<

Out[24]= True

Truth Tables and Loops
Mathematica  has  a  built-in  function  for  producing  a  truth  table,  BooleanTable,  which  will  be
described  in  Section  1.2.  While  the  built-in  function  is  useful,  it  is  worthwhile  to  consider  how such
tables can be created using more primitive programming tools. In this subsection, we will see how to
create truth tables using only basic loop constructs.
To make a truth table for a proposition, we need to evaluate the proposition at all possible truth values
of all of the different variables. To do this, we make use of loops (refer to the Introduction for a general
discussion of loops in Mathematica). Specifically, we want to loop over the two possible truth values,
true and false, so we will construct a loop over the list {True, False}.
In Mathematica, the Do function is used to create a loop that executes commands for each member of a
list. The Do function requires two arguments. The first argument is the expression that you want evalu-
ated, typically involving one or more variables that change during the execution of the loop. The sec-
ond argument  specifies  the  iterative  behavior  and can take several  forms.  The form we will  be  using
here is 8i, 8i1, i2, …<<. The character i represents the loop variable and the list 8i1, i2, …< represents an
explicit list of particular values that will be assigned to the loop variable.
The first  example will  be  to  produce a  truth  table  for  the  proposition Ÿ p.  Each iteration in  the  loop,
therefore,  should  print  out  one  line  of  the  truth  table.  Since  a  Do  loop  does  not  produce  any  output
unless explicitly told to do so (it  normally returns Null),  we will  use the Print  function to tell  the
loop what should be displayed. The Print function takes any number of arguments and displays them
concatenated together. In this example, we want to display the value of the propositional variable p and
the truth value of the proposition Ÿ p. We will also explicitly insert some space between the two truth
values  by  putting  “  “  as  an  argument  as  well.  So  the  first  argument  to  Do  will  be  Print[p,”
“,!p].
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The first  example will  be  to  produce a  truth  table  for  the  proposition Ÿ p.  Each iteration in  the  loop,
therefore,  should  print  out  one  line  of  the  truth  table.  Since  a  Do  loop  does  not  produce  any  output
unless explicitly told to do so (it  normally returns Null),  we will  use the Print  function to tell  the
loop what should be displayed. The Print function takes any number of arguments and displays them
concatenated together. In this example, we want to display the value of the propositional variable p and
the truth value of the proposition Ÿ p. We will also explicitly insert some space between the two truth
values  by  putting  “  “  as  an  argument  as  well.  So  the  first  argument  to  Do  will  be  Print[p,”
“,!p].
For the second argument, the specification of the iteration, we must give Mathematica the name of the
loop variable, in this case p, and the list of values that we want assigned to that variable in each itera-
tion, namely true and false. So the second argument will be {p,{True,False}}.

In[25]:= Do@Print@p, " ", ! pD, 8p, 8True, False<<D

True False

False True

As a second example, we will construct the truth table for HpÏ qL fl p. Notice that here there are two
variables instead of one.  This indicates that  two loops should be used,  one for each variable.  In most
programming languages, this is approach that you would need to take, called “nesting” loops. In effect,
you would use a Do function as the first argument to another Do function. Indeed, this approach would
work in Mathematica as well, but there is another way. The Do syntax allows you to provide more than
one  iteration  specification.  For  this  example,  we  want  both  variables  p  and  q  to  take  on  both  truth
values,  so  we  provide  the  iteration  specifications  for  both  of  them.  Mathematica  ensures  that  it  exe-
cutes the expression in the first argument with every possible pair of values for p and q.

In[26]:= Do@Print@p, " ", q, " ", Implies@p && q, pDD,
8p, 8True, False<<, 8q, 8True, False<<D

True True True

True False True

False True True

False False True

Note that the output indicates that the proposition, HpÏ qL fl p, is a tautology. In fact, this is a rule of
inference called simplification, discussed in Section 1.6 of the textbook.

Logic and Bit Operations
We can also use Mathematica to explore the bit operations OR, AND, and XOR. Recall that bit opera-
tions correspond to logical operators by equating 1 with true and 0 with false. Mathematica provides a
lot of support for working with bits and bit strings. Here, we will briefly introduce the relevant Mathe-
matica functions. Our main goal of this section, however, will be to develop a function essentially from
scratch for computing with bit strings, in order to further illustrate programming in Mathematica.
The Built-in Functions
Mathematica provides several functions corresponding to the basic logical operations for operation on
bits:  BitAnd,  BitOr,  BitXor,  BitNot.  With the exception of  BitNot,  these operations operate
as you would expect. For example, you can compute 1fl 0 as follows.
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Mathematica provides several functions corresponding to the basic logical operations for operation on
bits:  BitAnd,  BitOr,  BitXor,  BitNot.  With the exception of  BitNot,  these operations operate
as you would expect. For example, you can compute 1fl 0 as follows.

In[27]:= BitAnd@1, 0D

Out[27]= 0

Also,  you  are  not  limited  to  two  arguments.  For  example,  computing  0fi 0fi 1fi 0  requires  only  one
application of BitOr.

In[28]:= BitOr@0, 0, 1, 0D

Out[28]= 1

Conveniently,  the  bitwise  functions  are  Listable.  This  means  that  the  function  is  automatically
threaded  over  lists  that  are  given  as  arguments.  This  can  be  made  clearer  by  demonstrating  with
another listable function: addition.

In[29]:= 81, 2, 3< + 8a, b, c<

Out[29]= 81 + a, 2 + b, 3 + c<

Because addition is listable, when it is applied to two lists of equal length, it returns the list formed by
acting  on  corresponding  elements  of  the  lists.  In  the  current  context,  this  means  we  can  apply  the
bitwise operations to bit strings by representing the bit strings a lists. For example, 10 010fl 01 011 can
be computed as follows.

In[30]:= BitAnd@81, 0, 0, 1, 0<, 80, 1, 0, 1, 1<D

Out[30]= 80, 0, 0, 1, 0<

The bitwise functions actually operate on integers, not just the bits 0 and 1. For example, we can apply
BitOr to 18 and 5.

In[31]:= BitOr@18, 5D

Out[31]= 23

The reason for this result is that Mathematica  applied the bitwise OR to the binary representations of
the integers 18 and 5. You can use the function IntegerDigits with an integer as the first coordi-
nate and 2 as the second coordinate to see the binary representation of an integer.

In[32]:= IntegerDigits@18, 2D

Out[32]= 81, 0, 0, 1, 0<

In[33]:= IntegerDigits@5, 2D

Out[33]= 81, 0, 1<

We  need  to  pad  the  result  for  5  with  0s  in  order  to  have  lists  of  equal  size  and  then  we  can  apply
BitOr on the lists of bits as we did above.

In[34]:= BitOr@81, 0, 0, 1, 0<, 80, 0, 1, 0, 1<D

Out[34]= 81, 0, 1, 1, 1<

The FromDigits function reverses IntegerDigits. Given a list of bits and second argument 2, it
will return the integer with that binary representation.
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In[35]:= FromDigits@81, 0, 1, 1, 1<, 2D

Out[35]= 23

Understanding the  operation  of  BitNot  is  a  bit  more  complicated.  As  expected,  it  accepts  only  one
argument, although again, it will automatically thread through a list. The results on 0 and 1, however,
are not what you would expect.

In[36]:= BitNot@0D

Out[36]= -1

In[37]:= BitNot@1D

Out[37]= -2

The reason for these results is that Mathematica represents integers in two’s complement form with an
unlimited  number  of  digits.  Interested  readers  should  refer  to  the  information  prior  to  Exercise  40  in
Section 4.2 of  the textbook for  an explanation of  two’s complement.  For this  context,  it  is  enough to
know that BitNot applied to an integer n will always return -1- n, but that it will behave exactly as
expected relative to the other functions. For example 1fl HŸ 0L results in 1, as it should. 

In[38]:= BitAnd@1, BitNot@0DD

Out[38]= 1

Creating a New Bitwise And
As mentioned above, we will use the bitwise operations as an opportunity to further explore Mathemati-
ca’s  programming  capabilities  and  some  important  functions.  Specifically,  we  will  build  a  bitwise
conjunction function that behaves much like Mathematica’s for bits and lists of bits. 
We begin by creating a function that applies only to a pair of bits. Later, we’ll extend it to bit strings.
We name our function and.  Since Mathematica  symbols are case-sensitive,  this  is  different  from the
built-in function And. 
To implement and,  we will  make use of the Switch  function.  Switch  is  an important mechanism
for controlling flow in a program. It is equivalent to a series of if statements, but its structure makes it
more efficient and more easily understood. Switch is executed in the form

Switch@expr, form1, value1, form2, value2, ...D

The first argument is an expression that is evaluated. The rest of the arguments are in form/value pairs.
Mathematica  checks  the  result  of  evaluating  the  expression  against  the  forms,  one  at  a  time  and  in
order.  If  it  finds  a  match,  then  it  stops  checking  and  returns  the  value  associated  with  the  matching
form. If none of the forms match, then the result is the Switch function unevaluated. 
Our  and  function  will  accept  two  arguments.  The  expression  we  give  to  Switch  will  be  the  list
formed from the two arguments. The rest of the Switch will essentially be the truth table for conjunc-
tion. The forms will be all the possible pairs of 0s and 1s and the values will be 0 or 1 as appropriate.

In[39]:= and@p_, q_D :=
Switch@8p, q<, 81, 1<, 1, 81, 0<, 0, 80, 1<, 0, 80, 0<, 0D

The and function we created now works as expected on bits and does nothing if it is given other input.
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In[40]:= and@1, 1D

Out[40]= 1

In[41]:= and@1, 0D

Out[41]= 0

In[42]:= and@18, 5D

Out[42]= Switch@818, 5<,
81, 1<, 1,
81, 0<, 0,
80, 1<, 0,
80, 0<, 0D

We can handle non-bit input a bit more elegantly by adding one more form/value pair. Using a blank
(_) for the form will create a default value. By creating a message associated to the and function, we
can  display  a  useful  error  message,  as  shown  below.  The  message  is  defined  by  setting  the  symbol
f ::tag  equal  to  the  message  in  quotation  marks,  where  f  is  the  name  of  the  function  and  tag  is  the
“name”  of  the  message.  When  this  symbol  is  given  as  the  argument  to  the  Message  function,  the
message is shown.

In[43]:= and::arg = "and called with non-bit arguments.";

In[44]:= and@p_, q_D := Switch@8p, q<, 81, 1<, 1, 81, 0<,
0, 80, 1<, 0, 80, 0<, 0, _, Message@and::argDD

Now, applying and to 18 and 5 has a more useful result.
In[45]:= and@18, 5D

and::arg : and called with non-bit arguments.

Threading and Listable
We saw above that Mathematica’s built-in function would extend to lists of integers without any addi-
tional effort on our part. Here we’ll see that it’s easy to make our function do that as well.
Mathematica provides a general way to cause a function to be applied to lists in the functions Map and
MapThread. We describe Map first.

Given a function of one argument, such as f HxL = x2,  Map  allows you to have Mathematica  apply the
function to all the elements of a list. First, define the function.

