
7 Discrete Probability

Introduction
In this chapter you will learn how to use Mathematica to perform computations in discrete probability
and  how  to  use  Mathematica's  capabilities  to  explore  concepts  of  discrete  probability.  We  will  con-
tinue to make use of the functions described in the previous chapter. 
We  will  make  use  of  simulations  to  help  explore  concepts  in  discrete  probability.  In  this  context,  a
simulation  refers  to  a  computer  program that  models  a  real  physical  system.  For  example,  instead  of
flipping  an  actual  coin  one  hundred  times  and  recording  whether  each  flip  resulted  in  “heads”  or
“tails,”  we  could  write  a  program  that  uses  random  numbers  to  generate  a  sequence  of  one  hundred
“heads” or “tails.”
Simulations  are  useful  in  discrete  probability  from  two  different  perspectives.  First,  they  can  help
analyze and/or  confirm probabilities  for  systems that  are  difficult  to  compute  deductively.  For  exam-
ple, Computations and Explorations 7 from the text asks you to simulate the odd-person-out procedure
in  order  to  confirm your  deductive calculations.  Second,  simulations  can be very helpful  as  a  way to
better understand a problem and how to arrive at a solution. For example, in the Computer Projects 10
exercise, you are asked to build a simulation of the famous Monty Hall Three-Door problem. Building
the simulation and analyzing the results  can help improve your understanding of the reasons why the
strategy described in the text is the best possible.

7.1 An Introduction to Discrete Probability
To find the probability of an event in a finite sample space, you calculate the number of times the event
occurs and divide by the total number of possible outcomes (the size of the sample space). 
As  in  Example  4,  Section  7.1,  we  calculate  the  probability  of  winning  a  lottery,  where  we  need  to
choose 6 numbers correctly out of 40 possible numbers. The total number of ways to choose 6 numbers
is: 

In[1]:= Binomial@40, 6D

Out[1]= 3 838 380

Since there is one winning combination, the probability is 1 divided by that value.
In[2]:= 1êBinomial@40, 6D

Out[2]=
1

3 838 380

We  can  find  a  real  number  approximation  by  using  the  N  function  —  evaluation  as  a  floating  point
number.  Given a single argument,  N  returns a numerical  approximation of the value of the argument.
With a positive integer as a second argument, you can control the number of digits of precision that are
output.
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In[3]:= N@1êBinomial@40, 6DD

Out[3]= 2.60527µ10-7

In[4]:= N@1êBinomial@40, 6D, 20D

Out[4]= 2.6052657631605000026µ10-7

We could also force a decimal approximation of the result by using 1.0 or simply 1., to show that we
wish to work with decimals instead of the exact rational representation. For example, if we needed to
choose from 50 numbers, the probability is

In[5]:= 1.0êBinomial@50, 6D

Out[5]= 6.29299µ10-8

Continuing with this type of example, we define a function that computes the probability of winning a
lottery where 6 numbers must be matched out of n possible numbers, provided that n is at least 6.

In[6]:= lottery@n_IntegerD ê; n ¥ 6 := 1.0êBinomial@n, 6D

Then the probabilities above can be computed with the function. 
In[7]:= 8lottery@40D, lottery@50D<

Out[7]= 92.60527µ10-7, 6.29299µ10-8=

Now we can  use  the  Table  function  to  look at  a  list  of  probabilities  for  a  range  of  values  of  n  and
graph  these  values  with  ListPlot  to  visualize  how  the  number  of  possible  values  in  the  lottery
affects the probability of choosing the correct values.

In[8]:= lotteryValues = Table@8n, lottery@nD<, 8n, 40, 50<D

Out[8]= 9940, 2.60527µ10-7=, 941, 2.22401µ10-7=,

942, 1.90629µ10-7=, 943, 1.6403µ10-7=, 944, 1.41662µ10-7=,

945, 1.22774µ10-7=, 946, 1.0676µ10-7=, 947, 9.31309µ10-8=,

948, 8.14896µ10-8=, 949, 7.15112µ10-8=, 950, 6.29299µ10-8==

2   Chapter07.nb



In[9]:= ListPlot@lotteryValuesD

Out[9]=

42 44 46 48 50

1.µ10-7

1.5µ10-7

2.µ10-7

2.5µ10-7

Refer to Section 2.3 of this manual for information on the use of ListPlot.

7.2 Probability Theory
We can use Mathematica to perform a variety of calculations of probabilities.
For  example,  Example  9  in  section  7.2  asks  us  to  calculate  the  probability  that  eight  of  the  bits  in  a
string of ten bits are 0s if the probability of a 0 bit is 0.9, the probability of a 1 bit is 0.1, and the bits
are generated independently. To perform this calculation, we can input the formula directly: 

In[10]:= Binomial@10, 8D*0.9^8*0.1^2

Out[10]= 0.19371

Probability Distributions
We  can  think  of  this  same  question  in  terms  of  a  random  variable.  Specifically,  consider  a  random
variable X that assigns to each string of ten bits the number of the bits that are 0s. Then the probability
that eight of the ten bits were 0 is pHX = 8L. 
In order to compute probabilities of events in terms of random variables, we must specify the distribu-
tion of the random variable.
Computing Probabilities from Discrete Distributions
Mathematica provides many different probability distributions, including several discrete distributions.
To compute the probability of an event involving a random variable distributed according to a built-in
distribution,  you  can  use  the  Probability  or  NProbability  functions.  These  functions  are
essentially  identical,  except  NProbability  applies  numerical  methods to  approximate  a  numerical
answer,  while  Probability  uses  symbolic  methods.  Using either  function requires  that  we have a
distribution, so we begin by introducing Mathematica’s implementation of the binomial distribution.
Theorem 2 in the textbook defines the binomial distribution, which is implemented in Mathematica as
BinomialDistribution. The BinomialDistribution takes two parameters: the number of
independent Bernoulli trials and the probability of a success. For the bit string example that began this
section, there are 10 trials, and we interpret success to be a 0 bit,  so the probability of success is 0.9.
The  binomial  distribution  with  these  parameters  would  be  represented  as  shown  below.  Note  that
BinomialDistribution is not a function and evaluating the line below will do nothing.
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BinomialDistribution@10, .9D

The  Probability  and  NProbability  functions  expect  two  arguments.  The  first  argument,
written in terms of a symbol representing a random variable, is an expression describing an event. For
example,  to  compute  the  probability  pHX = 8L  in  the  bit-string  example,  the  first  argument  would  be
X==8. 
The  second  argument  to  the  Probability  and  NProbability  functions  is  used  to  indicate  the
distribution.  This  is  done  using  the  Distributed  (é)  function  or  operator.  As  a  function,  Dis-
tributed requires two arguments: the symbol representing the random variable and the representa-
tion  of  the  distribution.  To  use  the  operator  form,  enter  ÂdistÂ  to  produce  the  é  symbol.  In  this
case, the name of the random variable goes on the left and the distribution on the right.
Putting these two pieces together,  the expression below computes the probability of 8 successes for a
binomial distribution with 10 trials and probability of success 0.9.

