
3 Algorithms

Introduction
In this chapter we supplement the discussion of algorithms presented in the text with their implementa-
tion in Mathematica. In Section 3.1, we discuss the process of turning step-by-step instructions describ-
ing  a  procedure  and  pseudocode  for  a  procedure  into  Mathematica  code.  In  the  second  section,  we
make use of Mathematica’s graphing capabilities to visualize functions related by the big-O notation.
And in Section 3.3, we explore average-case complexity of algorithms by considering the performance
of a function on input.
In  this  chapter,  please  keep  in  mind  the  difference  between  an  algorithm  and  its  implementation
(referred  to  as  a  function  in  Mathematica  parlance).  An  algorithm refers  to  an  approach  to  solving  a
particular problem, while a function is the implementation of the algorithm within Mathematica. In this
manual, we will also distinguish between complexity and performance. Complexity is a measure of an
algorithm and is generally measured by counting basic operations such as comparisons,  while perfor-
mance  takes  into  account  additional  factors  related  to  the  specifics  of  an  implementation  and  can  be
measured  by  recording  the  time  it  takes  for  the  function  to  complete.  Some  of  the  factors  affecting
performance may include:  choice  of  data  structures  and how the  system implements  those  structures,
the  kinds  of  loops  employed and how those  are  implemented  by  the  computer  language,  and  various
improvements  to  efficiency  handled  by  the  system  (for  example,  many  computer  languages,  when
evaluating  a  Boolean  expression  such  as  pÏ q,  will  not  bother  checking  q  if  p  is  found  to  be  false
thereby decreasing the number of operations that need to be performed).

3.1 Algorithms
It  is  impossible  to  overemphasize the importance and utility  of  writing either  pseudocode or  step-by-
step instructions for an algorithm before you write the actual code for the function. Doing so helps you
organize  your  ideas  about  how  to  solve  the  problem  without  the  rigid  constraints  of  the  particular
programming  language.  The  textbook  serves  as  an  excellent  model  for  you  as  you  learn  how to  turn
mathematical concepts and solutions to problems into algorithms. Those algorithms can then be turned
into  functions  in  any  programming  language  you  choose.  This  manual  will  help  you  turn  your  pseu-
docode or step-by-step instructions for algorithms into functions written in Mathematica.
Section  3.1  of  the  textbook describes  several  algorithms,  with  an  emphasis  on  how you can  describe
these algorithms using both English descriptions and pseudocode. Here, we will see how to implement
several  of  these algorithms in Mathematica.  In this  chapter,  it  will  be especially important  for  you to
have the text alongside you, as we will not reproduce the descriptions of the algorithms from the text.



Find Maximum
The  first  algorithm  we  will  implement  is  the  algorithm  for  finding  the  maximum  in  an  unsorted
sequence. This is described in Section 3.1 in the solution to Example 1 as step-by-step instructions and
as pseudocode in Algorithm 1. We will build the function according to the step-by-step instructions. In
order  to  make  the  connection  between  the  instructions  and  the  code  as  clear  as  possible,  we’ll  begin
with  a  function  with  no  statements  and  successively  revise  it  to  show  the  addition  of  each  step.  Be
warned that the incomplete versions of the function may produce errors, if you execute the definitions.
We begin with the basic elements of the function definition without code. Specifically, we include the
name of the function, a pattern to impose the type of the argument, and, since we will have local vari-
ables, the Module function and its basic structural elements.

findMax@L : 8__Integer<D := Module@8<,

D

Note that  the pattern specifying the type of  the argument  indicates  that  the function will  accept  a  list
(indicated by the braces) which consists of a sequence (indicated by the BlankSequence (_ _)) of at
least one integer. The L: means that the argument will be referred to as L.
Step 1 in the step-by-step instructions is to “set the temporary maximum equal to the first integer” in
the list. We declare a local variable to store the temporary maximum and add a statement in the body
of the function to assign the first integer in the list to this value.

findMax@L : 8__Integer<D := Module@8tempMax<,
tempMax = L@@1DD;

D

Step 2, according to Example 1 of the text, is to compare the next integer to the temporary maximum
and  update  the  temporary  maximum  if  necessary.  This  requires  an  If  statement  to  make  the
comparison.

findMax@L : 8__Integer<D := Module@8tempMax<,
tempMax = L@@1DD;
If@tempMax < L@@2DD, tempMax = L@@2DDD;

D

(We are intentionally following the step-by-step instructions to the letter,  so in step 2,  “the next inte-
ger” is L[2].)
Step 3 tells us to repeat step 2 for all of the integers in the list. We need to revise our code as follows.
The  fact  that  we  are  supposed  to  repeat  step  2  means  that  we’ll  need  a  loop.  And  since  this  loop  is
supposed to consider all of the elements of the list beyond the first means that we use a For loop over
the indices of the list starting at 2. We put the code we wrote for step 2 inside this loop, since that’s the
instruction being repeated, and replace the specific index “2” with the loop variable. Finally, the loop
variable needs to be added to the list of Module variables.
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findMax@L : 8__Integer<D := Module@8tempMax, i<,
tempMax = L@@1DD;
For@i = 2, i § Length@LD, i++,
If@tempMax < L@@iDD, tempMax = L@@iDDD

D;
D

Finally,  step  4  tells  us  that  once  the  loop  is  completed,  the  value  of  the  temporary  maximum  is  the
maximum, so we return that value.