In[46]:= f@x_D := x^2

Now, call  Map  with the name of the function as the first  argument and the list  of  input values as the
second.

In[47]:= Map@f, 81, 2, 3, 4, 5, 6<D

Out[47]= 81, 4, 9, 16, 25, 36<

The result,  as  you see above,  is  the list  of  the results  of  applying the function to each element of  the
list. The same result can be obtained with the /@ operator, as shown below.
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In[48]:= f êü 81, 2, 3, 4, 5, 6<

Out[48]= 81, 4, 9, 16, 25, 36<

When the  function  has  more  than  one  argument,  as  and  does,  MapThread  can  be  used.  Like  Map,
MapThread  takes  two  arguments  and  the  first  is  a  function.  The  second  argument  is  a  list  of  lists.
Provided that each of the inner lists is of the same length, the result of MapThread is the list formed
by evaluating the function with arguments from corresponding positions in the lists.  For example, we
can apply gHx, yL = x2 + y3 to 81, 2, 3< and 8a, b, c<.

In[49]:= g@x_, y_D := x^2 + y^3

In[50]:= MapThread@g, 881, 2, 3<, 8a, b, c<<D

Out[50]= 91 + a3, 4 + b3, 9 + c3=

Using MapThread, we can compute 10 010fl 01 011 as follows.
In[51]:= MapThread@and, 881, 0, 0, 1, 0<, 80, 1, 0, 1, 1<<D

Out[51]= 80, 0, 0, 1, 0<

This shows how to thread a function in a particular case. But what we really want is for our and func-
tion  to  behave  like  this  automatically.  Fortunately,  this  is  such  a  common requirement  for  functions,
that  Mathematica  provides a very easy way to do this automatically.  The attribute Listable,  when
applied  to  a  function,  tells  Mathematica  that  the  function  should  be  automatically  threaded  over  lists
whenever the function is given a list as its argument. The SetAttributes function causes Mathemat-
ica to associate the attribute specified in the second argument with the object in the first argument.

In[52]:= SetAttributes@and, ListableD

Now applying and to lists works just as the built-in BitAnd does.
In[53]:= and@81, 0, 0, 1, 0<, 80, 1, 0, 1, 1<D

Out[53]= 80, 0, 0, 1, 0<

1.2 Applications of Propositional Logic
In  this  section  we  will  describe  how  Mathematica’s  computational  abilities  can  be  used  to  solve
applied problems in propositional logic. In particular, we will consider consistency for system specifica-
tions and Smullyan logic puzzles.

System Specifications
The textbook describes how system specifications can be translated into propositional logic and how it
is important that the specifications be consistent. As suggested by the textbook, one way to determine
whether a set of specifications is consistent is with truth tables.
Recall that a collection of propositions is consistent when there is an assignment of truth values to the
propositional  variables  that  makes  all  of  the  propositions  in  the  collection  true  simultaneously.  For
example, consider the following collection of compound propositions: p Ø HqÏ rL, pÍ q, and pÍŸ r.
We can see that these propositions are consistent because we can satisfy all three with the assignment p
= false, q = true, r = false. In Mathematica, we can confirm this by evaluating the list of propositions
with that assignment of truth values. 
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Recall that a collection of propositions is consistent when there is an assignment of truth values to the
propositional  variables  that  makes  all  of  the  propositions  in  the  collection  true  simultaneously.  For
example, consider the following collection of compound propositions: p Ø HqÏ rL, pÍ q, and pÍŸ r.
We can see that these propositions are consistent because we can satisfy all three with the assignment p
= false, q = true, r = false. In Mathematica, we can confirm this by evaluating the list of propositions
with that assignment of truth values. 
Above we saw that you can evaluate an expression using the replacement operator /.. On the left side
of the replacement operator, put the expression we want evaluated, in this case a list of the three logical
propositions. On the right side of the /., enter the assignments as a list of rules of the form s->v for
symbol s and value v.

In[54]:= 8Implies@p, q && rD, p »» q, p »» H! rL< ê.
8p Ø False, q Ø True, r Ø False<

Out[54]= 8True, True, True<

To determine if  a  collection of  propositions is  consistent,  we can create  a  truth table.  In the previous
section, we created truth tables from scratch using the Do function to loop through all possible assign-
ments of truth values to the variables. In this section, we’ll instead use Mathematica’s built-in function
BooleanTable.
The  BooleanTable  function  produces  the  truth  values  obtained  by  replacing  the  variables  by  all
possible  combinations  of  true  and  false.  Its  first  argument  is  the  expression  to  be  evaluated  and  the
second argument is a list of the propositional variables.

In[55]:= BooleanTable@p && H! qL, 8p, q<D

Out[55]= 8False, True, False, False<

Note that, unlike a truth table you construct by hand, BooleanTable does not show the assignments
to the propositional variables. We can see the values of the propositional variables by making the first
argument a list that includes them.

In[56]:= BooleanTable@8p, q, p && H! qL<, 8p, q<D

Out[56]= 88True, True, False<, 8True, False, True<,
8False, True, False<, 8False, False, False<<

The TableForm  function will  make the output  easier  to  read.  We will  apply TableForm  with the
postfix operator  (//).  The postfix operator  allows you to put  the name of  a  function after  an expres-
sion. It is commonly used for functions that affect the display of a result and has the benefit of making
the main part of the command being evaluated easier to read.

In[57]:= BooleanTable@8p, q, p && H! qL<, 8p, q<D êê TableForm
Out[57]//TableForm=

True True False
True False True
False True False
False False False

Returning to the question of consistency, consider Example 4 from Section 1.2 of the text. We translate
the three specifications as the following list of propositions.

In[58]:= specEx4 = 8p »» q, ! p, Implies@p, qD<

Out[58]= 8p »» q, ! p, p fl q<
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Then we can construct the truth table using BooleanTable.
In[59]:= BooleanTable@8p, q, specEx4<, 8p, q<D êê TableForm

Out[59]//TableForm=

True True
True
False
True

True False
True
False
False

False True
True
True
True

False False
False
True
True

Notice that because specEx4 is itself a list, TableForm displays the results from the three compo-
nent propositions as a column within the row corresponding to the values for p and q. We see that the
only assignment of truth values that results in all three statements being satisfied is with p = false and
q = true.
We can make the output a bit easier to read if, instead of considering the truth table for the list of the
propositions,  we  consider  the  proposition  formed  by  the  conjunction  of  the  individual  propositions:
HpÍ qL Ï HŸ pL Ï Hp Ø qL.

In[60]:= specEx4b = And@Hp »» qL, ! p, Implies@p, qDD

Out[60]= Hp »» qL && ! p && Hp fl qL

In[61]:= BooleanTable@8p, q, specEx4b<, 8p, q<D êê TableForm
Out[61]//TableForm=

True True False
True False False
False True True
False False False

In  this  case,  the  fact  that  the  final  truth  value  in  the  third  row is  true  tells  us  that  this  assignment  of
truth values satisfies all of the propositions in the system specification.
Mathematica  also  has  useful  built-in  functions  for  checking  for  consistency.  The  SatisfiableQ
function accepts the same arguments as BooleanTable (a Boolean expression and the list of proposi-
tional  variables).  Note  that  you  may  not  give  a  list  of  expressions  as  the  first  argument  to
SatisfiableQ.

In[62]:= SatisfiableQ@specEx4b, 8p, q<D

Out[62]= True

The  SatisfiabilityInstances  command  will  generate  an  assignment  of  truth  values  to  the
variables that do in fact satisfy the proposition, assuming it is satisfiable.
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In[63]:= SatisfiabilityInstances@specEx4b, 8p, q<D

Out[63]= 88False, True<<

By providing a positive integer as an optional third argument, you can ask for more choices that make
the proposition true. Below, we find all 3 ways that p Ø q can be satisfied.

In[64]:= SatisfiabilityInstances@Implies@p, qD, 8p, q<, 3D

Out[64]= 88True, True<, 8False, True<, 8False, False<<

If we add, as in Example 5, the proposition Ÿ q,  we see that all of the assignments yield false for the
conjunction of all four propositions.

In[65]:= specEx5 = specEx4b && ! q

Out[65]= Hp »» qL && ! p && Hp fl qL && ! q

In[66]:= BooleanTable@8p, q, specEx5<, 8p, q<D êê TableForm

Out[66]//TableForm=
True True False
True False False
False True False
False False False

Also, note that SatisfiableQ returns false and SatisfiabilityInstances returns an empty
list.

In[67]:= SatisfiableQ@specEx5, 8p, q<D

Out[67]= False

In[68]:= SatisfiabilityInstances@specEx5, 8p, q<D

Out[68]= 8<

Logic Puzzles
Recall the knights and knaves puzzle presented in Example 7 of Section 1.2 of the text. In this puzzle,
you are asked to imagine an island on which each inhabitant is either a knight and always tells the truth
or is a knave and always lies. You meet two people named A and B. Person A says “B is a knight” and
person B says “The two of us are opposite types.” The puzzle is to determine which kind of inhabitants
A and B are.
We can solve this problem with Mathematica  using truth tables. First we must write A and B’s state-
ments as propositions. Let a  represent the statement that A is a knight and b  the statement that B is a
knight. Then A’s statement is “b”, and B’s statement is “HaÏŸ bL Í HŸ aÏ bL”, as discussed in the text.
While these propositions precisely express the content of A and B’s assertions, it does not capture the
additional  information that  A and B are  making the  statements.  We know,  for  instance,  that  A either
always tells the truth (knight) or always lies (knave). If A is a knight, then we know the statement “b”
is true. If A is not a knight, then we know the statement is false. In other words, the truth value of the
proposition a,  that  A is  a  knight,  is  the same as  the truth value of  A’s statement,  and likewise for  B.
Therefore, we can capture the meaning of “A says proposition p” by the proposition a ¨ p. Using the
function Equivalent, we can express the two statements in the puzzle in Mathematica as follows.
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While these propositions precisely express the content of A and B’s assertions, it does not capture the
additional  information that  A and B are  making the  statements.  We know,  for  instance,  that  A either
always tells the truth (knight) or always lies (knave). If A is a knight, then we know the statement “b”
is true. If A is not a knight, then we know the statement is false. In other words, the truth value of the
proposition a,  that  A is  a  knight,  is  the same as  the truth value of  A’s statement,  and likewise for  B.
Therefore, we can capture the meaning of “A says proposition p” by the proposition a ¨ p. Using the
function Equivalent, we can express the two statements in the puzzle in Mathematica as follows.

In[69]:= ex7a = Equivalent@a, bD

Out[69]= a Í b

In[70]:= ex7b = Equivalent@b, Ha && ! bL »» H! a && bLD

Out[70]= b Í Ha && ! bL »» H! a && bL

Like  the  system specifications  above,  a  solution  to  this  puzzle  will  consist  of  an  assignment  of  truth
values to the propositions a and b that make both people’s statements true.

In[71]:= SatisfiabilityInstances@ex7a && ex7b, 8a, b<, 4D

Out[71]= 88False, False<<

We see that both statements are satisfied when both propositions a and b are false, that is, when A and
B  are  both  knaves.  Note  also  that  since  we  asked,  in  the  final  argument,  for  as  many  as  4  different
instances but only one was returned, we know that this is the only solution to the puzzle.

