
7 Discrete Probability

Introduction
In this chapter you will learn how to use Mathematica to perform computations in discrete probability
and how to use Mathematica's capabilities to explore concepts of discrete probability. We will con-
tinue to make use of the functions described in the previous chapter.
We will make use of simulations to help explore concepts in discrete probability. In this context, a
simulation refers to a computer program that models a real physical system. For example, instead of
flipping an actual coin one hundred times and recording whether each flip resulted in “heads” or
“tails,” we could write a program that uses random numbers to generate a sequence of one hundred
“heads” or “tails.”
Simulations are useful in discrete probability from two different perspectives. First, they can help
analyze and/or confirm probabilities for systems that are difficult to compute deductively. For exam-
ple, Computations and Explorations 7 from the text asks you to simulate the odd-person-out procedure
in order to confirm your deductive calculations. Second, simulations can be very helpful as a way to
better understand a problem and how to arrive at a solution. For example, in the Computer Projects 10
exercise, you are asked to build a simulation of the famous Monty Hall Three-Door problem. Building
the simulation and analyzing the results can help improve your understanding of the reasons why the
strategy described in the text is the best possible.

7.1 An Introduction to Discrete Probability
To find the probability of an event in a finite sample space, you calculate the number of times the event
occurs and divide by the total number of possible outcomes (the size of the sample space).
As in Example 4, Section 7.1, we calculate the probability of winning a lottery, where we need to
choose 6 numbers correctly out of 40 possible numbers. The total number of ways to choose 6 numbers
is:

In[1]:= Binomial@40, 6D

Out[1]= 3 838 380

Since there is one winning combination, the probability is 1 divided by that value.
In[2]:= 1êBinomial@40, 6D

Out[2]=
1

3 838 380

We can find a real number approximation by using the N function — evaluation as a floating point
number. Given a single argument, N returns a numerical approximation of the value of the argument.
With a positive integer as a second argument, you can control the number of digits of precision that are
output.

We can find a real number approximation by using the N function — evaluation as a floating point
number. Given a single argument, N returns a numerical approximation of the value of the argument.
With a positive integer as a second argument, you can control the number of digits of precision that are
output.

In[3]:= N@1êBinomial@40, 6DD

Out[3]= 2.60527µ10-7

In[4]:= N@1êBinomial@40, 6D, 20D

Out[4]= 2.6052657631605000026µ10-7

We could also force a decimal approximation of the result by using 1.0 or simply 1., to show that we
wish to work with decimals instead of the exact rational representation. For example, if we needed to
choose from 50 numbers, the probability is

In[5]:= 1.0êBinomial@50, 6D

Out[5]= 6.29299µ10-8

Continuing with this type of example, we define a function that computes the probability of winning a
lottery where 6 numbers must be matched out of n possible numbers, provided that n is at least 6.

In[6]:= lottery@n_IntegerD ê; n ¥ 6 := 1.0êBinomial@n, 6D

Then the probabilities above can be computed with the function.
In[7]:= 8lottery@40D, lottery@50D<

Out[7]= 92.60527µ10-7, 6.29299µ10-8=

Now we can use the Table function to look at a list of probabilities for a range of values of n and
graph these values with ListPlot to visualize how the number of possible values in the lottery
affects the probability of choosing the correct values.

In[8]:= lotteryValues = Table@8n, lottery@nD<, 8n, 40, 50<D

Out[8]= 9940, 2.60527µ10-7=, 941, 2.22401µ10-7=,

942, 1.90629µ10-7=, 943, 1.6403µ10-7=, 944, 1.41662µ10-7=,

945, 1.22774µ10-7=, 946, 1.0676µ10-7=, 947, 9.31309µ10-8=,

948, 8.14896µ10-8=, 949, 7.15112µ10-8=, 950, 6.29299µ10-8==

2 Chapter07.nb

In[9]:= ListPlot@lotteryValuesD

Out[9]=

42 44 46 48 50

1.µ10-7

1.5µ10-7

2.µ10-7

2.5µ10-7

Refer to Section 2.3 of this manual for information on the use of ListPlot.

7.2 Probability Theory
We can use Mathematica to perform a variety of calculations of probabilities.
For example, Example 9 in section 7.2 asks us to calculate the probability that eight of the bits in a
string of ten bits are 0s if the probability of a 0 bit is 0.9, the probability of a 1 bit is 0.1, and the bits
are generated independently. To perform this calculation, we can input the formula directly:

In[10]:= Binomial@10, 8D*0.9^8*0.1^2

Out[10]= 0.19371

Probability Distributions
We can think of this same question in terms of a random variable. Specifically, consider a random
variable X that assigns to each string of ten bits the number of the bits that are 0s. Then the probability
that eight of the ten bits were 0 is pHX = 8L.
In order to compute probabilities of events in terms of random variables, we must specify the distribu-
tion of the random variable.
Computing Probabilities from Discrete Distributions
Mathematica provides many different probability distributions, including several discrete distributions.
To compute the probability of an event involving a random variable distributed according to a built-in
distribution, you can use the Probability or NProbability functions. These functions are
essentially identical, except NProbability applies numerical methods to approximate a numerical
answer, while Probability uses symbolic methods. Using either function requires that we have a
distribution, so we begin by introducing Mathematica’s implementation of the binomial distribution.
Theorem 2 in the textbook defines the binomial distribution, which is implemented in Mathematica as
BinomialDistribution. The BinomialDistribution takes two parameters: the number of
independent Bernoulli trials and the probability of a success. For the bit string example that began this
section, there are 10 trials, and we interpret success to be a 0 bit, so the probability of success is 0.9.
The binomial distribution with these parameters would be represented as shown below. Note that
BinomialDistribution is not a function and evaluating the line below will do nothing.

Chapter07.nb 3

Theorem 2 in the textbook defines the binomial distribution, which is implemented in Mathematica as
BinomialDistribution. The BinomialDistribution takes two parameters: the number of
independent Bernoulli trials and the probability of a success. For the bit string example that began this
section, there are 10 trials, and we interpret success to be a 0 bit, so the probability of success is 0.9.
The binomial distribution with these parameters would be represented as shown below. Note that
BinomialDistribution is not a function and evaluating the line below will do nothing.