In[1]:= findMax@L : 8__Integer<D := Module@8tempMax, i<,
tempMax = L@@1DD;
For@i = 2, i § Length@LD, i++,
If@tempMax < L@@iDD, tempMax = L@@iDDD

D;
tempMax

D

In[2]:= findMax@83, 18, -5, 72, 6, 0<D

Out[2]= 72

Admittedly, this example may be a bit too simple to warrant such an elaborate process. But it illustrates
an essential  point:  a  well-written set  of  step-by-step instructions describing a procedure can be easily
turned  into  working  and  correct  code.  Moreover,  for  non-trivial  algorithms,  the  two-step  process  of
writing  instructions  for  the  function  and  then  implementing  the  function  based  on  those  instructions
typically results in the production of a correct implementation more quickly than attempting the imple-
mentation without writing instructions.
Take a moment to compare the function above with the pseudocode given in Algorithm 1 in the text-
book.  You will  notice that,  in this  example,  they are extremely similar.  This is  one of the benefits  of
pseudocode  in  comparison  to  step-by-step  instructions.  However,  step-by-step  instructions  are  often
easier  to  write  as  a  first  step  towards  a  working  function.  Step-by-step  instructions  are  also  typically
easier to understand, especially for novice programmers, as they can more easily accommodate explana-
tion and other information that is out of place in pseudocode.

Binary Search
The second example will be the binary search algorithm, presented as Algorithm 3 in Section 3.1. The
previous example showed how you can use step-by-step instructions to build up the function. Starting
from pseudo-code, writing the final implementation involves translating statements in the pseudocode
into legal statements in the programming language and filling in missing details.
As  before,  we  will  go  through  several  iterations  as  we  translate  the  pseudocode  in  the  text  to  actual
Mathematica code. Initially, we need to: make sure that the input is specified in a way appropriate for
Mathematica;  declare the local  variables that  are indicated in the pseudocode; and make basic syntax
adjustments,  specifically  the  while  loops,  if  statements,  and  mathematical  expressions  such  as
dHi+ jL ê 2t must be translated into their Mathematica counterparts.

Chapter03.nb  3



In[3]:= binarySearch@x_Integer, A : 8__Integer<D :=
Module@8i, j, m, location<,
i = 1;
j = n;
While@i < j,
m = Floor@Hi + jLê2D;
If@x > A@@mDD,
i = m + 1,
j = m

D
D;
If@x ã A@@iDD,
location = i,
location = 0

D;
location

D

It is too much to expect this first version to properly execute.
In[4]:= binarySearch@19,

81, 2, 3, 5, 6, 7, 8, 10, 12, 13, 15, 16, 18, 19, 20, 22<D

Out[4]= 0

The  problem is  a  simple  one  to  correct.  The  pseudocode  used  n  as  the  last  index  of  the  sequence  of
integers, so we need to make that assignment in our code.

In[5]:= binarySearch@x_Integer, A : 8__Integer<D :=
Module@8n, i, j, m, location<,
n = Length@AD;
i = 1;
j = n;
While@i < j,
m = Floor@Hi + jLê2D;
If@x > A@@mDD,
i = m + 1,
j = m

D
D;
If@x ã A@@iDD,
location = i,
location = 0

D;
location

D
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Now we try running it again.
In[6]:= binarySearch@19,

81, 2, 3, 5, 6, 7, 8, 10, 12, 13, 15, 16, 18, 19, 20, 22<D

Out[6]= 14

Observe that the only commands that we added were the declaration of local variables, and the assign-
ment  of  n.  We  also  added  additional  line  breaks  to  be  consistent  with  the  style  of  code  used  in  this
manual.  Otherwise,  the  Mathematica  code  and  pseudocode  match  very  closely.  It  is,  of  course,  not
always  quite  this  straightforward,  but  well-written  pseudocode  should  contain  all  the  essential  ele-
ments.  Like  with  proofs,  as  you  become more  familiar  with  pseudocode  you  will  find  yourself  more
comfortable with leaving some details out.

Bubble Sort
As a final example, we will implement the bubble sort, presented in the text as Algorithm 4 of Section
3.1.
For  our  first  attempt  at  implementing  Algorithm  4,  we  need  to:  specify  the  input,  declare  the  local
variables (which can, in part, be gleaned from the pseudocode), and correct the syntax for the for loops
and if statements.

bubbleSort@A_ListD := Module@8i, j<,
For@i = 1, i § n - 1, i++,
For@j = 1, j § n - i, j++,
If@A@@jDD > A@@j + 1DD,
H*then interchange A@@jDD and A@@j+1DD*L

D
D

D
D

The implementation above gets us close to a correct implementation of the bubble sort algorithm, but
there are some problems. The simplest to fix is that n is not defined. You can correct this in one of two
ways. Either declare n as a local variable and set it equal to the number of elements of A, or replace the
two occurrences of n with Length[A]. 

bubbleSort@A_ListD := Module@8i, j, n = Length@AD<,
For@i = 1, i § n - 1, i++,
For@j = 1, j § n - i, j++,
If@A@@jDD > A@@j + 1DD,
H*then interchange A@@jDD and A@@j+1DD*L

D
D

D
D

The next problem is the instruction in the pseudocode to interchange a j  with a j+1.  Mathematica  con-
tains  no  interchange  function.  So  we'll  either  have  to  make  an  interchange  function  that  can  be  used
within  the  bubbleSort  function  or  flesh  out  the  code  to  interchange  the  two  list  elements  within
bubbleSort itself. We take the first approach here so as to preserve as close a connection as possi-
ble between our implementation and the pseudocode.
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The next problem is the instruction in the pseudocode to interchange a j  with a j+1.  Mathematica  con-
tains  no  interchange  function.  So  we'll  either  have  to  make  an  interchange  function  that  can  be  used
within  the  bubbleSort  function  or  flesh  out  the  code  to  interchange  the  two  list  elements  within
bubbleSort itself. We take the first approach here so as to preserve as close a connection as possi-
ble between our implementation and the pseudocode.
Before creating an interchange function, however, there is another issue to take into consideration.
Namely,  in  Mathematica,  arguments  to  a  function  cannot  be  modified.  Instead,  we  need  to  copy  the
parameter to a local variable, both in bubbleSort and in the interchange function we are about
to write.
Our interchange function will take two arguments: the list of numbers and the index of the smaller
of the two positions to be swapped. It will proceed as follows: 
1. Set a temporary variable equal to the first value to be swapped.
2. Set the value of the first position equal to the second value.
3. Set the value of the second position equal to the value stored in the temporary variable.
In[7]:= interchange@L_List, i_D := Module@8M = L, temp<,

temp = M@@iDD;
M@@iDD = M@@i + 1DD;
M@@i + 1DD = temp;
M

D

Now we update  our  implementation  by:  copying the  list  to  a  local  name and replacing  all  the  occur-
rences  of  the  parameter  with  the  local  variable;  applying  the  interchange  function;  and  ending
with the local copy of the list, so that it is the output of the function.

