
9 Relations

Introduction
In this chapter we will learn how to use Mathematica to work with relations. We explain how to repre-
sent binary relations using sets of ordered pairs, zero-one matrices, and directed graphs. We show how
to use Mathematica to determine whether a relation has various properties using these different repre-
sentations.
We also describe how to compute closures of relations. In particular, we show how to find the transi-
tive closure of a relation using two different algorithms and we compare the time performance of these
algorithms.  After  explaining  how  to  use  Mathematica  to  work  with  equivalence  relations,  we  show
how  to  use  Mathematica  to  work  with  partial  orderings,  to  draw  Hasse  diagrams,  and  to  implement
topological sorting.
Some readers may be familiar with the Combinatorica package. While this package has much to offer,
many of  the functions it  was created to provide are now part  of  Mathematica  proper.  In this  manual,
we tend to avoid use of the Combinatorica package functions, particularly when there are Mathematica
functions that will suffice.

9.1 Relations and Their Properties
The  first  step  in  understanding  and  manipulating  relations  in  Mathematica  is  to  determine  how  to
represent them. There are no specific functions in Mathematica  designed to handle relations. We will
implement  relations  in  Mathematica  using the most  convenient  form for  the question at  hand.  In  this
chapter,  we will  make use of sets of ordered pairs,  zero-one matrices, and directed graphs in order to
explore relations in Mathematica.

Relations as Ordered Pairs
First,  we will  represent  relations  as  lists  of  ordered  pairs.  We begin  by  defining  a  predicate  to  check
that an expression is a relation, i.e., a list of pairs. Our reason for defining a predicate is that it gives us
a way to ensure that when arguments are passed to functions we write, the arguments are valid for that
function. As an illustration of the utility of this approach, consider the function below.

In[1]:= posIntQ@n_D := IntegerQ@nD && n > 0



In[2]:= myFactorial@n_?posIntQD := Module@8<,
If@n ã 1,
Return@1D,
Return@n*myFactorial@n - 1DD

D
D

In this simple example, we define a predicate posIntQ that tests input for being both an integer and
positive. Then the function myFactorial  uses the PatternTest  (?) structure to declare that the
function’s definition is only valid for those input that satisfy the requirements of the posIntQ predi-
cate. Consider the result of attempting to compute the factorial of -3:

In[3]:= myFactorial@-3D

Out[3]= myFactorial@-3D

The function does not try to execute, but simply echoes the input, indicating that the function was not
able to operate on that input. It is usually better for a function to not try to compute on invalid input. In
the case of myFactorial, omitting the predicate would result in an infinite recursion.
We  could  also  deal  with  the  problem  of  potentially  invalid  arguments  by  checking  the  arguments
within  the  body of  the  function.  The PatternTest  (?)  approach,  however,  makes it  much clearer,
by just looking at the definition, what the argument’s expectations are.
As mentioned, we are going to represent relations as lists of ordered pairs.  We will define two predi-
cates. First, an ordered pair predicate that we'll call pairQ. And then the relation type, which will be
called relationQ, will be defined to be a list of pairs. We define the pair predicate as follows:

In[4]:= pairQ@8_, _<D := True;
pairQ@___D := False

The  first  line  of  the  definition  says  what  a  pair  is.  If  pairQ  is  passed  an  argument  which  is  a  list
containing two elements,  then it  returns  True.  Those elements  can be anything at  all,  including lists
and other structures, which allows us to define relations among complex structures. The second line of
the  definition  says  that  if  pairQ  is  passed  any  argument  at  all,  or  no  argument,  it  should  produce
False. The BlankNullSequence (___), formed from three underscores, matches any expression,
comma-separated  sequence  of  expressions,  or  no  expression  at  all.  This  is  different  from BlankSe-
quence (__), two underscores, which cannot match an empty argument. 
You might think that the second definition overwrites the first, since it is more general. In fact, Mathe-
matica keeps both definitions, in the order they are given, and applies the first definition that matches.
So if you give pairQ an argument that is in fact a pair, the argument will match the pattern of the first
definition and return True.

In[6]:= pairQ@85, "b"<D

Out[6]= True

But for  any argument that  does not  match that  pattern,  Mathematica  will  go to the second definition,
which matches anything, and output False.
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In[7]:= pairQ@5D

Out[7]= False

In[8]:= pairQ@85, 6, 7<D

Out[8]= False

In[9]:= pairQ@2, 3D

Out[9]= False

In[10]:= pairQ@D

Out[10]= False

With pairQ in place, we define relationQ.
In[11]:= relationQ@8___?pairQ<D := True;

relationQ@___D := False

In  this  case,  the  first  line  insists  that  a  relation  must  be  a  list  containing  a  BlankNullSequence
(___), i.e., a comma-separated sequence of expressions, each one of which satisfies pairQ. That is, a
(binary) relation is a set of ordered pairs.

Creating Relations
Now that we’ve established the relation predicate, let’s create an actual relation.
The Divides Relation
Example 4 in Section 9.1 describes the “divides relation,” i.e., R = 8Ha, bL a divides b<. We will write a
function to construct  this  relation.  The function will  consider every possible ordered pair  of  elements
and  will  include  them  in  the  relation  if  they  satisfy  the  condition  that  b  is  divisible  by  a,  using  the
Divisible function.
We  use  the  Tuples  function  to  generate  all  possible  pairs  of  a  list  of  elements.  It  takes  two  argu-
ments: the list of elements is the first argument, and 2 will be the second argument to indicate that we
desire pairs of elements. For example, the following creates all pairs of elements from 81, 2, 3<.

In[13]:= Tuples@81, 2, 3<, 2D

Out[13]= 881, 1<, 81, 2<, 81, 3<, 82, 1<,
82, 2<, 82, 3<, 83, 1<, 83, 2<, 83, 3<<

To the output of Tuples, we apply Select to obtain the sublist of elements that satisfy the divisibil-
ity  condition.  Select  requires  two  arguments.  The  first  is  the  list  of  elements  to  select  from.  The
second is  a  function name or  a  pure  Function  (&)  that  returns  True  for  the  desired elements.  We
will use a pure Function (&) to apply the Divisible function to the arguments in reverse order.
The  dividesRelation  function  below  uses  these  ideas.  Its  argument  is  a  list  of  integers,  and  it
produces the relation.

In[14]:= dividesRelation@A : 8__Integer<D :=
Select@Tuples@A, 2D, Divisible@Ò@@2DD, Ò@@1DDD &D

We use the function to construct the divides relation on the integers 1 through 4.
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In[15]:= dividesRelation@Range@4DD

Out[15]= 881, 1<, 81, 2<, 81, 3<, 81, 4<, 82, 2<, 82, 4<, 83, 3<, 84, 4<<

We can check that this function has produced an expression that satisfies relationQ.
In[16]:= relationQ@%D

Out[16]= True

For  convenience,  we  can  overload  the  dividesRelation  symbol  to  also  accept  a  single  positive
integer n as the argument and construct the “divides relation” on 81, 2, …, n<.

