
8 Advanced Counting Techniques

Introduction
In  this  chapter,  we  will  describe  how  to  apply  Mathematica  to  three  important  topics  in  counting:
recurrence relations, generating functions, and inclusion-exclusion. We begin by describing how Mathe-
matica  can  be  used  to  solve  recurrence  relations,  including  the  recurrence  relations  that  describe  the
complexity of divide-and-conquer algorithms. After studying recurrence relations, we show how to use
Mathematica  to  manipulate  generating  functions  and  how  these  capabilities  can  help  solve  counting
problems. We conclude the chapter with a discussion of the principle of inclusion and exclusion.

8.1 Recurrence Relations
A recurrence relation describes a relationship between the members of a sequence and their predeces-
sors. For example, the famous Fibonacci sequence 8 fn< satisfies the recurrence relation

fn = fn-1 + fn-2
Together  with  the  initial  conditions  f1 = 1  and  f2 = 1,  this  relation  is  sufficient  to  define  the  entire
sequence 8 fn<.
To understand how we can work with recurrence relations in Mathematica, we have to remember that a
sequence 8an<  is  a  function whose domain is  a  subset  of  the  integers  (usually  the  positive  integers  or
nonnegative  integers,  depending  on  the  context)  and  whose  codomain  contains  the  terms  of  the
sequence  (which  can  be  numbers,  matrices,  circles,  functions,  etc.).  (See  the  definition  of  sequence
given in Section 2.4 of the textbook.)
With this point of view, the sequence 8an< is a function a and the nth term of the sequence is the value
of  the  function  evaluated  at  the  integer  n,  that  is,  an = aHnL.  This  is  only  a  change  in  notation,  but  it
makes it easier to see that a recurrence relation can be represented in Mathematica as a function taking
integer arguments.
We can represent the Fibonacci sequence by the indexed variable and function below, which we use to
compute the first  twenty terms of the Fibonacci sequence. The initial  conditions are given as specific
assignments  to  an  indexed  variable,  and  the  function  that  implements  the  recurrence  relation  stores
computed values by assigning them to the indexed variable.

In[1]:= fibonacci@1D = 1;
fibonacci@2D = 1;
fibonacci@n_IntegerD :=

fibonacci@nD = fibonacci@n - 1D + fibonacci@n - 2D;



In[4]:= Table@fibonacci@nD, 8n, 1, 20<D

Out[4]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
144, 233, 377, 610, 987, 1597, 2584, 4181, 6765<

Using indexed variables and functions like the one above is the approach we developed in Section 5.3
of this manual to implement functions with recursive definitions. This is a useful general approach, but
Mathematica has more specific, and more efficient, methods for working with recurrence relations.
Mathematica’s  RecurrenceTable  function  is  used  to  generate  lists  of  the  values  of  a  sequence
defined  by  a  recurrence  relation.  RecurrenceTable  requires  three  arguments.  The  first  argument
must be a list of equations specifying the recurrence relation and all initial conditions. Note that these
must  be  given  as  equations,  using  Equal  (==).  Also,  the  equations  should  be  in  terms  of  indexed
variables such as fibonacci[n] or a[k-1], or b[0]. The second argument is the symbol used to
name  the  sequence  in  the  equations,  for  example  fibonacci  or  a.  The  final  argument  is  a  range
specification  of  the  same  form  as  used  in  a  Table.  For  example,  {n,10,20}  would  be  used  to
generate the list of the values with n = 10 through n = 20 and {k,10} would generate the values up to
k = 10. 
To illustrate, the following generates the first 20 terms of the Fibonacci sequence. 

In[5]:= RecurrenceTable@
8a@nD ã a@n - 1D + a@n - 2D, a@1D ã 1, a@2D ã 1<, a, 8n, 20<D

Out[5]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
144, 233, 377, 610, 987, 1597, 2584, 4181, 6765<

For some common sequences like the Fibonacci  sequence,  Mathematica  includes special  functions to
compute  these  values.  For  example,  the  15th  Fibonacci  number  can  be  computed  using  the
Fibonacci function.

In[6]:= Fibonacci@15D

Out[6]= 610

The RecurrenceTable  function is  very flexible,  able  to  handle a  wide variety of  recurrence rela-
tions. For example, consider the recurrence relation defined by an+1 = an2 - n ÿ an-1, with initial condi-
tions a0 = 1 and a1 = 1. The following expression computes a10. Note the use of the Last function to
obtain  the  last  element  of  the  sequence.  This  is  equivalent  to,  but  perhaps  more  expressive  than,  the
Part specification [[-1]]. 

In[7]:= Last@RecurrenceTable@
8a@n + 1D ã a@nD^2 - n*a@n - 1D, a@0D ã 1, a@1D ã 1<, a, 8n, 10<DD

Out[7]= 83 095 558 751 833 088 261 963 048 239 982 609 365 670 356

While  RecurrenceTable  is  very  general,  sometimes  a  less  flexible  function  can  be  useful.  The
LinearRecurrence  function  produces  output  similar  to  that  of  RecurrenceTable  but  applies
only to linear homogeneous recurrence relations (defined in Section 8.2 of the textbook). LinearRe-
currence applies for recurrence relations of the form

an = c1 an-1 + c2 an-2 +º⋯+ ck an-k
with initial conditions a1, a2, …, ak. LinearRecurrence requires three arguments. The first argu-
ment is the list  of coefficients in the recurrence relation, i.e.,  8c1, c2, …, ck<.  The second argument is
the list of initial conditions 8a1, a2, …, ak<. Note that the two lists should generally be the same length.
The final argument is either a single integer to indicate the number of terms of the sequence to produce
or a pair of integers representing a range of indices.

2   Chapter08.nb



with initial conditions a1, a2, …, ak. LinearRecurrence requires three arguments. The first argu-
ment is the list  of coefficients in the recurrence relation, i.e.,  8c1, c2, …, ck<.  The second argument is
the list of initial conditions 8a1, a2, …, ak<. Note that the two lists should generally be the same length.
The final argument is either a single integer to indicate the number of terms of the sequence to produce
or a pair of integers representing a range of indices.
By way of comparison, the following two expressions use RecurrenceTable and LinearRecur-
rence  to  compute  the  first  twenty  terms  of  the  sequence  defined  by  the  recurrence  relation
an = 2 an-1 - 3 an-2 + an-3, with initial values a1 = 1, a2 = 3, a3 = 5. 

In[8]:= RecurrenceTable@8a@nD == 2*a@n - 1D - 3*a@n - 2D + a@n - 3D,
a@1D ã 1, a@2D ã 3, a@3D ã 5<, a, 8n, 20<D

Out[8]= 81, 3, 5, 2, -8, -17, -8, 27, 61, 33, -90, -218,
-133, 298, 777, 527, -979, -2762, -2060, 3187<

In[9]:= LinearRecurrence@82, -3, 1<, 81, 3, 5<, 20D

Out[9]= 81, 3, 5, 2, -8, -17, -8, 27, 61, 33, -90, -218,
-133, 298, 777, 527, -979, -2762, -2060, 3187<

Tower of Hanoi Problem
In Example 2 of Section 8.1 of the textbook, the author describes the famous “Tower of Hanoi” puzzle
and derives the recurrence relation

Hn = 2 Hn-1 + 1, H1 = 1,

where Hn  represents the number of moves required to solve the puzzle for n disks. As discussed in the
text, this has the solution

Hn = 2n - 1

Later, we will see how to use Mathematica to derive this result.
Rather than just computing the values, we can illustrate the solution to the Tower of Hanoi puzzle by
writing  a  Mathematica  program  to  compute  the  moves  needed  and  to  describe  them  to  us.  We  will
write a small  program consisting of three Mathematica  functions: the main program hanoi,  a  utility
function printMove, and transferDisk, which does most of the work.
The  easiest  part  to  write  is  the  function  printMove,  which  merely  displays  the  move  to  make  at  a
given step.

In[10]:= printMove@src_String, dest_StringD :=
Print@"Move disk from peg ", src, " to peg ", dest, "."D

In the above, the function Print will combine all of its arguments and display them on a single line.
Next  we  write  the  recursive  function  transferDisk,  which  does  most  of  the  work.  This  function
models  the  idea  of  transferring  a  stack  of  ndisks  disks  from the  source  peg,  which  is  given  as  the
argument src, to the destination peg, dest, via the intermediate peg, via. As is described in the text,
in order to move a stack of n disks, you first move the top n- 1 pegs to the intermediate peg (using the
destination  as  the  intermediary),  then  move  the  bottom  disk  to  the  destination,  and  then  move  the
smaller  stack  from the  intermediate  peg  to  the  destination.  Unless,  of  course,  there  is  only  1  disk,  in
which you just move that disk to the destination. This is coded as follows:

Chapter08.nb  3



In[11]:= transferDisk@src_String,
via_String, dest_String, ndisks_IntegerD :=

If@ndisks ã 1,
printMove@src, destD,
transferDisk@src, dest, via, ndisks - 1D;
printMove@src, destD;
transferDisk@via, src, dest, ndisks - 1D

D

Finally, we package the recursive procedure in a top level function, hanoi, providing an interface to
the recursive engine.

In[12]:= hanoi@ndisks_IntegerD ê; ndisks > 1 :=
transferDisk@"A", "B", "C", ndisksD

Our hanoi  program can exhibit  a specific solution to the Tower of Hanoi puzzle for any number of
disks:

In[13]:= hanoi@2D

Move disk from peg A to peg B.

Move disk from peg A to peg C.

Move disk from peg B to peg C.

In[14]:= hanoi@3D

Move disk from peg A to peg C.

Move disk from peg A to peg B.

Move disk from peg C to peg B.

Move disk from peg A to peg C.