In[8]:= bubbleSort@A_ListD := Module@8i, j, n = Length@AD, B = A<,
For@i = 1, i § n - 1, i++,
For@j = 1, j § n - i, j++,
If@B@@jDD > B@@j + 1DD,
B = interchange@B, jD

D
D

D;
B

D

In[9]:= bubbleSort@83, 18, -5, 72, 6, 0<D

Out[9]= 8-5, 0, 3, 6, 18, 72<

3.2 The Growth of Functions
In this section we will use Mathematica to computationally explore the growth of functions. In particu-
lar, we will graph functions in order to visually convince ourselves that the big-O relationship is satis-
fied. We will also see how to use graphs to determine possible witnesses for the constants C  and k  in
the definition of big-O notation. Since, as the textbook mentions, f HxL  is OHgHxLL  if and only if gHxL  is
WH f HxLL, the techniques we explore in this section apply also to big-Omega and big-Theta notation.

We begin by considering the function f HxL = 5 x3 + 4 x2 + 3 x+ 9. Theorem 1 from Section 3.2 tells us
that this is OIx3M, but we will use this function as an example of how you can use Mathematica to find
values for C and k such that f HxL § C gHxL  for all x ¥ k.
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We begin by considering the function f HxL = 5 x3 + 4 x2 + 3 x+ 9. Theorem 1 from Section 3.2 tells us
that this is OIx3M, but we will use this function as an example of how you can use Mathematica to find
values for C and k such that f HxL § C gHxL  for all x ¥ k.

The Plot Function
First we’ll look at options to the Plot function that will be useful in this context. Let’s start by giving
names to the formulas.

In[10]:= f1 = 5*x^3 + 4*x^2 + 3*x + 9

Out[10]= 9 + 3 x + 4 x2 + 5 x3

In[11]:= g1 = x^3

Out[11]= x3

Graphing  f HxL  can  be  done  as  simply  as  calling  Plot  with  the  function  as  the  first  argument  and  a
specification of the domain as the second. The domain specification is given as a list consisting of the
name of the independent variable used in the function, the minimum value, and the maximum value. 
For example, to display the graph of f HxL with x ranging from 0 to 10, you enter the following.

In[12]:= Plot@f1, 8x, 0, 10<D

Out[12]=

2 4 6 8 10

1000

2000

3000

4000

5000

Note that Mathematica automatically selects the vertical range of the graph. You can control this with
the  PlotRange  option.  The  first  two  common  values  for  PlotRange  are  Automatic  and  All.
The  Automatic  value  has  the  same  effect  as  omitting  the  option.  The  difference  between
Automatic  and  All  is  that,  in  certain  circumstances,  Mathematica  may  decide  that  parts  of  the
function  being  graphed  are  outliers  and  may  choose  to  omit  them when  using  the  Automatic  plot
range.  The  All  value  forces  Mathematica  to  display  the  entire  function.  This  is  illustrated  below,
where we have graphed x10 with both options. 
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In[13]:= 8Plot@x^10, 8x, 0, 5<, PlotRange Ø AutomaticD,
Plot@x^10, 8x, 0, 5<, PlotRange Ø AllD<

Out[13]= :

1 2 3 4 5

500000
1.0µ106
1.5µ106
2.0µ106
2.5µ106
3.0µ106
3.5µ106

,

1 2 3 4 5

2µ106
4µ106
6µ106
8µ106
1µ107

>

Another common use of PlotRange is to explicitly specify the maximum and minimum y values. If
you  provide  a  single  positive  number  as  the  value  for  PlotRange,  Mathematica  will  display  the
graph with that value as the maximum for the vertical axis and its negative as the minimum. The follow-
ing graphs f HxL with x from 0 to 10 and the vertical axis ranging from -5000 to 5000.

In[14]:= Plot@f1, 8x, 0, 10<, PlotRange Ø 5000D

Out[14]=
2 4 6 8 10

-4000

-2000

2000

4000

If you wish to specify different values for the maximum and minimum for the vertical axis, you can do
so with  a  list  consisting of  the  two values.  The following shows f HxL  on the  domain @0, 10D  with  the
vertical axis ranging from -1000 to 5000.

In[15]:= Plot@f1, 8x, 0, 10<, PlotRange Ø 8-1000, 5000<D

Out[15]=

2 4 6 8 10

-1000

1000

2000

3000

4000

5000

Finally,  you  can  use  PlotRange  to  specify  the  displayed  range  in  both  directions  using  the  syntax
88xmin, xmax<, 8ymin, ymax<<.  Note  that  specifying  the  range  for  the  horizontal  axis  in  this  way  is  quite
different  from setting  the  domain  of  the  function,  which  is  done  with  the  second argument  to  Plot.
We illustrate the difference with the following example.
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Finally,  you  can  use  PlotRange  to  specify  the  displayed  range  in  both  directions  using  the  syntax
88xmin, xmax<, 8ymin, ymax<<.  Note  that  specifying  the  range  for  the  horizontal  axis  in  this  way  is  quite
different  from setting  the  domain  of  the  function,  which  is  done  with  the  second argument  to  Plot.
We illustrate the difference with the following example.