In[17]:= dividesRelation@n_IntegerD :=
Select@Tuples@Range@nD, 2D, Divisible@Ò@@2DD, Ò@@1DDD &D

For example:
In[18]:= div6 = dividesRelation@6D

Out[18]= 881, 1<, 81, 2<, 81, 3<, 81, 4<, 81, 5<, 81, 6<, 82, 2<,
82, 4<, 82, 6<, 83, 3<, 83, 6<, 84, 4<, 85, 5<, 86, 6<<

The Inverse of a Relation
Now that we have seen an example of a function that creates a relation, let's look at a simple example
of a function that manipulates a relation.

For any relation R, its inverse relation, denoted R-1 is defined by R-1 = 8Hb, aL Ha, bL œ R<. The follow-
ing function computes the inverse of a relation.

In[19]:= inverseRelation@R_?relationQD := Reverse@R, 2D

The  Reverse  function  is  used  to  reverse  the  elements  of  a  list.  Given  a  list  as  a  sole  argument,
Reverse simply inverts the order.

In[20]:= Reverse@81, 2, 3<D

Out[20]= 83, 2, 1<

Reverse accepts a second optional argument to specify a level. In this case we use 2 to indicate that
we want Reverse to change the order of the sublists of the relation, not the order of the elements of R
itself.
Since we’ve defined the “divides” relation, we can use the inverseRelation function to create the
“multiple of” relation.

In[21]:= mul6 = inverseRelation@div6D

Out[21]= 881, 1<, 82, 1<, 83, 1<, 84, 1<, 85, 1<, 86, 1<, 82, 2<,
84, 2<, 86, 2<, 83, 3<, 86, 3<, 84, 4<, 85, 5<, 86, 6<<

Properties of Relations
Mathematica can be used to determine if a relation has a particular property, such as reflexivity, symme-
try,  antisymmetry  or  transitivity.  This  can  be  accomplished  by  creating  Mathematica  functions  that
take as input the given relation, examine the elements of the relation, and return True or False based
on whether the relation has the property or not.
Before writing functions to test for properties of relations, it will be convenient to have a routine that
extracts  the  domain  of  a  given  relation.  This  function  works  by  applying  Flatten  to  the  relation.
Note that it may be the case that the objects in our relation are themselves lists, e.g., the subset relation.
So we give Flatten the second argument 1, indicating that it should only flatten the list down to the
first  level.  This  way,  if  the  pairs  in  the  relation  are  elements,  the  pairs  will  be  preserved,  as  shown
below.
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Before writing functions to test for properties of relations, it will be convenient to have a routine that
extracts  the  domain  of  a  given  relation.  This  function  works  by  applying  Flatten  to  the  relation.
Note that it may be the case that the objects in our relation are themselves lists, e.g., the subset relation.
So we give Flatten the second argument 1, indicating that it should only flatten the list down to the
first  level.  This  way,  if  the  pairs  in  the  relation  are  elements,  the  pairs  will  be  preserved,  as  shown
below.

In[22]:= subsets3 = 888<, 81<<, 88<, 82<<, 88<, 81, 2<<,
881<, 81, 2<<, 882<, 81, 2<<, 881, 2<, 81, 2<<<;

In[23]:= Flatten@subsets3, 1D

Out[23]= 88<, 81<, 8<, 82<, 8<, 81, 2<,
81<, 81, 2<, 82<, 81, 2<, 81, 2<, 81, 2<<

After flattening, we apply Union to remove duplicates and put the output in canonical order. 
Note  that,  strictly  speaking,  the  result  from  this  function  need  not  equal  the  domain  of  the  relation,
since there may exist elements in the domain that are not related to any object in the domain. It might
be better to call this the "effective domain" of the relation.

In[24]:= findDomain@R_?relationQD := Union@Flatten@R, 1DD

Observe that this gives the expected output for both the “divides” relation and the subsets relation.
In[25]:= findDomain@div6D

Out[25]= 81, 2, 3, 4, 5, 6<

In[26]:= findDomain@subsets3D

Out[26]= 88<, 81<, 82<, 81, 2<<

Reflexivity
Now we  are  ready  to  begin  testing  relations  for  various  properties.  The  first  property  we  consider  is
reflexivity. Remember that a relation R is reflexive if Ha, aL œ R for every a in the domain.
To check to see if a relation is reflexive, we compute the domain of the relation and then check each
element a of the domain to see if Ha, aL is in the relation. If the function finds an element of the domain
with Ha, aL – R, then it returns False immediately. If it checks all of the members of the domain with
no failures, then it returns True.

In[27]:= reflexiveQ@R_?relationQD := Module@8a, domain<,
domain = findDomain@RD;
Catch@
Do@If@! MemberQ@R, 8a, a<D, Throw@FalseDD
, 8a, domain<D;

Throw@TrueD
D

D

Recall  that  the  Do  function’s  second  argument,  {a,domain}  specifies  that  the  variable  a  is  to  be
assigned to every member of the list domain. Also recall that MemberQ expects its first argument to
be the list and the second argument to be the element being sought. 
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We can use this on the “divides” relation.
In[28]:= reflexiveQ@div6D

Out[28]= True

Symmetry
Next we will examine the symmetric and antisymmetric properties. To determine whether a relation is
symmetric,  we  simply  use  the  definition.  That  is,  we  check,  for  every  member  Ha, bL œ R,  whether
Hb, aL is also a member of the relation. If we discover a pair in the relation for which the reverse pair is
not in the relation, then we know that the relation is not symmetric. Otherwise, it must be symmetric.
This is the logic employed by the following function.

In[29]:= symmetricQ@R_?relationQD := Module@8u<,
Catch@
Do@If@! MemberQ@R, Reverse@uDD, Throw@FalseDD
, 8u, R<D;

Throw@TrueD
D

D

For example, we can see that the “divides” relation is not symmetric.
In[30]:= symmetricQ@div6D

Out[30]= False

The union of “divides” and “multiple of” is symmetric, however.
In[31]:= divOrMul6 = Union@div6, mul6D

Out[31]= 881, 1<, 81, 2<, 81, 3<, 81, 4<, 81, 5<, 81, 6<, 82, 1<, 82, 2<,
82, 4<, 82, 6<, 83, 1<, 83, 3<, 83, 6<, 84, 1<, 84, 2<,
84, 4<, 85, 1<, 85, 5<, 86, 1<, 86, 2<, 86, 3<, 86, 6<<

In[32]:= symmetricQ@divOrMul6D

Out[32]= True

To determine whether a given relation R is antisymmetric, we again use the definition. Remember that
a  relation is  antisymmetric  when it  has  the  property  that  whenever  a  pair  Ha, bL  and its  reverse  Hb, aL
both belong to R, then it must be that a = b. To check this, we simply loop over all members u of R and
see if the opposite pair belongs to R and whether the members of the pair are different.