BinomialDistribution@10, .9D

The Probability and NProbability functions expect two arguments. The first argument,
written in terms of a symbol representing a random variable, is an expression describing an event. For
example, to compute the probability pHX = 8L in the bit-string example, the first argument would be
X==8.
The second argument to the Probability and NProbability functions is used to indicate the
distribution. This is done using the Distributed (é) function or operator. As a function, Dis-
tributed requires two arguments: the symbol representing the random variable and the representa-
tion of the distribution. To use the operator form, enter ÂdistÂ to produce the é symbol. In this
case, the name of the random variable goes on the left and the distribution on the right.
Putting these two pieces together, the expression below computes the probability of 8 successes for a
binomial distribution with 10 trials and probability of success 0.9.

In[11]:= Probability@X ã 8, X é BinomialDistribution@10, .9DD

Out[11]= 0.19371

Note that this is the same answer we found above using the formula.
Related to the binomial distribution is the probability distribution of a single Bernoulli trial. The
BernoulliDistribution takes only one parameter, the probability of success. The following
creates the random variable associated to a single trial with probability of success 0.9. The possible
values of a Bernoulli random variable are 0 or 1, representing failure and success, respectively.

In[12]:= Probability@X ã 0, X é BernoulliDistribution@.9DD

Out[12]= 0.1

Definition 1 of Section 7.1 defines the uniform distribution. Mathematica includes the distribution
DiscreteUniformDistribution. Note that this is different from UniformDistribution,
which is used for continuous random variables. The DiscreteUniformDistribution requires a
single argument, a list containing the lower and upper bounds of the distribution. For example, the
following computes the probability pIX2 § 4M for a random variable distributed uniformly on
8-10, -9, …, 9, 10<.

In[13]:= Probability@X^2 § 4, X é DiscreteUniformDistribution@8-10, 10<DD

Out[13]=
5

21

Definition 2 of Section 7.4 defines the geometric distribution. Mathematica uses a slightly different
definition of geometric distribution than the textbook. In Mathematica, the value of a random variable
distributed geometrically is the number of failures that occur before the first success, rather than the
total number of trials until the first success. The GeometricDistribution in Mathematica
requires one argument, the probability of success. The following computes the probability that if a coin
with probability of heads 0.3 is flipped until it comes up heads, there will be at most 5 tails that appear.

4 Chapter07.nb

In[14]:= Probability@X § 5, X é GeometricDistribution@.3DD

Out[14]= 0.882351

Note that you can form more complicated events by including Boolean operators when building the
event. For example, the probability that it requires at most 2 or at least 7 flips of a coin with probability
of heads 0.3 before a heads comes up is:

In[15]:= Probability@X § 2 »» X ¥ 7, X é GeometricDistribution@.3DD

Out[15]= 0.739354

Mathematica also makes it easy to work with multiple distributions. For example, suppose you have
two coins, one with probability of heads 0.3 and the other with probability of heads 0.25. The probabil-
ity that flipping each coin once will result in at least one head can be computed as follows.

In[16]:= Probability@X ã 1 »» Y ã 1, 8X é BernoulliDistribution@.3D,
Y é BernoulliDistribution@.25D<D

Out[16]= 0.475

Note that the second argument is a list whose elements define the distributions for X and Y.
Graphing Probabilities
It is often useful to graph the probabilities associated to the values of a random variable. To do this, we
will apply the DiscretePlot and PDF functions.
The DiscretePlot function is the discrete analog of Plot. Its first argument is an expression, the
values of which are to be plotted, in terms of a variable. The second is a domain specification, which is
of the same form as in a Table: 8n, max<, 8n, min, max<, 8n, min, max, step<, or
8n, list<, where n is the variable.
For example, the following plots the values of pHxL, the function defined to be the number of primes
less than or equal to the argument, for x œ 82, 3, …, 50<.

In[17]:= DiscretePlot@PrimePi@nD, 8n, 2, 50<D

Out[17]=

By applying DiscretePlot with first argument an application of Probability, we can get a
picture of a distribution.

Chapter07.nb 5

In[18]:= DiscretePlot@
Probability@X ã n, X é BinomialDistribution@20, .3DD, 8n, 20<D

Out[18]=

Conditional Probabilities
Mathematica allows you to calculate with conditional probabilities using the Conditioned (æ)
operator. The operator symbol is entered by ÂcondÂ. For example, consider a binomial random
variable X with parameters 20 and 0.3. The probability that X is greater than 5 given that it is less than
10, that is pHX > 5 X < 10L can be compute as shown below.

In[19]:= Probability@X > 5 æ X < 10, X é BinomialDistribution@20, .3DD

Out[19]= 0.562653

Defining Distributions from Data
Mathematica provides the EmpiricalDistribution function to allow you to define, and thus
compute with, discrete probability distributions from your own data. There are two ways to use the
EmpiricalDistribution function.
If you have a list of values representing the results of experiments, you can pass this list of data to
EmpiricalDistribution. For example, suppose you manually roll a die 20 times and obtain the
following results.

In[20]:= dieRolls = 83, 2, 1, 1, 5, 2, 3, 6, 5, 1, 2, 5, 6, 4, 4, 3, 1, 3, 1, 1<

Out[20]= 83, 2, 1, 1, 5, 2, 3, 6, 5, 1, 2, 5, 6, 4, 4, 3, 1, 3, 1, 1<

To use this as the basis for a distribution, simply give the list as the argument to EmpiricalDistri-
bution. We’ll assign the distribution to a symbol.

In[21]:= dieDistribution = EmpiricalDistribution@dieRollsD

Out[21]= DataDistribution@áEmpiricalà, 820<D

The output is giving you a peek at the internal representation of the distribution. What’s important for
us is that we can now use dieDistribution as a probability distribution in functions like Proba-
bility. For example, we can calculate the probability that the die shows a value of 4 or less.

6 Chapter07.nb

In[22]:= Probability@X § 4, X é dieDistributionD

Out[22]=
3

4

The second way you can use EmpiricalDistribution is to explicitly specify each data value
and corresponding weights. As an example, consider the following problem. A die is weighted so that
the probability of a 1 is 2

9
, the probability of a 2 is 1

3
, and the probability of the other values is 1

9
 each.

What is the probability that value is less than 3 when it is rolled?
To specify probabilities associated to specific values, you need to list the probabilities (or weights) and
the values and join the two lists with a Rule (->). The following is the distribution of the die
described above.

EmpiricalDistribution@
82ê9, 1ê3, 1ê9, 1ê9, 1ê9, 1ê9< Ø 81, 2, 3, 4, 5, 6<D

Mathematica interprets this as meaning that the data values in the right hand list are weighted as per
the corresponding entry in the left hand list. That is, 1 has probability 2

9
, 2 has probability 1

3
, etc. Note

that it is not necessary for the weights in the left hand list to be probabilities. Mathematica computes
the probabilities of the data values by dividing the corresponding weight value by the sum of the
weights. So the following will also produce the correct distribution for the die.