Move disk from peg B to peg A.

Move disk from peg B to peg C.

Move disk from peg A to peg C.

Try experimenting with different values of ndisk to get a feel for how large the problem becomes for
even moderately large numbers of disks.

Dynamic Programming
We conclude this section with an implementation of Algorithm 1 from Section 8.1 of the text.  Recall
that the goal of this algorithm is to find the maximum number of attendees that can be achieved by a
schedule of talks. 
We will  represent each talk as a list  of three elements,  with the start  time being the first  element,  the
end time in the second position, and the weight, or attendance, will be last. Time of day will be repre-
sented by a single number with whole part equal to the hour in the 24-hour system and with fractional
part  equal  to  the  part  of  an  hour  that  corresponds  to  the  number  of  minutes.  For  instance,  2:30  P.M.
would be represented as 14.5. 

4   Chapter08.nb



We will  represent each talk as a list  of three elements,  with the start  time being the first  element,  the
end time in the second position, and the weight, or attendance, will be last. Time of day will be repre-
sented by a single number with whole part equal to the hour in the 24-hour system and with fractional
part  equal  to  the  part  of  an  hour  that  corresponds  to  the  number  of  minutes.  For  instance,  2:30  P.M.
would be represented as 14.5. 
As an example, consider the following eight talks. 

Start Time End Time Attendance
9 : 00 AM 11 : 00 AM 17
9 : 00 AM 10 : 30 AM 15
10 : 00 AM 11 : 30 AM 22
10 : 30 AM 12 : 00 PM 11
11 : 30 AM 1 : 30 PM 18
12 : 00 PM 1 : 00 PM 12
1 : 30 PM 3 : 00 PM 21
2 : 00 PM 4 : 00 PM 17

We create the following list of lists to represent the talks. 
In[15]:= talks = 889, 11, 17<, 89, 10.5, 15<,

810, 11.5, 22<, 810.5, 12, 11<, 811.5, 13.5, 18<,
812, 13, 12<, 813.5, 15, 21<, 814, 16, 17<<

Out[15]= 889, 11, 17<, 89, 10.5, 15<, 810, 11.5, 22<, 810.5, 12, 11<,
811.5, 13.5, 18<, 812, 13, 12<, 813.5, 15, 21<, 814, 16, 17<<

Recall the description of Algorithm 1 from the text. We summarize the general outline of the algorithm
below.
1. Sort the talks in order of increasing end time. 
2. For each index j, compute pH jL — the maximum index i such that talk i is compatible with talk j.
3. For each index j, compute TH jL, which is computed by the recurrence relation 

TH jL = maxIw j +THpH jLL, TH j- 1LM and with initial condition TH0L = 0.
4. The maximum total number of attendees is THnL, where n is the number of talks.

For step 1, we will make use of Sort with a custom ordering function. Sort can accept an optional
argument in the form of a pure function of two arguments. This function should return true if the first
argument precedes the second and false otherwise. Since we must sort the talks in increasing order of
end  time  (which  is  stored  in  position  2  in  the  lists  representing  the  talks),  we  will  use  the  following
function as the second argument to Sort. Recall that #1 and #2 indicate the inputs to the function and
& is used to terminate a pure Function.

Ò1@@2DD < Ò2@@2DD &

For step 2, we must compute pH jL. For this, we will create a function that accepts the sorted list of talks
and  returns  an  indexed  variable  that  represents  the  function  p.  Recall  that  the  value  of  pH jL  is  the
largest index among talks compatible with the talk with index j, so we call this function compatible.
After declaring local variables, we will loop through all the indices, j, from 1 to the number of talks in
the list. We use a local variable, jstart, to store the start time of the current talk being analyzed. We
then consider all the talks earlier in the list beginning with the talk with index j- 1 and working back-
wards to talk 1. For each talk, we check to see if it ends before talk j starts. When we find such a talk,
we set its index to the value of pH jL (since we're working backwards, the first one found is the talk with
the largest index). If no compatible talk is found, then pH jL is set to 0. Here is the function.

Chapter08.nb  5



After declaring local variables, we will loop through all the indices, j, from 1 to the number of talks in
the list. We use a local variable, jstart, to store the start time of the current talk being analyzed. We
then consider all the talks earlier in the list beginning with the talk with index j- 1 and working back-
wards to talk 1. For each talk, we check to see if it ends before talk j starts. When we find such a talk,
we set its index to the value of pH jL (since we're working backwards, the first one found is the talk with
the largest index). If no compatible talk is found, then pH jL is set to 0. Here is the function.

In[16]:= compatible@talkList_D := Module@8p, j, jstart, i<,
For@j = 1, j § Length@talkListD, j++,
jstart = talkList@@jDD@@1DD;
p@jD = Catch@

For@i = j - 1, i ¥ 1, i--,
If@talkList@@iDD@@2DD § jstart,
Throw@iD

D
D;
Throw@0D

D
D;
p

D

For step 3, we must compute TH jL. To do this, we create a function that accepts as input the sorted list
of talks and the indexed variable representing the function p. Initialize T by setting its value at 0 to 0.
Then  consider  each  integer  j  from  1  to  the  number  of  talks  and  apply  the  formula:
TH jL = maxIw j +THpH jLL, TH j- 1LM.

In[17]:= totalAttendance@talkList_, p_D := Module@8j, T<,
T@0D = 0;
For@j = 1, j § Length@talkListD, j++,
T@jD = Max@talkList@@jDD@@3DD + T@p@jDD, T@j - 1DD

D;
T

D

We can now put the pieces together as outlined at the start of this subsection.
In[18]:= maximumAttendance@talkList_ListD := Module@8L, p, T<,

L = Sort@talkList, Ò1@@2DD < Ò2@@2DD &D;
p = compatible@LD;
T = totalAttendance@L, pD;
T@Length@talkListDD

D

And thus, the maximum attendance for the talks described above is: 
In[19]:= maximumAttendance@talksD

Out[19]= 61

8.2 Solving Linear Recurrence Relations
Mathematica  has a very powerful recurrence solver,  RSolve.  Its  use,  however,  can obscure some of
the important ideas that are involved. Therefore, we will first use some of Mathematica's more primi-
tive facilities to solve certain kinds of recurrence relations one step at a time.

6   Chapter08.nb



Mathematica  has a very powerful recurrence solver,  RSolve.  Its  use,  however,  can obscure some of
the important ideas that are involved. Therefore, we will first use some of Mathematica's more primi-
tive facilities to solve certain kinds of recurrence relations one step at a time.
Given a recursively defined sequence 8an<, we would like to find a formula, involving only the index n
(and,  perhaps,  other  fixed  constants  and  known  functions)  which  does  not  depend  on  knowing  the
value of any prior elements of the sequence.

Linear Homogeneous Recurrence Relations with Constant Coefficients
We will begin by considering recurrence relations that are linear, homogeneous, and which have con-
stant coefficients; that is, they have the form

an = c1 an-1 + c2 an-2 +º⋯+ ck an-k
where c1, c2, …, ck are real constants and ck is nonzero. Recall that the integer k is called the degree of
this recurrence relation. To have a unique solution, at least k initial conditions must be specified.
The general method for solving such a recurrence relation involves finding the roots of its characteris-
tic polynomial 

rk - c1 rk-1 - c2 rk-2 -º⋯- ck-1 r- ck
When  this  polynomial  has  distinct  roots,  all  solutions  are  linear  combinations  of  the  nth  powers  of
these roots. When there are repeated roots, the situation is a little more complicated, as we will see.
A First Example
Consider the linear homogeneous recurrence relation with constant coefficients of degree two 

an = 2 an-1 + 3 an-2
subject to the initial conditions a1 = 4 and a2 = 2.
Then its characteristic equation is

r2 - 2 r- 3 = 0

To  solve  the  recurrence  relation,  we  must  solve  for  the  roots  of  this  equation.  Using  Mathematica
makes this very easy; we use the Solve function.

In[20]:= Solve@r^2 - 2 r - 3 ã 0, rD

Out[20]= 88r Ø -1<, 8r Ø 3<<

The Solve function computes the values of the variable r, given as the second argument, that satisfy
the equation in the first argument. Note that the output is a list of lists, within which are rules specify-
ing the solutions.
Now that Mathematica has determined that the solutions are r = -1 and r = 3, we can write down the
form of the solution to the recurrence as

an = a ÿ H-1Ln + b ÿ 3n

where a and b are constants that we have yet to determine.
Since the initial conditions are a1 = 4 and a2 = 2, we know that our recurrence relation must satisfy the
following pair of equations.

Chapter08.nb  7



¶ -a+ 3 b = 4
a+ 9 b = 2

To find the solution to this system of linear equations, we again use Mathematica's Solve facility:
In[21]:= Solve@8-alpha + 3*beta ã 4, alpha + 9 * beta ã 2<, 8alpha, beta<D

Out[21]= ::alpha Ø -
5

2
, beta Ø

1

2
>>

The braces tell Mathematica to solve the list of equations as a simultaneous system of equations. Like-
wise, the variables to be solved for form a list.
Now that we have the values for a and b, we see that the complete solution to the recurrence relation is

an =
-5
2

H-1Ln +
1
2

3n

This  formula  allows  us  to  write  a  Mathematica  function  for  finding  the  terms  of  the  sequence  8an<,
which can be more efficient than a recursive approach.

In[22]:= aFormula@n_IntegerD := H-5ê2L*H-1L^n + H1ê2L*3^n

In[23]:= Table@aFormula@nD, 8n, 1, 10<D

Out[23]= 84, 2, 16, 38, 124, 362, 1096, 3278, 9844, 29 522<

A Second Example
Let's try another example. We will solve the recurrence relation

an =
-5
3

an-1 +
2
3

an-2

with initial conditions a1 =
1
2

 and a2 = 4.