1.3 Propositional Equivalence
In  this  section  we  consider  logical  equivalence  of  propositions.  We  will  first  look  at  Mathematica’s
built-in  functions  for  testing  equivalence,  and  then  we  will  create  a  function  from scratch  to  accom-
plish the same goal.

Built-in Functions
Two propositions p and q are logically equivalent if the proposition p ¨ q is a tautology. Mathematica
includes  a  function  for  checking  whether  a  proposition  is  a  tautology,  TautologyQ.  This  function
uses  the  same  arguments  as  BooleanTable,  SatisfiableQ,  and  SatisfiabilityIn-
stances  do,  as  described  above.  Specifically,  the  first  argument  should  be  the  proposition  and  the
second argument should be a list of the propositional variables. 
For example, we can confirm that the DeMorgan’s Law Ÿ HpÏ qL ª Ÿ pÍŸ q is a propositional equiva-
lence as shown below.

In[72]:= TautologyQ@Equivalent@! Hp && qL, ! p »» ! qD, 8p, q<D

Out[72]= True

Remember  that  the  Equivalent  function,  used  above,  is  Mathematica’s  function  for  forming  the
biconditional proposition, and should not be confused with the notion of equivalence as used in Section
1.3 of the textbook. 
Note that the second argument to TautologyQ is not generally necessary. Mathematica’s Boolean-
Variables function, which determines the variables in a logical expression, will invisibly supply the
missing argument. This is, in fact, true about most of the functions that require the variable list as the
second argument. We demonstrate with the other DeMorgan’s Law.

In[73]:= TautologyQ@Equivalent@! Hp »» qL, ! p && ! qDD

Out[73]= True

You  might  find  it  convenient  to  have  a  single  function  that,  given  two  propositions,  will  determine
whether they are logically equivalent. In Mathematica, this is easy to achieve. We just need to create a
function that  takes two propositions,  uses the Equivalent  function to create the biconditional,  and
then applies TautologyQ.
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You  might  find  it  convenient  to  have  a  single  function  that,  given  two  propositions,  will  determine
whether they are logically equivalent. In Mathematica, this is easy to achieve. We just need to create a
function that  takes two propositions,  uses the Equivalent  function to create the biconditional,  and
then applies TautologyQ.

In[74]:= equivalentQ@p_, q_D := TautologyQ@Equivalent@p, qDD

We apply this function to see if we can generalize DeMorgan’s Laws to three variables.
In[75]:= equivalentQ@! Hp »» q »» rL, ! p && ! q && ! rD

Out[75]= True

In[76]:= equivalentQ@! Hp && q && rL, ! p »» ! q »» ! rD

Out[76]= True

Built from Scratch Function
Mathematica  provides  very  complete  built-in  support  for  working  with  logical  propositions  and,  in
particular,  checking  propositional  equivalence.  Here,  however,  we  are  going  to  build  a  new function
for  checking  whether  or  not  two  propositions  are  logically  equivalent  using  a  minimum  of  existing
high-level  functions.  In fact,  other  than asking Mathematica  to  evaluate  propositional  expressions for
particular  truth  values  assigned  to  propositional  variables,  we  will  make  use  only  of  Mathematica’s
essential programming functionality.
There are two goals here. First, to illustrate more of Mathematica’s programming abilities. Second, to
reveal some of the more fundamental concepts and methods used in Mathematica. 
We will create a function myEquivalentQ, that has the same effect as the equivalentQ that we
built  above  using  Mathematica’s  built-in  functions.  Specifically,  it  should  take  two  propositions  and
determine whether or not they are equivalent.  This will  require quite a bit of work. The main hurdles
for such a function are: (1) having Mathematica determine what propositional variables are used in the
input propositions, and (2) without a priori  knowledge of the number of propositional variables, hav-
ing Mathematica test every possible assignment of truth values. Note that we could avoid both of these
hurdles  by  insisting  that  the  propositional  variables  be  limited  to  a  certain  small  set  of  symbols,  per-
haps p, q, r, and s. Then we could implement the function using a static nested Do loop.
However,  the  two  hurdles  mentioned  are  not  insurmountable,  will  provide  a  much  more  elegant  and
flexible procedure, and will also give us the opportunity to see examples of some important program-
ming constructs.
Extracting Variables
The first hurdle is to get Mathematica to determine the variables used in a logical expression. Consider
the following example.

In[77]:= variableEx = HHp && qL »» Hp && ! rLL && Implies@s, rD

Out[77]= HHp && qL »» Hp && ! rLL && Hs fl rL

Our task is to write a function that will, given the above expression, tell us that the variables in use are
p, q, r, and s.
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Replacing the Head
Fundamentally,  everything  in  Mathematica  is  an  expression.  And  every  expression  is  of  the  form
headAarg1, arg2, ...E,  that  is,  a  head  followed  by  arguments  in  brackets  and  separated  by
commas.  You can see this  structure at  the heart  of  any expression by using the FullForm  function.
Below, we show the full form of three examples. Recall that the postfix operator (//) allows us to put
the name of the function at the end of the input.

In[78]:= x + y êê FullForm
Out[78]//FullForm=

Plus@x, yD

In[79]:= variableEx êê FullForm
Out[79]//FullForm=

And@Or@And@p, qD, And@p, Not@rDDD, Implies@s, rDD

In[80]:= 8p, q, r, s< êê FullForm
Out[80]//FullForm=

List@p, q, r, sD

Mathematica  provides a function, Head,  that takes an expression and returns the type of head of that
expression. 

In[81]:= Head@x + yD

Out[81]= Plus

In[82]:= Head@variableExD

Out[82]= And

In[83]:= Head@8p, q, r, s<D

Out[83]= List

You can also access the head of an expression using the Part ([[…]]) operator with index 0.
In[84]:= Hx + yL@@0DD

Out[84]= Plus

In[85]:= variableEx@@0DD

Out[85]= And

In[86]:= 8p, q, r, s<@@0DD

Out[86]= List

Remember  that  our  goal  here  is  to  transform  a  logical  expression,  such  as
HHpÏ qL Í HpÏŸ rLL Ï Hs Ø rL into a list 8p, q, r, s<. Since the main difference, in terms of the internal
representation of the two objects, is their heads, it is natural to ask if we can change the head. In particu-
lar, in our example variableEx, the head is And. If we can replace the And head with a List head,
we would have a list comprised of the two parts of the expression, as illustrated below.
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In[87]:= List@Or@And@p, qD, And@p, Not@rDDD, Implies@s, rDD

Out[87]= 8Hp && qL »» Hp && ! rL, s fl r<

Our  strategy,  broadly,  will  be  to  replace  all  of  the  heads  in  the  logical  expression  with  List  heads.
There are two approaches to replacing the head of an expression. One is to use the fact that the head
lies  at  index  0  to  replace  the  heads  by  assigning  the  0  indexed  element  to  List  using  the  syntax
x@@0DD = List, as illustrated below.

In[88]:= sumExample = x + y

Out[88]= x + y

In[89]:= sumExample@@0DD = List

Out[89]= List

In[90]:= sumExample

Out[90]= 8x, y<

The second approach is  to use the Apply  (@@)  function or operator.  An expression formed from the
desired head, followed by two at symbols and the original expression will  output the expression with
the new head. Unlike the previous approach, if the expression is stored as a symbol, the stored expres-
sion is not changed, unless you explicitly reassign the output to the symbol. We illustrate by transform-
ing sumExample from a list into a product.

In[91]:= sumExample = Times üü sumExample

Out[91]= x y

Note that the Head command gives us a way to test what kind of expression we have. In particular, we
can  differentiate  between  variables,  which  have  head  Symbol,  and  other  expressions.  Note  that  to
compare heads, you must use the SameQ  relation (===) rather than Equal  (==), which only applies
to raw data (such as numerical values and strings). 

In[92]:= If@Head@x + yD === Head@x - yD,
Print@"+ equals -"D,
Print@"different"DD

+ equals -

The  above  shows  that  the  heads  of  x+ y  and  x- y are  in  fact  the  same.  Both  expressions  have  head
Plus.  (We could  also  do  this  with  the  [[0]]  syntax,  but  the  Head  function  makes  it  clearer  what
we’re doing.)
Illustrating with an Example
We can  now remove  operators  to  obtain  simpler  expressions,  and  we  have  a  way  to  test  whether  an
expression is a variable or not. The general idea is that we keep replacing the heads of the subexpres-
sions until we’re down to nothing but names. The strategy we will use is a fairly typical one. We illus-
trate the approach step by step with the variableEx example first, and then we’ll build a function.
First  we  define  a  new  symbol,  variableExList,  to  be  the  result  of  applying  (Apply,  @@)  the
List  head  to  the  variableEx  expression.  Remember  that  this  does  not  change  the  expression
stored  in  variableEx,  We  wish  to  preserve  variableEx,  which  is  why  we  take  this  approach
here. Moving forward, we will use the Part ([[…]]) approach.

Chapter01.nb  17



First  we  define  a  new  symbol,  variableExList,  to  be  the  result  of  applying  (Apply,  @@)  the
List  head  to  the  variableEx  expression.  Remember  that  this  does  not  change  the  expression
stored  in  variableEx,  We  wish  to  preserve  variableEx,  which  is  why  we  take  this  approach
here. Moving forward, we will use the Part ([[…]]) approach.

In[93]:= variableExList = List üü variableEx

Out[93]= 8Hp && qL »» Hp && ! rL, s fl r<

Observe  that  the  top-most  conjunction  has  been  removed  and  we  now  have  a  list  of  the  two
subexpressions.
Now  we  need  to  do  the  same  thing  to  the  elements  of  this  list.  Remember  that  the  Part  function
([[…]]) is used to obtain and to modify elements of a list.  So we can obtain the first  element in the
list as follows.

In[94]:= variableExList@@1DD

Out[94]= Hp && qL »» Hp && ! rL

We can turn this into a list by assigning the 0-indexed element of variableExList[[1]] to List.
In[95]:= variableExList@@1DD@@0DD = List

Out[95]= List

Inspecting variableExList, we see that this has replaced what was the first element with the new
result.

In[96]:= variableExList

Out[96]= 88p && q, p && ! r<, s fl r<

You can see  that  we’ve already made quite  a  bit  of  progress.  But  now we have lists  nested together.
We can eliminate this nesting with the Flatten function. We assign the result of applying the func-
tion to variableExList back to variableExList, so the result is kept.

In[97]:= variableExList = Flatten@variableExListD

Out[97]= 8p && q, p && ! r, s fl r<

The first  element  of  variableExList  is  still  a  logical  expression,  so  we repeat.   This  time,  we’ll
use [[1,0]], which is shorthand for [[1]][[0]].  We also combine the asisgnment and the inspec-
tion of variableExList into one input.