EmpiricalDistribution@82, 3, 1, 1, 1, 1< Ø 81, 2, 3, 4, 5, 6<D

The following, therefore, computes the probability that the value is less than 3. Note that we use
Range rather than type the integers 1 through 6.

In[23]:= Probability@X < 3,
X é EmpiricalDistribution@82, 3, 1, 1, 1, 1< Ø Range@6DDD

Out[23]=
5

9

Combining Empirical Distributions
A more interesting question is to compute probabilities for the sum of the values on a weighted die. For
example, consider two loaded dice. One is weighted so that the probability that a 1 appears is 2 ê 7 and
the probabilities of all other values is 1 ê 7. The other is weighted to that the probability of a 4 appear-
ing is 3 ê 8 and the probabilities of all other values is 1 ê 8. What is the probability that the sum is 7
when the two dice are rolled?
To answer this question, we first define two empirical distributions, just as done above. Here we assign
the distributions to symbols.

In[24]:= weighted1 = EmpiricalDistribution@82, 1, 1, 1, 1, 1< Ø Range@6DD;
weighted2 = EmpiricalDistribution@81, 1, 1, 3, 1, 1< Ø Range@6DD;

The example above using two Bernoulli distributions suggests that the probability of the sum being 7
can be computed as below.

Chapter07.nb 7

In[26]:= Probability@X + Y ã 7, 8X é weighted1, Y é weighted2<D

Out[26]=
9

56

Sampling
Given a particular distribution, you may wish to use it to conduct experiments or simulations. The
process of generating pseudo-random numbers according to a given probability distribution is referred
to as sampling. In Mathematica, the RandomVariate function is used to sample.
Recall that a random variable is a function that assigns a real number to each possible outcome in a
sample space (Definition 6 in Section 7.2 of the textbook). A random variate is a real number obtained
by applying the random variable to an outcome selected pseudo-randomly according to a specified
probability distribution. In other words, where a random variable describes the relationship between an
experiment’s sample space and real numbers, a random variate is a particular value obtained by perform-
ing the experiment.
Applying RandomVariate to a probability distribution produces a single random sample from that
distribution. For example, the following expression simulates a binomial experiment with 10 trials and
probability of success 0.4.

In[27]:= RandomVariate@BinomialDistribution@10, .4DD

Out[27]= 2

Providing a positive integer as a second argument produces a list of that many values. For example, the
following simulates a binomial process 1000 times.

In[28]:= binomialData =
RandomVariate@BinomialDistribution@20, .3D, 1000D;

We can use the Histogram function to draw a histogram of the data. You see that the data produced
has approximately the same shape as was produced with PDF above. We use the PlotRange option,
first described in Section 2.3, to ensure the graph shows all of the possible values, not just those actu-
ally obtained.

In[29]:= Histogram@binomialData, PlotRange Ø 880, 20<, Full<D

Out[29]=

8 Chapter07.nb

Monte Carlo Methods
We can also implement Monte Carlo algorithms using Mathematica. Miller's test for base b is
described in the prelude to Exercise 44 of Section 4.4 of the textbook. In that description, it is men-
tioned that a composite integer n passes Miller's test for base b for fewer than n ê 4 bases less than n,
and Exercise 44 asked you to show that primes pass Miller's test for all bases that they do not divide. In
other words, Miller's test is a probabilistic primality test that fails less than one-fourth of the time. In
this subsection we'll use Miller's test to create a Monte Carlo primality testing algorithm.
Miller’s Test
First we must implement Miller's test for base b. Recall the description preceding Exercise 44 in Sec-
tion 4.4. Let n and b be positive integers. Assume s is a nonnegative integer and t is an odd positive
integer such that n- 1 = 2s t. If bt ª 1 Hmod nL or if there is a j with 0 § j § s- 1 such that
b2 j t ª -1 Hmod nL, then n is said to pass Miller's test for base b.
To implement Miller's test, we first must calculate s and t. Initialize s to 0 and set t equal to n- 1. If t is
even, we add 1 to s and divide t by 2. When t is no longer even, then s and t are the correct values.
Once s and t have been calculated, we check the congruence bt ª 1 Hmod nL. If that congruence is
satisfied, then n passes Miller's test and we return True. Otherwise, we begin testing the congruences
b2 j t ª -1 Hmod nL. A For loop assigns j to each integer from 0 to s- 1 and inside the For loop, the
congruence is tested. If any congruence holds, the function returns True. (Recall from Section 4.1 of
this manual that for exponentiation, PowerMod applied to an integer, an exponent, and a base is much
more efficient than Mod. However, it returns the smallest positive integer congruent to its first argu-
ment modulo its second argument. That is, it will not return -1. Thus we test for congruence to -1
modulo n by comparing the result to n- 1.) If the function completes without having returned True,
then it returns False.
Note that we use Catch and Throw in order to ensure that the result becomes the output of the
function.

In[30]:= miller@n_Integer, b_IntegerD := Module@8s = 0, t = n - 1, j<,
While@Mod@t, 2D ã 0,
t = tê2;
s++

D;
Catch@
If@PowerMod@b, t, nD ã 1, Throw@TrueDD;
For@j = 0, j § s - 1, j++,
If@PowerMod@b, 2^j*t, nD ã n - 1, Throw@TrueDD

D;
Throw@FalseD

D
D

Monte Carlo Primality Test
Now we use Miller's test to implement a Monte Carlo primality testing algorithm, as described in
Example 16 in section 7.2 of the text. The question the Monte Carlo algorithm is going to answer is “Is
n composite?” for an integer n. For each iteration, the algorithm will select a random base b with
1 < b < n and check to see if n passes Miller's test for base b. If Miller's test returns false, then we
know that n is composite and the Monte Carlo algorithm will return “Composite.” If Miller's test
returns true, then the iteration results in “unknown” and the next iteration is started. After 30 iterations,
if Miller's test has only resulted in true, then the algorithm will return “Prime,” indicating that it is very
likely that the number is prime. Since Miller's test falsely identifies a composite as prime less than one-
fourth of the time, the probability that the Monte Carlo algorithm with 30 trials will incorrectly identify
a composite number as prime is