In[33]:= antisymmetricQ@R_?relationQD := Module@8u<,
Catch@
Do@
If@MemberQ@R, Reverse@uDD && u@@1DD ¹≠ u@@2DD, Throw@FalseDD
, 8u, R<D;

Throw@TrueD
D

D

We now use this function to check to see if the “divides” and “multiple of” relations defined earlier are
antisymmetric.
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We now use this function to check to see if the “divides” and “multiple of” relations defined earlier are
antisymmetric.

In[34]:= antisymmetricQ@div6D

Out[34]= True

In[35]:= antisymmetricQ@mul6D

Out[35]= True

Transitivity
The  transitive  property  is  the  most  difficult  to  check.  Recall  the  definition  of  transitive  relations:  a
relation R is transitive if, whenever Ha, bL and Hb, cL are in R, then Ha, cL must be as well.
To check transitivity, we will consider all possible a,  b,  and c  in the domain of R.  Then if Ha, bL œ R,
Hb, cL œ R, and Ha, cL – R, we know that the relation is not transitive. If there is no such triple a, b, c to
contradict transitivity, then we conclude that the relation is transitive.
Here is the function.

In[36]:= transitiveQ@R_?relationQD := Module@8domain, a, b, c<,
domain = findDomain@RD;
Catch@
Do@If@MemberQ@R, 8a, b<D && MemberQ@R, 8b, c<D &&

! MemberQ@R, 8a, c<D, Throw@FalseDD
, 8a, domain<, 8b, domain<, 8c, domain<D;

Throw@TrueD
D

D

We see that the “divisible” relation is transitive. But we can cause it to fail to be transitive by removing
the H1, 6L pair, since H1, 2L and H2, 6L are in R.

In[37]:= transitiveQ@div6D

Out[37]= True

In[38]:= r2 = Complement@div6, 881, 6<<D

Out[38]= 881, 1<, 81, 2<, 81, 3<, 81, 4<, 81, 5<, 82, 2<,
82, 4<, 82, 6<, 83, 3<, 83, 6<, 84, 4<, 85, 5<, 86, 6<<

In[39]:= transitiveQ@r2D

Out[39]= False

9.2 n-ary Relations and Their Applications
Using Mathematica, we can construct an n-ary relation where n is a positive integer. As in the previous
section,  we will  begin by defining predicates  both for  the elements  of  the relation (tupleQ)  and for
the n-ary relation (nrelationQ). The only difference here, as compared to the predicates we defined
in the previous section, is that we do not know the length of the list that makes up a tuple. 
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In[40]:= tupleQ@_ListD := True;
tupleQ@___D := False

In[42]:= nrelationQ@8__?tupleQ<D := True;
nrelationQ@___D := False

Consider the following 4-ary relation that represents student records. 
In[44]:= r3 = 88"Adams", 9 012 345, "Politics", 2.98<,

8"Woo", 9 100 055, "Film Studies", 4.99<,
8"Warshall", 9 354 321, "Mathematics", 3.66<<;

The first field represents the name of the student, the second field is the student ID number, the third
field is the students' home department, and the last field stores the student's grade point average. Note
that this relation satisfies nrelationQ.

In[45]:= nrelationQ@r3D

Out[45]= True

While we created a very generic n-ary relation predicate, you can also create more specific predicates
for  particular  situations.  For  instance,  the  tuples  in  the  relation  above will  always  consist  of  a  string,
integer, string, and a floating point number. So we could make the following predicate specifically for
that kind of relation.

In[46]:= studentRecordQ@8_String, _Integer, _String, _Real<D := True;
studentRecordQ@___D := False

In[48]:= studentRelationQ@8__?studentRecordQ<D := True;
studentRelationQ@___D := False

In[50]:= studentRelationQ@r3D

Out[50]= True

Operations on n-ary Relations
Now we will create functions that act on n-ary relations to compute projections and the join of relations.
Projection
We will  construct  a  function for  computing a  projection of  a  relation.  The function takes  as  input  an
expression satisfying nrelationQ  along with a list of integers representing the indices of the fields
that are to remain. The output will be another n-ary relation.

In[51]:= projectRelation@R_?nrelationQ, P : 8__Integer<D := R@@All, PDD

The expression R[[All,P]] returns the list formed by taking every element of R and extracting the
sublist defined by the indices in the list P.
We can use this function with the relation we created earlier. 

In[52]:= projectRelation@r3, 82, 4<D

Out[52]= 889 012 345, 2.98<, 89 100 055, 4.99<, 89 354 321, 3.66<<
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In[53]:= projectRelation@r3, 83, 4, 1<D

Out[53]= 88Politics, 2.98, Adams<,
8Film Studies, 4.99, Woo<, 8Mathematics, 3.66, Warshall<<

Join
Now let's  consider  joins  of  relations.  The join  operation has  applications  to  databases  when tables  of
information need to be combined in a meaningful manner.
The join function that we will implement here follows the following outline.
1. Input two relations R and S and a positive integer p, representing the overlap between the relations.
2. Examine each element u of R and determine the last p fields of u.
3. Examine all elements v of S to determine if the first p fields of v match the last p fields of u.
4. Upon finding a match, we combine the elements and place the result in a relation T, which is 

returned as the output of the function.
In[54]:= joinRelation@R_?nrelationQ, S_?nrelationQ, p_IntegerD :=

Module@8overlapR, i, u, v, x, joinElement, T = 8<<,
Do@
x = u@@-p ;; -1DD;
Do@
If@v@@1 ;; pDD ã x,
joinElement = Join@u, v@@p + 1 ;; -1DDD;
AppendTo@T, joinElementD

D
, 8v, S<D

, 8u, R<D;
T

D

The joinRelation function beings by initializing the return relation, T, to the empty list. The outer
Do  loop assigns  the  variable  u  to  each  tuple  in  the  relation  R.  It  immediately  assigns  x  to  the  last  p
elements  of  u.  This  is  the  portion  that  is  supposed  to  overlap  with  elements  from the  other  relation.
Note the use of the Span (;;) operator. The span -p ;; -1 in the Part ([[…]]) applied to u refers
to the span from -p to -1, that is, from the element p from the end of the list u to the last element of u.
The inner Do loop assigns the variable v to each tuple in the relation S. The body of the loop is an If
statement that checks whether the first p  elements of v  agree with the last p  elements of u  (stored in
x).  If  that  holds,  that  is,  the  two  elements  overlap,  then  joinElement  is  created  by  applying  the
Join  function  to  u  and  the  rest  of  v.  This  new  object  is  then  added  to  the  relation  T,  which  is  the
output of the function.
We conclude this section by applying the joinRelation function to Example 11 of Section 9.2.
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In[55]:= teachingAssignments = 8