To do this, we ask Mathematica to solve the characteristic equation of the recurrence relation, and then
solve  the  system  of  linear  equations  obtained  from  the  roots  of  the  characteristic  equation  and  the
initial conditions. Note that this method works because this recurrence relation is linear, homogeneous,
and has constant coefficients.

In[24]:= charEqnRoots = Solve@r^2 + H5ê3L*r - H2ê3L ã 0, rD

Out[24]= :8r Ø -2<, :r Ø
1

3
>>

Note  that  we  can  transform  the  output  from  a  list  of  lists  of  rules  into  a  simple  list  of  the  solutions
using the ReplaceAll (/.) operator as shown below.

In[25]:= charRootsL = r ê. charEqnRoots

Out[25]= :-2,
1

3
>

When ReplaceAll is given a list of lists of rules as its right operand, its output is the list obtained by
applying the rules in each sublist in turn. 

8   Chapter08.nb



When ReplaceAll is given a list of lists of rules as its right operand, its output is the list obtained by
applying the rules in each sublist in turn. 
This  allows us  to  solve  for  a  and b  by  referencing the  solutions  to  the  characteristic  equation,  rather
than typing them. 

In[26]:= Solve@8alpha*charRootsL@@1DD + beta*charRootsL@@2DD ã 1ê2,
alpha*charRootsL@@1DD^2 + beta*charRootsL@@2DD^2 ã 4<,

8alpha, beta<D

Out[26]= ::alpha Ø
23

28
, beta Ø

45

7
>>

Thus we see that the solution to the recurrence relation is 

an =
23
28

H-2Ln +
45
7

1
3

n

The Fibonacci Sequence
We  can  derive  an  explicit  formula  for  the  Fibonacci  sequence  this  way  as  well.  The  characteristic
polynomial for the Fibonacci sequence is 

r2 - r- 1

We find the roots of the characteristic equation.
In[27]:= cEqnRoots = r ê. Solve@r^2 - r - 1 ã 0, rD

Out[27]= :
1

2
I1 - 5 M,

1

2
I1 + 5 M>

So the formula for the nth Fibonacci number is of the form
In[28]:= Fn = alpha*cEqnRoots@@1DD^n + beta*cEqnRoots@@2DD^n

Out[28]=
1

2
I1 - 5 M

n
alpha +

1

2
I1 + 5 M

n
beta

We find the coefficients a and b in the formula by using the initial conditions.
In[29]:= alphas = Solve@8alpha*cEqnRoots@@1DD + beta*cEqnRoots@@2DD ã 1,

alpha*cEqnRoots@@1DD^2 + beta*cEqnRoots@@2DD^2 ã 1<,
8alpha, beta<D

Out[29]= ::alpha Ø -
I-1 + 5 M I1 + 5 M

4 5
, beta Ø -

-5 - 5

5 I1 + 5 M
>>

We can use ReplaceAll (/.) to substitute the values for a and b into the formula Fn. Note that we
access the “first” element of alphas in order to not have a nested list.

In[30]:= Fn ê. alphas@@1DD

Out[30]= -
2-2-n I1 - 5 Mn I-1 + 5 M I1 + 5 M

5
-
1

5
2-n I-5 - 5 M I1 + 5 M-1+n

Chapter08.nb  9



In[31]:= Simplify@Fn ê. alphas@@1DDD

Out[31]= -
2-n I5 + 5 M II1 - 5 Mn - I1 + 5 MnM

5 I1 + 5 M

If we are to use such a formula to repeatedly compute values,  then we should define a function. You
can do this by retyping the formula or copy and paste it into a function definition. Or you can use the
expression as the function definition as shown below.

In[32]:= fibonacci2@n_D = Fn ê. alphas@@1DD

Out[32]= -
2-2-n I1 - 5 Mn I-1 + 5 M I1 + 5 M

5
-
1

5
2-n I-5 - 5 M I1 + 5 M-1+n

Note that in this situation, it is very important to use Set (=), not the usual SetDelayed (:=). This
is so that the right hand side resolves into the expression before the function is defined.
Observe that Mathematica will not necessarily simplify it automatically.

In[33]:= fibonacci2@1D

Out[33]= -
I1 - 5 M I-1 + 5 M I1 + 5 M

8 5
+

1

10
I5 + 5 M

However, applying the Simplify function will reduce the expression to the expected value.
In[34]:= fibonacci2@1D êê Simplify

Out[34]= 1

A Solver
Now let's generalize what we have been doing and write a Mathematica function to solve a degree two
linear,  homogeneous  recurrence  relation  with  constant  coefficients,  provided  that  the  roots  of  the
characteristic polynomial are distinct. We will write a function recSol2Distinct which solves the
recurrence

an = c ÿ an-1 + d ÿ an-2
subject  to  the  initial  conditions  a1 = u  and a2 = v,  and then returns  an expression that  can be used to
compute terms of the sequence.

For  the  moment,  we  assume  that  the  characteristic  polynomial  r2 - c ÿ r- d  has  two  distinct  roots.
Later,  we will  modify  the  function to  relax that  restriction.  With  the  assumption that  the  roots  of  the
characteristic polynomial are distinct, all our function needs to do is to repeat the steps we did manu-
ally in the examples above.

10   Chapter08.nb



In[35]:= recSol2Distinct@c_, d_, u_, v_D ê; ValueQ@nD ã False :=
Module@8CERoots, alphas, alpha, beta, f, r<,
H* first solve the characteristic equation *L
CERoots = r ê. Solve@r^2 - c*r - d ã 0, rD;
H* next solve using the initial conditions *L
alphas = Solve@8alpha*CERoots@@1DD + beta*CERoots@@2DD ã u,

alpha*CERoots@@1DD^2 + beta*CERoots@@2DD^2 ã v<,
8alpha, beta<D@@1DD;

H* finally substitute the results into the general form *L
alpha*CERoots@@1DD^n + beta*CERoots@@2DD^n ê. alphas

D

Observe that  in the above,  the symbol n  is  used without declaring it  as  local  to the Module.  This is
necessary in order to have the resulting expression in terms of n. However, it cannot be used if n has
been  assigned  a  value  elsewhere.  This  is  why  we  Condition  (/;)  the  definition  on
ValueQ@nD == False.  The  ValueQ  function  determines  whether  a  symbol  has  been  assigned  a
value or not.
To  see  how  it  works,  we'll  check  that  it  gives  the  same  result  for  the  Fibonacci  sequence  that  we
obtained  by  hand.  To  construct  a  function  for  computing  the  Fibonacci  sequence,  invoke  the  new
function as: 

In[36]:= f@n_D = recSol2Distinct@1, 1, 1, 1D

Out[36]= -
2-2-n I1 - 5 Mn I-1 + 5 M I1 + 5 M

5
-
1

5
2-n I-5 - 5 M I1 + 5 M-1+n

You can see that is the same formula that we derived above. And the first 10 Fibonacci numbers can be
computed as follows. 

In[37]:= Table@Simplify@f@nDD, 8n, 1, 10<D

Out[37]= 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<

A Recurrence with Repeated Roots
We  will  next  create  a  function  that  can  handle  the  case  of  repeated  roots.  But  first,  let's  look  at  an
example  of  a  recurrence  relation  whose  characteristic  polynomial  has  a  double  root.  The  recurrence
relation

an = 4 an-1 - 4 an-2
has characteristic equation

In[38]:= charEqn = r^2 - 4*r + 4 ã 0

Out[38]= 4 - 4 r + r2 ã 0

Its roots are:
In[39]:= CERoots = r ê. Solve@charEqn, rD

Out[39]= 82, 2<

We can clearly see that in this case the root is repeated, but for Mathematica to recognize it, we'll need
to use the following test.

Chapter08.nb  11



We can clearly see that in this case the root is repeated, but for Mathematica to recognize it, we'll need
to use the following test.

In[40]:= CERoots@@1DD ã CERoots@@2DD

Out[40]= True

If we call the double root (2 in this case) r0, then the recurrence relation has the explicit solution
an = a ÿ r0n + n ÿ b ÿ r0n

for all positive integers n, and for some constants a and b. The initial conditions of a1 = 1 and a2 = 4
produce the system of equations

a ÿ 21 + 1 ÿ b ÿ 21 = 1
a ÿ 22 + 2 ÿ b ÿ 22 = 4

As before, we solve this system for a and b.
In[41]:= alphas2 = Solve@8alpha*CERoots@@1DD + beta*CERoots@@1DD ã 1,

alpha*CERoots@@1DD^2 + 2*beta*CERoots@@1DD^2 ã 4<,
8alpha, beta<D@@1DD

Out[41]= :alpha Ø 0, beta Ø
1

2
>

And finally, substitute these values into the general form an = a ÿ r0n + n ÿ b ÿ r0n.
In[42]:= alpha*CERoots@@1DD^n + n*beta*CERoots@@1DD^n ê. alphas2

Out[42]= 2-1+n n

A More General Recurrence Solver
The  steps  carried  out  above  are  quite  general  and  we  can  write  a  function,  recSolver2,  which
solves a recurrence relation (degree two, linear, homogeneous, with constant coefficients) regardless of
whether  the  characteristic  polynomial  has  distinct  roots  or  not.  The  following  function  solves  the
recurrence

an = c ÿ an-1 + d ÿ an-2
with initial conditions a1 = u and a2 = v.