In[11]:= Probability@X ã 8, X é BinomialDistribution@10, .9DD

Out[11]= 0.19371

Note that this is the same answer we found above using the formula. 
Related  to  the  binomial  distribution  is  the  probability  distribution  of  a  single  Bernoulli  trial.  The
BernoulliDistribution  takes  only  one  parameter,  the  probability  of  success.  The  following
creates  the  random  variable  associated  to  a  single  trial  with  probability  of  success  0.9.  The  possible
values of a Bernoulli random variable are 0 or 1, representing failure and success, respectively.

In[12]:= Probability@X ã 0, X é BernoulliDistribution@.9DD

Out[12]= 0.1

Definition  1  of  Section  7.1  defines  the  uniform  distribution.  Mathematica  includes  the  distribution
DiscreteUniformDistribution.  Note  that  this  is  different  from UniformDistribution,
which is used for continuous random variables. The DiscreteUniformDistribution requires a
single  argument,  a  list  containing  the  lower  and  upper  bounds  of  the  distribution.  For  example,  the
following  computes  the  probability  pIX2 § 4M  for  a  random  variable  distributed  uniformly  on
8-10, -9, …, 9, 10<.

In[13]:= Probability@X^2 § 4, X é DiscreteUniformDistribution@8-10, 10<DD

Out[13]=
5

21

Definition  2  of  Section  7.4  defines  the  geometric  distribution.  Mathematica  uses  a  slightly  different
definition of geometric distribution than the textbook. In Mathematica, the value of a random variable
distributed  geometrically  is  the  number  of  failures  that  occur  before  the  first  success,  rather  than  the
total  number  of  trials  until  the  first  success.  The  GeometricDistribution  in  Mathematica
requires one argument, the probability of success. The following computes the probability that if a coin
with probability of heads 0.3 is flipped until it comes up heads, there will be at most 5 tails that appear.
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In[14]:= Probability@X § 5, X é GeometricDistribution@.3DD

Out[14]= 0.882351

Note  that  you  can  form  more  complicated  events  by  including  Boolean  operators  when  building  the
event. For example, the probability that it requires at most 2 or at least 7 flips of a coin with probability
of heads 0.3 before a heads comes up is:

In[15]:= Probability@X § 2 »» X ¥ 7, X é GeometricDistribution@.3DD

Out[15]= 0.739354

Mathematica  also  makes  it  easy  to  work  with  multiple  distributions.  For  example,  suppose  you  have
two coins, one with probability of heads 0.3 and the other with probability of heads 0.25. The probabil-
ity that flipping each coin once will result in at least one head can be computed as follows.

In[16]:= Probability@X ã 1 »» Y ã 1, 8X é BernoulliDistribution@.3D,
Y é BernoulliDistribution@.25D<D

Out[16]= 0.475

Note that the second argument is a list whose elements define the distributions for X and Y. 
Graphing Probabilities
It is often useful to graph the probabilities associated to the values of a random variable. To do this, we
will apply the DiscretePlot and PDF functions.
The DiscretePlot function is the discrete analog of Plot. Its first argument is an expression, the
values of which are to be plotted, in terms of a variable. The second is a domain specification, which is
of  the  same  form  as  in  a  Table:  8n, max<,  8n, min, max<,  8n, min, max, step<,  or
8n, list<, where n is the variable.
For  example,  the  following plots  the  values  of  pHxL,  the  function defined to  be the  number  of  primes
less than or equal to the argument, for x œ 82, 3, …, 50<.

In[17]:= DiscretePlot@PrimePi@nD, 8n, 2, 50<D

Out[17]=

By  applying  DiscretePlot  with  first  argument  an  application  of  Probability,  we  can  get  a
picture of a distribution.
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In[18]:= DiscretePlot@
Probability@X ã n, X é BinomialDistribution@20, .3DD, 8n, 20<D

Out[18]=

Conditional Probabilities
Mathematica  allows  you  to  calculate  with  conditional  probabilities  using  the  Conditioned  (æ)
operator.  The  operator  symbol  is  entered  by  ÂcondÂ.  For  example,  consider  a  binomial  random
variable X with parameters 20 and 0.3. The probability that X is greater than 5 given that it is less than
10, that is pHX > 5 X < 10L can be compute as shown below.

In[19]:= Probability@X > 5 æ X < 10, X é BinomialDistribution@20, .3DD

Out[19]= 0.562653

Defining Distributions from Data
Mathematica  provides  the  EmpiricalDistribution  function  to  allow  you  to  define,  and  thus
compute  with,  discrete  probability  distributions  from  your  own  data.  There  are  two  ways  to  use  the
EmpiricalDistribution function.
If  you  have  a  list  of  values  representing  the  results  of  experiments,  you  can  pass  this  list  of  data  to
EmpiricalDistribution. For example, suppose you manually roll a die 20 times and obtain the
following results.

In[20]:= dieRolls = 83, 2, 1, 1, 5, 2, 3, 6, 5, 1, 2, 5, 6, 4, 4, 3, 1, 3, 1, 1<

Out[20]= 83, 2, 1, 1, 5, 2, 3, 6, 5, 1, 2, 5, 6, 4, 4, 3, 1, 3, 1, 1<

To use this as the basis for a distribution, simply give the list as the argument to EmpiricalDistri-
bution. We’ll assign the distribution to a symbol.

In[21]:= dieDistribution = EmpiricalDistribution@dieRollsD

Out[21]= DataDistribution@áEmpiricalà, 820<D

The output is giving you a peek at the internal representation of the distribution. What’s important for
us is that we can now use dieDistribution as a probability distribution in functions like Proba-
bility. For example, we can calculate the probability that the die shows a value of 4 or less.
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In[22]:= Probability@X § 4, X é dieDistributionD

Out[22]=
3

4

The  second  way  you  can  use  EmpiricalDistribution  is  to  explicitly  specify  each  data  value
and corresponding weights. As an example, consider the following problem. A die is weighted so that
the probability of a 1 is 2

9
, the probability of a 2 is 1

3
, and the probability of the other values is 1

9
 each.

What is the probability that value is less than 3 when it is rolled?
To specify probabilities associated to specific values, you need to list the probabilities (or weights) and
the  values  and  join  the  two  lists  with  a  Rule  (->).  The  following  is  the  distribution  of  the  die
described above.

EmpiricalDistribution@
82ê9, 1ê3, 1ê9, 1ê9, 1ê9, 1ê9< Ø 81, 2, 3, 4, 5, 6<D

Mathematica  interprets  this  as  meaning that  the data values in the right  hand list  are  weighted as  per
the corresponding entry in the left hand list. That is, 1 has probability 2

9
, 2 has probability 1

3
, etc. Note

that it  is not necessary for the weights in the left  hand list  to be probabilities.  Mathematica  computes
the  probabilities  of  the  data  values  by  dividing  the  corresponding  weight  value  by  the  sum  of  the
weights. So the following will also produce the correct distribution for the die.