In[16]:= Plot@f1, 8x, 3, 7<, PlotRange Ø 880, 10<, 80, 5000<<D

Out[16]=

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

You  can  see  above  that  the  PlotRange  option  is  specifying  the  extent  of  the  graph.  On  the  other
hand, the second argument, {x,3,7} is a restriction of the domain of the function.
To plot multiple functions in the same graph, use the Plot function with a list of functions as the first
argument.

In[17]:= Plot@8f1, g1<, 8x, 0, 5<D

Out[17]=

1 2 3 4 5

100

200

300

400

500

600

700

Note that Mathematica automatically selects colors for the two functions. You can manually select the
colors (or other visual effects) with the PlotStyle option. If you use the PlotStyle option with a
list  of named colors,  then the first  color will  be assigned to the first  function, the second color to the
second  function,  and  so  on.  You  can  choose  from  common  choices  such  as  Red,  Green,  Blue,
Black, White, Gray, Cyan, Magenta, Yellow, Brown, Orange, Pink, and Purple. You can
get more information about colors from Mathematica’s Colors guide.
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In[18]:= Plot@8f1, g1<, 8x, 0, 5<, PlotStyle Ø 8Orange, Purple<D

Out[18]=

1 2 3 4 5

100

200

300

400

500

600

700

When displaying graphs of multiple functions, it can often be useful to include a legend with the graph
indicating which function is which. In Mathematica, you can use the PlotLegends option to do this. 
PlotLegends  is  an  option  to  Plot  (and  other  plotting  functions  such  as  ListPlot).  We  will
describe three of the possible values. 
The simplest way to create a legend is by setting the PlotLegends option to Automatic. This will
create a legend that identifies the colors used in the plot with the index of the function.

In[19]:= Plot@8f1, g1<, 8x, 0, 5<, PlotLegends Ø AutomaticD

1 2 3 4 5

100

200

300

400

500

600

700

1

2

Setting the PlotLegends option to “Expressions” is much more descriptive, showing the expression
that is being graphed.
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In[20]:= Plot@8f1, g1<, 8x, 0, 5<, PlotLegends Ø "Expressions"D

1 2 3 4 5

100

200

300

400

500

600

700

9+ 3 x+ 4 x2 + 5 x3

x3

Finally, you can specify your own labels by assigning the option to a list containing the expressions to
use to identify the functions.

In[21]:= Plot@8f1, g1<, 8x, 0, 5<, PlotLegends Ø 8"f", "g"<D

1 2 3 4 5

100

200

300

400

500

600

700

f

g

Mathematica provides other possible values for the PlotLegends option to influence the placement
of the legend. It also has more general functions, particularly LineLegend, that gives you the ability
to completely customize the content and format of the legend.

Finding Values for C and k
Now we can start exploring different values of C for which the equation f HxL § C ÿ gHxL is satisfied. To
do this, we just have to multiply g1 by different values. We will choose several values until we see a
clear crossing. 
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In[22]:= Plot@8f1, 2*g1<, 8x, 0, 5<, PlotLegends Ø 8"fHxL", "2gHxL"<D

1 2 3 4 5

100

200

300

400

500

600

700

fHxL

2gHxL

In[23]:= Plot@8f1, 4*g1<, 8x, 0, 5<, PlotLegends Ø 8"fHxL", "4gHxL"<D

1 2 3 4 5

100

200

300

400

500

600

700

fHxL

4gHxL

In[24]:= Plot@8f1, 6*g1<, 8x, 0, 5<, PlotLegends Ø 8"fHxL", "6gHxL"<D

1 2 3 4 5

100

200

300

400

500

600

700

fHxL

6gHxL
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In[25]:= Plot@8f1, 7*g1<, 8x, 0, 5<, PlotLegends Ø 8"fHxL", "7gHxL"<D

1 2 3 4 5

200

400

600

800

fHxL

7gHxL

By expanding  the  range  of  x  values,  we  can  obtain  a  graph  that  provides  fairly  convincing  evidence
that C = 7 and k = 3 witness for the assertion that f HxL is OIx3M.

In[26]:= Plot@8f1, 7*g1<, 8x, 0, 20<, PlotLegends Ø 8"fHxL", "7gHxL"<D

5 10 15 20

10000

20000

30000

40000

50000

fHxL

7gHxL

It  is  important  to  note  that  the  graph  above  is  not  proof  that  5 x3 + 4 x2 + 3 x+ 9  is  OIx3M.  A  formal
proof must follow the model provided by the examples in the text.

A Second Example
As  a  second  example,  consider  f HxL = 3 x5 + x3 lnIx2 + 2 x+ 1M.  We  claim  that  this  is  OHxnL  for  some
value of n. We want to first determine the smallest value of n and then find witnesses for C and k. We
assign  a  name for  the  formula  for  f HxL.  Note  that  the  Mathematica  function  Log  with  one  argument
computes the natural (base e) logarithm of the argument. 

In[27]:= f2 = 3*x^5 + x^3*Log@x^2 + 2*x + 1D

Out[27]= 3 x5 + x3 LogA1 + 2 x + x2E

We could proceed as in the previous example and display a selection of graphs comparing f2 and x^n
for different exponents in order to find a likely choice of n and then explore the coefficients. However,
Mathematica’s  Manipulate  function  provides  an  interactive  approach.  The  syntax  for  a  Manipu-
late  is  very  similar  to  that  of  Table.  The  first  argument  is  an  expression  involving  one  or  more
variables  that  will  be  altered  by  sliders  or  other  controls.  In  this  case,  the  first  argument  will  be  the
Plot function. 
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We could proceed as in the previous example and display a selection of graphs comparing f2 and x^n
for different exponents in order to find a likely choice of n and then explore the coefficients. However,
Mathematica’s  Manipulate  function  provides  an  interactive  approach.  The  syntax  for  a  Manipu-
late  is  very  similar  to  that  of  Table.  The  first  argument  is  an  expression  involving  one  or  more
variables  that  will  be  altered  by  sliders  or  other  controls.  In  this  case,  the  first  argument  will  be  the
Plot function. 
Following the first argument, we specify the variables that are to be manipulated. In this example, we
need  to  modify  the  exponent  n  and  the  coefficient  c.  For  the  exponent,  the  variable  n  should  be
allowed to range from 1 to some arbitrary maximum, say 20. Also, the exponent should be an integer,
so we specify a step of 1.  Thus the range specification for the exponent will  be {n,1,20,1}.  Note
that  the  requirement  that  we  include  the  step  of  1  is  the  main  difference  between  a  Table  and  the
Manipulate, which defaults to a continuous range of values. For the coefficient c, we will allow it
to range from 1 to 30 continuously, making its specification {c,1,30}.