8"Cruz", "Zoology", 335<,
8"Cruz", "Zoology", 412<,
8"Farber", "Psychology", 501<,
8"Farber", "Psychology", 617<,
8"Grammer", "Physics", 551<,
8"Rosen", "Computer Science", 518<,
8"Rosen", "Mathematics", 575<<;

In[56]:= classSchedule = 8

8"Computer Science", 518, "N521", "2:00 P.M."<,
8"Mathematics", 575, "N502", "3:00 P.M."<,
8"Mathematics", 611, "N521", "4:00 P.M."<,
8"Physics", 544, "B505", "4:00 P.M."<,
8"Psychology", 501, "A100", "3:00 P.M."<,
8"Psychology", 617, "A110", "11:00 A.M."<,
8"Zoology", 335, "A100", "9:00 A.M."<,
8"Zoology", 412, "A100", "8:00 A.M."<<;

We apply joinRelation and use TableForm to make the output readable.
In[57]:= joinRelation@teachingAssignments,

classSchedule, 2D êê TableForm
Out[57]//TableForm=

Cruz Zoology 335 A100 9:00 A.M.
Cruz Zoology 412 A100 8:00 A.M.
Farber Psychology 501 A100 3:00 P.M.
Farber Psychology 617 A110 11:00 A.M.
Rosen Computer Science 518 N521 2:00 P.M.
Rosen Mathematics 575 N502 3:00 P.M.

9.3 Representing Relations
From this point forward, we will consider exclusively binary relations. This gives us additional options
for how we represent relations. In this section, we will see how to represent binary relations with zero-
one matrices and digraphs.

Representing Relations Using Matrices
We begin with representations of relations with zero-one matrices. 
A First Example
We create a matrix as a list of lists, where the inner lists store the elements in the rows of the matrix.
The MatrixForm function will display the matrix in the usual form.
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In[58]:= 881, 2<, 83, 4<< êê MatrixForm
Out[58]//MatrixForm=

K
1 2
3 4

O

Be  careful  to  not  use  MatrixForm  in  conjunction  with  an  assignment,  lest  the  MatrixForm  be
permanently attached to the matrix, which can cause other functions to fail.
When working with matrix representations of relations,  it  can be useful to begin with a matrix of the
correct size filled entirely with 0s, and then modify that matrix as needed. To do this, you can use the
ConstantArray function. The first argument to ConstantArray is the constant that will be used
as the filler in the resulting list. The second argument specifies the dimension. For an ordinary list, the
second argument is the length of the list. For a matrix, the second argument must be a pair specifying
the number of rows and the number of columns. 
For example, to create a 4µ 4 matrix filled with 0s, you would enter the following expression.

In[59]:= exampleMatrix = ConstantArray@0, 84, 4<D;
exampleMatrix êê MatrixForm

Out[60]//MatrixForm=
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Right now, this matrix doesn't represent a very interesting relation. We need to change entries to 1 to
represent elements of the domain that are related to each other. For instance, if H1, 2L œ R then we need
to change the H1, 2L entry to a 1. To do this, we use Part ([[…]]) and Set (=) to specify the location
and make the assignment.

In[61]:= exampleMatrix@@1, 2DD = 1

Out[61]= 1

We can see that it modified the matrix.
In[62]:= exampleMatrix êê MatrixForm

Out[62]//MatrixForm=
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Let's make this matrix represent the relation “is one less than” on 81, 2, 3, 4<, as in, “1 is one less than
2.”
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In[63]:= exampleMatrix@@2, 3DD = 1;
exampleMatrix@@3, 4DD = 1;
exampleMatrix êê MatrixForm

Out[65]//MatrixForm=
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

Transforming a Set of Pairs Representation into a Matrix Representation
Now we'll create a function to turn a relation satisfying relationQ (defined in the first section) into
a matrix representation. Doing so is fairly straightforward. Given a relation R, whose domain consists
of  integers,  we  can  use  findDomain  from  above  to  extract  the  domain.  We  then  create  a  square
matrix  whose  size  is  equal  to  the  largest  integer  in  the  domain,  which  we  can  obtain  with  the  Max
function. Then we simply loop through the elements of the relation and set the value of the correspond-
ing entry in the matrix to 1.

In[66]:= relationToMatrix@R_?relationQD := Module@8u, max, m<,
max = Max@findDomain@RDD;
m = ConstantArray@0, 8max, max<D;
Do@m = ReplacePart@m, u Ø 1D
, 8u, R<D;

m
D

Note  the  use  of  ReplacePart  to  modify  the  matrix  m.  Recall  that  elements  of  the  relation  R  are
pairs, such as {1,2}. The expression m@@uDD = 1, therefore, would be resolved to an expression of
the  form  m@@81, 2<DD = 1.  This  does  not  set  the  H1, 2L  element  of  m  to  1,  however.  Rather,
m[[{1,2}]]  represents  the  list  consisting  of  the  first  element  and  second  element  of  m,  that  is,
m[[{1,2}]] is the first two rows of m. ReplacePart allows us to use the pair {1,2} to reference
the H1, 2L entry of m. The ReplacePart function’s first argument is an expression to be manipulated,
such as the matrix m. Its second argument is a Rule (->) with left operand a location specification and
right operand the new value. 
We  use  the  function  above  to  convert  the  relations  we  defined  earlier,  specifically  div6  and
divOrMul6 into matrices.

In[67]:= div6M = relationToMatrix@div6D;
div6M êê MatrixForm

Out[68]//MatrixForm=
1 1 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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In[69]:= divOrMul6M = relationToMatrix@divOrMul6D;
divOrMul6M êê MatrixForm

Out[70]//MatrixForm=
1 1 1 1 1 1
1 1 0 1 0 1
1 0 1 0 0 1
1 1 0 1 0 0
1 0 0 0 1 0
1 1 1 0 0 1

As before, it can be useful to have a predicate that we can use to ensure that an argument to a function
is in fact the matrix associated to a relation. Any such matrix must be square and consist entirely of 0s
and 1s.
The MatrixQ  function can be  used to  ensure  that  an  expression does  represent  a  matrix.  It  requires
only one argument and returns True only if the expression is a list of lists. MatrixQ can also accept
a second optional argument to place specific demands on the allowed elements of the matrix. Here, we
insist that the elements be 0 or 1. So we create a pure Function (&) that tests equality for 0 or 1.
The other requirement is that the matrix be square. We use the Dimensions function to obtain a list
containing the number of rows and columns and compare those values. Here is the predicate. 

In[71]:= matrix01Q@m_ListD := MatrixQ@m, HÒ ã 0 »» Ò ã 1L &D &&
Dimensions@mD@@1DD ã Dimensions@mD@@2DD;

matrix01Q@___D = False;

Now that we have zero-one matrix representations of relations to work with, we can use these matrices
to determine which properties apply to them. In this form, it is sometimes easier to determine whether
a relation is reflexive, symmetric, or antisymmetric. 
Checking Properties
For  example,  to  determine  whether  or  not  a  relation  is  reflexive  from its  zero-one  matrix  representa-
tion,  we  only  need  to  check  the  diagonal  entries.  If  any  diagonal  entry  is  0,  then  the  relation  is  not
reflexive. 