Chapter07.nb 9

Now we use Miller's test to implement a Monte Carlo primality testing algorithm, as described in
Example 16 in section 7.2 of the text. The question the Monte Carlo algorithm is going to answer is “Is
n composite?” for an integer n. For each iteration, the algorithm will select a random base b with
1 < b < n and check to see if n passes Miller's test for base b. If Miller's test returns false, then we
know that n is composite and the Monte Carlo algorithm will return “Composite.” If Miller's test
returns true, then the iteration results in “unknown” and the next iteration is started. After 30 iterations,
if Miller's test has only resulted in true, then the algorithm will return “Prime,” indicating that it is very
likely that the number is prime. Since Miller's test falsely identifies a composite as prime less than one-
fourth of the time, the probability that the Monte Carlo algorithm with 30 trials will incorrectly identify
a composite number as prime is

In[31]:= H1ê4L^30 êê N

Out[31]= 8.67362µ10-19

Here is the Miller Monte Carlo test:
In[32]:= millerMC@n_IntegerD := Module@8b<,

Catch@
Do@b = RandomInteger@82, n - 1<D;
If@! miller@n, bD, Throw@"Composite"DD
, 830<D;

Throw@"Prime"D
D

D

Note the use of Do, with second argument {30}. This causes the body of the loop to be executed 30
times without assigning a loop variable, which in this case is not needed. The RandomInteger
function applied to a list of two integers, with the first smaller than the second, produces a randomly
selected integer in the range specified by the values.
Now we use millerMC to test an integer to see if it is prime. We can use Mathematica's Prime
function to find the 40000th prime and then check that our algorithm confirms that it is prime.

In[33]:= Prime@40 000D

Out[33]= 479 909

Now run the algorithm on this prime.
In[34]:= millerMC@479 909D

Out[34]= Prime

7.3 Bayes’ Theorem
Section 7.3 focuses on applications of Bayes' Theorem, which asserts that for events E and F from a
sample space S with pHEL ¹≠ 0 and pHFL ¹≠ 0, one has

pHF EL =
pHE FL pHFL

pHE FL pHFL+ pIE FM pHFL

The text describes how to use this theorem to create a Bayesian spam filter. We will use Mathematica
to implement such a filter.

10 Chapter07.nb

The text describes how to use this theorem to create a Bayesian spam filter. We will use Mathematica
to implement such a filter.
Recall the notation from the text. A message is received containing the word w. The event S will be the
event that the message is spam and the event E is the event that the message contains the word w. If we
assume that a message is as likely to be spam as not, so that pHSL = pHSL = 1

2
, then Bayes' Theorem

tells us that the probability that the incoming message is spam given that it contains the word w is:

pHS EL =
pHE SL

pHE SL+ pIE SM

By estimating the conditional probabilities with empirical data, we can compute an estimate that the
given message is spam.
Before building the spam filter, we will first need messages to serve as spam and non-spam. For the
spam messages, we will use the sonnets of William Shakespeare, and for the non-spam messages, we
will use sonnets written by Shakespeare's contemporaries, Michael Drayton, Bartholomew Griffin, and
William Smith, published in the book Elizabethan Sonnet Cycles.
It may seem strange to consider Shakespeare's sonnets to be spam, but consider the goals and methods
of a Bayesian spam filter. The goal of a spam filter is to filter out the “junk mail.” But in the case of the
Bayesian filter described by the text, these filters work by comparing the specific words used by
authors of spam in contrast to authors of non-spam messages. Think about email messages you receive
from your classmates versus messages your professors may send you. Chances are good that you and
your peers use more slang and generally less formal English when writing to each other than you and
your professor use when communicating. This applies to kinds of message writers like peers versus
professors, but it also can apply to individual message writers, like a mathematics professor versus a
literature professor. A literature professor, for example, is not likely to use words like “Bayes' Theo-
rem” in an email to you. A Bayesian spam filter can pick up on these differences in word choice and
filter messages based on the assumption that different authors generally use different words. We will
see, by comparing Shakespeare with other Elizabethan sonnet writers, that a Bayesian filter can even
distinguish one author from others writing at the same time, for the same audience, and in a similar
form.
Obtaining Data
On the website for this manual, you will find these three files: “ShakespeareData.txt”,
“ElizabethanData.txt” and “testMessages.txt”. The first two contain the sonnets of Shakespeare and the
other authors, respectively. Five of Shakespeare's poems and five of the other authors' poems were
randomly selected and moved to the “testMessages.txt” file. We will use our filter on the poems in this
file to determine which of them were written by Shakespeare and which were not.
Begin by downloading the three files and storing them in the same directory as this Mathematica
Notebook. Then load the three files and store the text in variables using the Import function, as
shown below.

In[35]:= shakespeare =
Import@"ShakespeareData.txt", Path Ø NotebookDirectory@DD;

In[36]:= elizabethan =
Import@"ElizabethanData.txt", Path Ø NotebookDirectory@DD;

In[37]:= test = Import@"testMessages.txt", Path Ø NotebookDirectory@DD;

The Import function is able to load a variety of file types for processing with Mathematica, including
images, sounds, video, spreadsheets, and many others. In this case, Import loads the files, which
consist exclusively of text, and stores them as a string. The Path option is used to tell Mathematica
what directory on your computer contains the file. The NotebookDirectory function, which takes
no arguments, returns the directory in which the current notebook is stored. So provided that you
downloaded the three data files to the same directory as the one holding this notebook, the above
should load the three files. If not, you may need to move the files to the correct location or specify the
directory manually.

Chapter07.nb 11

The Import function is able to load a variety of file types for processing with Mathematica, including
images, sounds, video, spreadsheets, and many others. In this case, Import loads the files, which
consist exclusively of text, and stores them as a string. The Path option is used to tell Mathematica
what directory on your computer contains the file. The NotebookDirectory function, which takes
no arguments, returns the directory in which the current notebook is stored. So provided that you
downloaded the three data files to the same directory as the one holding this notebook, the above
should load the three files. If not, you may need to move the files to the correct location or specify the
directory manually.
If you inspect these files in a text editor, you will see that the sonnets are separated by three amper-
sands (“&&&”). The three expressions above store each of the files as a single string. It would be more
useful to store them as lists of strings, with each sonnet being one element of a list. To separate the
files into lists, we use StringSplit.

In[38]:= sPoems = StringSplit@shakespeare, "&&&"D;

In[39]:= ePoems = StringSplit@elizabethan, "&&&"D;

In[40]:= testPoems = StringSplit@test, "&&&"D;

The StringSplit function splits the string in the first argument based on the pattern given in the
second argument. In this case, the pattern is the string “&&&” so the StringSplit command uses
that pattern as a delimiter in the shakespeare, elizabethan, and test strings to separate them
into lists. Now that the “messages” are prepared, we begin building the filter.
Estimating the Probabilities
The spam filter relies on two computations: first, the probability that a message contains a word given
that it is spam, and second, the probability that a message contains the word given that it is not spam.
That is, we will need empirical estimates for pHE SL and pIE SM.