In[28]:= ManipulateAPlotA8f2, c*x^n<, 8x, 0, 5<, PlotRange Ø 80, 10 000<,

PlotLegends Ø 9"f", "cxn"=E, 8n, 1, 20, 1<, 8c, 1, 30<E

n

c

0 1 2 3 4 5

2000

4000

6000

8000

10000

f

cxn

Note that the PlotRange option is useful here. Without it, Mathematica would continually resize the
graph depending on the choices for the variables.

When you first execute the Manipulate, you will see only the graph of f HxL since 1 ÿ x1  is too small
and lies along the x axis. To inspect the values of n and C, you can click on the small plus symbols on
the right of the sliders.
As you use Manipulate to explore this problem, keep in mind that you are searching for the small-
est n for which f HxL is OHxnL. So once you find an n and C that work, decrease n and make sure that no
C will do. You may need to expand the domain to be sure.

3.3 Complexity of Algorithms
Section 3.3  of  the  textbook emphasizes  worst-case  complexity  of  algorithms and shows you how the
worst-case complexity can be deductively determined. The textbook also mentions average-case com-
plexity  and  shows  how  to  compute  the  average-case  complexity  of  the  linear  search  algorithm
(Example 4). 
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Section 3.3  of  the  textbook emphasizes  worst-case  complexity  of  algorithms and shows you how the
worst-case complexity can be deductively determined. The textbook also mentions average-case com-
plexity  and  shows  how  to  compute  the  average-case  complexity  of  the  linear  search  algorithm
(Example 4). 
Average-case complexity is typically difficult to analyze deductively, but is still very important. From
a  practical  standpoint,  average-case  complexity  can  help  differentiate  algorithms  whose  worst-case
complexities  are  of  the  same order.  Also,  algorithms that  have very  poor  worst-case  complexity  may
have  reasonable  average-case  complexity,  provided  that  the  “bad”  inputs  that  produce  the  worst  case
are rare.
While  average-case  complexity  is  difficult  to  analyze,  average-case  performance  can  be  computed
fairly directly. Recall  from the introduction to this chapter that we distinguish complexity of an algo-
rithm  from  performance  of  a  function.  In  this  section  we  will  see  how  Mathematica  can  be  used  to
analyze  average-case  performance  of  functions  experimentally.  We will  use  the  bubbleSort  func-
tion developed in Section 3.1 of this manual as an example. Our goal will be to produce a graph display-
ing the empirically determined average-case time performance of the procedure. 
First  we  review  the  standard  approach  to  timing  functions  in  Mathematica.  The  Timing  function
takes  one  argument.  It  evaluates  the  expression  (e.g.,  a  function  applied  to  input)  and  returns  a  2-
element list consisting of the time (in seconds) used and the result of the evaluation.
Here is an example of the use of the Timing function.

In[29]:= Timing@findMax@Range@10 000DDD

Out[29]= 80.026738, 10 000<

Note that,  in  this  example,  the time that  is  reported includes the time take by the Range  function to
produce the list of integers from 1 to 10 000. On the other hand, the Timing function does not include
any time used in generating or formatting output. This is negligible in this example, but for functions
with lengthy or complex output, it is reassuring that this time is not being included.

Average Input
By  average-case  performance,  we  mean  the  average  performance  of  a  function  on  a  random  input
selected from all possible inputs of the given size. The particulars of how the random input is selected
is  a  necessary  component  in  the  analysis.  It  is  natural  to  assume that  each  possible  input  will  appear
with the same likelihood as every other, but it is important to recognize that this may not always be the
case.  It  may  be  that,  in  the  circumstances  under  which  the  algorithm  is  intended  to  be  used,  some
inputs may appear with relatively higher or lower frequency. 
In  our  test  of  bubbleSort,  we  have  no  particular  application  in  mind  and  so  will  assume  that  all
inputs are equally likely. In order to generate a random input, we will use the RandomSample func-
tion applied to the list produced by Range. The RandomSample function applied to a list produces a
rearrangement  of  that  list.  The  following  produces  a  list  of  the  first  five  positive  integers  in  random
order.

In[30]:= RandomSample@Range@5DD

Out[30]= 83, 1, 5, 4, 2<

We can apply the bubbleSort algorithm directly to the result and time how long it takes to execute.
Note that we obtain the time, without the output from bubbleSort, by accessing the first element of
the list output by Timing.
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In[31]:= Timing@bubbleSort@RandomSample@Range@20DDDD@@1DD

Out[31]= 0.001880

Since we are after average-case performance, we'll  want to execute bubbleSort  on some, say 100,
different random inputs and average the time taken by each execution. To collect the 100 times, we can
use a Do loop to repeatedly execute the function. We use Sow and Reap to build the list of times, with
Sow applied to the result of Timing and Reap surrounding the loop. Recall that the first entry in the
list  output  by  Reap  is  the  output  of  its  argument.  Since  the  argument  to  Reap  is  Do,  which  has  no
output, the first element of the output will be Null.  The second element of the output from Reap  is
the list of lists sown by Sow. So we will be able to access the list of times as the [[2,1]]  element of
the output from Reap.