In[73]:= reflexiveMatrixQ@m_?matrix01QD := Module@8i, dim<,
dim = Dimensions@mD@@1DD;
Catch@
For@i = 1, i § dim, i++,
If@m@@i, iDD ã 0, Throw@FalseDD

D;
Throw@TrueD

D
D

We can now use this to test a few of the relations above. 
In[74]:= reflexiveMatrixQ@exampleMatrixD

Out[74]= False
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In[75]:= reflexiveMatrixQ@div6MD

Out[75]= True

Symmetry is particularly easy to test, because of the fact that a relation is symmetric if and only if its
matrix  representation  is  symmetric.  Mathematica  has  a  built-in  test,  SymmetricMatrixQ  that
checks symmetry.

In[76]:= SymmetricMatrixQ@div6MD

Out[76]= False

In[77]:= SymmetricMatrixQ@divOrMul6MD

Out[77]= True

Representing Relations Using Digraphs
Now we turn to representing relations with directed graphs, commonly called digraphs. You can draw
a  graph  in  Mathematica  with  the  GraphPlot  function.  For  graphs  representing  relations,  the  Lay-
eredGraphPlot  function  often  produces  a  more  informative  plot.  The  two  functions  have  very
similar options and syntax, although the defaults differ. Here, we focus on LayeredGraphPlot.
The LayeredGraphPlot  function can take a wide variety of options, but its only requirement is a
list  specifying  the  edges  in  the  graph  given  as  rules.  For  example,  consider  Bob  and  his  sister  Barb,
whose parents are Ann and Abe. We can make a directed graph representing the relation “parent of” as
follows.

In[78]:= LayeredGraphPlot@
8"Ann" Ø "Bob", "Ann" Ø "Barb", "Abe" Ø "Bob", "Abe" Ø "Barb"<D

Out[78]=

To make this more informative, we’ll need to provide some options. In particular, we want to see the
names  of  the  people  associated  with  each  vertex.  To  do  this,  we  use  the  option  VertexLabeling
with value True. 
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In[79]:= LayeredGraphPlot@8"Ann" Ø "Bob", "Ann" Ø "Barb",
"Abe" Ø "Bob", "Abe" Ø "Barb"<, VertexLabeling Ø TrueD

Out[79]=

Ann

Bob Barb

Abe

Other  values  for  VertexLabeling  are  False,  in  which  no  labels  are  displayed;  Tooltip,  in
which labels are displayed if you hover the mouse over the vertex; All,  which gives both labels and
tooltips; and Automatic, which displays labels as tooltips provided the number of vertices is not too
large. 
LayeredGraphPlot can also be applied to an adjacency matrix, rather than a list of rules represent-
ing edges. The following draws a graph of the “divisible” relation using the div6M matrix. Note that
the labels in this case are automatically chosen to be the integers from 1 to n, where n is the size of the
matrix. 

In[80]:= LayeredGraphPlot@div6M, VertexLabeling Ø TrueD

Out[80]=

1

2 3

4

5

6

Note that when using a matrix representation, the fact that the relation is reflexive is not represented by
default.  You  can  have  Mathematica  display  loops  indicating  reflexivity  by  using  the  option
SelfLoopStyle->All.
In  order  to  represent  a  relation  satisfying  relationQ  as  a  graph,  we'll  create  a  function
drawRelation.  At  minimum, we need to  transform the  ordered pairs  of  the  relation into  the  rules
that LayeredGraphPlot  requires. To do this, we can use the Apply  function at level 1 as shown
below.
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In[81]:= Apply@Rule, div6, 81<D

Out[81]= 81 Ø 1, 1 Ø 2, 1 Ø 3, 1 Ø 4, 1 Ø 5, 1 Ø 6,
2 Ø 2, 2 Ø 4, 2 Ø 6, 3 Ø 3, 3 Ø 6, 4 Ø 4, 5 Ø 5, 6 Ø 6<

Recall that @@@ is the operator form of the above expression.
In[82]:= Rule üüü div6

Out[82]= 81 Ø 1, 1 Ø 2, 1 Ø 3, 1 Ø 4, 1 Ø 5, 1 Ø 6,
2 Ø 2, 2 Ø 4, 2 Ø 6, 3 Ø 3, 3 Ø 6, 4 Ø 4, 5 Ø 5, 6 Ø 6<

That is all that is necessary to graph the relation.
In[83]:= LayeredGraphPlot@Rule üüü div6, VertexLabeling Ø TrueD

Out[83]=

1

2 3

4

5

6

The  example  above  shows  us  how  to  define  drawRelation.  We  will  also  use  the  Self-
LoopStyle to turn off the self-loops so as to make cleaner looking graphs.

In[84]:= drawRelation@R_?relationQD := LayeredGraphPlot@
Rule üüü R, VertexLabeling Ø True, SelfLoopStyle Ø NoneD

In[85]:= drawRelation@dividesRelation@10DD

Out[85]=

1

23

4

5

6

7

8

9 10

The Graph Object
In  addition  to  being able  to  draw graphs,  as  described above,  Mathematica  includes  the  capability  to
treat a graph as a raw object. This is the same distinction as is made between the plot of a function and
the function itself.
To create a graph as an object, you use the Graph function, which is also the head of the object. Just
as  with  GraphPlot  and  LayeredGraphPlot,  you can  use  a  list  of  rules  indicating  the  edges  as
the  input  to  Graph.  For  example,  the  following  defines  a  Graph  object  representing  the  div6
relation.
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To create a graph as an object, you use the Graph function, which is also the head of the object. Just
as  with  GraphPlot  and  LayeredGraphPlot,  you can  use  a  list  of  rules  indicating  the  edges  as
the  input  to  Graph.  For  example,  the  following  defines  a  Graph  object  representing  the  div6
relation.

In[86]:= div6G = Graph@Rule üüü div6D

Out[86]=

Observe that the output is  a plot of the graph. However,  div6G  stores a Graph  object,  not the plot.
The  images  displayed  by  Graph  may  be  very  different  from  those  produced  by  LayeredGraph-
Plot. The plotting algorithms for Graph emphasize avoiding edge crossings, while LayeredGraph-
Plot produces images that oftentimes better reveal the structure of a relation. Fortunately, Layered-
GraphPlot will accept a Graph object as its argument.