12   Chapter08.nb



In[43]:= recSolver2@c_, d_, u_, v_D ê; ValueQ@nD ã False :=
Module@8CERoots, alphas, alpha, beta, r<,
H* first solve the characteristic equation *L
CERoots = r ê. Solve@r^2 - c*r - d ã 0, rD;
H* then test if the roots are the same *L
If@CERoots@@1DD ã CERoots@@2DD,
H* the roots are the same, follow the last example *L
alphas = Solve@8alpha*CERoots@@1DD + beta*CERoots@@1DD ã u,

alpha*CERoots@@1DD^2 + 2*beta*CERoots@@1DD^2 ã v<,
8alpha, beta<D@@1DD;

Return@alpha*CERoots@@1DD^n + n*beta*CERoots@@1DD^n ê.
alphasD,

H* otherwise, use the recSol2Distinct method *L
alphas = Solve@8alpha*CERoots@@1DD + beta*CERoots@@2DD ã u,

alpha*CERoots@@1DD^2 + beta*CERoots@@2DD^2 ã v<,
8alpha, beta<D@@1DD;

Return@alpha*CERoots@@1DD^n + beta*CERoots@@2DD^n ê.
alphasD

D
D

The recSolver2  function first  tests for a repeated root and then does the appropriate computation.
We test this function on the examples we did by hand, such as the Fibonacci sequence:

In[44]:= recSolver2@1, 1, 1, 1D

Out[44]= -
2-2-n I1 - 5 Mn I-1 + 5 M I1 + 5 M

5
-
1

5
2-n I-5 - 5 M I1 + 5 M-1+n

And for the example with a double root:
In[45]:= recSolver2@4, -4, 1, 4D

Out[45]= 2-1+n n

In both of those examples, the result is consistent with what we had obtained before. We will now use
the solver to find the first  ten terms of the sequence defined by the following recurrence relation and
initial conditions. 

an = 4 an-1 - 3 an-2, a1 = 1, and a2 = 2

In[46]:= g@n_D = recSolver2@4, -3, 1, 2D

Out[46]=
1

2
+
3-1+n

2

In[47]:= Table@Simplify@g@nDD, 8n, 1, 10<D

Out[47]= 81, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842<

Chapter08.nb  13



As another example, consider the following recurrence relation
an = -an-1 - an-2

with initial conditions a1 = 1 and a2 = 2.
In[48]:= h@n_D = recSolver2@-1, -1, 1, 2D

Out[48]= -
H-1L2 nê3 I2 + H-1L1ê3M

1 + H-1L1ê3
-

I-H-1L1ê3Mn I1 + 2 H-1L1ê3M

1 + H-1L1ê3

Notice that the solution to this recurrence is very complicated and requires the use of cube roots of -1.
But if we compute the first ten terms, we notice a very simple pattern emerges.

In[49]:= Table@Simplify@h@nDD, 8n, 1, 10<D

Out[49]= 81, 2, -3, 1, 2, -3, 1, 2, -3, 1<

Mathematica can make this pattern explicit if we replace the numerical initial conditions with symbolic
constants.

In[50]:= k@n_D = recSolver2@-1, -1, l, mD

Out[50]= -
H-1L2 nê3 IH-1L1ê3 l + mM

1 + H-1L1ê3
-

I-H-1L1ê3Mn Il + H-1L1ê3 mM

1 + H-1L1ê3

In[51]:= Table@Simplify@k@nDD, 8n, 1, 10<D

Out[51]= 8l, m, -l - m, l, m, -l - m, l, m, -l - m, l<

Note that the Greek letters are entered by pressing Â, then typing the name of the letter, and pressing
Â again, e.g., ÂlambdaÂ produces l.

Nonhomogeneous Recurrence Relations
So far, we have been restricted to homogeneous linear recurrence relations with constant coefficients.
However,  the  techniques  used  in  solving  them may  be  extended  to  provide  solutions  to  nonhomoge-
neous linear recurrence relations with constant coefficients. That is, recurrence relations of the form

an = c1 an-1 + c2 an-2 +º⋯+ ck an-k +FHnL

with c1, c2, …, ck  real numbers and FHnL  a function depending only on n.  To solve this more general
form of a recurrence relation, we do two things: (1) find the solutions of the associated homogeneous
recurrence relation (the relation obtained by removing FHnL);  and (2) find a particular solution for the
nonhomogeneous equation.
Consider the following example: 

an = 6 an-1 - 9 an-2 + n ÿ 3n

from Example 12 of Section 8.2 in the text.
The first step is to find the solutions to the associated homogeneous recurrence relation

an = 6 an-1 - 9 an-2
To do this, we can use our recSolver2. We will use a and b for the initial conditions so that we get
all the solutions.

14   Chapter08.nb



To do this, we can use our recSolver2. We will use a and b for the initial conditions so that we get
all the solutions.

In[52]:= hSolution@n_D = recSolver2@6, -9, a, bD

Out[52]= 3-2+n H6 a - bL + 3n n -
a

3
+

b

9

The second step is to find a particular solution. Theorem 6 in section 8.2 of the text tells us how to find
the form of the particular solution. Note that FHnL = n ÿ 3n  and 3 is a root of the characteristic polyno-
mial  with  multiplicity  2  (you  can  verify  this  by  solving  the  characteristic  equation  of  the  associated
homogeneous relation; it is also made apparent by the form of hSolution). So the theorem tells us
that there is a particular solution of the form

n2Hp ÿ n+ qL 3n

We will define a function for the form of this particular solution.
In[53]:= pForm@n_D = n^2*Hp*n + qL*3^n

Out[53]= 3n n2 Hn p + qL

To find a particular solution, we need to find the values of p and q. To find these values, we substitute
the terms of pForm into the recurrence relation. This gives us an equation in terms of p and q (and n).

In[54]:= pEqn = pForm@nD ã 6*pForm@n - 1D - 9*pForm@n - 2D + n*3^n

Out[54]= 3n n2 Hn p + qL ã

3n n - 3n H-2 + nL2 HH-2 + nL p + qL + 2 µ 3n H-1 + nL2 HH-1 + nL p + qL

We’ll simplify the equation with Simplify.
In[55]:= pEqn = Simplify@pEqnD

Out[55]= 3n H-6 p + n H-1 + 6 pL + 2 qL ã 0

Next we’ll have Mathematica solve that equation for p and q. In order to indicate that we want Mathe-
matica to find values of p and q that satisfy the equation for all values of n, we will ask Mathematica
to solve

H" nL 3n H-6 p+ nH-1+ 6 pL+ 2 qL = 0

We encode this using the ForAll  expression, with first argument n,  indicating that n  is the variable
being quantified, and with second argument the equation. This expression will be the first argument to
Solve. The second argument will be {p,q}, indicating that those are the variables we wish to solve
for.

In[56]:= pVals = Solve@ForAll@n, pEqnD, 8p, q<D

Out[56]= ::p Ø
1

6
, q Ø

1

2
>>

Thus, the particular solution is:

Chapter08.nb  15



In[57]:= pForm@nD ê. pVals@@1DD

Out[57]= 3n
1

2
+
n

6
n2

Putting  it  all  together,  we  see  that  all  solutions  to  the  recurrence  relation  an = 6 an-1 - 9 an-2 + n ÿ 3n
are of the form:

In[58]:= hSolution@nD + HpForm@nD ê. pVals@@1DDL

Out[58]= 3n
1

2
+
n

6
n2 + 3-2+n H6 a - bL + 3n n -

a

3
+

b

9

where a and b are the initial conditions.

Mathematica’s Recurrence Solver
Now that we have seen how to use Mathematica to implement an algorithm to solve simple recurrence
relations, it is time to introduce Mathematica's built-in function for solving recurrence relations.
We have  already  seen  the  Mathematica  function  Solve  for  working  with  polynomial  equations  and
systems  of  equations.  Similarly,  there  is  a  function  RSolve,  which  is  engineered  for  dealing  with
recurrence  relations.  It  is  a  much  more  sophisticated  version  of  our  recSolver2  function  and  can
deal  with  recurrence  relations  of  arbitrary  degree,  repeated  roots,  and  nonlinear  recurrence  relations.
The syntax of RSolve is very similar to that of RecurrenceTable. The first argument is an equa-
tion  or  list  of  equations  representing  the  recurrence  relation  and  any  initial  conditions  in  terms  of
symbols of the form a[n+1], a[n], a[n-1], etc. The second argument is of one of two forms: a or
a[n], where a is the symbol used in the first argument to name the sequence. The form of the output
depends  on  which  of  these  is  used.  The  final  argument  is  the  symbol  used  in  the  first  argument  to
represent the index of the sequence, e.g., n.
For  example,  to  solve  the  recurrence  relation  an = an-1 + 2 ÿ an-2  with  initial  conditions  a1 = a2 = 1,
you enter the following.

In[59]:= solveOutput =
RSolve@8a@nD ã a@n - 1D + 2*a@n - 2D, a@1D ã a@2D ã 1<, a@nD, nD

Out[59]= ::a@nD Ø
1

3
I-H-1Ln + 2nM>>

Note that the structure of the solution is similar to that given by Solve: a list of lists of rules. If there
were multiple solutions, each solution would appear as a separate sublist. 
In  the  example  above,  we  gave  the  second  argument  in  the  form  a[n].  This  resulted  in  a  rule  for
a[n]. The expression on the right side of the rule can be extracted by applying ReplaceAll (/.) to
the expression a[n].

In[60]:= a@nD ê. First@solveOutputD

Out[60]=
1

3
I-H-1Ln + 2nM

Let’s break that down a bit. The First function simply takes the first element of the solveOutput
list, which is the list containing the rule. So the above is the same as

16   Chapter08.nb



Let’s break that down a bit. The First function simply takes the first element of the solveOutput
list, which is the list containing the rule. So the above is the same as

a@nD ê. :a@nD Ø
1

3
I-H-1Ln + 2nM>

This uses ReplaceAll (/.) on the expression a[n] by applying the rule that substitutes the expres-
sion for the symbol a[n]. In other words, the above evaluates to the expression 1

3
H-H-1Ln + 2nL.

If we give the second argument in the form a instead of a[n], the output will have the same structure,
a  list  of  lists  of  rules,  but  the  rules  will  relate  the  symbol  a  to  a  pure  Function  (&)  rather  than an
expression.