In[32]:= timesExampleReap = Reap@
Do@
Sow@
Timing@bubbleSort@RandomSample@Range@20DDDD@@1DD

D,
8100<D

D

Out[32]= 8Null,
880.002039, 0.001815, 0.001963, 0.001970, 0.001979, 0.002140,

0.001748, 0.001324, 0.002710, 0.001855, 0.002026, 0.002156,
0.002078, 0.001918, 0.001901, 0.001728, 0.001537, 0.001870,
0.002282, 0.002268, 0.001817, 0.002402, 0.001848, 0.001762,
0.002281, 0.001841, 0.001953, 0.001922, 0.002008, 0.002028,
0.001826, 0.002026, 0.002096, 0.001769, 0.001568, 0.002135,
0.001785, 0.001622, 0.001900, 0.001897, 0.001425, 0.001566,
0.002221, 0.001824, 0.001729, 0.001867, 0.001751, 0.001690,
0.001867, 0.001660, 0.001686, 0.001762, 0.001888, 0.001592,
0.001774, 0.002175, 0.001623, 0.001836, 0.002140, 0.002062,
0.002096, 0.001780, 0.001623, 0.001727, 0.002224, 0.002229,
0.001663, 0.001595, 0.001639, 0.001748, 0.001905, 0.001970,
0.002135, 0.002112, 0.001819, 0.002063, 0.001339, 0.001843,
0.001823, 0.001868, 0.001709, 0.001806, 0.001779, 0.001904,
0.001812, 0.001875, 0.001987, 0.001913, 0.001522, 0.001747,
0.002146, 0.001970, 0.001942, 0.002096, 0.001751,
0.001633, 0.002181, 0.001606, 0.002152, 0.001843<<<
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In[33]:= timesExample = timesExampleReap@@2, 1DD

Out[33]= 80.002039, 0.001815, 0.001963, 0.001970, 0.001979, 0.002140,
0.001748, 0.001324, 0.002710, 0.001855, 0.002026, 0.002156,
0.002078, 0.001918, 0.001901, 0.001728, 0.001537, 0.001870,
0.002282, 0.002268, 0.001817, 0.002402, 0.001848, 0.001762,
0.002281, 0.001841, 0.001953, 0.001922, 0.002008, 0.002028,
0.001826, 0.002026, 0.002096, 0.001769, 0.001568, 0.002135,
0.001785, 0.001622, 0.001900, 0.001897, 0.001425, 0.001566,
0.002221, 0.001824, 0.001729, 0.001867, 0.001751, 0.001690,
0.001867, 0.001660, 0.001686, 0.001762, 0.001888, 0.001592,
0.001774, 0.002175, 0.001623, 0.001836, 0.002140, 0.002062,
0.002096, 0.001780, 0.001623, 0.001727, 0.002224, 0.002229,
0.001663, 0.001595, 0.001639, 0.001748, 0.001905, 0.001970,
0.002135, 0.002112, 0.001819, 0.002063, 0.001339, 0.001843,
0.001823, 0.001868, 0.001709, 0.001806, 0.001779, 0.001904,
0.001812, 0.001875, 0.001987, 0.001913, 0.001522, 0.001747,
0.002146, 0.001970, 0.001942, 0.002096, 0.001751,
0.001633, 0.002181, 0.001606, 0.002152, 0.001843<

(Depending on the speed of your computer, you may need to increase the size of the input list in order
to get non-zero times.) 
To average the times, we apply the Mean function to the list of values.

In[34]:= Mean@timesExampleD

Out[34]= 0.001885

Graphing the Empirically Calculated Average-case Complexity
To  graph  the  average  time  data,  we’ll  use  the  ListPlot  function,  discussed  in  Section  2.3  of  this
manual. Recall that ListPlot takes as its argument a list of lists where the sublists are x-y pairs.

In[35]:= ListPlot@881, 1<, 82, 4<, 83, 3<, 84, 1<, 85, 2<<D

Out[35]=

2 3 4 5

1.5

2.0

2.5

3.0

3.5

4.0

We will now write a function that produces the list of data required by ListPlot. This function will
compute the average, over a number of trials, of the time taken to execute bubbleSort on randomly
generated lists of size 10, 20, 30, 40, and 50.
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We will now write a function that produces the list of data required by ListPlot. This function will
compute the average, over a number of trials, of the time taken to execute bubbleSort on randomly
generated lists of size 10, 20, 30, 40, and 50.

In[36]:= getBubbleTimes@trials_Integer, min_Integer, max_Integer,
step_IntegerD ê; trials > 0 && min > 0 && max > min && step > 0 :=

Module@8s, avgTimeData = 8<, times, input<,
For@s = min, s § max, s = s + step,
times = Reap@

Do@
input = RandomSample@Range@sDD;
Sow@Timing@bubbleSort@inputDD@@1DDD,
8trials<D

D@@2, 1DD;
AppendTo@avgTimeData, 8s, Mean@timesD<D

D;
avgTimeData

D

Most of the function is enclosed in the For loop with variable s, representing the size of the input that
will be passed to bubbleSort. Within the For loop are two statements: the first is an assignment to
the  symbol  times,  the  right  hand  side  of  which  spans  6  lines  of  code,  and  the  second  appends  the
average of the data stored in times to the symbol avgTimeData. The right hand side of the times
assignment  is  where most  of  the work is  done.  A Reap  encloses  this  section of  code,  and times  is
assigned to the [[2,1]] entry of the output of the Reap, which effectively assigns times to the sown
values.  Within the Reap  is  a  Do  loop,  the second argument of  which,  {trials},  indicates that  the
body of the Do loop will be executed a number of times dictated by the argument to the function. There
is  no  need  for  a  loop  variable.  Within  the  Do  loop,  the  symbol  input  is  assigned  to  the  result  of
RandomSample  applied  to  the  list  of  positive  integers  determined  by  the  input  size  s.  Then
bubbleSort is applied to this input within Timing and Sow is applied to the time. Note that, unlike
our  example  above,  we  moved  the  application  of  RandomSample  and  Range  outside  of  the  Tim-
ing function, so that the time taken to generate the random input is not being included.
Now we execute the function and use the result to create a graph.