In[87]:= LayeredGraphPlot@div6G, VertexLabeling Ø TrueD

Out[87]=

1

2 3

4

5

6

The main benefit of the Graph object is Mathematica can perform computations with it. For example,
we can use this representation to determine whether or not the relation is transitive. To do this, we use
Mathematica's  implementation  of  the  Floyd-Warshall  all-pairs  shortest  path  algorithm  called
GraphDistanceMatrix.  This  function  returns  a  matrix  whose  Hi, jL  entry  represents  the  shortest
path from vertex i to vertex j. For example, the distance matrix for the div6 relation is:
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In[88]:= GraphDistanceMatrix@div6GD êê MatrixForm

Out[88]//MatrixForm=
0 1 1 1 1 1
¶ 0 ¶ 1 ¶ 1
¶ ¶ 0 ¶ ¶ 1
¶ ¶ ¶ 0 ¶ ¶

¶ ¶ ¶ ¶ 0 ¶

¶ ¶ ¶ ¶ ¶ 0

In a graph of a transitive relation, the distance between any two distinct elements must be either 1 or
infinite (meaning there is no path between them). To see this, assume that you have a transitive relation
and  suppose  there  are  elements  A  and  Z  that  the  all-pairs  algorithm has  determined  have  distance  3.
That means there must be two elements, say M  and N, such that A is connected to M  is connected to N
is connected to Z.  From the point of view of the relation, then, HA, ML  and HM , NL  and HN, ZL  are all
members  of  the  relation.  But  if  the  relation  is  transitive,  the  fact  that  HA, ML  and  HM , NL  are  in  the
relation means that HA, NL  is in the relation. So, A  to N  to Z  is a shorter path (of length 2). Applying
transitivity again shows that A and Z  are adjacent. While this does not amount to a proof, it should be
convincing  that  we  can  check  for  transitivity  by  making  sure  that  no  two  vertices  in  the  graph  of  a
relation have distance which is finite and greater than 1.
Here is the function.

In[89]:= transitiveGraphQ@g_GraphD := Module@8d, i, j<,
d = GraphDistanceMatrix@gD;
Cases@Flatten@dD, Except@0 1 InfinityDD ã 8<

D

After computing the distance matrix,  the function uses Cases  to identify any elements of the matrix
that are not 0, 1, or ¶. Cases takes a list as the first argument, for which we Flatten the distance
matrix, and a pattern as the second argument. In this case, we apply Except to 0, 1, and Infinity,
separated by the Alternatives (|) operator. This means that anything other than those three sym-
bols will match the pattern. The result of Cases will be the list of all the elements of the matrix that
are other than 0, 1, and Infinity. Consequently, the relation is transitive if and only if that output is
equal to the empty list.

In[90]:= transitiveGraphQ@div6GD

Out[90]= True

In this section we have barely scratched the surface of graphs in Mathematica. We will return to them
in much greater detail in Chapter 10.

9.4 Closures of Relations
In this section, we will develop algorithms to compute the reflexive, symmetric, and transitive closures
of binary relations. We begin with the reflexive closure. 
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Reflexive Closure
The algorithm for computing the reflexive closure of a relation, with the matrix representation, is very
simple.  We  simply  set  each  diagonal  entry  equal  to  1.  The  resulting  matrix  represents  the  reflexive
closure of the relation. 
Note that this function will accept a matrix as input and return a modified version of that matrix. Inter-
nally,  the function will  need to work with a copy of the argument.  That  is,  we will  need to declare a
local variable and set it equal to the argument. The reason for this is that when you execute a function
in  Mathematica,  the  argument  is  immediately  substituted  for  the  symbol  used  to  represent  it  every-
where it appears. Thus, if x is the argument to a function and you call the function with a value of 3, an
assignment such as x=5 will be interpreted as the illegal assignment 3=5.
Here is the function for computing the reflexive closure on a matrix representation.

In[91]:= reflexiveClosure@m_?matrix01QD := Module@8ans = m, i<,
Do@ans@@i, iDD = 1, 8i, Dimensions@mD@@1DD<D;
ans

D

(Note that all the closure operations only apply to a relation on a set and are generally not valid for a
relation from one set to a different set. This means we may assume that the matrix representation of the
relation is square, which is imposed by matrix01Q.)
We use this function to find the reflexive closure of the example relation we introduced earlier in the
chapter.

In[92]:= reflexiveClosure@exampleMatrixD êê MatrixForm

Out[92]//MatrixForm=
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

Recall that exampleMatrix represented the “is one less than” relation. Looking at the matrix above,
you can see that the reflexive closure includes equality.

Symmetric Closure
Next we write a function for constructing the symmetric closure of a relation R.  We use the observa-
tion that  if  Ha, bL  is  a member of R  then Hb, aL  must  be included in the symmetric closure,  so we can
simply add it to the relation.

In[93]:= symmetricClosure@m_?matrix01QD := Module@8ans = m, i, j<,
Do@If@ans@@i, jDD ã 1, ans@@j, iDD = 1D
, 8i, Dimensions@mD@@1DD<, 8j, Dimensions@mD@@2DD<D;

ans
D

Applying this to our exampleMatrix yields the “different by 1” relation. And applying it to the “is
a divisor of” relation yields the “is a divisor or multiple of” relation.
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In[94]:= symmetricClosure@exampleMatrixD êê MatrixForm

Out[94]//MatrixForm=
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

In[95]:= symmetricClosure@div6MD êê MatrixForm
Out[95]//MatrixForm=

1 1 1 1 1 1
1 1 0 1 0 1
1 0 1 0 0 1
1 1 0 1 0 0
1 0 0 0 1 0
1 1 1 0 0 1

Transitive Closure
Having created the reflexive and symmetric closures, we turn to implementing the transitive closure in
Mathematica.  This  is  a  more  difficult  problem than  the  earlier  cases,  both  in  terms  of  computational
complexity  and  implementation.  In  the  text,  there  are  two  algorithms  outlined  (a  generic  transitive
closure and Warshall’s algorithm) and both will be covered in this section.
A Transitive Closure Function
First we will implement the transitive closure algorithm presented as Algorithm 1 in Chapter 9 of the
text. This will require the Boolean join and Boolean product operations on zero-one matrices that were
introduced  in  Chapter  2.  Recall  from Section  2.6  of  this  manual  that  the  BitAnd  and  BitOr  func-
tions correspond to the Boolean operations fl and fi . Here are some examples.