In[61]:= solveOutput2 =
RSolve@8a@nD ã a@n - 1D + 2*a@n - 2D, a@1D ã a@2D ã 1<, a, nD

Out[61]= ::a Ø FunctionB8n<,
1

3
I-H-1Ln + 2nMF>>

This output is  more difficult  to read,  but it  makes it  easier to transform the output of RSolve  into a
function  that  we  can  use  to  compute  values.  To  assign  the  symbol  F  to  the  function  that  calculates
values of this sequence, we just have to assign F to the pure function, which we can extract just as we
did above.

In[62]:= F = a ê. First@solveOutput2D

Out[62]= FunctionB8n<,
1

3
I-H-1Ln + 2nMF

Now F can be used to compute values.
In[63]:= F@42D

Out[63]= 1 466 015 503 701

In[64]:= Table@F@nD, 8n, 1, 10<D

Out[64]= 81, 1, 3, 5, 11, 21, 43, 85, 171, 341<

Observe that these agree with the values obtained with RecurrenceTable.
In[65]:= RecurrenceTable@

8a@nD ã a@n - 1D + 2*a@n - 2D, a@1D ã a@2D ã 1<, a, 8n, 1, 10<D

Out[65]= 81, 1, 3, 5, 11, 21, 43, 85, 171, 341<

The RSolve function will let us solve nonhomogeneous recurrence relations like the Tower of Hanoi
problem very easily. Recall that the Tower of Hanoi problem has the recurrence relation

Hn = 2 ÿHn-1 + 1

with initial condition H1 = 1.

Chapter08.nb  17



In[66]:= Clear@HD;
H = H ê. First@RSolve@8H@nD ã 2*H@n - 1D + 1, H@1D ã 1<, H, nDD

Out[67]= FunctionA8n<, -1 + 2nE

Observe that in the above we used H for both the name of the sequence and the symbol representing the
resulting  Function.  While  this  is  natural,  it  carries  the  caveat  that  it  can  only  be  executed  once,
because H now has a value and thus cannot be used within RSolve. Hence, it is a good idea to Clear
the symbol before making the assignment.
It is not necessary to specify the initial conditions for a recurrence relation when applying RSolve. If
they  are  not  present,  Mathematica  will  still  solve  the  equation,  inserting  symbolic  constants  (e.g.,
C[1] and C[2]) in place of numeric values, as the following example illustrates.

In[68]:= Clear@GD;
G = G ê. First@RSolve@G@nD == 2*G@n - 1D - 6*G@n - 2D, G, nDD

Out[69]= FunctionA8n<, I1 - Â 5 Mn C@1D + I1 + Â 5 Mn C@2DE

The function G is still able to compute values, but they will be in terms of the constants.
In[70]:= G@5D

Out[70]= I1 - Â 5 M5 C@1D + I1 + Â 5 M5 C@2D

The  capabilities  of  RSolve,  like  other  Mathematica  functions,  are  constantly  being  enhanced  and
extended.  However,  RSolve  is  not  a  panacea  ––  you  can  easily  find  recurrence  relations  that  it  is
incapable of solving. When RSolve is unable to solve a recurrence relation, it simply returns unevalu-
ated, as below.

In[71]:= RSolve@u@nD ã u@n - 1D^2 - Exp@2*e@n - 2DD, u, nD

Out[71]= RSolveAu@nD ã -‰2 e@-2+nD + u@-1 + nD2, u, nE

Problem Solving with Mathematica and Recurrence Relations
It is often the case that a problem, as presented, gives no clue that a solution may be found using recur-
rence. Let's see how we can use Mathematica to solve a problem that is not explicitly expressed as one
requiring the use of recurrence for its solution.
Here is our problem: into how many regions is the plane divided by 1000 lines, assuming that no two
of the lines are parallel, and no three are coincident? Such a situation may arise in an attempt to model
fissures in the ocean floor. 
To start, we might try to discover the answer for smaller numbers of lines. To generalize the problem,
we may ask for the number of regions produced by n lines, where n is some positive integer. It is fairly
obvious that a single line (corresponding to the case n = 1) divides the plane into 2 regions. Two lines,
if  they are not  parallel,  can easily be seen to divide the plane into 4 regions.  (Two parallel  lines pro-
duce only 3 regions.) If we call the number of regions produced by n lines, no two of which are parallel
and no three of which are coincident, Rn, then R1 = 2 and R2 = 4. 

18   Chapter08.nb



Figure 8.1 : Three lines dividing the plane

What does the situation look like when n = 3? Figure 8.1 is representative of this situation. In this case,
the number of regions is 7, so R3 = 7. To find R4  we must add a fourth line to the diagram. This sug-
gests  trying  to  compute  R4  in  terms  of  R3  so  that  we  begin  to  think  of  Rn  as  a  recurrence  relation.
Figure 8.2 shows what the situation looks like when a fourth line is  added to the three existing lines.
From the assumptions that no two of the lines are parallel and no three pass through a single point, it
follows that the new line must intersect each of the existing three lines in exactly one point. This means
that  the  new line  passes  through  exactly  four  of  the  regions  formed  by  the  original  three  lines.  Each
region that it passes through is divided into two regions, so the total number of new regions added by
the fourth point is 4. Thus, R4 = R3 + 4. Similar arguments for a general configuration of lines reveals
that Rn satisfies the recurrence relation Rn = Rn-1 + n.

Figure 8.2 : Four lines dividing the plane

Furthermore, we have already computed the initial condition R1 = 2. This is enough to solve the recur-
rence. 

Chapter08.nb  19



Furthermore, we have already computed the initial condition R1 = 2. This is enough to solve the recur-
rence. 

In[72]:= Clear@RD;
R = R ê. First@RSolve@8R@nD ã R@n - 1D + n, R@1D ã 2<, R, nDD

Out[73]= FunctionB8n<,
1

2
I2 + n + n2MF

To answer the question: how many regions is the plane divided by 1000 lines with no two parallel and
no three coincident?

In[74]:= R@1000D

Out[74]= 500 501

8.3 Divide-and-Conquer Algorithms and Recurrence Relations
A very good example of  divide and conquer  relations  is  the one provided by the binary search algo-
rithm.  Here,  we  consider  a  practical  application  of  this  algorithm  in  an  implementation  of  a  binary
search on a sorted list of integers. This is an implementation of the algorithm described in Algorithm 3
in Section 3.1 of the text and first presented in Section 3.1 of this manual. 

In[75]:= binarySearch@x_Integer, A : 8__Integer<D :=
Module@8n, i, j, m, location<,
n = Length@AD;
i = 1;
j = n;
While@i < j,
m = Floor@Hi + jLê2D;
If@x > A@@mDD,
i = m + 1,
j = m

D

D;
If@x ã A@@iDD,
location = i,
location = 0

D;
location

D

The variable A is the list of integers to search, which is assumed to be sorted in increasing order, and x
is the integer to search for. The local variables j and i are initialized to the number of elements in the
list  and 1,  respectively.  The While  loop continues as long as i  and j  are different  from each other.
Each step  of  the  loop serves  to  narrow the  difference  between them by calculating  the  middle  of  the
list, represented by m,  and determining which half x  is in. Eventually, the search will focus in on one
location in the list, which is either x or, if not, the search has failed and the function returns 0.

20   Chapter08.nb



The variable A is the list of integers to search, which is assumed to be sorted in increasing order, and x
is the integer to search for. The local variables j and i are initialized to the number of elements in the
list  and 1,  respectively.  The While  loop continues as long as i  and j  are different  from each other.
Each step  of  the  loop serves  to  narrow the  difference  between them by calculating  the  middle  of  the
list, represented by m,  and determining which half x  is in. Eventually, the search will focus in on one
location in the list, which is either x or, if not, the search has failed and the function returns 0.
Let us do the analysis of the algorithm to see how divide and conquer recurrence relations are gener-
ated. In general, a divide and conquer type recurrence relation has the form

f HnL = a ÿ f Hn ê bL+ gHnL

Each iteration of the While loop of binarySearch produces a single list half the size of the origi-
nal.  So  a = 1  and  b = 2.  The  function  gHnL,  which  measures  the  comparisons  added  in  implementing
the reduction, is identically 2. This is because one comparison is added to see which half of the list the
key is on, and one is added to see if the While loop needs to continue. So, for the binarySearch
algorithm, the recurrence relation is

f HnL = f Hn ê 2L+ 2

Additionally, we can see that f H1L = 2, because if the list is of length 1, then the algorithm will do one
comparison to determine that the While loop is unnecessary and one comparison to make sure that the
element  being  searched  for  is  the  one  element  in  the  list.  We  can  now  use  RSolve  to  solve  this
recurrence.

In[76]:= RSolve@8b@nD ã b@nê2D + 2, b@1D ã 2<, b@nD, nD

Out[76]= ::b@nD Ø 2 1 +
Log@nD

Log@2D
>>

8.4 Generating Functions
Generating  functions  are  a  powerful  tool  for  manipulating  sequences  of  numbers  and  for  solving  a
variety  of  counting problems.  In  this  section,  we will  see  how Mathematica  can be used to  represent
and manipulate generating functions.
The generating function GHxL for a sequence 8ak< is the formal power series

‚
k=0

¶

ak xk = a0 + a1 x+ a2 x2 + a3 x3 +º⋯+ ak xk +º⋯

It  is  called  formal  because  we  are  not  interested  in  evaluating  it  as  a  function  of  x.  Our  focus  is  on
finding a formula for its coefficients. In particular, this means that there are no convergence issues to
be considered.