EmpiricalDistribution@82, 3, 1, 1, 1, 1< Ø 81, 2, 3, 4, 5, 6<D

The  following,  therefore,  computes  the  probability  that  the  value  is  less  than  3.  Note  that  we  use
Range rather than type the integers 1 through 6.

In[23]:= Probability@X < 3,
X é EmpiricalDistribution@82, 3, 1, 1, 1, 1< Ø Range@6DDD

Out[23]=
5

9

Combining Empirical Distributions
A more interesting question is to compute probabilities for the sum of the values on a weighted die. For
example, consider two loaded dice. One is weighted so that the probability that a 1 appears is 2 ê 7 and
the probabilities of all other values is 1 ê 7. The other is weighted to that the probability of a 4 appear-
ing  is  3 ê 8  and  the  probabilities  of  all  other  values  is  1 ê 8.  What  is  the  probability  that  the  sum is  7
when the two dice are rolled?
To answer this question, we first define two empirical distributions, just as done above. Here we assign
the distributions to symbols.

In[24]:= weighted1 = EmpiricalDistribution@82, 1, 1, 1, 1, 1< Ø Range@6DD;
weighted2 = EmpiricalDistribution@81, 1, 1, 3, 1, 1< Ø Range@6DD;

The example above using two Bernoulli distributions suggests that the probability of the sum being 7
can be computed as below.
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In[26]:= Probability@X + Y ã 7, 8X é weighted1, Y é weighted2<D

Out[26]=
9

56

Sampling
Given  a  particular  distribution,  you  may  wish  to  use  it  to  conduct  experiments  or  simulations.  The
process of generating pseudo-random numbers according to a given probability distribution is referred
to as sampling. In Mathematica, the RandomVariate function is used to sample.
Recall  that  a  random variable  is  a  function  that  assigns  a  real  number  to  each  possible  outcome in  a
sample space (Definition 6 in Section 7.2 of the textbook). A random variate is a real number obtained
by  applying  the  random  variable  to  an  outcome  selected  pseudo-randomly  according  to  a  specified
probability distribution. In other words, where a random variable describes the relationship between an
experiment’s sample space and real numbers, a random variate is a particular value obtained by perform-
ing the experiment.
Applying RandomVariate  to a probability distribution produces a single random sample from that
distribution. For example, the following expression simulates a binomial experiment with 10 trials and
probability of success 0.4.

In[27]:= RandomVariate@BinomialDistribution@10, .4DD

Out[27]= 2

Providing a positive integer as a second argument produces a list of that many values. For example, the
following simulates a binomial process 1000 times.

In[28]:= binomialData =
RandomVariate@BinomialDistribution@20, .3D, 1000D;

We can use the Histogram function to draw a histogram of the data. You see that the data produced
has approximately the same shape as was produced with PDF above. We use the PlotRange option,
first described in Section 2.3, to ensure the graph shows all of the possible values, not just those actu-
ally obtained.

In[29]:= Histogram@binomialData, PlotRange Ø 880, 20<, Full<D

Out[29]=
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Monte Carlo Methods
We  can  also  implement  Monte  Carlo  algorithms  using  Mathematica.  Miller's  test  for  base  b  is
described in  the  prelude  to  Exercise  44  of  Section  4.4  of  the  textbook.  In  that  description,  it  is  men-
tioned that a composite integer n  passes Miller's  test  for base b  for fewer than n ê 4 bases less than n,
and Exercise 44 asked you to show that primes pass Miller's test for all bases that they do not divide. In
other words, Miller's test is a probabilistic primality test that fails less than one-fourth of the time. In
this subsection we'll use Miller's test to create a Monte Carlo primality testing algorithm.
Miller’s Test
First we must implement Miller's test for base b. Recall the description preceding Exercise 44 in Sec-
tion 4.4.  Let  n  and b  be positive integers.  Assume s  is  a  nonnegative integer and t  is  an odd positive
integer  such  that  n- 1 = 2s t.  If  bt ª 1 Hmod nL  or  if  there  is  a  j  with  0 § j § s- 1  such  that
b2 j t ª -1 Hmod nL, then n is said to pass Miller's test for base b.
To implement Miller's test, we first must calculate s and t. Initialize s to 0 and set t equal to n- 1. If t is
even, we add 1 to s and divide t by 2. When t is no longer even, then s and t are the correct values.
Once  s  and  t  have  been  calculated,  we  check  the  congruence  bt ª 1 Hmod nL.  If  that  congruence  is
satisfied, then n passes Miller's test and we return True. Otherwise, we begin testing the congruences
b2 j t ª -1 Hmod nL.  A For  loop assigns j  to each integer from 0 to s- 1 and inside the For  loop, the
congruence is tested. If any congruence holds, the function returns True. (Recall from Section 4.1 of
this manual that for exponentiation, PowerMod applied to an integer, an exponent, and a base is much
more  efficient  than  Mod.  However,  it  returns  the  smallest  positive  integer  congruent  to  its  first  argu-
ment  modulo  its  second  argument.  That  is,  it  will  not  return  -1.  Thus  we  test  for  congruence  to  -1
modulo n  by comparing the result to n- 1.) If the function completes without having returned True,
then it returns False.
Note  that  we  use  Catch  and  Throw  in  order  to  ensure  that  the  result  becomes  the  output  of  the
function.

In[30]:= miller@n_Integer, b_IntegerD := Module@8s = 0, t = n - 1, j<,
While@Mod@t, 2D ã 0,
t = tê2;
s++

D;
Catch@
If@PowerMod@b, t, nD ã 1, Throw@TrueDD;
For@j = 0, j § s - 1, j++,
If@PowerMod@b, 2^j*t, nD ã n - 1, Throw@TrueDD

D;
Throw@FalseD

D
D

Monte Carlo Primality Test
Now  we  use  Miller's  test  to  implement  a  Monte  Carlo  primality  testing  algorithm,  as  described  in
Example 16 in section 7.2 of the text. The question the Monte Carlo algorithm is going to answer is “Is
n  composite?”  for  an  integer  n.  For  each  iteration,  the  algorithm  will  select  a  random  base  b  with
1 < b < n  and  check  to  see  if  n  passes  Miller's  test  for  base  b.  If  Miller's  test  returns  false,  then  we
know  that  n  is  composite  and  the  Monte  Carlo  algorithm  will  return  “Composite.”  If  Miller's  test
returns true, then the iteration results in “unknown” and the next iteration is started. After 30 iterations,
if Miller's test has only resulted in true, then the algorithm will return “Prime,” indicating that it is very
likely that the number is prime. Since Miller's test falsely identifies a composite as prime less than one-
fourth of the time, the probability that the Monte Carlo algorithm with 30 trials will incorrectly identify
a composite number as prime is
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In[31]:= H1ê4L^30 êê N

Out[31]= 8.67362µ10-19

Here is the Miller Monte Carlo test:
In[32]:= millerMC@n_IntegerD := Module@8b<,

Catch@
Do@b = RandomInteger@82, n - 1<D;
If@! miller@n, bD, Throw@"Composite"DD
, 830<D;

Throw@"Prime"D
D

D

Note the use of Do,  with second argument {30}.  This causes the body of the loop to be executed 30
times  without  assigning  a  loop  variable,  which  in  this  case  is  not  needed.  The  RandomInteger
function applied to a list  of two integers,  with the first  smaller than the second, produces a randomly
selected integer in the range specified by the values.
Now  we  use  millerMC  to  test  an  integer  to  see  if  it  is  prime.  We  can  use  Mathematica's  Prime
function to find the 40000th prime and then check that our algorithm confirms that it is prime.