In[96]:= BitAnd@1, 1D

Out[96]= 1

In[97]:= BitAnd@1, 0D

Out[97]= 0

In[98]:= BitOr@0, 1D

Out[98]= 1

In[99]:= BitOr@1, 1D

Out[99]= 1

Now we turn  to  the  Boolean  join  matrix  operation.  Recall  that  for  zero-one  matrices  A  and  B  of  the
same size, the join of A and B is the matrix AfiB whose Hi, jL entry is Ai jÍBi j. Since BitOr automati-
cally threads over lists, it  serves the role of the matrix join function without any additional work. For
example,
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In[100]:= joinA = 881, 0<, 80, 1<<;
joinA êê MatrixForm

Out[101]//MatrixForm=

K
1 0
0 1

O

In[102]:= joinB = 881, 1<, 80, 0<<;
joinB êê MatrixForm

Out[103]//MatrixForm=

K
1 1
0 0

O

In[104]:= BitOr@joinA, joinBD êê MatrixForm
Out[104]//MatrixForm=

K
1 1
0 1

O

Next,  recall  that  for  appropriately  sized  zero-one  matrices,  the  Boolean  product  AüB  is  the  matrix
whose Hi, jL entry is obtained by the formula

fi
k=1

n

Iai kÏ bk jM

where n is the number of columns of A, which is also the number of rows of B. This is implemented in
the boolProduct function. Refer to Section 2.6 where we first developed this function.
In[105]:= boolProduct::dimmismatch =

"The dimensions of the input matrices do not match.";

In[106]:= boolProduct@A_?matrix01Q, B_?matrix01QD :=
Module@8m, kA, kB, n, output, i, j, c, p<,
8m, kA< = Dimensions@AD;
8kB, n< = Dimensions@BD;
If@kA ¹≠ kB, Message@boolProduct::dimmismatchD; Return@DD;
output = ConstantArray@0, 8m, n<D;
For@i = 1, i § m, i++,
For@j = 1, j § n, j++,
c = BitAnd@A@@i, 1DD, B@@1, jDDD;
For@p = 2, p § kA, p++,
c = BitOr@c, BitAnd@A@@i, pDD, B@@p, jDDDD;

D;
output@@i, jDD = c;

D
D;
output

D
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As an example,
In[107]:= productA = 881, 0, 1<, 80, 1, 0<, 81, 0, 1<<;

productA êê MatrixForm

Out[108]//MatrixForm=
1 0 1
0 1 0
1 0 1

In[109]:= productB = 881, 1, 0<, 80, 1, 0<, 80, 0, 1<<;
productB êê MatrixForm

Out[110]//MatrixForm=
1 1 0
0 1 0
0 0 1

In[111]:= boolProduct@productA, productBD êê MatrixForm
Out[111]//MatrixForm=

1 1 1
0 1 0
1 1 1

We are  now ready  to  implement  Algorithm 1  from Section  9.4  for  calculating  the  transitive  closure.
Recall that the idea of this algorithm is that we compute Boolean powers of the matrix of the relation,
up to the size of the domain. At each step, we use the Boolean join on A = M @iD and the result matrix B.
In[112]:= transitiveClosure@m_?matrix01QD := Module@8i, a = m, b = m<,

Do@a = boolProduct@a, mD;
b = BitOr@b, aD
, 8i, 2, Dimensions@mD@@1DD<D;

b
D

We  test  our  transitive  closure  function  on  Example  7  from  Section  9.4,  where  it  was  found  that  the
relation with matrix representation

MR =
1 0 1
0 1 0
1 1 0

has transitive closure

MR* =
1 1 1
0 1 0
1 1 1
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In[113]:= example7 = 881, 0, 1<, 80, 1, 0<, 81, 1, 0<<;
example7 êê MatrixForm

Out[114]//MatrixForm=
1 0 1
0 1 0
1 1 0

In[115]:= transitiveClosure@example7D êê MatrixForm
Out[115]//MatrixForm=

1 1 1
0 1 0
1 1 1

Warshall’s Algorithm
Next we consider Warshall's  algorithm, as presented as Algorithm 2 in Section 9.4.  This algorithm is
straightforward to implement. 
In[116]:= warshall@m_?matrix01QD := Module@8i, j, k, w = m, n<,

n = Dimensions@mD@@1DD;
For@k = 1, k § n, k++,
For@i = 1, i § n, i++,
For@j = 1, j § n, j++,
w@@i, jDD = BitOr@w@@i, jDD, BitAnd@w@@i, kDD, w@@k, jDDDD

D
D

D;
w

D

Applying this to the same example as before, we see that the result is correct.
In[117]:= warshall@example7D êê MatrixForm

Out[117]//MatrixForm=
1 1 1
0 1 0
1 1 1

We can compare  these  two functions  in  terms of  execution time using Mathematica's  Timing  func-
tion.  But we must  point  out  that  this  comparison for  a  single example does not  prove anything about
the complexity or relative performance of the two algorithms. Rather, it serves as a demonstration that,
even for relations on small domains, the difference in the computational complexity of the algorithms
is  noticeable.  We  shall  consider  the  following  zero-one  matrix  that  represents  a  relation  on  the  set
81, 2, 3, 4, 5, 6<.
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In[118]:= transitiveCompare =
880, 0, 0, 0, 0, 1<, 81, 0, 1, 0, 0, 0<, 81, 0, 0, 1, 0, 0<,
81, 0, 0, 0, 1, 0<, 81, 0, 0, 0, 0, 1<, 80, 1, 0, 0, 0, 0<<;

transitiveCompare êê MatrixForm

Out[119]//MatrixForm=
0 0 0 0 0 1
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 0 0

In[120]:= Timing@warshall@transitiveCompareDD

Out[120]= 80.001027,
881, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<<<

In[121]:= Timing@transitiveClosure@transitiveCompareDD

Out[121]= 80.004604,
881, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<<<

From  this  example,  we  can  see  that  Warshall's  algorithm  can  be  a  substantial  improvement  over  the
alternative, at least on this specific example. The reader is encouraged to explore this further.

9.5 Equivalence Relations
In this section we will  examine how we can use Mathematica  to compute with equivalence relations.
There are three specific problems that we will address here: given an equivalence relation on a set, how
to compute the equivalence class of an element; how to determine the number of equivalence relations
on a finite set; and how to compute the smallest equivalence relation that contains a given relation on
some finite set. Note that in this section, relations are assumed to be represented as in the start of this
chapter, as satisfying relationQ.
First, we provide a test that determines whether or not a relation is an equivalence relation. Using the
work  that  we've  already  done  and  recalling  that  an  equivalence  relation  is  simply  a  relation  that  is
reflexive, symmetric, and transitive, this task is a simple one.
In[122]:= equivalenceQ@R_?relationQD :=

reflexiveQ@RD && symmetricQ@RD && transitiveQ@RD

As an example, let's define the equivalence relation “congruent mod 4” on the integers from 0 to n.
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In[123]:= makeMod4@n_IntegerD := Module@8i, j<,
Reap@

Do@If@Mod@i - j, 4D ã 0, Sow@8i, j<DD
, 8i, 0, n<, 8j, 0, n<D

D@@2, 1DD
D

In[124]:= mod4to8 = makeMod4@8D

Out[124]= 880, 0<, 80, 4<, 80, 8<, 81, 1<, 81, 5<, 82, 2<, 82, 6<,
83, 3<, 83, 7<, 84, 0<, 84, 4<, 84, 8<, 85, 1<, 85, 5<,
86, 2<, 86, 6<, 87, 3<, 87, 7<, 88, 0<, 88, 4<, 88, 8<<