Generating Functions Tools
Mathematica provides extensive facilities for manipulating generating functions.
The first thing we need to do is to learn how to create a power series with Mathematica, which is done
with  the  function  GeneratingFunction.  This  function  requires  three  arguments.  The  last  argu-
ment  is  the  variable,  such  as  x,  that  the  generating  function  will  be  written  in  terms  of.  The  second
argument is a variable, such as n, representing the index of summation. The first argument is an expres-
sion in terms of the index of summation that computes the coefficients of the series.

For example, to create the generating function for the sequence 93k=, we use the following code.

Chapter08.nb  21



In[77]:= GeneratingFunction@3^k, k, xD

Out[77]=
1

1 - 3 x

Observe  that  Mathematica  has  automatically  found  a  rational  expression  for  the  generating  function.
While this is a useful and exact representation of the generating function, you often want to be able to
view the generating function as a power series. 
To obtain a series representation of the generating function, we use the Series function. Series is
used to find the Taylor series of a function about a point. If you have taken Calculus, you may remem-
ber  Taylor  series.  If  not,  it  is  enough  to  know that  the  Taylor  series  of  a  generating  function  around
x = 0 is the correct power series for our purposes.

The Series function requires two arguments. The first is the function, e.g. 1
1-3 x

. The second is a list
of  length three:  the variable x,  the number 0,  and the largest  order,  or  exponent,  to  be displayed.  For
example to display the first ten terms of the power series for 1

1-3 x
, we enter the following.

In[78]:= seriesEx = Series@1êH1 - 3 xL, 8x, 0, 10<D

Out[78]= 1 + 3 x + 9 x2 + 27 x3 + 81 x4 + 243 x5 + 729 x6 +

2187 x7 + 6561 x8 + 19 683 x9 + 59 049 x10 + O@xD11

The output  ends with O@xD11,  which indicates  that  the series  continues with terms of  degree 11 and
higher.
If  you  wish  to  view  the  coefficients,  without  the  generating  function,  you  can  apply  Coefficien-
tList, as shown below. The first argument is the series and the second is the variable.

In[79]:= CoefficientList@seriesEx, xD

Out[79]= 81, 3, 9, 27, 81, 243, 729, 2187, 6561, 19 683, 59 049<

To  create  a  power  series  from  a  recurrence  relation,  we  need  to  combine  the  techniques  of  the  last
section for using RSolve to solve a recurrence relation with the GeneratingFunction command.
For  example,  consider  the  recurrence  relation  given  by  an = 2 an-1 - an-2 + 1  with  initial  conditions
a0 = 1 and a1 = 2.
First,  we apply the RSolve  function and extract  an expression for  the general  term of the sequence.
Note that because we are interested in an expression that we can use in GeneratingFunction,  it
makes  sense  to  solve  for  a[n]  rather  than  solving  for  a  and  obtaining  a  pure  Function.  Either
approach would work, however.

In[80]:= recurrenceFormula = a@nD ê. First@
RSolve@
8a@nD ã 2*a@n - 1D - a@n - 2D + 1, a@0D ã 1, a@1D ã 2<, a@nD, nD

D

Out[80]=
1

2
I2 + n + n2M

Now we apply GeneratingFunction to this formula.

22   Chapter08.nb



In[81]:= recurrenceGFunction =
GeneratingFunction@recurrenceFormula, n, xD

Out[81]=
-1 + x - x2

H-1 + xL3

As above, we can use Series to view this as a formal power series.
In[82]:= recurrenceSeries = Series@recurrenceGFunction, 8x, 0, 5<D

Out[82]= 1 + 2 x + 4 x2 + 7 x3 + 11 x4 + 16 x5 + O@xD6

We can also  use  the  function SeriesCoefficient  to  obtain  specific  coefficients,  rather  than the
entire  series.  This  function  has  two  distinct  forms  that  are  useful.  First,  you  can  give  the  output  of
Series  as the first  argument and an integer as the second, and SeriesCoefficient  will  return
the coefficient of that  term. Note that for this to work, you must have already computed the series to
the desired term. That is, the second argument of SeriesCoefficient must be no greater than the
order of the output from Series.

In[83]:= SeriesCoefficient@recurrenceSeries, 3D

Out[83]= 7

The second, and even more useful, application of SeriesCoefficient has the same arguments as
Series.  Specifically, a generating function and a list consisting of the variable used in the function,
the  number  0,  and  a  positive  integer  n.  However,  where  Series  outputs  the  entire  series  out  to  the
term of degree n, SeriesCoefficient just returns the coefficient of xn.

In[84]:= SeriesCoefficient@recurrenceGFunction, 8x, 0, 3<D

Out[84]= 7

Solving Problems with Generating Functions
Generating functions are more than just a convenient way to represent numerical sequences. They are a
powerful tool for solving recurrence relations, as well as other kinds of counting problems. This power
stems  from our  ability  to  manipulate  them like  ordinary  power  series  from Calculus  and  to  interpret
those  manipulations.  To  illustrate  Mathematica's  facilities  for  manipulating  generating  functions,
consider Example 12 from Section 8.4 of the text:

Use generating functions to determine the number of ways to insert tokens worth $1, $2, and $5 
into a vending machine to pay for an item that costs 7 dollars in both the cases when the order in 
which the tokens are inserted does not matter and when the order does matter. 

Following the  text,  the  solution to  the  problem when order  does  matter  is  the  coefficient  of  xr  in  the
generating function

I1+ x+ x2 + x3 +º⋯M I1+ x2 + x4 + x6 +º⋯M I1+ x5 + x10 + x15 +º⋯M

To solve the problem, we need to create the three power series and multiply them together. To create
the first series, we can use the GeneratingFunction command demonstrated above. For example,
the first series has every coefficient equal to 1, so its generating function can be found as shown below.

Chapter08.nb  23



In[85]:= token1D = GeneratingFunction@1, n, xD

Out[85]=
1

1 - x

For  the  $2  tokens,  we  need  to  represent  1+ x2 + x4 +º⋯.  Remember  that  GeneratingFunction
requires  an  expression  for  the  general  coefficient  as  its  first  argument.  In  this  case,  it  is  easier  to
describe the series if we can include the entire term, not just the coefficients. That is, it is easier to say

that the series is ⁄
k=0

¶
x2 k than to write a formula for the coefficients. 

Fortunately,  Mathematica  allows  us  to  do  exactly  that  by  applying  the  Sum  function.  Recall  that  the
first argument to Sum is an expression for the generic term in terms of an index of summation, and the
second  argument  defines  the  bounds  of  the  summation.  In  this  case,  those  bounds  are  0  and
Infinity.

In[86]:= token2D = Sum@x^H2*kL, 8k, 0, Infinity<D

Out[86]=
1

1 - x2

Observe that Mathematica has automatically calculated the rational expression for this sum.
We could also use Sum  for the $5 tokens. Or we could just refer to Table 1 in Section 8.4 of the text
and  enter the rational form 1

1-xr
 directly. 

In[87]:= token5D = 1êH1 - x^5L

Out[87]=
1

1 - x5

We can use Series  to confirm that Mathematica  does in fact recognize this as the generating func-
tion 1+ x5 + x10 + x15 +º⋯.

In[88]:= Series@token5D, 8x, 0, 20<D

Out[88]= 1 + x5 + x10 + x15 + x20 + O@xD21

We can algebraically  combine the series  with the usual  multiplication and Series  will  show us the
power series expansion of the result.

In[89]:= tokens = token1D*token2D*token5D

Out[89]=
1

H1 - xL I1 - x2M I1 - x5M

In[90]:= Series@tokens, 8x, 0, 7<D

Out[90]= 1 + x + 2 x2 + 2 x3 + 3 x4 + 4 x5 + 5 x6 + 6 x7 + O@xD8

We can see from the above that there are 6 ways to pay for a $7 item (since the coefficient of x7  is 6),
just as was computed in the text. If we wanted to know the number of ways to pay for an item costing
$234, all we would need to do is find the coefficient of x234.

24   Chapter08.nb



In[91]:= SeriesCoefficient@tokens, 8x, 0, 234<D

Out[91]= 2832

For  the  second  part  of  the  question,  the  case  where  the  order  does  matter,  the  text  explains  that  the
generating function we need is

1+ Ix+ x2 + x5M+ Ix+ x2 + x5M2 +º⋯ =
1

1- Ix+ x2 + x5M

Again,  if  we  did  not  already  know  the  rational  expression  for  the  generating  function,  Mathematica
could find it using Sum.

In[92]:= tokens2 = Sum@Hx + x^2 + x^5L^n, 8n, 0, Infinity<D

Out[92]=
1

1 - x - x2 - x5

In[93]:= SeriesCoefficient@tokens2, 8x, 0, 7<D

Out[93]= 26

Thus the coefficient of x7 is 26, so there are 26 ways to pay for a $7 item when order does matter.

8.5 Inclusion-Exclusion
In this section we will apply the principle of inclusion and exclusion. We will see how to use Mathemat-
ica to solve problems with this technique.
At the heart of the principle of inclusion and exclusion is the formula

A‹B = A + B - A›B

which says that, for two finite sets A and B, the number of elements in the union A‹B of the two sets
may be found by adding the sizes of A and B and then subtracting the number of elements common to
both A and B, which would otherwise be counted twice. This formula can be generalized to count the
number of elements in the union of any finite number of finite sets.
Recall  that  in  Mathematica,  sets  are  represented as  lists,  but  that  the set  operations  put  elements  in  a
canonical order and remove duplicates. 