In[98]:= variableExList@@1, 0DD = List;
variableExList

Out[99]= 88p, q<, p && ! r, s fl r<

Again we use Flatten since this has created a nested list structure.
In[100]:= variableExList = Flatten@variableExListD

Out[100]= 8p, q, p && ! r, s fl r<

The  first  two  elements  of  variableExList  are  now  symbols.  So  we  skip  to  the  third  element.
Again, we change the head of the third element to the List head.
In[101]:= variableExList@@3, 0DD = List;

variableExList

Out[102]= 8p, q, 8p, ! r<, s fl r<
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And again flatten the resulting list.
In[103]:= variableExList = Flatten@variableExListD

Out[103]= 8p, q, p, ! r, s fl r<

Now  that  the  third  element  is  a  symbol,  we  do  the  same  thing  with  the  fourth  element  of
variableExList.  We also include the Flatten step in the same input.
In[104]:= variableExList@@4, 0DD = List;

variableExList = Flatten@variableExListD

Out[105]= 8p, q, p, r, s fl r<

And once more.
In[106]:= variableExList@@5, 0DD = List;

variableExList = Flatten@variableExListD

Out[107]= 8p, q, p, r, s, r<

Now that every element in the list is a variable, we remove the duplicate elements with DeleteDupli-
cates.
In[108]:= variableExList = DeleteDuplicates@variableExListD

Out[108]= 8p, q, r, s<

The Function
The explicit example above gives us the outline of our procedure:
1. Initialize a list, varList, to the list with the given proposition as the sole element. We did not do 

this in the example, but doing so means that we will always be working with a list, rather than 
having the first step be different. 

2.We also initialize an index variable, i, to 1. This will keep track of where we are in the list, taking 
the place of the explicit value 5, for example, in the third to last line above.

3. Use Head to test whether the element in position i in the list is a Symbol. 
† If it is, then it is the name of a variable, and we move on to the next position in the list by 

increasing i by 1. 
† If varList[[i]] is not a symbol, then it must be an expression. So replace its head with 
List and flatten varList, using the same syntax as above.

4. Repeat step 3 until the end of the list. This repetition is controlled by a While loop which 
continues as long as i is not greater than the number of elements in the list, determined by 
Length. Once the loop is complete, remove duplicate entries.

Here is the implementation.
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In[109]:= getVars@p_D := Module@8L = 8p<, i = 1<,
While@i <= Length@LD,
If@Head@L@@iDDD === Symbol,
i++,
L@@i, 0DD = List;
L = Flatten@LD

D
D;
DeleteDuplicates@LD

D

The use of Module requires explanation. The purpose of Module is to encapsulate the variables used
within a function so that  they do not change the values of variables used outside of the function.  For
example,  if  you  set  L  equal  to  some  value  before  executing  getVars,  it  will  still  have  that  value
afterwards. Likewise, Module prevents values set outside the function from affecting the behavior of
the function. That is, Module ensures that the specified variables are treated as local to the module, or
that they have a local scope, as distinguished from global.
The Module function takes two arguments. The first is the list of variables to be held local. Within the
list  of variables,  you can either provide just  the name of the variable,  or,  if  you wish, you can assign
the initial value of the variable, as was done in getVars. The expression 8L = 8p<, i = 1< as the
first argument to Module means that the symbols L and i are local and that they are initially assigned
values {p} and 1, respectively. 
The second argument to Module is the body of the function definition. Note that semicolons are used
to separate commands when there is  more than one within the body. For example,  in the third to last
line of getVars,  the semicolon separates the conclusion of the While  loop from the application of
DeleteDuplicates.
Finally, observe that the function getVars works as expected.
In[110]:= getVars@variableExD

Out[110]= 8p, q, r, s<

In[111]:= getVars@Implies@! w, Equivalent@Q »» q, P && pDDD

Out[111]= 8w, P, p, Q, q<

Truth Value Assignments
The second hurdle that we mentioned at the beginning of this section is that we don't know the number
of propositional variables in advance. If we knew there would always be two variables, we would use
two nested for loops. But since we want our procedure to work with any number of variables, we need
a different approach.
Since our getVars function produces a list of variables, it is natural to model an assignment of truth
values to variables as a list of truth values. For example,
In[112]:= variableExVars = getVars@variableExD

Out[112]= 8p, q, r, s<
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In[113]:= truthValEx = 8True, True, False, True<

Out[113]= 8True, True, False, True<

We consider the truthValEx (for truth values example) to indicate that we assign the first variable
of variableExVars  to the value true, the second variable to true, the third to false, and the fourth
to true.
Evaluating an expression 
Recall the use of the ReplaceAll operator (/.) to evaluate an expression. In particular, this operator
requires that the second operand is a list of rules of the form s Ø v with s a symbol and v a value. So,
for  example,  the  following  evaluates  variableEx  at  the  values  p = true,  q = true,  r = false,  and
s = true.
In[114]:= variableEx ê. 8p Ø True, q Ø True, r Ø False, s Ø True<

Out[114]= False

In order to perform that evaluation programmatically, using the result of getVars and a list represent-
ing an assignment of truth values, we need to turn the pair of lists into a list of rules. We will demon-
strate how to do this with the variableExVars and truthValEx lists defined above.
We introduced the MapThread function at the end of Section 1.1 of this manual. Recall that the basic
purpose  of  MapThread  is  to  take  a  function  of  n  variables  together  with  a  list  of  n  lists  (with  the
sublists having the same size) and apply the function to corresponding elements of the lists. For exam-
ple,  we  can  use  MapThread  to  add  corresponding  elements  of  two  lists  using  the  Plus  function.
(Note  that  this  is  generally  unnecessary  since  addition  automatically  threads  in  Mathematica,  but  it
serves as an example.)
In[115]:= MapThread@Plus, 881, 2, 3<, 8a, b, c<<D

Out[115]= 81 + a, 2 + b, 3 + c<

In our context, the two lists are the lists of variables, variableExVars, and the truth value assign-
ment, truthValEx. The function that forms a rule is Rule.
In[116]:= MapThread@Rule, 8variableExVars, truthValEx<D

Out[116]= 8p Ø True, q Ø True, r Ø False, s Ø True<

So we can evaluate the expression with the following.
In[117]:= variableEx ê. MapThread@Rule, 8variableExVars, truthValEx<D

Out[117]= False

Finding All Possible Truth Assignments
Now that we know that we can effectively use lists of truth values to represent truth value assignments,
we need a way to produce all such lists. We’ll use a strategy similar to binary counting. Start with the
list of all falses. Get the next list by changing the first element to true. For the next assignment, change
the  first  element  back  to  false  and  the  second element  to  true.  Then change  the  first  element  to  true.
Then change the first true to false, the second true to false, and the third element becomes true. Con-
tinue in this pattern: given a list of truth values, obtain the next list by changing the left-most false to
true and changing all trues up until that first false into false. (It is left to the reader to verify that this
produces all possible truth value assignments.)
We  implement  this  idea  in  the  nextTA  function  (for  next  truth  assignment).  The  nextTA  function
will accept a list of truth values as input and return the “next” list. The main work of this procedure is
done inside of  a  For  loop.  The loop considers  each position in  the  list  of  truth  values  in  turn.  If  the
value in the current position is true, then it is changed to false. On the other hand, if the value is false,
then it is changed to true and the function is terminated by returning the list of truth values. If the For
loop ends without having returned a new list, then the input to the procedure was all trues, which is the
last  possible  truth  assignment,  and  the  function  returns  Null  to  indicate  that  there  is  no  next  truth
assignment.
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We  implement  this  idea  in  the  nextTA  function  (for  next  truth  assignment).  The  nextTA  function
will accept a list of truth values as input and return the “next” list. The main work of this procedure is
done inside of  a  For  loop.  The loop considers  each position in  the  list  of  truth  values  in  turn.  If  the
value in the current position is true, then it is changed to false. On the other hand, if the value is false,
then it is changed to true and the function is terminated by returning the list of truth values. If the For
loop ends without having returned a new list, then the input to the procedure was all trues, which is the
last  possible  truth  assignment,  and  the  function  returns  Null  to  indicate  that  there  is  no  next  truth
assignment.
In[118]:= nextTA@A_D := Module@8i, newTA = A<,

Catch@
For@i = 1, i <= Length@AD, i++,
If@newTA@@iDD,
newTA@@iDD = False,
newTA@@iDD = True; Throw@newTAD

D
D;
Throw@NullD

D
D

Once again we use a Module  structure. This ensures that i,  the loop variable, and newTA,  the truth
assignment that is being constructed, are private to the function. Note that newTA is initialized to be a
copy of A, the input list. We will describe Catch momentarily.
The  For  function  is  Mathematica’s  implementation  of  a  for  loop.  The  first  argument  contains  the
initialization command, in this case setting the loop variable i equal to 1. The second argument defines
the test that specifies the termination conditions of the loop. In nextTA, the loop is to run through all
of the entries in the list representing the truth assignment, so the test is that the value of the index i has
not exceeded the number of entries in the list, determined by the Length function. The third argument
to For is the increment specification. In this case, we’ve used the Increment (++) operator, which
increases the value of i by 1. It has the same effect as i = i + 1. 
The final argument to For is the body of the loop. The basic strategy is to work our way through the
“old” truth value assignment turning trues into falses until we hit a false. That first false is changed to
true and we stop. The body of our for loop is dominated by an If statement. The first argument of the
If statement accesses the value in the current position of newTA. In case that value is true, according
to our strategy, we change it to false and move on to the next element in the list. If the current value is
false, we change it to true. 
Once  a  false  has  been  changed  to  true,  we  want  to  stop  the  evaluation  of  the  function  and  have  the
current  value  of  newTA  returned  as  the  output  of  the  function.  This  is  the  purpose  of  Catch  and
Throw. The Throw function is a way for you to tell Mathematica, “This (the argument) is the result
of this section of code.” Catch defines the scope of the Throw, that is, the argument of the Catch is
the block of code to which Throw refers. In other words, when Mathematica encounters a Throw, it
evaluates its argument and considers that result to be the result of the entire Catch block. In this case,
when the loop encounters  a  false entry in newTA,  it  changes that  entry to true and then executes  the
Throw, which has the effect of ending any further evaluation and declaring the result to be the current
value  of  newTA.  Should  all  of  the  entries  be  true  initially,  then  the  Throw@newTAD  will  never  be
encountered and the loop will be allowed to complete. Once the loop is complete, the Throw@NullD
statement will be encountered, causing the Catch, and thus the module, to return Null.
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Once  a  false  has  been  changed  to  true,  we  want  to  stop  the  evaluation  of  the  function  and  have  the
current  value  of  newTA  returned  as  the  output  of  the  function.  This  is  the  purpose  of  Catch  and
Throw. The Throw function is a way for you to tell Mathematica, “This (the argument) is the result
of this section of code.” Catch defines the scope of the Throw, that is, the argument of the Catch is
the block of code to which Throw refers. In other words, when Mathematica encounters a Throw, it
evaluates its argument and considers that result to be the result of the entire Catch block. In this case,
when the loop encounters  a  false entry in newTA,  it  changes that  entry to true and then executes  the
Throw, which has the effect of ending any further evaluation and declaring the result to be the current
value  of  newTA.  Should  all  of  the  entries  be  true  initially,  then  the  Throw@newTAD  will  never  be
encountered and the loop will be allowed to complete. Once the loop is complete, the Throw@NullD
statement will be encountered, causing the Catch, and thus the module, to return Null.
You  may  be  wondering  why  we  did  not  use  a  Return  statement  in  the  above.  While  Mathematica
does have a Return function, Mathematica’s programming language has functional style, as opposed
to procedural. Because of this, the behavior of Return can be unexpected. In fact, it is impossible for
Return  to  have  the  same behaviour  in  a  functional  language  such  as  Mathematica  as  it  would  in  a
procedural language like C. More than this, Return in Mathematica is a bit of a square peg in a round
hole situation – it does not fit with the conceptual framework of a functional language.
We can confirm,  in  the case of  three variables,  that  nextTA  does  in  fact  produce all  of  the possible
truth value assignments using the following simple While loop. Note that While executes the second
argument  so  long  as  the  first  argument  is  true.  Also  note  the  use  of  =!=  in  the  test.  This  is  the
UnsameQ (=!=) relation, which is the negation of SameQ (===), which we discussed earlier.
In[119]:= nextTAdemo = 8False, False, False<;