Following the notation of the textbook, for a word w, let pHwL be the estimate of pHE SL, the probabil-
ity that a message contains w given that it is spam. So pHwL is the number of spam messages containing
the word w divided by the number of spam messages. Likewise, let qHwL be the estimate for pIE SM,
the probability that a message contains w given that it is not spam. This is computed as the number of
non-spam messages containing w divided by the number of non-spam messages.
Counting the number of messages (i.e., poems) in each list can be done with Length.

In[41]:= Length@sPoemsD

Out[41]= 149

(This is five less than the 154 sonnets that Shakespeare published, because five of them were moved to
the “testMessages.txt” file as “unknown” messages.)
To count the number of messages that contain a particular word, we'll make use of StringFreeQ.
This function accepts as arguments a string and a string pattern and returns true if the pattern does not
appear in the string and false if it does. As a first example, the following determines that the substring
“bc” does appear in the string “abcdefg”.

In[42]:= StringFreeQ@"abcdefg", "bc"D

Out[42]= False

However, this is not quite sufficient to check for the presence of words. To see why, consider the fifth
sonnet.

12 Chapter07.nb

However, this is not quite sufficient to check for the presence of words. To see why, consider the fifth
sonnet.

In[43]:= sPoems@@5DD

Out[43]=

Those hours, that with gentle work did frame
The lovely gaze where every eye doth dwell,
Will play the tyrants to the very same
And that unfair which fairly doth excel;
For never-resting time leads summer on
To hideous winter, and confounds him there;
Sap checked with frost, and lusty leaves quite gone,
Beauty o'er-snowed and bareness every where:
Then were not summer's distillation left,
A liquid prisoner pent in walls of glass,
Beauty's effect with beauty were bereft,
Nor it, nor no remembrance what it was:

But flowers distill'd, though they with winter meet,
Leese but their show; their substance still lives sweet.

If you look carefully, you will see that this poem does not contain the English word “so”. However,
StringFreeQ returns false, indicating the presence of “so”:

In[44]:= StringFreeQ@sPoems@@5DD, "so"D

Out[44]= False

The reason for this is the presence of the letters “so” within the word “prisoner” in line 10. To avoid
this, we need to indicate that the word being sought must be surrounded by characters that do not
appear in words. To do this, we’ll use the pattern

Except@WordCharacter "'"D ~~ "so" ~~
Except@WordCharacter "'"D

At the center of the pattern above is the word being sought, “so”. On either side of “so” we use two
tildes, which is the StringExpression (~~) operator. You can think of ~~ as a concatenation
operator for string patterns. On the far sides of the pattern is an application of Except. Within a string
pattern, Except indicates that the pattern will match anything other than what is described by its
argument. Recall that our goal is to insist that the word “so” be surrounded by non-word characters.
Putting all the characters allowed to be in words inside of Except will accomplish this. Mathematica
has a built-in symbol, WordCharacter, which stands for all letter and digit characters. We also
recognize the frequent use of apostrophes in Elizabethan writing, and so we want to allow apostrophes
within words. To do this, we use the Alternatives (|) operator and the string containing an apostro-
phe within the Except. For string patterns, Alternatives (|) is the equivalent of a logical “or.”
Including the apostrophe will allow this pattern to recognize the string “distill’d” as a complete word
instead of interpreting that string as two words, “distill” and “d”.
Using the pattern above in StringFreeQ correctly determines that the word “so” does not appear in
poem 5.

Chapter07.nb 13

Using the pattern above in StringFreeQ correctly determines that the word “so” does not appear in
poem 5.

In[45]:= StringFreeQ@sPoems@@5DD, Except@WordCharacter "'"D ~~
"so" ~~ Except@WordCharacter "'"DD

Out[45]= True

Finally, Mathematica is, by default, case sensitive. This is a problem because StringFreeQ will not
recognize the presence of a word if asked about the same word with a different capitalization. For
example, the following indicates that “those”, the first word of poem five, is absent from it.

In[46]:= StringFreeQ@sPoems@@5DD, Except@WordCharacter "'"D ~~
"those" ~~ Except@WordCharacter "'"DD

Out[46]= True

To correct this, we use set the option IgnoreCase to True.
In[47]:= StringFreeQ@sPoems@@5DD, Except@WordCharacter "'"D ~~

"those" ~~ Except@WordCharacter "'"D, IgnoreCase Ø TrueD

Out[47]= False

We use what we’ve done above as a model to create a function that takes a poem and a word as argu-
ments and returns True if the word appears in the poem and False if not.

In[48]:= wordQ@poem_String, word_StringD :=
! StringFreeQ@poem, Except@WordCharacter "'"D ~~ word ~~

Except@WordCharacter "'"D, IgnoreCase Ø TrueD

This function tells us that poem 5 does not include the word “so” but does contain the word “those”.
In[49]:= wordQ@sPoems@@5DD, "so"D

Out[49]= False

In[50]:= wordQ@sPoems@@5DD, "those"D

Out[50]= True

Now that we have a function that determines whether or not a particular word appears in a poem, we
can determine the number of poems in a list that contain the word. We can do this simply by looping
over all the poems in a list and incrementing a counter for those containing the word. Below, the Do
loop with second argument {p,L} iterates over each poem p in the list of poems L.

In[51]:= countMessages@word_String, L : 8__String<D :=
Module@8count = 0, p<,
Do@If@wordQ@p, wordD, count++D,
8p, L<D;

count
D

For instance, we can see how many times Shakespeare uses the word “fairest” in a sonnet.