In[37]:= bubbleTimes = getBubbleTimes@100, 10, 50, 10D

Out[37]= 8810, 0.000474<, 820, 0.001830<,
830, 0.004101<, 840, 0.007308<, 850, 0.011263<<
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In[38]:= ListPlot@bubbleTimesD

Out[38]=

20 30 40 50

0.002

0.004

0.006

0.008

0.010

From the shape of the graph, it appears that the average-case performance of bubbleSort is polyno-
mial. This suggests that the complexity of the algorithm is also polynomial. Of course, a proof of that
fact would require an analysis of the kind given in Example 4 of Section 3.3. 
The reader  can experiment  with  the  function in  order  to  produce finer  detail  (by decreasing the  step)
and to obtain data for larger input lists (by increasing the maximum list size). 
We conclude with a caveat. The empirical testing we've done in this section is an example of a way to
get  an  idea  of  the  average-case  performance  of  a  procedure.  It  can  be  used  to  compare  two  or  more
algorithms with each other and can indicate major differences in worst-case and average-case complex-
ity (for instance, in an algorithm with exponential worst-case complexity and polynomial average-case
complexity). But beyond generalities, the implementation of the algorithm, the computer running it, the
computer  language  it  is  written  in,  and  a  host  of  other  factors  can  play  a  sufficiently  significant  role
that  this  approach is  generally  not  helpful  for  making finer  distinctions (between quadratic  and cubic
complexity, for example).
The reader should refer to the solution of Computer Project 9 below for a method of analyzing average
case  complexity  that  modifies  the  function  in  order  to  count  the  number  of  operations  used  with  the
input values. 

Solutions to Computer Projects and Computations and 
Explorations

Computer Project 9

Given an ordered list of n integers and an integer x in the list, find the number of 
comparisons used to determine the position of x in the list using a linear search and using a 
binary search. 

Solution: There is no loss of generality to assume that the list of n integers is the list of integers from 1
to n.
For  the  linear  search  algorithm  provided  as  Algorithm  2  in  Section  3.1  of  the  text,  each  step  in  the
search  requires  2  comparisons,  one  tests  whether  the  end  of  the  list  has  been  reached  and  one  tests
whether the current element is the element being searched for. These are both contained in the Boolean
expression that controls the while loop. A final comparison is used after the while loop is completed to
determine whether the element was found or not. In the list of n  integers 1 through n,  the integer x  is
therefore found after 2 x+ 1 comparisons. 
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For  the  linear  search  algorithm  provided  as  Algorithm  2  in  Section  3.1  of  the  text,  each  step  in  the
search  requires  2  comparisons,  one  tests  whether  the  end  of  the  list  has  been  reached  and  one  tests
whether the current element is the element being searched for. These are both contained in the Boolean
expression that controls the while loop. A final comparison is used after the while loop is completed to
determine whether the element was found or not. In the list of n  integers 1 through n,  the integer x  is
therefore found after 2 x+ 1 comparisons. 
To determine the number of comparisons needed to find x via the binary search algorithm, we'll mod-
ify the procedure we wrote in Section 3.1 of this manual to count comparisons. For reference, here is
the original binarySearch function. 

binarySearch@x_Integer, A : 8__Integer<D :=
Module@8n, i, j, m, location<,
n = Length@AD;
i = 1;
j = n;
While@i < j,
m = Floor@Hi + jLê2D;
If@x > A@@mDD,
i = m + 1,
j = m

D
D;
If@x ã A@@iDD,
location = i,
location = 0

D;
location

D

We will modify this function to count comparisons. Each time through the While loop accounts for 2
comparisons, the i < j comparison that controls the loop and the x > A@mD comparison in the If state-
ment.  So  we'll  add  a  line  of  code  to  increment  the  comparison  count  by  2  at  the  start  of  the  While
loop.  Also,  we  need  to  add  one  to  the  comparison  count  after  the  end  of  the  loop  to  account  for  the
comparison that  terminates  the  loop.  And one final  comparison is  done,  in  the  final  If  statement,  to
determine if the search has succeeded or not. 
By incrementing the count after the final If statement, the increment will be the final expression and
consequently is what will be shown as the result of the function. Here is the modified function. 

20   Chapter03.nb



In[39]:= binarySearchC@x_Integer, A : 8__Integer<D :=
Module@8n, i, j, m, location, count = 0<,
n = Length@AD;
i = 1;
j = n;
While@i < j,
count = count + 2;
m = Floor@Hi + jLê2D;
If@x > A@@mDD,
i = m + 1,
j = m

D
D;
count = count + 1;
If@x ã A@@iDD,
location = i,
location = 0

D;
count = count + 1

D

For example, to find 15 in the list from 1 to 20, it takes
In[40]:= binarySearchC@15, Range@20DD

Out[40]= 10

comparisons.
We can use the information above to compare the average number of comparisons required in a list of
n elements. We need to determine the number of comparisons needed to find each value from 1 to n in
the list from 1 to n  and average these numbers of comparisons. For the linear search, we know that it
takes 2 x+ 1 comparisons, so the average can be found from 

⁄
x=1

n
2 x+1

n

We use  Mathematica’s  symbolic  summation  capabilities,  specifically  the  Sum  function  (discussed  in
Section 2.4 of this manual).

In[41]:= Sum@2*x + 1, 8x, 1, n<Dên

Out[41]=
2 n + n2

n

In[42]:= Simplify@%D

Out[42]= 2 + n
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(The Simplify function forces Mathematica to simplify expressions.)
For the binary search function, we can find the average by applying our function above to each integer
in  turn  and  taking  the  average.  The  following  function  will  produce  the  average  number  of  compar-
isons required for a given value of n. 