In[94]:= A = 81, 2, 3<

Out[94]= 81, 2, 3<

To find the cardinality of a set, you can use Length.
In[95]:= Length@AD

Out[95]= 3

The set  operations Union  and Intersection  can be applied in functional  form, with each set  an
argument. You can also access operator forms with the aliases ÂunÂ and ÂinterÂ. 

Chapter08.nb  25



In[96]:= X = 81, 2, 3, 4, 5<;
Y = 84, 5, 6, 7, 8<;

In[98]:= Union@X, YD

Out[98]= 81, 2, 3, 4, 5, 6, 7, 8<

In[99]:= X ‹ Y

Out[99]= 81, 2, 3, 4, 5, 6, 7, 8<

In[100]:= Intersection@X, YD

Out[100]= 84, 5<

Also, the set theoretic difference is computed by the Mathematica function Complement. The follow-
ing computes X -Y .
In[101]:= Complement@X, YD

Out[101]= 81, 2, 3<

Let's use the operations to illustrate the principle of inclusion and exclusion with a particular example.
In[102]:= flintstones = 8"Fred", "Wilma", "Pebbles"<;

rubbles = 8"Barney", "Betty", "Bam Bam"<;
husbands = 8"Fred", "Barney"<;
wives = 8"Wilma", "Betty"<;
kids = 8"Pebbles", "Bam Bam"<;

If this were a complete census, then the number of children living in Bedrock would be
In[107]:= Length@kidsD

Out[107]= 2

The number of Bedrock inhabitants who are either Flintstones or children is
In[108]:= Length@Union@flintstones, kidsDD

Out[108]= 4

According to the principle of inclusion and exclusion, this number should be the same as 
In[109]:= Length@flintstonesD + Length@kidsD -

Length@Intersection@flintstones, kidsDD

Out[109]= 4

which, of course, it is.
As another example, consider the problem of determining the number of positive integers less than or
equal to 100 that are not divisible by either 2 or 11. First we generate the set of positive integers less
than or equal to 100. 

26   Chapter08.nb



In[110]:= hundred = Range@100D

Out[110]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100<

Next, we remove those elements that are divisible by 2: 
In[111]:= divBy2 = Complement@hundred, Table@2*i, 8i, 50<DD

Out[111]= 81, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35,
37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,
69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99<

and those that are divisible by 11: 
In[112]:= divBy11 = Complement@hundred, Table@11*i, 8i, 9<DD

Out[112]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100<

We are  looking  for  integers  that  belong  to  either  or  both  of  those  sets,  that  is,  to  their  union,  so  we
calculate:
In[113]:= Length@Union@divBy2, divBy11DD

Out[113]= 96

According to the principle of inclusion and exclusion, this value could also be computed as
In[114]:= Length@divBy2D + Length@divBy11D -

Length@Intersection@divBy2, divBy11DD

Out[114]= 96

8.6 Applications of Inclusion-Exclusion
In this section we will explore the following problem: Three sets of twins, Ashley and Amanda Abel,
Brandon  and  Benjamin  Bernoulli,  and  Christopher  and  Courtney  Cartan  (none  of  whom  bear  any
relation  to  the  mathematicians  with  the  same  surname),  are  to  be  seated  in  a  row.  List  the  ways  in
which they can be seated so that no person sits next to his or her twin. 
The principle  of  inclusion-exclusion gives us insight  into how we might  accomplish this  task.  Rather
than attempting to generate only those seating arrangements in which no person sits next to his or her
twin, it will be easier to consider all the possible arrangements of the twins and then exclude those that
do not satisfy the condition. To begin, we'll define lists to store the names of the twins. 

Chapter08.nb  27



The principle  of  inclusion-exclusion gives us insight  into how we might  accomplish this  task.  Rather
than attempting to generate only those seating arrangements in which no person sits next to his or her
twin, it will be easier to consider all the possible arrangements of the twins and then exclude those that
do not satisfy the condition. To begin, we'll define lists to store the names of the twins. 
In[115]:= abels = 8"Ashley", "Amanda"<;

bernoullis = 8"Brandon", "Benjamin"<;
cartans = 8"Christopher", "Courtney"<;

In[118]:= twins = 8abels, bernoullis, cartans<

Out[118]= 88Ashley, Amanda<, 8Brandon, Benjamin<, 8Christopher, Courtney<<

Next  we  create  a  function  to  test  whether  an  arrangement  satisfies  the  condition  of  having  no  twins
seated next to each other. We will use this function to determine which seatings to accept.
To test  whether a given arrangement has a pair  of twins seated next to one another,  we will  consider
the five pairs of seats, 1 and 2, 2 and 3, ..., 5 and 6, and check to see if the people seated in those posi-
tions are twins.
In[119]:= testSeating@seating_ListD := Module@8i, twinpair<,

Catch@
For@i = 1, i § 5, i++,
Do@If@MemberQ@twinpair, seating@@iDDD &&

MemberQ@twinpair, seating@@i + 1DDD, Throw@FalseDD
, 8twinpair, twins<D

D;
Throw@TrueD

D
D

The function is passed a list of the six people's names, representing a seating, so that the person in the
third  seat  is  seating[[3]].  The For  loop indexed by i  goes  through the five pairs  of  seats.  The
inner  Do  loop avoids having to duplicate  the If  statement.  We could have written one If  statement
checking to see if the people in seats i and i+ 1 are both Abels, and then a second If statement to see
if  they are both Bernoullis,  and then a third to see if  they are both Cartans.  Instead,  the loop sets  the
twinpair variable to each of the lists in twins in turn. So twinpair represents, at each step in the
loop, one of the families. And then the If statement checks to see whether the people in the seats i and
i+ 1  are  members  of  that  family,  using  the  MemberQ  test.  Recall  that  MemberQ  returns  true  if  the
second argument is a member of the first. If any of these If statements are true, that the people in the
pair of consecutive seats are from the same family, then false is thrown to the enclosing Catch, indicat-
ing that the seating is not acceptable. If the seating survives all of the If statements, then the function
returns true.
To check the testSeating function, consider the following potential seatings.
In[120]:= seating1 = 8"Ashley", "Amanda", "Brandon",

"Benjamin", "Christopher", "Courtnet"<;
seating2 = 8"Ashley", "Brandon", "Christopher",

"Amanda", "Benjamin", "Courtney"<;

We see that the first seating fails but the second passes, as they should. 

28   Chapter08.nb



In[122]:= testSeating@seating1D

Out[122]= False

In[123]:= testSeating@seating2D

Out[123]= True

We now have a function to test a potential seating for the condition of not having twins seated next to
each other. To generate a list of all  of such seatings, we'll  use Mathematica's  Permutations  func-
tion  to  generate  all  the  possible  permutations  of  the  people  and  then  test  to  see  which  are  valid  and
which  should  be  discarded.  The  Permutations  command  takes  a  list  and  returns  all  the  possible
permutations  of  the  objects.  (Refer  to  Chapter  6  of  this  manual  for  more  information  about  this
function.)
Note that the Permutations function expects a list of objects, so we will need a list of all the peo-
ple. We can use the Flatten function to turn our twins list into a list of all the names. Flatten
takes a list and removes any nesting of lists so that the result is a list of the objects.
In[124]:= Flatten@twinsD

Out[124]= 8Ashley, Amanda, Brandon, Benjamin, Christopher, Courtney<

To create the list of only the valid seatings, we will apply the Select function. Select requires two
arguments. The first is a list of objects, and the second is a function of one argument that returns true
for those elements of the list that satisfy the desired criterion. The result is the list of the elements that
passed the test.
We  apply  Select  to  all  of  the  permutations  of  the  flattened  list  of  twins  with  criterion  function
testSeating  and  store  its  output  in  the  variable  twinSeatings  but  suppress  the  output.  Then
we'll use Length  to check how many possible seatings there are. (It is generally a good idea to sup-
press the output of a function that is listing what may be a very large number of possibilities until you
know how many there are, as the output may take some time to display.)
In[125]:= twinSeatings =

Select@Permutations@Flatten@twinsDD, testSeatingD;

In[126]:= Length@twinSeatingsD

Out[126]= 240

In[127]:= twinSeatings@@123DD

Out[127]= 8Benjamin, Ashley, Christopher, Amanda, Brandon, Courtney<

We see that there are 240 possible seatings and have displayed the 123rd seating. 

Chapter08.nb  29



Solutions to Computer Projects and Computations and 
Explorations

Computer Projects 12

Given positive integers m and n, find the number of onto functions from a set with m 
elements to a set with n elements.

Solution: We have a very convenient formula:

‚
k=0

n-1
H-1Lk CHn, kL Hn- kLm

This is the number of onto functions from a set of m elements to a set of n elements, assuming m ¥ n.
This  formula  is  derived  in  the  textbook  from the  principle  of  inclusion-exclusion  (see  Theorem 1  of
Section 8.6). The only input required in this formula are the integer parameters m and n, which repre-
sent  the  sizes  of  the  domain  and  codomain,  respectively.  Mathematica’s  Sum  function  will  compute
summations such as the one above. The first argument is an expression in terms of an index of summa-
tion,  e.g.,  k,  and  the  second  is  of  the  form  {k,a,b}  indicating  the  bounds  of  the  summation.  For
example, to compute

‚
k=3

8 1
k

you would enter the following expressions.
In[128]:= Sum@1êk, 8k, 3, 8<D

Out[128]=
341

280

We now create a function encapsulating the formula above.
In[129]:= ontoFunctions@m_Integer, n_IntegerD ê; m > 0 && n > 0 := If@m ¥ n,

Sum@H-1L^k * Binomial@n, kD*Hn - kL^m, 8k, 0, n - 1<D, 0D

The If statement captures the fact that there are no onto functions from a set to a set that is larger and
ensures that the result is 0 in that case. The Condition (/;) ensures that the input to the function is
positive and will return no output if not, since it is meaningless to ask about functions between sets of
non-positive cardinalities. For example,
In[130]:= ontoFunctions@4, 9D

Out[130]= 0

In[131]:= ontoFunctions@-3, 0D

Out[131]= ontoFunctions@-3, 0D

As an example, we can use our function to compute the number of onto functions from a set with 100
elements to a set with 20 elements. 