14 Chapter07.nb

In[52]:= countMessages@"fairest", sPoemsD

Out[52]= 4

So the empirical probability that a sonnet contains the word “fairest” given that it was written by Shake-
speare is:

In[53]:= countMessages@"fairest", sPoemsDêLength@sPoemsD

Out[53]=
4

149

And the probability that a sonnet contains the word “fairest” given that it was written by one of our
other authors is:

In[54]:= countMessages@"fairest", ePoemsDêLength@ePoemsD

Out[54]=
10

173

Applying Bayes' Theorem, we can compute the probability that a sonnet was written by Shakespeare
given that it contains the word “fairest”:

In[55]:= H4ê149LêH4ê149 + 10ê173L êê N

Out[55]= 0.31714

The above computation illustrates how to write a function to compute the probability that a sonnet is
spam (i.e., was written by Shakespeare) given that it contains a specific word:

In[56]:= pShakespeareGivenWord@word_StringD :=
Module@8sCount, eCount, pWordGivenS, pWordGivenNotS<,
sCount = Length@sPoemsD;
eCount = Length@ePoemsD;
pWordGivenS = countMessages@word, sPoemsDêsCount;
pWordGivenNotS = countMessages@word, ePoemsDêeCount;
N@pWordGivenSêHpWordGivenS + pWordGivenNotSLD

D

For example, the probability that a sonnet is Shakespearean given that it contains the word “beauty” is:
In[57]:= pShakespeareGivenWord@"beauty"D

Out[57]= 0.54468

Using Multiple Words
We can improve the filter by using multiple words, rather than just one. Using the notation of the text,
let pHwiL and qHwiL be the probabilities that a message contains word wi given that it is spam and that it
is not spam, respectively. Then the probability that a message is spam given that it contains all of the
words w1, w2, …, wk is:

Chapter07.nb 15

rHw1, w2, …, wkL =

¤
i=1

k
pHwiL

¤
i=1

k
pHwiL+ ¤

i=1

k
qHwiL

The Product function is useful here. Recall that we compute ¤
iœS

i2 for S = 81, 3, 5, 7, 9< with

In[58]:= Product@i^2, 8i, 81, 3, 5, 7, 9<<D

Out[58]= 893 025

For instance, to compute the probability that a message contains the words “from”, “fairest”, and
“creatures”:

In[59]:= S = 8"from", "fairest", "creatures"<;
Product@countMessages@w, sPoemsDêLength@sPoemsD, 8w, S<D

Out[60]=
456

3 307 949

We can modify our pShakespeareGivenWord function to work on lists of words instead of single
words by putting the probability computations inside of Product commands. It's also a good idea to
protect against division by zero errors, so we'll put the division inside of an if statement. This is needed
in case one or more of the selected words appears in none of the sonnets by either author. In this case,
we default to a probability of 0.5.

In[61]:= pShakespeareGivenList@L_ListD :=
Module@8sCount, eCount, pGivenS, pGivenNotS<,
sCount = Length@sPoemsD;
eCount = Length@ePoemsD;
pGivenS = Product@countMessages@w, sPoemsDêsCount, 8w, L<D;
pGivenNotS =
Product@countMessages@w, ePoemsDêeCount, 8w, L<D;

If@pGivenS + pGivenNotS ¹≠ 0,
N@pGivenSêHpGivenS + pGivenNotSLD,
0.5

D
D

So the probability that a sonnet is by Shakespeare given that it contains the words “from”, “fairest”,
and “creatures” is:

In[62]:= pShakespeareGivenList@8"from", "fairest", "creatures"<D

Out[62]= 0.55169

Selecting Test Words Randomly
Finally, we can use the RandomSample function to randomly select words from a test message, and
then use those randomly selected words to compute the probability that the message was written by
Shakespeare. Here's the first test message in “testMessages.txt”:

16 Chapter07.nb

Finally, we can use the RandomSample function to randomly select words from a test message, and
then use those randomly selected words to compute the probability that the message was written by
Shakespeare. Here's the first test message in “testMessages.txt”:

In[63]:= testPoems@@1DD

Out[63]= When to the sessions of sweet silent thought
I summon up remembrance of things past,
I sigh the lack of many a thing I sought,
And with old woes new wail my dear time's waste:
Then can I drown an eye, unused to flow,
For precious friends hid in death's dateless night,
And weep afresh love's long since cancell'd woe,
And moan the expense of many a vanish'd sight:
Then can I grieve at grievances foregone,
And heavily from woe to woe tell o'er
The sad account of fore-bemoaned moan,
Which I new pay as if not paid before.

But if the while I think on thee, dear friend,
All losses are restor'd and sorrows end.

First we must separate the poem into individual words. We do this using StringSplit, which we
used to split the data files into individual poems. Instead of splitting on a special delimiter, such as
“&&&”, we’ll use the pattern Except[WordCharacter|"'"]] that we determined earlier
expressed non-word characters. In order to avoid having individual spaces in the list, which can happen
when spaces and punctuation appear together with ends of lines, we will follow the pattern with the
Repeated (..) operator. This way, two spaces, or a period followed by a space, will count as a
single word delimiter.

In[64]:= exampleTestWords =
StringSplit@testPoems@@1DD, Except@WordCharacter "'"D ..D

Out[64]= 8When, to, the, sessions, of, sweet, silent, thought, I, summon,
up, remembrance, of, things, past, I, sigh, the, lack, of,
many, a, thing, I, sought, And, with, old, woes, new, wail,
my, dear, time's, waste, Then, can, I, drown, an, eye,
unused, to, flow, For, precious, friends, hid, in, death's,
dateless, night, And, weep, afresh, love's, long, since,
cancell'd, woe, And, moan, the, expense, of, many, a, vanish'd,
sight, Then, can, I, grieve, at, grievances, foregone, And,
heavily, from, woe, to, woe, tell, o'er, The, sad, account,
of, fore, bemoaned, moan, Which, I, new, pay, as, if, not,
paid, before, But, if, the, while, I, think, on, thee, dear,
friend, All, losses, are, restor'd, and, sorrows, end<

We apply DeleteDuplicates to remove repeated words.

Chapter07.nb 17

In[65]:= exampleTestWords = DeleteDuplicates@exampleTestWordsD

Out[65]= 8When, to, the, sessions, of, sweet, silent, thought, I,
summon, up, remembrance, things, past, sigh, lack, many, a,
thing, sought, And, with, old, woes, new, wail, my, dear,
time's, waste, Then, can, drown, an, eye, unused, flow, For,
precious, friends, hid, in, death's, dateless, night, weep,
afresh, love's, long, since, cancell'd, woe, moan, expense,
vanish'd, sight, grieve, at, grievances, foregone, heavily,
from, tell, o'er, The, sad, account, fore, bemoaned, Which,
pay, as, if, not, paid, before, But, while, think, on, thee,
friend, All, losses, are, restor'd, and, sorrows, end<

Then randomly select four of those words.
In[66]:= exampleTestList = RandomSample@exampleTestWords, 4D

Out[66]= 8flow, waste, past, thee<

And then use our function to find the probability that a message with these four words was written by
Shakespeare:

In[67]:= pShakespeareGivenList@exampleTestListD

Out[67]= 0.