In[33]:= Prime@40 000D

Out[33]= 479 909

Now run the algorithm on this prime.
In[34]:= millerMC@479 909D

Out[34]= Prime

7.3 Bayes’ Theorem
Section 7.3 focuses on applications of Bayes'  Theorem, which asserts  that  for  events E  and F  from a
sample space S with pHEL ¹≠ 0 and pHFL ¹≠ 0, one has

pHF EL =
pHE FL pHFL

pHE FL pHFL+ pIE FM pHFL

The text describes how to use this theorem to create a Bayesian spam filter. We will use Mathematica
to implement such a filter.
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The text describes how to use this theorem to create a Bayesian spam filter. We will use Mathematica
to implement such a filter.
Recall the notation from the text. A message is received containing the word w. The event S will be the
event that the message is spam and the event E is the event that the message contains the word w. If we
assume  that  a  message  is  as  likely  to  be  spam  as  not,  so  that  pHSL = pHSL = 1

2
,  then  Bayes'  Theorem

tells us that the probability that the incoming message is spam given that it contains the word w is:

pHS EL =
pHE SL

pHE SL+ pIE SM

By estimating  the  conditional  probabilities  with  empirical  data,  we  can  compute  an  estimate  that  the
given message is spam. 
Before  building the  spam filter,  we will  first  need messages  to  serve  as  spam and non-spam.  For  the
spam messages, we will use the sonnets of William Shakespeare, and for the non-spam messages, we
will use sonnets written by Shakespeare's contemporaries, Michael Drayton, Bartholomew Griffin, and
William Smith, published in the book Elizabethan Sonnet Cycles.
It may seem strange to consider Shakespeare's sonnets to be spam, but consider the goals and methods
of a Bayesian spam filter. The goal of a spam filter is to filter out the “junk mail.” But in the case of the
Bayesian  filter  described  by  the  text,  these  filters  work  by  comparing  the  specific  words  used  by
authors of spam in contrast to authors of non-spam messages. Think about email messages you receive
from your classmates versus messages your professors may send you. Chances are good that you and
your peers use more slang and generally less formal English when writing to each other than you and
your  professor  use  when  communicating.  This  applies  to  kinds  of  message  writers  like  peers  versus
professors,  but  it  also  can apply to  individual  message writers,  like  a  mathematics  professor  versus  a
literature  professor.  A literature  professor,  for  example,  is  not  likely to  use words like “Bayes'  Theo-
rem” in an email to you. A Bayesian spam filter can pick up on these differences in word choice and
filter  messages based on the assumption that  different  authors  generally use different  words.  We will
see,  by comparing Shakespeare with other  Elizabethan sonnet  writers,  that  a  Bayesian filter  can even
distinguish  one  author  from others  writing  at  the  same  time,  for  the  same  audience,  and  in  a  similar
form.
Obtaining Data
On  the  website  for  this  manual,  you  will  find  these  three  files:  “ShakespeareData.txt”,
“ElizabethanData.txt” and “testMessages.txt”. The first two contain the sonnets of Shakespeare and the
other  authors,  respectively.  Five  of  Shakespeare's  poems  and  five  of  the  other  authors'  poems  were
randomly selected and moved to the “testMessages.txt” file. We will use our filter on the poems in this
file to determine which of them were written by Shakespeare and which were not.
Begin  by  downloading  the  three  files  and  storing  them  in  the  same  directory  as  this  Mathematica
Notebook.  Then  load  the  three  files  and  store  the  text  in  variables  using  the  Import  function,  as
shown below.

In[35]:= shakespeare =
Import@"ShakespeareData.txt", Path Ø NotebookDirectory@DD;

In[36]:= elizabethan =
Import@"ElizabethanData.txt", Path Ø NotebookDirectory@DD;

In[37]:= test = Import@"testMessages.txt", Path Ø NotebookDirectory@DD;

The Import function is able to load a variety of file types for processing with Mathematica, including
images,  sounds,  video,  spreadsheets,  and  many  others.  In  this  case,  Import  loads  the  files,  which
consist  exclusively of text,  and stores them as a string.  The Path  option is  used to tell  Mathematica
what directory on your computer contains the file. The NotebookDirectory function, which takes
no  arguments,  returns  the  directory  in  which  the  current  notebook  is  stored.  So  provided  that  you
downloaded  the  three  data  files  to  the  same  directory  as  the  one  holding  this  notebook,  the  above
should load the three files. If not, you may need to move the files to the correct location or specify the
directory manually.
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The Import function is able to load a variety of file types for processing with Mathematica, including
images,  sounds,  video,  spreadsheets,  and  many  others.  In  this  case,  Import  loads  the  files,  which
consist  exclusively of text,  and stores them as a string.  The Path  option is  used to tell  Mathematica
what directory on your computer contains the file. The NotebookDirectory function, which takes
no  arguments,  returns  the  directory  in  which  the  current  notebook  is  stored.  So  provided  that  you
downloaded  the  three  data  files  to  the  same  directory  as  the  one  holding  this  notebook,  the  above
should load the three files. If not, you may need to move the files to the correct location or specify the
directory manually.
If  you inspect  these  files  in  a  text  editor,  you will  see  that  the  sonnets  are  separated by three  amper-
sands (“&&&”). The three expressions above store each of the files as a single string. It would be more
useful  to  store  them as  lists  of  strings,  with  each  sonnet  being  one  element  of  a  list.  To  separate  the
files into lists, we use StringSplit.

In[38]:= sPoems = StringSplit@shakespeare, "&&&"D;

In[39]:= ePoems = StringSplit@elizabethan, "&&&"D;

In[40]:= testPoems = StringSplit@test, "&&&"D;

The StringSplit  function splits  the  string  in  the  first  argument  based on the  pattern  given in  the
second argument. In this case, the pattern is the string “&&&” so the StringSplit command uses
that pattern as a delimiter in the shakespeare, elizabethan, and test strings to separate them
into lists. Now that the “messages” are prepared, we begin building the filter.
Estimating the Probabilities
The spam filter relies on two computations: first, the probability that a message contains a word given
that it is spam, and second, the probability that a message contains the word given that it is not spam.
That is, we will need empirical estimates for pHE SL and pIE SM.