While@nextTAdemo =!= Null,
Print@nextTAdemoD;
nextTAdemo = nextTA@nextTAdemoD

D

8False, False, False<

8True, False, False<

8False, True, False<

8True, True, False<

8False, False, True<

8True, False, True<

8False, True, True<

8True, True, True<

Logical Equivalence Implementation
We now have  the  necessary  pieces  in  place  to  write  the  promised  myEquivalentQ  function.  This
function  accepts  two  propositions  as  arguments  and  returns  true  if  they  are  equivalent  and  false
otherwise.
The function proceeds as follows:
1. First we create the biconditional, which we name bicond, that asserts the equivalence of the

two propositions. We use the getVars function to determine the list of variables used in the 
propositions and we initialize the truth assignment variable TA to the appropriately sized list of all 
false values using the ConstantArray function applied to the value False and the desired 
length of the list.

2. Then we begin a While loop. As long as TA is not Null, we evaluate the biconditional bicond 
on the truth assignment. If this truth value is false, we know that the biconditional is not a 
tautology and thus the propositions are not equivalent and we immediately throw false. Otherwise, 
we use nextTA to update TA to the next truth assignment.

Chapter01.nb  23



3. If the While loop terminates, that indicates that all possible truth assignments have been applied 
to the biconditional and that each one evaluated true, otherwise the procedure would have returned 
false and terminated. Thus the biconditional is a tautology and true is returned.

In[121]:= myEquivalentQ@p_, q_D :=
Module@8bicond, vars, numVars, i, TA, val<,
bicond = Equivalent@p, qD;
vars = getVars@bicondD;
numVars = Length@varsD;
TA = ConstantArray@False, numVarsD;
Catch@
While@TA =!= Null,
val = bicond ê. MapThread@Rule, 8vars, TA<D;
If@! val, Throw@FalseDD;
TA = nextTA@TAD

D;
Throw@TrueD

D
D

We can use our function to computationally verify that Ÿ HpÍ HŸ pÏ qLL ª Ÿ pÏŸ q. This was shown
in Example 7 of Section 1.3 of the text via equivalences.
In[122]:= myEquivalentQ@! Hp »» H! p && qLL, ! p && ! qD

Out[122]= True

1.4 Predicates and Quantifiers
In this section we will see how Mathematica  can be used to explore propositional functions and their
quantification. We can think about a propositional function P as a function that takes as input a mem-
ber of the domain and that outputs a truth value.
For  example,  let  PHxL  denote  the  statement  “x > 0”.  We can create  a  Mathematica  function,  say  gt0
(for greater than 0), that takes x  as input and returns true or false as appropriate. All we have to do is
assign the inequality as the body of the function.
In[123]:= gt0@x_D := x > 0

Evaluating the propositional function at different values demonstrates that the result is a truth value.
In[124]:= gt0@5D

Out[124]= True

In[125]:= gt0@-3D

Out[125]= False
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Representation of Quantifiers
Mathematica  represents  quantification  using  the  functions  ForAll  and  Exists.  These  functions
have  the  same  syntax.  In  their  most  basic  form,  they  take  two  arguments.  The  first  argument  is  the
variable being bound by the quantifier, and the second is the expression being quantified. For example,
to represent the statement "x PHxL, you would enter the following.
In[126]:= ForAll@x, P@xDD

Out[126]= "x P@xD

Likewise,  we  can  represent  the  assertion  that  there  exists  an  x  for  which  the  opposite  is  negative  as
follows.
In[127]:= Exists@x, -x < 0D

Out[127]= $x -x < 0

The ForAll  and Exists  commands also allow you to express conditions on the bound variable by
use of an optional second argument. For example, to symbolically express the assertion “For all x > 0,
-x < 0” you include the condition x > 0 as the second argument and the expression -x < 0 as the third
argument.
In[128]:= ForAll@x, x > 0, -x < 0D

Out[128]= "x,x>0 -x < 0

You can, in particular,  use the condition to specify the domain, or universe of discourse, by asserting
that  the  variable  belongs  to  one of  Mathematica’s  recognized domains  using the  Element  function.
To assert,  for example, that x  is a real number, use the Element  function with first  argument x  and
second argument Reals, Mathematica’s symbol for the domain of real numbers.
In[129]:= Exists@x, Element@x, RealsD, x^2 < 0D

Out[129]= $x,xœReals x2 < 0

Mathematica has seven defined domains that you can use: Reals, Integers, Complexes, Alge-
braics, Primes, Rationals, Booleans.

Truth Value of Quantified Statements
In  addition  to  symbolically  representing  quantified  statements,  Mathematica  can  determine  whether
they  are  true  or  false.  The  Resolve  function,  applied  to  an  expression  involving  quantifiers,  will
eliminate the quantifiers. For expressions like the ones given above, this result will be the truth value
of the statement.
In[130]:= Resolve@Exists@x, -x < 0DD

Out[130]= True

In[131]:= Resolve@ForAll@x, x > 0, -x < 0DD

Out[131]= True

In[132]:= Resolve@Exists@x, Element@x, RealsD, x^2 < 0DD

Out[132]= False

The syntax of the last example can be simplified by using a second argument to Resolve. Rather than
using the Element function within the existential statement, we can obtain the same effect by putting
the domain Reals as a second argument to Resolve.
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The syntax of the last example can be simplified by using a second argument to Resolve. Rather than
using the Element function within the existential statement, we can obtain the same effect by putting
the domain Reals as a second argument to Resolve.
In[133]:= Resolve@Exists@x, x^2 < 0D, RealsD

Out[133]= False

Note that we obtain a different result by changing the domain.
In[134]:= Resolve@Exists@x, x^2 < 0D, ComplexesD

Out[134]= True

For existential quantification, Mathematica can go beyond just finding the truth value and actually give
you witnesses for the existence of objects with the desired property. This is done using the FindIn-
stance  function.  For  example,  the  statement  $x x3 = 8  is  true.  (Note  that  to  enter  an  equation,  we
must use the Equal (==) relation so as to avoid confusion with assignment.)
In[135]:= Resolve@Exists@x, x^3 ã 8DD

Out[135]= True

We  can  find  a  witness  for  this  by  applying  FindInstance  with  the  expression  x3 = 8  as  the  first
argument and the variable as the second variable. 
In[136]:= FindInstance@x^3 ã 8, xD

Out[136]= 88x Ø 2<<

FindInstance  accepts  two  optional  arguments.  You  can  ask  for  more  than  one  witness  just  by
giving the number of instances you would like to find as an argument.
In[137]:= FindInstance@x^3 ã 8, x, 3D

Out[137]= 98x Ø 2<, 9x Ø -1 - Â 3 =, 9x Ø -1 + Â 3 ==

You can also restrict the results to a particular domain by giving the domain as an argument. Note that
when giving both a domain and a specific number of results, the domain should be the third argument
and the number the fourth.  Below, we have asked for more instances than exist,  so Mathematica  just
returns the one witness.
In[138]:= FindInstance@x^3 ã 8, x, Integers, 3D

Out[138]= 88x Ø 2<<

If  a  statement  has  one  or  more  free  variables,  Mathematica  can  be  used  to  find  conditions  on  those
variables  in  order  to  make  a  statement  true.  For  example,  consider  the  statement  "x x ÿ y = 0.  In  this
statement,  x  is  bound  and  y  is  free.  The  Reduce  function  can  be  used  to  solve  for  free  variables.
Apply  it  with  the  statement  as  the  first  argument  and  the  free  variable  (or  list  of  variables)  as  the
second.
In[139]:= Reduce@ForAll@x, x*y ã 0D, yD

Out[139]= y ã 0

The result, y = 0, means that if the free variable y is replaced by the value 0, then the statement will be
true.
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The result, y = 0, means that if the free variable y is replaced by the value 0, then the statement will be
true.
Reduce accepts a domain as an optional third argument.
In[140]:= Reduce@Exists@x, x^2 ã yD, y, RealsD

Out[140]= y ¥ 0

This result means that, restricting all variables to the real numbers, if y is replaced by any non-negative
real  number,  the  existential  statement  $x x2 = y  will  be  true.  Note  that  if  the  domain  restriction  is
removed, Mathematica defaults to complex numbers and so there would be no restriction on y.
In[141]:= Reduce@Exists@x, x^2 ã yD, yD

Out[141]= True

1.5 Nested Quantifiers
In  this  section  we  will  see  how  Mathematica  can  be  used  to  represent  statements  with  nested
quantifiers.
For statements in which all the quantifiers are of the same kind, you only need to use a single Exists
or ForAll with the list of variables surrounded by braces as the first argument. For example, to repre-
sent the statement "x "y Hx ÿ y = 0L Ø Hx = 0Í y = 0L, we only need one ForAll function with {x,y}
as the first argument.
In[142]:= ForAll@8x, y<, Implies@x*y ã 0, x ã 0 »» y ã 0DD

Out[142]= "8x,y< Hx y ã 0 fl x ã 0 »» y ã 0L

Using the Resolve command, we see that Mathematica recognizes this as true.
In[143]:= Resolve@ForAll@8x, y<, Implies@x*y ã 0, x ã 0 »» y ã 0DDD

Out[143]= True

Note that since we did not specify a domain, Mathematica  uses the default domain based on the con-
text. In this case, it uses the complex numbers as its domain, since the content of the statement is about
equations. In general, the default domain is the largest domain that makes sense in the context.
For statements that involve more than one type of quantifier, we must nest the Exists and ForAll
functions. For example, to represent "x¹≠0 $y x ÿ y = 1, we enter the following.