In[43]:= binaryAvg@n_IntegerD := Module@8data = 8<, inputList, x<,
inputList = Range@nD;
data = Reap@

Do@Sow@binarySearchC@x, inputListDD,
8x, 1, n<

D
D@@2, 1DD;

Mean@dataD êê N
D

The function N is used to obtain an numerical (floating point) value of an exact expression. Without it,
Mathematica would return a fraction as the result of this function, but we generally expect means to be
reported as floating point numbers.
For example, in the list from 1 to 20, it requires an average of 20+ 2 = 22 comparisons using the linear
search, and an average of 10.8 comparisons using the binary search.

In[44]:= binaryAvg@20D

Out[44]= 10.8

Next, we'll graph the average number of comparisons as n ranges from 1 to 100. 
For  the  linear  search  algorithm,  we  will  graph  the  function  n+ 2  using  Plot.  In  Section  2.5  of  this
manual, we demonstrated how to overlay two graphs using the Show  function. We will use the same
approach  here.  Keep  in  mind  when  doing  this  that  since  the  two  graphs  are  created  separately,  the
functions  will  have  the  same  color  if  you  do  not  specify  the  color  manually  using  the  PlotStyle
option.

In[45]:= linearSearchGraph = Plot@n + 2, 8n, 1, 100<, PlotStyle Ø RedD

Out[45]=
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For the binary search algorithm, we must first create the necessary data before we can graph it with the
ListPlot function. Recall from Section 3.2 of this manual that ListPlot requires a list of the x-y
pairs given as sublists. The x values will be the values of n. 
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For the binary search algorithm, we must first create the necessary data before we can graph it with the
ListPlot function. Recall from Section 3.2 of this manual that ListPlot requires a list of the x-y
pairs given as sublists. The x values will be the values of n. 

In[46]:= binarySearchdata = Table@8n, binaryAvg@nD<, 8n, 1, 100<D;

In[47]:= binarySearchGraph = ListPlot@binarySearchdata, PlotStyle Ø BlueD

Out[47]=
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We overlay the two graphs using Show.
In[48]:= Show@linearSearchGraph, binarySearchGraphD

Out[48]=
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Below we display the same graph using Legended and LineLegend to illustrate some of the addi-
tional legending options.

In[49]:= Legended@Show@linearSearchGraph, binarySearchGraphD,
LineLegend@8Red, Blue<,
8"linear", "binary"<, LegendFunction Ø FramedDD
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Computations and Explorations 1

We know that nb is OHdnL when b and d are positive numbers with d ¥ 2. Give values of the 
constants C and k such that nb § C ÿ dn whenever n > k for each of these sets of values: 
b = 10, d = 2; b = 20, d = 3; b = 1000, d = 7.

Solution: For b = 10 and d = 2, we need to compare the function f HnL = n10 to gHnL = 2n. Following the
approach we took in Section 3.2, we will use Manipulate to graph the functions while dynamically
changing  the  value  of  C.  Note  that  the  values  of  C  that  will  suffice  with  k < 20 are  extremely  large.
When exploring other values of b and d, you may have to modify the maximum values for C. It is also
possible to find smaller values of C by increasing the horizontal extent of the graph.

In[50]:= Manipulate@Plot@8n^10, c*2^n<, 8n, 0, 20<,
PlotLegends Ø "Expressions"D, 8c, 0, 10^8<D

c

5 10 15 20

2.0µ1011

4.0µ1011

6.0µ1011

8.0µ1011

1.0µ1012

1.2µ1012

n10

1.6µ 106 µ 2n

Exercises
1. Write step-by-step instructions, then pseudocode, and then implement in Mathematica an 

algorithm to determine the k largest integers in a list of integers.
2. Implement the linear search presented as Algorithm 2 in Section 3.1 of the text. 
3. Implement the insertion sort presented as Algorithm 5 in Section 3.1 of the text. 
4. Implement the greedy change-making algorithm presented as Algorithm 6 in Section 3.1 of 

the text. 
5. Implement the algorithm for scheduling talks presented as Algorithm 7 in Section 3.1 of the 

text. 
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6. Implement the brute-force algorithm for finding the closest pair of points as presented in 
Algorithm 3 in Section 3.3 of the text. 

7. Modify the bubbleSort function so that it terminates when no more interchanges are 
necessary. (See Exercise 37 from Section 3.1.)

8. Implement the selection sort algorithm in Mathematica. (Refer to the preamble to Exercise 41 
in Section 3.1 for information on selection sort.) 

9. Implement the binary insertion sort in Mathematica. (Refer to the preamble to Exercise 47 in 
Section 3.1 for information on the binary insertion sort.)

10. Implement the deferred acceptance algorithm in Mathematica. (Refer to the preamble to 
Exercise 61 in Section 3.1 for information on the deferred acceptance algorithm.)

11. Following the solution to Computations and Explorations 1, use Mathematica to determine 
values for C and k that witness for the fact that f HxL is OHgHxLL for each of the pairs of 
functions given below.
a. f HxL = 7 ÿ lnI3 x2 - 2 x+ 5M; gHxL = x

b. f HxL = x4

x2-4 x-4
; gHxL = x2

c. f HxL = dxt ÿ `xp; gHxL = x2
d. f HxL = n ÿ lnHnL; gHxL = lnHn!L

12. Using the approach described in Section 3.3 of this manual, compare the average-case 
performance of the bubbleSort function presented in Section 3.1 to Mathematica's Sort 
function.

13. Using the solution to Computer Project 9 as a model, compare the average-case complexity 
(as measured by number of comparisons) of the bubbleSort function with the modified 
procedure that you implemented as Exercise 7. 

14. Using the solution to Computer Project 9 as a model, compare the average-case complexity 
(as measured by number of comparisons) of the bubbleSort function with the other sort 
procedures you wrote (e.g., insertion sort, selection sort, or binary selection sort).
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