Following the notation of the textbook, for a word w, let pHwL be the estimate of pHE SL, the probabil-
ity that a message contains w given that it is spam. So pHwL is the number of spam messages containing
the word w  divided by the number of  spam messages.  Likewise,  let  qHwL  be the estimate for  pIE SM,
the probability that a message contains w given that it is not spam. This is computed as the number of
non-spam messages containing w divided by the number of non-spam messages.
Counting the number of messages (i.e., poems) in each list can be done with Length.

In[41]:= Length@sPoemsD

Out[41]= 149

(This is five less than the 154 sonnets that Shakespeare published, because five of them were moved to
the “testMessages.txt” file as “unknown” messages.)
To count  the  number  of  messages  that  contain  a  particular  word,  we'll  make use  of  StringFreeQ.
This function accepts as arguments a string and a string pattern and returns true if the pattern does not
appear in the string and false if it does. As a first example, the following determines that the substring
“bc” does appear in the string “abcdefg”.

In[42]:= StringFreeQ@"abcdefg", "bc"D

Out[42]= False

However, this is not quite sufficient to check for the presence of words. To see why, consider the fifth
sonnet.
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However, this is not quite sufficient to check for the presence of words. To see why, consider the fifth
sonnet.

In[43]:= sPoems@@5DD

Out[43]=

Those hours, that with gentle work did frame
The lovely gaze where every eye doth dwell,
Will play the tyrants to the very same
And that unfair which fairly doth excel;
For never-resting time leads summer on
To hideous winter, and confounds him there;
Sap checked with frost, and lusty leaves quite gone,
Beauty o'er-snowed and bareness every where:
Then were not summer's distillation left,
A liquid prisoner pent in walls of glass,
Beauty's effect with beauty were bereft,
Nor it, nor no remembrance what it was:

But flowers distill'd, though they with winter meet,
Leese but their show; their substance still lives sweet.

If  you look carefully,  you will  see  that  this  poem does  not  contain  the  English  word  “so”.  However,
StringFreeQ returns false, indicating the presence of “so”:

In[44]:= StringFreeQ@sPoems@@5DD, "so"D

Out[44]= False

The reason for this is the presence of the letters “so” within the word “prisoner” in line 10. To avoid
this,  we  need  to  indicate  that  the  word  being  sought  must  be  surrounded  by  characters  that  do  not
appear in words. To do this, we’ll use the pattern

Except@WordCharacter "'"D ~~ "so" ~~
Except@WordCharacter "'"D

At the center  of  the pattern above is  the word being sought,  “so”.  On either  side of  “so” we use two
tildes,  which  is  the  StringExpression  (~~)  operator.  You  can  think  of  ~~  as  a  concatenation
operator for string patterns. On the far sides of the pattern is an application of Except. Within a string
pattern,  Except  indicates  that  the  pattern  will  match  anything  other  than  what  is  described  by  its
argument.  Recall  that  our  goal  is  to  insist  that  the  word  “so”  be  surrounded  by  non-word  characters.
Putting all the characters allowed to be in words inside of Except will accomplish this. Mathematica
has  a  built-in  symbol,  WordCharacter,  which  stands  for  all  letter  and  digit  characters.  We  also
recognize the frequent use of apostrophes in Elizabethan writing, and so we want to allow apostrophes
within words. To do this, we use the Alternatives (|) operator and the string containing an apostro-
phe within the Except.  For string patterns, Alternatives  (|) is the equivalent of a logical “or.”
Including the apostrophe will  allow this pattern to recognize the string “distill’d” as a complete word
instead of interpreting that string as two words, “distill” and “d”.
Using the pattern above in StringFreeQ correctly determines that the word “so” does not appear in
poem 5.
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Using the pattern above in StringFreeQ correctly determines that the word “so” does not appear in
poem 5.

In[45]:= StringFreeQ@sPoems@@5DD, Except@WordCharacter "'"D ~~
"so" ~~ Except@WordCharacter "'"DD

Out[45]= True

Finally, Mathematica is, by default, case sensitive. This is a problem because StringFreeQ will not
recognize  the  presence  of  a  word  if  asked  about  the  same  word  with  a  different  capitalization.  For
example, the following indicates that “those”, the first word of poem five, is absent from it.

In[46]:= StringFreeQ@sPoems@@5DD, Except@WordCharacter "'"D ~~
"those" ~~ Except@WordCharacter "'"DD

Out[46]= True

To correct this, we use set the option IgnoreCase to True.
In[47]:= StringFreeQ@sPoems@@5DD, Except@WordCharacter "'"D ~~

"those" ~~ Except@WordCharacter "'"D, IgnoreCase Ø TrueD

Out[47]= False

We use what we’ve done above as a model to create a function that takes a poem and a word as argu-
ments and returns True if the word appears in the poem and False if not.

In[48]:= wordQ@poem_String, word_StringD :=
! StringFreeQ@poem, Except@WordCharacter "'"D ~~ word ~~

Except@WordCharacter "'"D, IgnoreCase Ø TrueD

This function tells us that poem 5 does not include the word “so” but does contain the word “those”.
In[49]:= wordQ@sPoems@@5DD, "so"D

Out[49]= False

In[50]:= wordQ@sPoems@@5DD, "those"D

Out[50]= True

Now that we have a function that determines whether or not a particular word appears in a poem, we
can determine the number of poems in a list that contain the word. We can do this simply by looping
over all  the poems in a list  and incrementing a counter for those containing the word.  Below, the Do
loop with second argument {p,L} iterates over each poem p in the list of poems L.