In[144]:= ForAll@x, x ¹≠ 0, Exists@y, x*y ã 1DD

Out[144]= "x,x¹≠0 $y x y ã 1

Again, Resolve recognizes the truth of this statement.
In[145]:= Resolve@ForAll@x, x ¹≠ 0, Exists@y, x*y ã 1DDD

Out[145]= True

But limiting the domain to the integers makes the statement false.
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In[146]:= Resolve@ForAll@x, x ¹≠ 0, Exists@y, x*y ã 1DD, IntegersD

Out[146]= False

Also observe that reversing the order of the quantifiers changes the meaning of the statement.
In[147]:= Exists@y, ForAll@x, x ¹≠ 0, x*y ã 1DD

Out[147]= $y "x,x¹≠0 y x ã 1

In[148]:= Resolve@Exists@y, ForAll@x, x ¹≠ 0, x*y ã 1DDD

Out[148]= False

Finally, Mathematica will automatically apply DeMorgan’s laws for quantifiers to a statement that you
enter.
In[149]:= ! ForAll@x, Exists@y, ForAll@z, P@x, y, zDDDD

Out[149]= $x "y $z ! P@x, y, zD

1.6 Rules of Inference
In this section, we’ll see how Mathematica can be used to verify the validity of arguments in proposi-
tional logic. In particular, we’ll write a function that, given a list of premises and a possible conclusion,
will determine whether or not the conclusion necessarily follows from the premises. Recall from Defini-
tion  1  in  the  text  that  an  argument  is  defined  to  be  a  sequence  of  propositions,  the  last  of  which  is
called the conclusion and all others are premises. Also recall that an argument p1, p2, …, pn, q is said
to be valid when Hp1Ï p2Ïº⋯Ï pnL Ø q is a tautology.
We can use the TautologyQ function described in Section 1.3 of this manual to test whether a propo-
sition  is  a  tautology.  For  example,  we can confirm modus tollens.  (See  Table  1  in  Section 1.6  of  the
text for the tautologies associated to the rules of inference.)
In[150]:= TautologyQ@Implies@H! q && Implies@p, qDL, ! pDD

Out[150]= True

To determine if  an argument is  valid,  we need to:  (1)  form the conjunction of the premises,  (2)  form
the conditional statement that the premises imply the conclusion, and (3) test the resulting proposition
with TautologyQ. The validQ function below will accept as input an argument, i.e., a list of propo-
sitions, and return true if the argument is valid.
In[151]:= validQ@A_D := Module@8premiseList, premises, i<,

premiseList = A@@1 ;; -2DD;
premises = Apply@And, premiseListD;
TautologyQ@Implies@premises, A@@-1DDDD

D

Two comments  on  the  code  above  are  needed.  First,  the  double-semicolons  used  in  the  definition  of
premiseList is the Span (;;) operator. When used to refer to a Part ([[…]]) of a list, i ;; j
indicates the range from index i to index j. In this case, the -2 indicates the next to last entry of the list.
So A@@ 1 ;; -2 DD refers to all of A except the last entry and is thus the premises of the argument A.
Second, the Apply  operator is  used to apply the function And  to the arguments contained in the list
premiseList. This is necessary because, while And can accept any number of arguments and form
the logical  conjunction,  it  won’t  do anything with a single list  like premiseList.  When Apply  is
given a function and a list, the result is the same as if the elements of the list were given as the argu-
ments  to  the  function.  Fundamentally,  Mathematica  is  replacing  the  head  of  the  list,  List,  by  the
name of the function.
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Two comments  on  the  code  above  are  needed.  First,  the  double-semicolons  used  in  the  definition  of
premiseList is the Span (;;) operator. When used to refer to a Part ([[…]]) of a list, i ;; j
indicates the range from index i to index j. In this case, the -2 indicates the next to last entry of the list.
So A@@ 1 ;; -2 DD refers to all of A except the last entry and is thus the premises of the argument A.
Second, the Apply  operator is  used to apply the function And  to the arguments contained in the list
premiseList. This is necessary because, while And can accept any number of arguments and form
the logical  conjunction,  it  won’t  do anything with a single list  like premiseList.  When Apply  is
given a function and a list, the result is the same as if the elements of the list were given as the argu-
ments  to  the  function.  Fundamentally,  Mathematica  is  replacing  the  head  of  the  list,  List,  by  the
name of the function.
We can use this function to verify that the argument described in Exercise 12 of Section 1.6 of the text
is in fact valid.
In[152]:= validQ@8Implies@p && t, r »» sD,

Implies@q, u && tD, Implies@u, pD, ! s, Implies@q, rD<D

Out[152]= True

Note that  Exercise  12,  which this  example  was based on,  asks  you to  verify  the  validity  of  the  argu-
ment  using  rules  of  inference.  It  is  important  to  note  that  our  function  did  not  do  that.  It  essentially
used truth tables to check validity. It would be considerably more difficult to program Mathematica to
check validity with rules  of  inference than it  was to do so with truth tables.  On the other  hand,  for  a
human it is typically much easier to use rules of inference than a truth table. Especially with practice,
you will develop an intuition about logical arguments that cannot be easily created in a computer.

Finding Conclusions (optional)
In  the  remainder  of  this  section  we’ll  consider  a  slightly  different  question:  given  a  list  of  premises,
what conclusions can you draw using valid arguments? We’ll approach this problem in Mathematica in
a straightforward (and naïve) way: generate possible conclusions and use validQ to determine which
are valid conclusions.
Making Compound Propositions
To  generate  possible  conclusions,  we’ll  use  the  following  function,  allCompound.  This  function
takes a list of propositions and produces all possible propositions formed from one logical connective
(from and, or, and implies) and two of the given propositions, along with the negations of the proposi-
tions.  To  avoid  including  some  trivialities,  we’ll  exclude  those  propositions  that  are  tautologies  or
contradictions.
The function is provided below. Note the use of AppendTo, which accepts a list and an element to be
added to the list as arguments. It has the result of adding the given element to the list and updating the
list  without  the  need  of  an  explicit  assignment.  Also  note  that  at  the  end  of  the  function  we  apply
DeleteDuplicates so as to remove repeated elements from the list. Also pay attention to the uses
of Do, which allow us to loop over all the elements (or combinations of elements) of lists.
The  bulk  of  the  function  is  taken  up  by  adding  the  conjunction,  disjunction,  and  implication  of  the
chosen pair to the result list, provided that they do not form tautologies or contradictions.
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In[153]:= allCompound@vars_D := Module@8p, q, tempList = vars, propList<,
Do@AppendTo@tempList, ! pD, 8p, vars<D;
propList = tempList;
Do@If@! TautologyQ@p && qD && ! TautologyQ@! Hp && qLD,

AppendTo@propList, p && qDD;
If@! TautologyQ@p »» qD && ! TautologyQ@! Hp »» qLD,
AppendTo@propList, p »» qDD;

If@! TautologyQ@Implies@p, qDD &&
! TautologyQ@! Implies@p, qDD,

AppendTo@propList, Implies@p, qDDD
, 8p, tempList<, 8q, tempList<D;

DeleteDuplicates@propListDD

Finding Valid Conclusions
Now we  write  a  function  to  explore  possible  conclusions  given  a  set  of  premises.  This  function  will
take  two arguments.  The  first  will  be  a  list  of  premises.  The  second  a  positive  integer  indicating  the
number  of  times  that  allCompound  should,  recursively,  be  used  to  generate  possibilities.  You will
generally not want to use any number other than 1 for this second value as the time requirement can be
quite substantial.
The  operation  of  this  function  is  fairly  straightforward.  First,  it  determines  the  variables  used  in  the
provided premises by applying the getVars function we wrote above. Second, it recursively applies
allCompound, beginning with the list of variables, a number of times equal to the level, which is the
second  argument  to  the  function.  Finally,  for  each  of  the  possible  conclusions  generated  by  the
allCompound function, it uses validQ to see if it is a valid conclusion from the premises, and adds
those that are to the output.
In[154]:= findConsequences@premises_, level_D :=

Module@8vars, P, possibleC, conclusions = 8<, c, i<,
vars = getVars@premisesD;
possibleC = vars;
For@i = 1, i § level, i++,
possibleC = allCompound@possibleCDD;

Do@
If@validQ@Append@premises, cDD,
AppendTo@conclusions, cDD, 8c, possibleC<

D;
conclusions

D

Here  is  the  result  of  applying  findConsequences  to  the  premises  of  Exercise  12  with  only  one
iteration of allCompound. (With two iterations, the function takes quite some time to complete and
produces thousands of valid conclusions.)
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In[155]:= findConsequences@8Implies@p && t, r »» sD,
Implies@q, u && tD, Implies@u, pD, ! s<, 1D

Out[155]= 8! s, p »» ! s, p fl ! s, p »» ! q, p »» ! u, t »» ! s, t fl ! s, t »» ! q,
r »» ! s, r fl ! s, r »» ! q, s fl p, s fl t, s fl r, s fl q, s fl u,
s fl ! p, s fl ! t, s fl ! r, s fl ! s, s fl ! q, s fl ! u, q fl p, q fl t,
q fl r, q fl u, q »» ! s, q fl ! s, u fl p, u »» ! s, u fl ! s, u »» ! q,
! p »» ! s, ! p fl ! s, ! p fl ! q, ! p fl ! u, ! t »» ! s, ! t fl ! s,
! t fl ! q, ! r »» ! s, ! r fl ! s, ! r fl ! q, ! s »» p, ! s »» t, ! s »» r,
! s »» q, ! s »» u, ! s »» ! p, ! s »» ! t, ! s »» ! r, ! s && ! s,
! s »» ! s, ! s »» ! q, ! s »» ! u, ! q »» p, ! q »» t, ! q »» r, ! q »» u,
! q »» ! s, ! q fl ! s, ! u »» p, ! u »» ! s, ! u fl ! s, ! u fl ! q<

In[156]:= Length@%D

Out[156]= 64

Observe  that  some  of  the  conclusions  are  just  merely  restating  premises.  But  even  after  eliminating
those, there are still 60 valid conclusions involving at most two of the propositional variables. Most of
those conclusions are going to be fairly uninteresting in any particular context. This illustrates a funda-
mental difficulty with computer assisted proof. Neither checking the validity of conclusions nor generat-
ing  valid  conclusions  from  a  list  of  premises  are  particularly  difficult.  The  difficulty  is  in  creating
heuristics and other mechanisms to help direct the computer to useful results.

1.7 Introduction to Proofs
In  this  section  we  will  see  how Mathematica  can  be  used  to  find  counterexamples.  This  is  the  proof
technique most suitable to Mathematica’s computational abilities.
Example 14 of Section 1.7 of the textbook considers the statement “Every positive integer is the sum
of  the  squares  of  two  integers.”  This  is  demonstrated  to  be  false  with  3  as  a  counterexample.  Here,
we’ll  consider  the  related  statement  that  “Every  positive  integer  is  the  sum  of  the  squares  of  three
integers.” This statement is also false.