Putting this all together:
In[68]:= pShakespeare@testMessage_String, testSize_IntegerD :=

Module@8testWordList<,
testWordList = RandomSample@DeleteDuplicates@StringSplit@

testMessage, Except@WordCharacter "'"D ..DD, testSizeD;
pShakespeareGivenList@testWordListD

D

As an example, we'll run the filter on the second test message with a test size of 3.
In[69]:= pShakespeare@testPoems@@2DD, 3D

Out[69]= 0.5

7.4 Expected Value and Variance
In Section 7.2 of this manual, we introduced Mathematica's functions for using random variables,
random variates, and probability distributions. In this section we will explore Mathematica's abilities
more closely and use probability distributions to explore the concepts of expected value and variance.
As mentioned earlier, Mathematica provides the distribution GeometricDistribution, which
takes one parameter, the probability of a “success.”
We can use the Probability function to compute the probabilities of events. For example, the
probability pHX = 5L is computed by the following.

18 Chapter07.nb

In[70]:= Probability@X ã 5, X é GeometricDistribution@1ê4DD

Out[70]=
243

4096

Note that the Mathematica's definition of a geometric random variable differs slightly from the text-
book's. The textbook defines the value of the geometric random variable, in terms of coin flips, to be
the number of flips it takes to get a tails, where the parameter is the probability of tails. Mathematica's
definition is that the value of the random variable is the number of heads that appear before tails comes
up. So the probability pHX = kL is

In[71]:= Probability@X ã k, X é GeometricDistribution@1ê4DD

Out[71]= ¶ 3k 4-1-k k ¥ 0
0 True

Contrast this with the formula given in the text.
Mathematica can also calculate the expected value, variance, and standard deviation of distributions.
The Mean, Variance, and StandardDeviation functions all accept a distribution as the sole
argument and return the statistic.

In[72]:= Mean@GeometricDistribution@1ê4DD

Out[72]= 3

In[73]:= Variance@GeometricDistribution@1ê4DD

Out[73]= 12

These functions can also compute symbolically:
In[74]:= StandardDeviation@GeometricDistribution@kDD

Out[74]=
1 - k

k

All three functions can also accept a list holding data. For example, to compute the mean of
81, 3, 4, 7, 11<:

In[75]:= Mean@81, 3, 4, 7, 11<D

Out[75]=
26

5

Alternately, you can use the Expectation function. Expectation is more flexible in that it
allows you to form an expression using random variables as a first argument and specify the distribu-
tions of the random variables as the second argument. The syntax is similar to that of Probability,
except the first argument is an expression, not an event.
For example, the following will find the expected value of the geometric distribution with parameter
1 ê 4.

In[76]:= Expectation@X, X é GeometricDistribution@1ê4DD

Out[76]= 3

Chapter07.nb 19

Expectation allows us to find the expected value of more complicated expressions, such as EHX^2L.
In[77]:= Expectation@X^2, X é GeometricDistribution@1ê4DD

Out[77]= 21

Recalling that the variance of a random variable is EIHX -EHXLL2M, we can use Expectation to
compute variance as well.

In[78]:= mean = Expectation@X, X é GeometricDistribution@1ê4DD

Out[78]= 3

In[79]:= Expectation@HX - meanL^2, X é GeometricDistribution@1ê4DD

Out[79]= 12

You can also mix distributions, as shown below.
In[80]:= distribution1 = GeometricDistribution@1ê4D;

In[81]:= distribution2 = BinomialDistribution@20, .3D;

In[82]:= mean2 =
Expectation@X + 2*Y, 8X é distribution1, Y é distribution2<D

Out[82]= 15.

In[83]:= Expectation@HHX + 2*YL - mean2L^2,
8X é distribution1, Y é distribution2<D

Out[83]= 28.8

Solutions to Computer Projects and Computations and
Explorations

Computer Projects 7

Given a positive integer m, simulate the collection of cards that come with the purchase of
products to find the number of products that must be purchased to obtain a full set of m
different collector cards. (See Supplementary Exercise 33.)

Solution: We will define a function called cardSimulate that will simulate the process of choosing
random collectible cards until all the possible cards have been obtained. This function needs to do three
things: (1) keep track of which cards have been obtained; (2) keep selecting random cards until the
complete set is obtained; and (3) keep track of how many cards have been purchased.
Think of the cards as numbered 1 through m. To keep track of which cards have been obtained and
which have not, we'll use a list that we'll call currCollection, for current collection. The entries
in this list will be 0s and 1s, with a 0 representing the fact that the card corresponding to that position is
not owned and 1 that it is. To initialize currCollection, we use the ConstantArray function.
For example, to produce a list of ten 0s, you would enter the following.

20 Chapter07.nb

In[84]:= ConstantArray@0, 10D

Out[84]= 80, 0, 0, 0, 0, 0, 0, 0, 0, 0<

Second, random selection of integers can be accomplished with the RandomInteger function. When
given an argument of the form 8min, max<, RandomInteger returns an integer selected from that
range. Our cards are numbered 1 through m, so we will use the range specification 81, m<.

In[85]:= RandomInteger@81, 10<D

Out[85]= 2

Our function will generate a random card and set the entry in currCollection at that card's posi-
tion equal to 1. This needs to keep happening until all the cards are owned. So we need to know when
all of the entries of the list are 1s. We can do this by adding up the entries in the list. Since the entries
are always 0 or 1, when the list is all 1s, the sum will be equal to m and that's the only way the sum can
be m. To add the entries in the list, we can use the Total function as follows.

In[86]:= Total@81, 0, 0, 1, 1, 1<D

Out[86]= 4

Third, we keep track of how many cards have been purchased with a counter that we increment each
time a random card is generated.
Putting all of these pieces together, here is the function:

In[87]:= cardSimulate@m_IntegerD :=
Module@8currCollection, count, tempCard<,
currCollection = ConstantArray@0, mD;
count = 0;
While@Total@currCollectionD ¹≠ m,
tempCard = RandomInteger@81, m<D;
count++;
currCollection@@tempCardDD = 1

D;
count

D

Let's run the simulation 10000 times for m = 5 and draw a graph of the resulting data:
In[88]:= simulations = Table@cardSimulate@5D, 810 000<D;

Chapter07.nb 21

In[89]:= Histogram@simulationsD

Out[89]=

Computer Projects 9

Given a positive integer n, find the probability of selecting the six integers from the set
81, 2, …, n< that were mechanically selected in a lottery.

Solution: We will follow example 4 from Section 7.1 of the text. The total number of ways of choosing
6 numbers from n numbers is CHn, 6L, which is found with the function Binomial. This gives us the
total number of possibilities, only one of which will win. The following defines this function and
applies it to the situation in which n = 49.