In[51]:= countMessages@word_String, L : 8__String<D :=
Module@8count = 0, p<,
Do@If@wordQ@p, wordD, count++D,
8p, L<D;

count
D

For instance, we can see how many times Shakespeare uses the word “fairest” in a sonnet.
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In[52]:= countMessages@"fairest", sPoemsD

Out[52]= 4

So the empirical probability that a sonnet contains the word “fairest” given that it was written by Shake-
speare is:

In[53]:= countMessages@"fairest", sPoemsDêLength@sPoemsD

Out[53]=
4

149

And the  probability  that  a  sonnet  contains  the  word  “fairest”  given  that  it  was  written  by  one  of  our
other authors is:

In[54]:= countMessages@"fairest", ePoemsDêLength@ePoemsD

Out[54]=
10

173

Applying Bayes'  Theorem, we can compute the probability  that  a  sonnet  was written by Shakespeare
given that it contains the word “fairest”:

In[55]:= H4ê149LêH4ê149 + 10ê173L êê N

Out[55]= 0.31714

The above computation illustrates how to write a function to compute the probability that  a sonnet is
spam (i.e., was written by Shakespeare) given that it contains a specific word:

In[56]:= pShakespeareGivenWord@word_StringD :=
Module@8sCount, eCount, pWordGivenS, pWordGivenNotS<,
sCount = Length@sPoemsD;
eCount = Length@ePoemsD;
pWordGivenS = countMessages@word, sPoemsDêsCount;
pWordGivenNotS = countMessages@word, ePoemsDêeCount;
N@pWordGivenSêHpWordGivenS + pWordGivenNotSLD

D

For example, the probability that a sonnet is Shakespearean given that it contains the word “beauty” is:
In[57]:= pShakespeareGivenWord@"beauty"D

Out[57]= 0.54468

Using Multiple Words
We can improve the filter by using multiple words, rather than just one. Using the notation of the text,
let pHwiL and qHwiL be the probabilities that a message contains word wi  given that it is spam and that it
is not spam, respectively. Then the probability that a message is spam given that it contains all of the
words w1, w2, …, wk is:
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rHw1, w2, …, wkL =

¤
i=1

k
pHwiL

¤
i=1

k
pHwiL+ ¤

i=1

k
qHwiL

The Product function is useful here. Recall that we compute ¤
iœS

i2 for S = 81, 3, 5, 7, 9< with 

In[58]:= Product@i^2, 8i, 81, 3, 5, 7, 9<<D

Out[58]= 893 025

For  instance,  to  compute  the  probability  that  a  message  contains  the  words  “from”,  “fairest”,  and
“creatures”:

In[59]:= S = 8"from", "fairest", "creatures"<;
Product@countMessages@w, sPoemsDêLength@sPoemsD, 8w, S<D

Out[60]=
456

3 307 949

We can modify our pShakespeareGivenWord function to work on lists of words instead of single
words by putting the probability computations inside of Product commands. It's also a good idea to
protect against division by zero errors, so we'll put the division inside of an if statement. This is needed
in case one or more of the selected words appears in none of the sonnets by either author. In this case,
we default to a probability of 0.5.

In[61]:= pShakespeareGivenList@L_ListD :=
Module@8sCount, eCount, pGivenS, pGivenNotS<,
sCount = Length@sPoemsD;
eCount = Length@ePoemsD;
pGivenS = Product@countMessages@w, sPoemsDêsCount, 8w, L<D;
pGivenNotS =
Product@countMessages@w, ePoemsDêeCount, 8w, L<D;

If@pGivenS + pGivenNotS ¹≠ 0,
N@pGivenSêHpGivenS + pGivenNotSLD,
0.5

D
D

So the  probability  that  a  sonnet  is  by  Shakespeare  given  that  it  contains  the  words  “from”,  “fairest”,
and “creatures” is:

In[62]:= pShakespeareGivenList@8"from", "fairest", "creatures"<D

Out[62]= 0.55169

Selecting Test Words Randomly
Finally, we can use the RandomSample function to randomly select words from a test message, and
then  use  those  randomly  selected  words  to  compute  the  probability  that  the  message  was  written  by
Shakespeare. Here's the first test message in “testMessages.txt”:
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Finally, we can use the RandomSample function to randomly select words from a test message, and
then  use  those  randomly  selected  words  to  compute  the  probability  that  the  message  was  written  by
Shakespeare. Here's the first test message in “testMessages.txt”:

In[63]:= testPoems@@1DD

Out[63]= When to the sessions of sweet silent thought
I summon up remembrance of things past,
I sigh the lack of many a thing I sought,
And with old woes new wail my dear time's waste:
Then can I drown an eye, unused to flow,
For precious friends hid in death's dateless night,
And weep afresh love's long since cancell'd woe,
And moan the expense of many a vanish'd sight:
Then can I grieve at grievances foregone,
And heavily from woe to woe tell o'er
The sad account of fore-bemoaned moan,
Which I new pay as if not paid before.

But if the while I think on thee, dear friend,
All losses are restor'd and sorrows end.

First  we must  separate  the poem into individual  words.  We do this  using StringSplit,  which we
used  to  split  the  data  files  into  individual  poems.  Instead  of  splitting  on  a  special  delimiter,  such  as
“&&&”,  we’ll  use  the  pattern  Except[WordCharacter|"'"]]  that  we  determined  earlier
expressed non-word characters. In order to avoid having individual spaces in the list, which can happen
when  spaces  and  punctuation  appear  together  with  ends  of  lines,  we  will  follow the  pattern  with  the
Repeated  (..)  operator.  This  way,  two  spaces,  or  a  period  followed  by  a  space,  will  count  as  a
single word delimiter.

In[64]:= exampleTestWords =
StringSplit@testPoems@@1DD, Except@WordCharacter "'"D ..D

Out[64]= 8When, to, the, sessions, of, sweet, silent, thought, I, summon,
up, remembrance, of, things, past, I, sigh, the, lack, of,
many, a, thing, I, sought, And, with, old, woes, new, wail,
my, dear, time's, waste, Then, can, I, drown, an, eye,
unused, to, flow, For, precious, friends, hid, in, death's,
dateless, night, And, weep, afresh, love's, long, since,
cancell'd, woe, And, moan, the, expense, of, many, a, vanish'd,
sight, Then, can, I, grieve, at, grievances, foregone, And,
heavily, from, woe, to, woe, tell, o'er, The, sad, account,
of, fore, bemoaned, moan, Which, I, new, pay, as, if, not,
paid, before, But, if, the, while, I, think, on, thee, dear,
friend, All, losses, are, restor'd, and, sorrows, end<

We apply DeleteDuplicates to remove repeated words.
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In[65]:= exampleTestWords = DeleteDuplicates@exampleTestWordsD

Out[65]= 8When, to, the, sessions, of, sweet, silent, thought, I,
summon, up, remembrance, things, past, sigh, lack, many, a,
thing, sought, And, with, old, woes, new, wail, my, dear,
time's, waste, Then, can, drown, an, eye, unused, flow, For,
precious, friends, hid, in, death's, dateless, night, weep,
afresh, love's, long, since, cancell'd, woe, moan, expense,
vanish'd, sight, grieve, at, grievances, foregone, heavily,
from, tell, o'er, The, sad, account, fore, bemoaned, Which,
pay, as, if, not, paid, before, But, while, think, on, thee,
friend, All, losses, are, restor'd, and, sorrows, end<

Then randomly select four of those words.
In[66]:= exampleTestList = RandomSample@exampleTestWords, 4D

Out[66]= 8flow, waste, past, thee<

And then use our function to find the probability that a message with these four words was written by
Shakespeare: 

In[67]:= pShakespeareGivenList@exampleTestListD

Out[67]= 0.