Finding a Counterexample
To find a counterexample, we’ll  create a function that,  given an integer,  looks for three integers such
that the sum of their squares are equal to the given integer. If the function finds three such integers, it
will return a list containing them. On the other hand, if it cannot find three such integers, it will return
false. Here is the function:
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In[157]:= find3squares@n_D := Module@8a, b, c, max = Floor@Sqrt@nDD<,
Catch@
For@a = 0, a § max, a++,
For@b = 0, b § max, b++,
For@c = 0, c § max, c++,
If@n ã a^2 + b^2 + c^2, Throw@8a, b, c<DD

D
D

D;
Throw@FalseD

D
D

The find3squares function is straightforward. We use three For loops to check all possible values
of  a,  b,  and c.  Each loop can range from 0 to  the  floor  of  n  (the  floor  of  a  number  is  the  largest
integer that is less than or equal to the number). Note that these bounds are sufficient to guarantee that
if n can be written as the sum of the squares of three integers, then this procedure will find them. We
observe that 3, the counterexample from Example 14, can be written as the sum of three squares.
In[158]:= find3squares@3D

Out[158]= 81, 1, 1<

To find a counterexample to the claim that  “Every positive integer is  the sum of the squares of three
integers,” we write a function that, starting with 1, tests numbers using find3squares until a value
is found that causes it to return false.
In[159]:= find3counter := Module@8n = 1<,

While@find3squares@nD =!= False, n++D;
n

D

First note that this “function” does not take an argument, so we will not use brackets when we execute
it.
Also note that the While  loop is controlled by the return value of find3squares.  This is a fairly
common approach when you are looking for an input value that will cause another function to return a
desired result. As before, when comparing non-numerical objects, we use UnsameQ (=!=).
To find the counterexample, all we need to do is call the function.
In[160]:= find3counter

Out[160]= 7

This indicates that 7 is an integer that is not the sum of the squares of three integers.
Let’s take a step back and review what we did. Our goal was to disprove the statement "n PHnL where
PHnL is the statement that “n can be written as the sum of the squares of three integers.” We first wrote
find3squares,  which  is  a  function  whose  goal  is  to  find  three  integers  whose  squares  add  to  its
argument.  Observe that  if  find3squares  returns three values for  a  given n,  then we know PHnL  is
true  for  that  n.  Only  after  we  wrote  the  find3squares  function  did  we  write  find3counter,
whose task was to find a counterexample to the universal statement. This is a common strategy when
using a computer to find a counterexample — write a program that seeks to verify the PHnL  statement
for input n and then look to find a value of n that causes the program to fail.
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Let’s take a step back and review what we did. Our goal was to disprove the statement "n PHnL where
PHnL is the statement that “n can be written as the sum of the squares of three integers.” We first wrote
find3squares,  which  is  a  function  whose  goal  is  to  find  three  integers  whose  squares  add  to  its
argument.  Observe that  if  find3squares  returns three values for  a  given n,  then we know PHnL  is
true  for  that  n.  Only  after  we  wrote  the  find3squares  function  did  we  write  find3counter,
whose task was to find a counterexample to the universal statement. This is a common strategy when
using a computer to find a counterexample — write a program that seeks to verify the PHnL  statement
for input n and then look to find a value of n that causes the program to fail.

Proof
We have not yet actually disproved the statement that “Every positive integer is the sum of the squares
of  three  integers.”  The functions  we wrote  found a  candidate  for  a  counterexample,  but  we don’t  yet
know for sure that it is in fact a counterexample (after all, our program could be flawed). To prove the
statement  is  false,  we must  prove that  7  is  in  fact  a  counterexample.  We can approach this  in  one of
two ways. The first approach is to follow the Solution to Example 17 in Section 1.8 of the text.
The alternative  is  to  prove the  correctness  of  our  algorithm.  Specifically,  we need to  prove the  state-
ment: “The positive integer n  can be written as the sum of the squares of three integers if and only if
find3squares[n]  returns a list of three integers.” Let’s prove this biconditional.
First  we’ll  prove  the  statement:  if  the  positive  integer  n  can  be  written  as  the  sum of  the  squares  of
three integers, then find3squares[n]  returns a list of three integers. We’ll use a direct proof. We
assume that n can be written as the sum of three squares. Say n = a2 + b2 + c2  for integers a, b, c. Note
that  we  may  take  a,  b,  and  c  to  be  non-negative  integers,  since  an  integer  and  its  negative  have  the
same square. Also, n = a2 + b2 + c2 ¥ a2. So n ¥ a2 and a ¥ 0, which means that a § n . Since a is an
integer and is less than or equal to the square root of n, a must be less than or equal to the floor of n
since the floor of a real number is the greatest integer less than or equal to the real number. The same
argument applies to b and c. We started with n = a2 + b2 + c2  and have now shown that a, b, and c can
be assumed to be non-negative integers and must be less than or equal to the floor of the square root of
n.  The  nested  for  loops  in  find3squares  set  a,  b,  and  c  equal  to  every  possible  combination  of
integers  between 0  and max,  which is  the  floor  of  the  square  root  of  n.  Hence,  a,  b,  and c  must,  at
some point during the execution of find3squares, be set to a, b, and c, and thus the condition that
n ã a^2 + b^2 + c^2  will  be  satisfied  and  8a, b, c<  will  be  returned  by  the  function.  We’ve
assumed that  n  can  be  written  as  the  sum of  three  squares  and concluded that  find3squares[n]
must return a list of the integers.
The converse is:  if  find3squares[n]  returns a list  of three integers,  then n  can be written as the
sum  of  the  squares  of  three  integers.  This  is  nearly  obvious,  since  if  find3squares[n]  returns
8a, b, c<, it must have been because n ã a^2 + b^2 + c^2 was found to be true.
Therefore,  the  find3squares  procedure  is  correct  and  since  find3squares[n]  returns  false,
we can conclude that 7 is,  in fact,  a counterexample to the assertion that every positive integer is  the
sum of the squares of three integers.
We  will  typically  not  be  proving  the  correctness  of  procedures  in  this  manual  —  that  is  a  topic  for
another course. The above merely serves to illustrate how you can approach such a proof and to rein-
force the principle that just because a program produces output does not guarantee that the program or
the output is correct.

1.8 Proof Methods and Strategy
In  this  section,  we  will  consider  two  additional  proof  techniques  that  Mathematica  can  assist  with:
exhaustive proofs and existence proofs.
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In  this  section,  we  will  consider  two  additional  proof  techniques  that  Mathematica  can  assist  with:
exhaustive proofs and existence proofs.

Exhaustive Proof
In an exhaustive proof we must check all possibilities. For an exhaustive proof to be feasible by hand,
there  must  be  a  fairly  small  number  of  possibilities.  With  computer  software  such  as  Mathematica,
though, the number of possibilities can be greatly expanded. Consider Example 2 from Section 1.8 of
the text. There it was determined by hand that the only consecutive positive integers not exceeding 100
that are perfect powers are 8 and 9.
We  will  consider  a  variation  of  this  problem:  prove  that  the  only  consecutive  positive  integers  not
exceeding 100,000,000 that are perfect powers are 8 and 9.
Our  approach  will  be  the  same  as  was  used  in  the  text.  We  will  generate  all  the  perfect  powers  not
exceeding the maximum value and then we will  check to see which of  the perfect  powers occur as  a
consecutive  pair.  We  will  implement  this  strategy  with  two  procedures.  The  first  function,
findPowers,  will accept as an argument the maximum value to consider (e.g., 100) and will return
all  of  the  perfect  powers  no  greater  than  that  maximum.  The  second  function,
findConsecutivePowers,  will  also  accept  the  maximum  value  as  its  input.  It  will  use
findPowers to generate the powers and then check them for consecutive pairs.
For the first function, findPowers, we need to generate all perfect powers up to the given limit. To
do this, we’ll use a nested pair of loops for the exponent (p) and the base (b). Both of the loops will be
While loops controlled by a Boolean variable, continuep and continueb. In the inner loop, we
check to see if b^p is greater than the limit, n, given as the input to the function. If it is, then we set
continueb  to  false,  which  terminates  the  inner  loop,  and  if  not,  we  add  b^p  to  the  list  of  perfect
powers, L, and increment b. Once the inner b loop has terminated, we increment the power p. If 2^p
exceeds the limit, then we know that no more exponents need to be checked and we terminate the outer
loop by setting continuep to false.
In[161]:= findPowers@n_D :=

Module@8L = 8<, b, p = 2, continuep = True, continueb<,
While@continuep,
b = 1;
continueb = True;
While@continueb,
If@b^p > n, continueb = False, AppendTo@L, b^pD; b++D

D;
p++;
If@2^p > n, continuep = FalseD

D;
Union@LD

D

Note  that  the  Union  function,  applied  to  a  single  list,  returns  the  list  sorted  and  with  duplicates
removed.  We  confirm  that  the  list  of  powers  produced  by  this  algorithm  is  the  same  as  the  powers
considered in Example 2 from the text.

34   Chapter01.nb



In[162]:= findPowers@100D

Out[162]= 81, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100<

The second function, findConsecutivePowers, begins by calling findPowers and storing the
list of perfect powers as powers. Then we use a Do loop with second argument {x,powers}. This
sets the variable x equal to each element of the list powers. In our procedure, this means that x is set
to each of the perfect powers in turn. In the body of the loop, we check to see if the next consecutive
integer,  x+1,  is  also  a  perfect  power  using  the  MemberQ  function.  The  MemberQ  function  requires
two arguments. The first is a list to search and the second specifies what is being sought. When we find
consecutive perfect powers, we Print them. 
In[163]:= findConsecutivePowers@n_D := Module@8powers, x<,

powers = findPowers@nD;
Do@
If@MemberQ@powers, x + 1D, Print@x, " ", x + 1DD, 8x, powers<D

D

Subject  to  the  correctness  of  our  procedures,  we  can  demonstrate  that  the  only  consecutive  perfect
powers less than 100, 000, 000 are 8 and 9 by running the function.
In[164]:= findConsecutivePowers@100 000 000D

8 9

It is worth pointing out that in fact, 8 and 9 are the only consecutive perfect powers. That assertion was
conjectured by Eugéne Charles Catalan in 1844 and was finally proven in 2002 by Preda Mihăilescu.