30   Chapter08.nb



As an example, we can use our function to compute the number of onto functions from a set with 100
elements to a set with 20 elements. 
In[132]:= ontoFunctions@100, 20D

Out[132]= 11 238 195 910 319 657 928 539 447 038 143 170 285 517 894 975 095 769 Ö
496 294 319 007 413 091 913 959 828 334 936 464 196 298 192 508 890 182 Ö
316 163 261 067 934 269 440 000

Computations and Explorations 2

Find the smallest Fibonacci number greater than 1,000,000, greater than 1,000,000,000, and 
greater than 1,000,000,000,000. 

Solution: We can solve this quite easily with Mathematica using a simple While loop. In this chapter
we've  seen  several  ways  to  compute  Fibonacci  numbers,  including  the  fibonacci  function  we
created in section 8.1 and the formula fibonacci2 in section 8.2. For this exercise, we'll use Mathe-
matica's built-in function Fibonacci.
The idea is to compute Fibonacci numbers until the value exceeds the target. The While loop is well-
suited to this sort of problem. We will create a function that takes the target value as input and prints
out the desired Fibonacci number and its index.
In[133]:= findFib@target_IntegerD := Module@8n = 1<,

While@Fibonacci@nD < target, n++D;
Print@"The ", n, "th Fibonacci number is ", Fibonacci@nDD

D

As long as the nth Fibonacci number is smaller than the target value, the index n is increased. Once the
target  has  been  exceeded,  the  Print  statement  displays  the  index  and  the  value  of  the  Fibonacci
number.
The numbers called for by the question are:
In[134]:= findFib@1 000 000D

The 31th Fibonacci number is 1 346 269

In[135]:= findFib@1 000 000 000D

The 45th Fibonacci number is 1 134 903 170

In[136]:= findFib@1 000 000 000 000D

The 60th Fibonacci number is 1 548 008 755 920

Computations and Explorations 3

Find as many prime Fibonacci numbers as you can. It is unknown whether there are 
infinitely many of these. 

Solution: Using Mathematica, this sort of problem becomes fairly straightforward. We can simply use
the Mathematica  function Fibonacci  to generate Fibonacci numbers and use the PrimeQ  function
to test each for primality. We will  wrap this in a function that takes a number of seconds as an argu-
ment  and  uses  TimeConstrained  to  control  the  length  of  the  evaluation.  Note  the  use  of  Sow
within  the  TimeConstrained  block  and  Reap  surrounding  it.  This  allows  the  termination  of  the
TimeConstrained portion of the function to trigger the Reap.

Chapter08.nb  31



Solution: Using Mathematica, this sort of problem becomes fairly straightforward. We can simply use
the Mathematica  function Fibonacci  to generate Fibonacci numbers and use the PrimeQ  function
to test each for primality. We will  wrap this in a function that takes a number of seconds as an argu-
ment  and  uses  TimeConstrained  to  control  the  length  of  the  evaluation.  Note  the  use  of  Sow
within  the  TimeConstrained  block  and  Reap  surrounding  it.  This  allows  the  termination  of  the
TimeConstrained portion of the function to trigger the Reap.
In[137]:= primeFib@time_D := Module@8i = 0, temp, primes = 8<<,

Reap@
TimeConstrained@
While@True,
i++;
temp = Fibonacci@iD;
If@PrimeQ@tempD, Sow@tempDD

D, timeD
D@@2, 1DD

D

We can obtain several examples even in only a hundredth of a second.
In[138]:= primeFib@0.01D

Out[138]= 82, 3, 5, 13, 89, 233, 1597, 28 657, 514 229,
433 494 437, 2 971 215 073, 99 194 853 094 755 497,
1 066 340 417 491 710 595 814 572 169,
19 134 702 400 093 278 081 449 423 917<

Computations and Explorations 11

Compute the probability that a permutation of n objects is a derangement for all positive 
integers not exceeding 20 and determine how quickly these probabilities approach the 
number 1 ê e.

Solution: To solve this problem, we will make use of the formula which gives the number of derange-
ments of n objects, namely,

Dn = n! B1-
1
1!

+
1
2!

-
1
3!

+…+ H-1Ln
1
n!

F

The total number of permutations of n objects is, of course, n!, so the probability that one of them is a
derangement is the ratio Dn

n!
, which is given by the expression

1-
1
1!

+
1
2!

-
1
3!

+…+ H-1Ln
1
n!

A very simple Mathematica function will compute these values for us.
In[139]:= derangementP@n_IntegerD ê; n > 0 := Sum@H-1L^k*1êk!, 8k, 0, n<D

The probabilities that a permutation of n objects is a derangement for n § 20 are:

32   Chapter08.nb



In[140]:= Table@derangementP@nD, 8n, 20<D

Out[140]= :0,
1

2
,
1

3
,
3

8
,
11

30
,

53

144
,
103

280
,
2119

5760
,
16 687

45 360
,
16 481

44 800
,

1 468 457

3 991 680
,
16 019 531

43 545 600
,

63 633 137

172 972 800
,
2 467 007 773

6 706 022 400
,

34 361 893 981

93 405 312 000
,
15 549 624 751

42 268 262 400
,

8 178 130 767 479

22 230 464 256 000
,

138 547 156 531 409

376 610 217 984 000
,

92 079 694 567 171

250 298 560 512 000
,

4 282 366 656 425 369

11 640 679 464 960 000
>

To see how these probabilities differ from 1 ê e,  we'll multiply them by e  and subtract 1. To represent
the number e in Mathematica, we use the symbol E. We also apply N with second argument 25 in order
to obtain numerical approximations with 10 digits of precision.
In[141]:= Table@N@E*derangementP@nD - 1, 10D, 8n, 20<D

Out[141]= 9-1.000000000, 0.3591409142, -0.09390605718,
0.01935568567, -0.003296662898, 0.0004787285301,
-0.00006061310257, 6.804601513µ10-6, -6.862544954µ10-7,
6.283110546µ10-8, -5.267585531µ10-9, 4.073053851µ10-10,
-2.922468532µ10-11, 1.956033996µ10-12,
-1.226806251µ10-13, 7.239038692µ10-15, -4.032944742µ10-16,
2.127959055µ10-17, -1.066412864µ10-18, 5.088730674µ10-20=

Exercises
1. Implement a function to find the optimal schedule that maximizes total attendance.
2. Implement a dynamic programming algorithm for finding the maximum sum of consecutive 

terms of a sequence of real numbers. (See problem 56 in Section 8.1.) 
3. Implement a dynamic programming algorithm for optimally computing matrix-chain 

multiplication. (See problem 57 in Section 8.1.) 
4. Use Mathematica to solve the following recurrence relations.
a. an = an-1 - an-2, a1 = 1, a2 = 1;
b. an = 15 an-1 +

1
2

an-2, a1 =
23
22

, a2 =
7
2

5. Use Mathematica to solve each of the recurrence relations in Exercise 1 in Section 8.2 of the 
textbook. (Solve even those that are not linear homogeneous recurrence relations with 
constant coefficients.)

Chapter08.nb  33



6. Write a general solver in Mathematica for linear homogeneous recurrence relations with 
constant coefficients of degree 3 with distinct roots. Your solver should check that the roots 
are in fact distinct and, if they are not, should return $Failed, which is a standard return 
value for a Mathematica function when it cannot complete a computation for some reason.

7. Use Mathematica to investigate the behavior of the limit

lim
nØ¶

jn

yn

where jn is defined to be the number of prime Fibonacci numbers less than or equal to n, and 
yn is defined to be the number of Fermat numbers less than or equal to n.

8. Use Mathematica to find the number of square-free integers less than 100,000,000.
9. Use Mathematica to find the number of onto functions from a set with 1,000,000 elements to 

a set with 1,000 elements.
10. It is probably obvious that the number of onto functions from one set to another increases with 

the sizes of either the domain or the range. Using Mathematica to experiment, explore 
whether an increase in the size of the domain or the size of the range has the greater impact on 
the number of onto functions.

11. To generate the lucky numbers, start with the positive integers and delete every second integer 
in the list, starting the count with 1 (e.g., delete 2, 4, 6, etc., leaving 1, 3, 5, 7, ...). Other than 
1, the smallest integer left is 3. Continue by deleting every third integer from those that 
remain, starting the counting with 1 (since 1, 3, 5, 7, 9, ... remain, 1 is the first number left, 3 
is the second one left, 5 is the third left and gets deleted, and so on). Continue the process 
where at each stage, every kth integer is deleted, where k is the smallest integer left, other than 
the previous values of k. The integers that remain are the lucky numbers. Develop a 
Mathematica function that generates the lucky numbers up to n.

12. Can you make any conjectures about lucky numbers by looking at a list of the first 1000 of 
them? For example, what sort of conjectures can you make about twin lucky numbers? What 
evidence do you have for your conjectures?

13. Generalize the listSeatings function to accept one argument, a list of lists (the same 
structure as the twins list), and determines the arrangements such that no two from the same 
sublist are seated next to one another.

14. Further generalize the listSeatings function so that it takes two arguments: a list of lists 
as before and a number n. The function should determine the arrangements of the people such 
that no n from the same sublist are seated together.

34   Chapter08.nb