Putting this all together: 
In[68]:= pShakespeare@testMessage_String, testSize_IntegerD :=

Module@8testWordList<,
testWordList = RandomSample@DeleteDuplicates@StringSplit@

testMessage, Except@WordCharacter "'"D ..DD, testSizeD;
pShakespeareGivenList@testWordListD

D

As an example, we'll run the filter on the second test message with a test size of 3.
In[69]:= pShakespeare@testPoems@@2DD, 3D

Out[69]= 0.5

7.4 Expected Value and Variance
In  Section  7.2  of  this  manual,  we  introduced  Mathematica's  functions  for  using  random  variables,
random variates,  and  probability  distributions.  In  this  section  we will  explore  Mathematica's  abilities
more closely and use probability distributions to explore the concepts of expected value and variance.
As  mentioned  earlier,  Mathematica  provides  the  distribution  GeometricDistribution,  which
takes one parameter, the probability of a “success.”
We  can  use  the  Probability  function  to  compute  the  probabilities  of  events.  For  example,  the
probability pHX = 5L is computed by the following.
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In[70]:= Probability@X ã 5, X é GeometricDistribution@1ê4DD

Out[70]=
243

4096

Note  that  the  Mathematica's  definition  of  a  geometric  random variable  differs  slightly  from the  text-
book's. The textbook defines the value of the geometric random variable, in terms of coin flips, to be
the number of flips it takes to get a tails, where the parameter is the probability of tails. Mathematica's
definition is that the value of the random variable is the number of heads that appear before tails comes
up. So the probability pHX = kL is

In[71]:= Probability@X ã k, X é GeometricDistribution@1ê4DD

Out[71]= ¶ 3k 4-1-k k ¥ 0
0 True

Contrast this with the formula given in the text.
Mathematica  can  also  calculate  the  expected  value,  variance,  and  standard  deviation  of  distributions.
The  Mean,  Variance,  and  StandardDeviation  functions  all  accept  a  distribution  as  the  sole
argument and return the statistic.

In[72]:= Mean@GeometricDistribution@1ê4DD

Out[72]= 3

In[73]:= Variance@GeometricDistribution@1ê4DD

Out[73]= 12

These functions can also compute symbolically:
In[74]:= StandardDeviation@GeometricDistribution@kDD

Out[74]=
1 - k

k

All  three  functions  can  also  accept  a  list  holding  data.  For  example,  to  compute  the  mean  of
81, 3, 4, 7, 11<:

In[75]:= Mean@81, 3, 4, 7, 11<D

Out[75]=
26

5

Alternately,  you  can  use  the  Expectation  function.  Expectation  is  more  flexible  in  that  it
allows you to form an expression using random variables as a first argument and specify the distribu-
tions of the random variables as the second argument. The syntax is similar to that of Probability,
except the first argument is an expression, not an event.
For  example,  the  following will  find  the  expected  value  of  the  geometric  distribution  with  parameter
1 ê 4.

In[76]:= Expectation@X, X é GeometricDistribution@1ê4DD

Out[76]= 3
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Expectation allows us to find the expected value of more complicated expressions, such as EHX^2L.
In[77]:= Expectation@X^2, X é GeometricDistribution@1ê4DD

Out[77]= 21

Recalling  that  the  variance  of  a  random  variable  is  EIHX -EHXLL2M,  we  can  use  Expectation  to
compute variance as well.

In[78]:= mean = Expectation@X, X é GeometricDistribution@1ê4DD

Out[78]= 3

In[79]:= Expectation@HX - meanL^2, X é GeometricDistribution@1ê4DD

Out[79]= 12

You can also mix distributions, as shown below.
In[80]:= distribution1 = GeometricDistribution@1ê4D;

In[81]:= distribution2 = BinomialDistribution@20, .3D;

In[82]:= mean2 =
Expectation@X + 2*Y, 8X é distribution1, Y é distribution2<D

Out[82]= 15.

In[83]:= Expectation@HHX + 2*YL - mean2L^2,
8X é distribution1, Y é distribution2<D

Out[83]= 28.8

Solutions to Computer Projects and Computations and 
Explorations

Computer Projects 7

Given a positive integer m, simulate the collection of cards that come with the purchase of 
products to find the number of products that must be purchased to obtain a full set of m 
different collector cards. (See Supplementary Exercise 33.)

Solution: We will define a function called cardSimulate that will simulate the process of choosing
random collectible cards until all the possible cards have been obtained. This function needs to do three
things:  (1)  keep  track  of  which  cards  have  been  obtained;  (2)  keep  selecting  random  cards  until  the
complete set is obtained; and (3) keep track of how many cards have been purchased.
Think  of  the  cards  as  numbered  1  through  m.  To  keep  track  of  which  cards  have  been  obtained  and
which have not, we'll  use a list that we'll  call currCollection,  for current collection. The entries
in this list will be 0s and 1s, with a 0 representing the fact that the card corresponding to that position is
not owned and 1 that it is. To initialize currCollection, we use the ConstantArray function.
For example, to produce a list of ten 0s, you would enter the following.
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In[84]:= ConstantArray@0, 10D

Out[84]= 80, 0, 0, 0, 0, 0, 0, 0, 0, 0<

Second, random selection of integers can be accomplished with the RandomInteger function. When
given an argument of the form 8min, max<, RandomInteger returns an integer selected from that
range. Our cards are numbered 1 through m, so we will use the range specification 81, m<.

In[85]:= RandomInteger@81, 10<D

Out[85]= 2

Our function will generate a random card and set the entry in currCollection at that card's posi-
tion equal to 1. This needs to keep happening until all the cards are owned. So we need to know when
all of the entries of the list are 1s. We can do this by adding up the entries in the list. Since the entries
are always 0 or 1, when the list is all 1s, the sum will be equal to m and that's the only way the sum can
be m. To add the entries in the list, we can use the Total function as follows.

In[86]:= Total@81, 0, 0, 1, 1, 1<D

Out[86]= 4

Third, we keep track of how many cards have been purchased with a counter that we increment each
time a random card is generated. 
Putting all of these pieces together, here is the function:

In[87]:= cardSimulate@m_IntegerD :=
Module@8currCollection, count, tempCard<,
currCollection = ConstantArray@0, mD;
count = 0;
While@Total@currCollectionD ¹≠ m,
tempCard = RandomInteger@81, m<D;
count++;
currCollection@@tempCardDD = 1

D;
count

D

Let's run the simulation 10000 times for m = 5 and draw a graph of the resulting data:
In[88]:= simulations = Table@cardSimulate@5D, 810 000<D;
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In[89]:= Histogram@simulationsD

Out[89]=

Computer Projects 9

Given a positive integer n, find the probability of selecting the six integers from the set 
81, 2, …, n< that were mechanically selected in a lottery.

Solution: We will follow example 4 from Section 7.1 of the text. The total number of ways of choosing
6 numbers from n numbers is CHn, 6L, which is found with the function Binomial. This gives us the
total  number  of  possibilities,  only  one  of  which  will  win.  The  following  defines  this  function  and
applies it to the situation in which n = 49.