In[90]:= lottery@n_IntegerD := 1.êBinomial@n, 6D

In[91]:= lottery@49D

Out[91]= 7.15112µ10-8

If the rules of the lottery change, so that the number of numbers chosen is something other than 6, then
we must modify the function above. We can easily modify our program to allow us to specify how
many numbers we want to choose, by adding another parameter.

In[92]:= lottery2@n_Integer, k_IntegerD := 1.êBinomial@n, kD

In[93]:= lottery2@49, 6D

Out[93]= 7.15112µ10-8

In[94]:= lottery2@30, 3D

Out[94]= 0.000246305

Computations and Explorations 3

Estimate the probability that two integers selected at random are relatively prime by testing a
large number of randomly selected pairs of integers. Look up the theorem that gives this
probability and compare your results with the correct probability.

22 Chapter07.nb

Solution: To solve this problem, three things must be done:
1. Devise a method for generating pairs of random integers.
2. Produce a large number of these pairs, test whether they are relatively prime, and note the

probability estimate based on this sample.
3. Look up the theorem mentioned in the question.

Naturally, we'll leave part 3 entirely to the reader.
The Mathematica function RandomInteger can be used to generate a the random integers. The
optional second argument can be used to specify a number of integers to generate. For example, the
following generates 10 random integers between 0 and 100.

In[95]:= RandomInteger@100, 10D

Out[95]= 827, 9, 78, 9, 94, 28, 8, 88, 8, 49<

The second argument can also specify that a nested list should be generated. For example, to generate
ten pairs of integers, you use {10,2} as the second argument.

In[96]:= RandomInteger@100, 810, 2<D

Out[96]= 8887, 96<, 89, 94<, 886, 32<, 858, 52<, 881, 80<,
874, 3<, 894, 43<, 819, 91<, 83, 48<, 894, 83<<

Having generated such a list we can test whether the pairs of its members are relatively prime using the
Mathematica function CoprimeQ. We can evaluate CoprimeQ on each pair by using Apply (@@) at
level 1. Ordinarily, Apply replaces the head of an expression with the function being applied. In this
case, we want to apply the function CoprimeQ not to the entire expression, but “one level down” at
each subexpression. For this, we can give the level specification {1} as a third argument in the Apply
function.

In[97]:= Apply@CoprimeQ, RandomInteger@100, 810, 2<D, 81<D

Out[97]= 8True, True, True, False, False, False, True, False, True, True<

Alternately, you can use the @@@ operator.
In[98]:= CoprimeQ üüü RandomInteger@100, 810, 2<D

Out[98]= 8False, True, True, True, False, True, False, False, False, False<

Now we just need to count the number that are relatively prime. For this, we use the Count function
with second argument True to count the number of times that True appears in the list.

In[99]:= Count@CoprimeQ üüü RandomInteger@100, 810, 2<D, TrueD

Out[99]= 8

Increase the maximum integer and the number of pairs generated and divide by the number of pairs to
get an estimate of the probability.
In[100]:= Count@CoprimeQ üüü RandomInteger@10^50, 8100, 2<D, TrueDê100.

Out[100]= 0.66

Repeating the computation may lead to a somewhat different result since the integers were generated
randomly. You should try this with a larger sample size, say 10000 pairs of integers.

Chapter07.nb 23

Computations and Explorations 4

Determine the number of people needed to ensure that the probability at least two of them
have the same day of the year as their birthday is at least 70%, at least 80%, at least 90%, at
least 95%, at least 98%, and at least 99%.

Solution: Given that we know the formula for the probability of two people having the same birthday,
we can use Mathematica to loop over a range of possible numbers of people until we reach a probabil-
ity greater than the desired probability. Example 13 of section 7.2 of the text shows that the probability
that n people in a room have different birthdays is

pn =
365
366

ÿ
364
366

ÿ
363
366

º⋯
367- n

366
=

PH366, nL

366n

Our task is to find n such that 1- pn is greater than the values specified in the problem. We can do this
using the Mathematica function below.
In[101]:= birthdays@percentage_RealD :=

Module@8numPeople = 0, curProb = 0<,
While@curProb < percentage,
numPeople++;
curProb = 1 - H366!êH366 - numPeopleL!Lê366^numPeople

D;
numPeople

D

This function returns the number of people required to attain the given probability that two have the
same birthday. We execute the function for probabilities of .70 and .95.
In[102]:= birthdays@.70D

Out[102]= 30

In[103]:= birthdays@.95D

Out[103]= 47

Exercises
1. Use Mathematica to determine the integer k such that the chances of picking six numbers

correctly in a lottery from the first k positive integers is less than
a. 1 in 100 million (10-8),
b. 1 in a billion (10-9),
c. 1 in 10 billion (10-10),
d. 1 in 100 billion (10-11), and
e. 1 in a trillion (10-12).

24 Chapter07.nb

2. Implement a Monte Carlo algorithm that determines whether a permutation of the integers 1
through n is in increasing order or not. (See Exercise 40 in section 7.2 of the textbook.)

3. Modify the implementation of the collector card simulator given in the solution to Computer
Projects 7 to model the situation in which the cards do not appear with equal probabilities. For
instance, there could be five possible cards all of which appear with probability 2 ê 9 except
for card number 5 which appears with probability 1 ê 9.

4. Modify the implementation of the collector card simulator given in the solution to Computer
Projects 7 to model the situation in which cards are purchased in packs. For example, there
could be ten possible cards and they are purchased three to a pack. Assume the cards in a pack
are always different from each other. The function should return the number of packs
necessary to collect all of the cards.

5. Compute the average of the probabilities returned by running the Bayesian filter
pShakespeare 100 times with the testMessage argument equal to
testPoems[[10]] and a testSize of 1, i.e., on the tenth of the test poems and using
one word. Repeat this with a testSize of 2, 3, ..., 10. Graph the average probabilities for
the different numbers of test words. Is there a trend in the average probabilities as the number
of words increases? Explain why.

6. The textbook describes how a Bayesian filter can be improved by considering pairs of words.
Implement a Bayesian spam filter that uses this idea. Using the Shakespearean and
Elizabethan sonnets as messages, compare the accuracy of your filter with pShakespeare.

7. As described in the textbook, spam filters are most effective when the words being used as the
basis of comparison are not chosen randomly, as they are in the implementation of
pShakespeare above, but instead are chosen more carefully. Specifically, choosing words
which have very high or very low probability of appearing in spam messages can improve the
performance of the filter. Implement a Bayesian spam filter that uses this idea. Using the
Shakespearean and Elizabethan sonnets as messages, compare the accuracy of your filter with
pShakespeare.

Chapter07.nb 25