Existence Proofs
Proofs of existence can also benefit from Mathematica. Consider Example 10 in Section 1.8 of the text.
This  example  asks,  “Show that  there  is  a  positive  integer  that  can  be  written  as  the  sum of  cubes  of
positive integers in two different ways.” The solution reports that 1729 is such an integer and indicates
that a computer search was used to find that value. Let’s see how this can be done.
The basic idea will  be to generate numbers that  can be written as the sum of cubes.  If  we generate a
number  twice,  that  will  tell  us  that  the  number  can  be  written  as  the  sum  of  cubes  in  two  different
ways. We’ll create a list L and every time we generate a new sum of two cubes, we’ll check to see if
that number is already in L using the MemberQ function. If the new value is already in L, then that’s
the number we’re looking for. Otherwise, we add the new number to L and generate a new sum of two
cubes.
We generate the sums of cubes with two nested loops that control integers a and b. The inner loop will
be a For loop that causes b to range from 1 to the value of a. Using a as the maximum value means
that b will always be less than or equal to a and so the procedure will not falsely report results coming
from commutativity of addition (e.g., 9 = 23 + 13 = 13 + 23). The outer loop will be a While loop with
condition (first argument) True. The value of a will be initialized to 1 and incremented by 1 after the
inner  b  loop  completes.  The  While  loop  in  this  case  is  called  an  infinite  loop  because  it  will  never
stop on its own. When the function finds an integer which can be written as the sum of cubes in two
different ways, the function will Throw that value. That ends the loop and is sent to the Catch, which
encompasses the entire body.  The infinite loop means that  the value of a  will  continue getting larger
and  larger  with  no  upper  bound.  This  is  useful  because  we  don’t  know  how  large  the  numbers  will
need to be in order to find the example. However, infinite loops should be used with caution, especially
if you’re not certain that the procedure will terminate in a reasonable amount of time.
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We generate the sums of cubes with two nested loops that control integers a and b. The inner loop will
be a For loop that causes b to range from 1 to the value of a. Using a as the maximum value means
that b will always be less than or equal to a and so the procedure will not falsely report results coming
from commutativity of addition (e.g., 9 = 23 + 13 = 13 + 23). The outer loop will be a While loop with
condition (first argument) True. The value of a will be initialized to 1 and incremented by 1 after the
inner  b  loop  completes.  The  While  loop  in  this  case  is  called  an  infinite  loop  because  it  will  never
stop on its own. When the function finds an integer which can be written as the sum of cubes in two
different ways, the function will Throw that value. That ends the loop and is sent to the Catch, which
encompasses the entire body.  The infinite loop means that  the value of a  will  continue getting larger
and  larger  with  no  upper  bound.  This  is  useful  because  we  don’t  know  how  large  the  numbers  will
need to be in order to find the example. However, infinite loops should be used with caution, especially
if you’re not certain that the procedure will terminate in a reasonable amount of time.
Here is the function and its result.
In[165]:= twoCubes := Module@8L = 8<, a = 1, b, n<,

Catch@
While@True,
For@b = 1, b § a, b++,
n = a^3 + b^3;
If@MemberQ@L, nD, Throw@nD, AppendTo@L, nDD

D;
a++

DDD

In[166]:= twoCubes

Out[166]= 1729

Solutions to Computer Projects and Computations and 
Explorations

Computer Projects 3

Given a compound proposition, determine whether it is satisfiable by checking its truth value 
for all positive assignments of truth values to its propositional variables.

Solution:  Recall  that  a  proposition  is  satisfiable  if  there  is  at  least  one  assignment  of  truth  values  to
variables  that  results  in  a  true  proposition.  Our  approach  will  be  similar  to  the  way  we  checked  for
logical equivalence in the myEquivalentQ function in Section 1.3. Note, of course, that Mathemat-
ica  provides a built-in function,  SatisfiableQ,  that  performs this  function.  The goal  of  this  exer-
cise is to see how such a function might be implemented.
We create a function, mySatisfiableQ,  that checks all possible assignments of truth values to the
propositional variables. The mySatisfiableQ function accepts one argument, a logical expression.
It  will  print  out  all,  if  any,  truth  value  assignments  that  satisfy  the  proposition.  We  will  initialize  a
result  variable to False.  When an assignment that satisfies the proposition is found, this variable
is set to True  and the assignment is printed. After all  possible assignments are considered, the func-
tion returns the result variable.
Since this function is otherwise very similar to myEquivalentQ, we offer no further explanation.
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In[167]:= mySatisfiableQ@p_D :=
Module@8result = False, vars, numVars, i, TA, val<,
vars = getVars@pD;
numVars = Length@varsD;
TA = ConstantArray@False, numVarsD;
While@TA =!= Null,
val = p ê. MapThread@Rule, 8vars, TA<D;
If@val, result = True; Print@TADD;
TA = nextTA@TAD;

D;
result

D

We apply this function to the propositions in Example 9 of Section 1.3 of the text.
In[168]:= mySatisfiableQ@Hp »» ! qL && Hq »» ! rL && Hr »» ! pLD

8False, False, False<

8True, True, True<

Out[168]= True

In[169]:= mySatisfiableQ@Hp »» q »» rL && H! p »» ! q »» ! rLD

8True, False, False<

8False, True, False<

8True, True, False<

8False, False, True<

8True, False, True<

8False, True, True<

Out[169]= True

In[170]:= mySatisfiableQ@Hp »» ! qL && Hq »» ! rL &&
Hr »» ! pL && Hp »» q »» rL && H! p »» ! q »» ! rLD

Out[170]= False

Computations and Explorations 1

Look for positive integers that are not the sum of the cubes of eight positive integers.

Solution: We will find integers n such that n ¹≠ a13 + a23 +º⋯+ a83 for any integers a1, a2, …, a8. We can
restate the problem as finding a counterexample to the assertion that every integer can be written as the
sum of eight cubes.
Our approach will  be to generate all  of the integers that are equal to the sum of eight cubes and then
check to see what integers are missing. For this, we need to set a limit n, i.e., the maximum integer that
we’re  considering  as  a  possible  answer  to  the  question.  For  instance,  we  might  restrict  our  search  to
integers less than 100. Then we know that each ai is at most the cube root of this limit, since ai3 § n.
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Our approach will  be to generate all  of the integers that are equal to the sum of eight cubes and then
check to see what integers are missing. For this, we need to set a limit n, i.e., the maximum integer that
we’re  considering  as  a  possible  answer  to  the  question.  For  instance,  we  might  restrict  our  search  to
integers less than 100. Then we know that each ai is at most the cube root of this limit, since ai3 § n.
We’ll also want to make our approach as efficient as possible in order to find as many such integers as
we can. So we make the following observations.
Every  number  that  can  be  expressed  as  the  sum  of  eight  cubes  can  be  expressed  as  the  sum  of  two
integers  each  of  which  is  the  sum of  four  cubes.  Those,  in  turn,  can  be  expresses  as  the  sum of  two
integers which are the sum of two cubes each. That is,

n = AIa13 + a23M+ Ia33 + a43ME+ AIa5
3 + a63M+ Ia73 + a83ME

This  means  that  we  don’t  need  to  write  a  function  to  find  all  possible  sums  of  eight  cubes.  Instead,
we’ll write a function that, given a list of numbers, will find all possible sums of two numbers that are

both in  that  list.  If  we apply this  function to  the cubes of  the numbers  from 0 through n3 ,  that  will
produce all numbers that are the sums of two cubes. Applying the function again to that result will give
all numbers that are the sum of four cubes. And applying it once again to that result will produce the
numbers (up to n) that are the sum of eight cubes.
Additionally, when we find all the possible sums of two integers, we will exclude any sum that exceeds
our maximum. Recall that we’ve determined that if an integer less than or equal to n can be written as

the sum of cubes,  then it  can be written as the sum of cubes with each ai  between 0 and n3 .  There

will be numbers greater than n that are generated as the sum of cubes of integers less than n3 , how-
ever, these do not provide us with any information about numbers that cannot be generated as the sum
of eight cubes. And excluding them at each step of the process decreases the number of sums that need
to be computed.

Finally, we may assume that the second number is at least as large as the first. Since if we add 23 + 53

to our list of sums, there is no need to also include 53 + 23.
Here  is  the  function  that  finds  all  possible  sums  of  pairs  of  integers  from  the  given  list  L  up  to  the
specified maximum value max. Note that we use the Union function to remove redundancies and also
put the list in increasing order.
In[171]:= allPairSums@L_, max_D :=

Module@8a = 1, b, s, sumList = 8<, num = Length@LD<,
While@a § num,
b = a;
While@b § num,
s = L@@aDD + L@@bDD;
If@s § max, AppendTo@sumList, sD, b = numD;
b++;

D;
a++;

D;
Union@sumListD

D

With this function in place, we need to apply it (three times) to a list of cubes. We’ll consider	
cubes up
to 73, and including 0. The Table function used below forms the list of all values obtained by evaluat-
ing the first argument after replacing the variable i by every integer between (inclusive) the two given
in the second argument.
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With this function in place, we need to apply it (three times) to a list of cubes. We’ll consider	
cubes up
to 73, and including 0. The Table function used below forms the list of all values obtained by evaluat-
ing the first argument after replacing the variable i by every integer between (inclusive) the two given
in the second argument.
In[172]:= someCubes = Table@i^3, 8i, 0, 7<D

Out[172]= 80, 1, 8, 27, 64, 125, 216, 343<

Applying the allPairSums function once gives us all the sums of pairs of cubes (up to 73 = 343).
In[173]:= twoCubes = allPairSums@someCubes, 343D

Out[173]= 80, 1, 2, 8, 9, 16, 27, 28, 35, 54, 64, 65, 72, 91, 125, 126,
128, 133, 152, 189, 216, 217, 224, 243, 250, 280, 341, 343<

Applying it to that result gives all possible sums of four cubes.
In[174]:= fourCubes = allPairSums@twoCubes, 343D

Out[174]= 80, 1, 2, 3, 4, 8, 9, 10, 11, 16, 17, 18, 24, 25, 27, 28, 29, 30, 32,
35, 36, 37, 43, 44, 51, 54, 55, 56, 62, 63, 64, 65, 66, 67, 70,
72, 73, 74, 80, 81, 82, 88, 89, 91, 92, 93, 99, 100, 107, 108,
118, 119, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137,
141, 142, 144, 145, 149, 152, 153, 154, 155, 156, 160, 161, 163,
168, 179, 180, 182, 187, 189, 190, 191, 192, 193, 197, 198, 200,
205, 206, 216, 217, 218, 219, 224, 225, 226, 232, 233, 240,
243, 244, 245, 250, 251, 252, 253, 254, 256, 258, 259, 261,
266, 270, 271, 277, 278, 280, 281, 282, 285, 288, 289, 296,
297, 304, 307, 308, 314, 315, 317, 322, 334, 341, 342, 343<

And once again we obtain all integers up to 343 which can be obtained as the sum of eight cubes.
In[175]:= eightCubes = allPairSums@fourCubes, 343D

Out[175]= 80, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137,
138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161,
162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,
187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210,
211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222,
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Out[175]=

211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222,
223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234,
235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247,
248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271,
272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283,
284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295,
296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307,
308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319,
320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331,
332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343<

And finally, we print out the integers that are missing from the list.
In[176]:= For@i = 1, i § 343, i++, If@! MemberQ@eightCubes, iD, Print@iDDD

23

239

Exercises
1. Write functions or, xor, and not to implement those bit string operators.
2. Use Mathematica to solve exercises 19 through 23 in Section 1.2, using the knights and 

knaves puzzle that was solved earlier in this chapter as a guide.
3. Write a Mathematica function to find the dual of a proposition. Dual is defined in the 

Exercises of Section 1.3. (Hint: you may find it useful to know that And and Or are heads in 
logical expressions.)

4. Write a function uniqueness, based on the built-in Exists and ForAll functions, to 
implement the uniqueness quantifier, described in Section 1.4 of the text. 

5. Write a Mathematica function that plays the obligato game in the role of the student, as 
described in the Supplementary Exercises of Chapter 1. Specifically, the function should 
accept two arguments. The first argument is the new statement that you, as the teacher, 
provide. The second argument should be the list of Mathematica’s responses to all the 
previous statements. For example, suppose the teacher’s first statement is p Ø HqÍ rL, the 
second statement is Ÿ pÍ q, and the third statement is r. If the function/student accepts the 
first statement and denies the second statement, then you would obtain the response to the 
third statement by executing

obligato@r, 8Implies@p, q »» rD, ! H! p »» qL<D

The function must accept the statement r and thus returns the list with that response included, 
as shown below:

8p fl q »» r, ! H! p »» qL, r<
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