In[90]:= lottery@n_IntegerD := 1.êBinomial@n, 6D

In[91]:= lottery@49D

Out[91]= 7.15112µ10-8

If the rules of the lottery change, so that the number of numbers chosen is something other than 6, then
we  must  modify  the  function  above.  We  can  easily  modify  our  program  to  allow  us  to  specify  how
many numbers we want to choose, by adding another parameter.

In[92]:= lottery2@n_Integer, k_IntegerD := 1.êBinomial@n, kD

In[93]:= lottery2@49, 6D

Out[93]= 7.15112µ10-8

In[94]:= lottery2@30, 3D

Out[94]= 0.000246305

Computations and Explorations 3

Estimate the probability that two integers selected at random are relatively prime by testing a 
large number of randomly selected pairs of integers. Look up the theorem that gives this 
probability and compare your results with the correct probability. 
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Solution: To solve this problem, three things must be done:
1. Devise a method for generating pairs of random integers. 
2. Produce a large number of these pairs, test whether they are relatively prime, and note the 

probability estimate based on this sample. 
3. Look up the theorem mentioned in the question.

Naturally, we'll leave part 3 entirely to the reader.
The  Mathematica  function  RandomInteger  can  be  used  to  generate  a  the  random  integers.  The
optional  second  argument  can  be  used  to  specify  a  number  of  integers  to  generate.  For  example,  the
following generates 10 random integers between 0 and 100.

In[95]:= RandomInteger@100, 10D

Out[95]= 827, 9, 78, 9, 94, 28, 8, 88, 8, 49<

The second argument can also specify that a nested list should be generated. For example, to generate
ten pairs of integers, you use {10,2} as the second argument.

In[96]:= RandomInteger@100, 810, 2<D

Out[96]= 8887, 96<, 89, 94<, 886, 32<, 858, 52<, 881, 80<,
874, 3<, 894, 43<, 819, 91<, 83, 48<, 894, 83<<

Having generated such a list we can test whether the pairs of its members are relatively prime using the
Mathematica function CoprimeQ. We can evaluate CoprimeQ on each pair by using Apply (@@) at
level 1. Ordinarily, Apply replaces the head of an expression with the function being applied. In this
case, we want to apply the function CoprimeQ  not to the entire expression, but “one level down” at
each subexpression. For this, we can give the level specification {1} as a third argument in the Apply
function.

In[97]:= Apply@CoprimeQ, RandomInteger@100, 810, 2<D, 81<D

Out[97]= 8True, True, True, False, False, False, True, False, True, True<

Alternately, you can use the @@@ operator.
In[98]:= CoprimeQ üüü RandomInteger@100, 810, 2<D

Out[98]= 8False, True, True, True, False, True, False, False, False, False<

Now we just need to count the number that are relatively prime. For this, we use the Count function
with second argument True to count the number of times that True appears in the list.

In[99]:= Count@CoprimeQ üüü RandomInteger@100, 810, 2<D, TrueD

Out[99]= 8

Increase the maximum integer and the number of pairs generated and divide by the number of pairs to
get an estimate of the probability.
In[100]:= Count@CoprimeQ üüü RandomInteger@10^50, 8100, 2<D, TrueDê100.

Out[100]= 0.66

Repeating the computation may lead to a somewhat different  result  since the integers were generated
randomly. You should try this with a larger sample size, say 10000 pairs of integers. 
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Computations and Explorations 4

Determine the number of people needed to ensure that the probability at least two of them 
have the same day of the year as their birthday is at least 70%, at least 80%, at least 90%, at 
least 95%, at least 98%, and at least 99%.

Solution: Given that we know the formula for the probability of two people having the same birthday,
we can use Mathematica to loop over a range of possible numbers of people until we reach a probabil-
ity greater than the desired probability. Example 13 of section 7.2 of the text shows that the probability
that n people in a room have different birthdays is

pn =
365
366

ÿ
364
366

ÿ
363
366

º⋯
367- n

366
=

PH366, nL

366n

Our task is to find n such that 1- pn is greater than the values specified in the problem. We can do this
using the Mathematica function below.
In[101]:= birthdays@percentage_RealD :=

Module@8numPeople = 0, curProb = 0<,
While@curProb < percentage,
numPeople++;
curProb = 1 - H366!êH366 - numPeopleL!Lê366^numPeople

D;
numPeople

D

This  function  returns  the  number  of  people  required  to  attain  the  given  probability  that  two have  the
same birthday. We execute the function for probabilities of .70 and .95.
In[102]:= birthdays@.70D

Out[102]= 30

In[103]:= birthdays@.95D

Out[103]= 47

Exercises
1. Use Mathematica to determine the integer k such that the chances of picking six numbers 

correctly in a lottery from the first k positive integers is less than
a. 1 in 100 million (10-8),
b. 1 in a billion (10-9),
c. 1 in 10 billion (10-10),
d. 1 in 100 billion (10-11), and
e. 1 in a trillion (10-12).
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2. Implement a Monte Carlo algorithm that determines whether a permutation of the integers 1 
through n is in increasing order or not. (See Exercise 40 in section 7.2 of the textbook.)

3. Modify the implementation of the collector card simulator given in the solution to Computer 
Projects 7 to model the situation in which the cards do not appear with equal probabilities. For 
instance, there could be five possible cards all of which appear with probability 2 ê 9 except 
for card number 5 which appears with probability 1 ê 9.

4. Modify the implementation of the collector card simulator given in the solution to Computer 
Projects 7 to model the situation in which cards are purchased in packs. For example, there 
could be ten possible cards and they are purchased three to a pack. Assume the cards in a pack 
are always different from each other. The function should return the number of packs 
necessary to collect all of the cards.

5. Compute the average of the probabilities returned by running the Bayesian filter 
pShakespeare 100 times with the testMessage argument equal to 
testPoems[[10]] and a testSize of 1, i.e., on the tenth of the test poems and using 
one word. Repeat this with a testSize of 2, 3, ..., 10. Graph the average probabilities for 
the different numbers of test words. Is there a trend in the average probabilities as the number 
of words increases? Explain why.

6. The textbook describes how a Bayesian filter can be improved by considering pairs of words. 
Implement a Bayesian spam filter that uses this idea. Using the Shakespearean and 
Elizabethan sonnets as messages, compare the accuracy of your filter with pShakespeare.

7. As described in the textbook, spam filters are most effective when the words being used as the 
basis of comparison are not chosen randomly, as they are in the implementation of 
pShakespeare above, but instead are chosen more carefully. Specifically, choosing words 
which have very high or very low probability of appearing in spam messages can improve the 
performance of the filter. Implement a Bayesian spam filter that uses this idea. Using the 
Shakespearean and Elizabethan sonnets as messages, compare the accuracy of your filter with 
pShakespeare.
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