In[125]:= equivalenceQ@mod4to8D

Out[125]= True

Equivalence Classes
Recall that, given an equivalence relation R and a member a of the domain of R, the equivalence class
of a is the set of all members b of the domain for which the pair Ha, bL belongs to R. In other words, it
is the set of all elements in the domain that are R-equivalent to a. So to determine the equivalence class
of a particular element of the domain, the algorithm is fairly simple. We just search through R looking
for  all  pairs  of  the  form  Ha, bL,  adding  each  such  second  element  b  to  the  class.  We  do  not  have  to
search for pairs of the form Hb, aL because equivalence relations are symmetric. 
We can use the Cases  function to implement this approach. Previously, we have used Select  as a
way to compute a sublist based on a criteria. Cases  is similar, with two important differences. First,
where Select uses a function to decide which elements of the original list to include, Cases uses a
pattern. For example, to find all of the elements of mod4to8  with first element 3, we would need to
match the pattern {3,_}, as shown below.
In[126]:= Cases@mod4to8, 83, _<D

Out[126]= 883, 3<, 83, 7<<

The second difference is that Cases can not only list those elements of the original list that match the
pattern, but it can use a rule so that the output involves a modified version of the elements that match
the pattern. For example, in order to return only the second elements, i.e., the 3 and 7, in the above, we
enter the following.
In[127]:= Cases@mod4to8, 83, b_< Ø bD

Out[127]= 83, 7<

The following function returns the equivalence class for a given equivalence relation and a point in the
domain. We use Cases as illustrated above and apply Union to be certain that there are no duplicates
in the output and to order the result.
In[128]:= equivalenceClass@R_?equivalenceQ, a_D := Module@8b<,

Union@Cases@R, 8a, b_< Ø bDD
D

As  an  example,  we  compute  the  equivalence  class  of  3  in  the  modulo  4  relation  on  the  domain
81, 2, …, 30<.
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As  an  example,  we  compute  the  equivalence  class  of  3  in  the  modulo  4  relation  on  the  domain
81, 2, …, 30<.
In[129]:= equivalenceClass@makeMod4@30D, 3D

Out[129]= 83, 7, 11, 15, 19, 23, 27<

Number of Equivalence Relations on a Set
Next, we consider how to construct all of the equivalence relations on a given (finite) set. The straight-
forward way to do this is to construct all relations on the given domain and then check them to see if
they are  equivalence  relations.  Since  a  relation  on a  set  A  is  merely  a  subset  of  Aµ A,  generating  all
relations is the same as generating all subsets of Aµ A.
To  implement  this,  we  begin  by  creating  the  set  Aµ A  using  Mathematica’s  Tuples  function.
Tuples  will  take a list  and a positive integer,  e.g.,  2,  and return the list  of all  possible tuples of the
specified  length.  In  effect,  Tuples[A,2]  produces  Aµ A.  For  example,  to  compute  81, 2<µ 81, 2<,
we would enter the following.
In[130]:= Tuples@81, 2<, 2D

Out[130]= 881, 1<, 81, 2<, 82, 1<, 82, 2<<

We apply the Subsets function to Aµ A in order to find all subsets. Given a list, Subsets produces
the  list  of  all  sublists.  For  example,  applying Subsets  to  the  output  from Tuples  above produces
the following.
In[131]:= Subsets@Tuples@81, 2<, 2DD

Out[131]= 88<, 881, 1<<, 881, 2<<, 882, 1<<, 882, 2<<, 881, 1<, 81, 2<<,
881, 1<, 82, 1<<, 881, 1<, 82, 2<<, 881, 2<, 82, 1<<,
881, 2<, 82, 2<<, 882, 1<, 82, 2<<, 881, 1<, 81, 2<, 82, 1<<,
881, 1<, 81, 2<, 82, 2<<, 881, 1<, 82, 1<, 82, 2<<,
881, 2<, 82, 1<, 82, 2<<, 881, 1<, 81, 2<, 82, 1<, 82, 2<<<

The Column function will place each element of the output from Subsets on a separate line, so as to
make it easier to read.
In[132]:= Column@%D

Out[132]=

8<

881, 1<<
881, 2<<
882, 1<<
882, 2<<
881, 1<, 81, 2<<
881, 1<, 82, 1<<
881, 1<, 82, 2<<
881, 2<, 82, 1<<
881, 2<, 82, 2<<
882, 1<, 82, 2<<
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Out[132]=

881, 1<, 81, 2<, 82, 1<<
881, 1<, 81, 2<, 82, 2<<
881, 1<, 82, 1<, 82, 2<<
881, 2<, 82, 1<, 82, 2<<
881, 1<, 81, 2<, 82, 1<, 82, 2<<

To complete the process, we need to limit the output to those subsets of Aµ A  which are equivalence
relations.  For  this,  we  will  apply  Select.  Recall  that  Select  applied  to  a  list  and  a  function  will
produce the sublist  of  the original  for  which the function returns True.  In this  case,  the function we
use will be equivalenceQ.
In[133]:= Select@Subsets@Tuples@81, 2<, 2DD, equivalenceQD êê Column

Out[133]=

8<

881, 1<<
882, 2<<
881, 1<, 82, 2<<
881, 1<, 81, 2<, 82, 1<, 82, 2<<

This example shows us how to build a more general function. allEquivalenceRelations below
will accept a list as its argument and will output all of the equivalence relations.
In[134]:= allEquivalenceRelations@A_ListD :=

Select@Subsets@Tuples@A, 2DD, equivalenceQD

For example, there are 15 equivalence relations on 81, 2, 3<.
In[135]:= Length@allEquivalenceRelations@81, 2, 3<DD

Out[135]= 15

Closure
The  last  question  to  be  considered  in  this  section  is  the  problem  of  finding  the  smallest  equivalence
relation containing a relation R.
The key idea is that we need to find the smallest relation containing R that is reflexive, symmetric, and
transitive.  Recalling  the  previous  section  on  closures,  it  is  natural  to  think  that  we  may  compute  the
reflexive closure, the symmetric closure, and then the transitive closure, one after the other. The only
concern would be that one closure would no longer have one of the previous properties. The following
outlines why this is not the case.
1. First create the reflexive closure of R, call it P.
2. Compute the symmetric closure of P and call this Q. Note that Q is still reflexive since no pairs 

were removed from the relation and no elements were added to the domain. So Q is both 
symmetric and reflexive.

3. Compute the transitive closure of Q and name this S. Note that S is still reflexive for the same 
reason as above. And S is still symmetric since, if Ha, bL and Hb, cL are in Q to force the addition of 
Ha, cL, then since Q is symmetric, Hc, bL and Hb, aL must also be in Q forcing Hc, aL to also be 
included in S. Hence, S is an equivalence relation.

We  implement  this  method  as  the  composition  of  the  four  methods  relationToMatrix,
reflexiveClosure, symmetricClosure, and then transitiveClosure. 
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We  implement  this  method  as  the  composition  of  the  four  methods  relationToMatrix,
reflexiveClosure, symmetricClosure, and then transitiveClosure. 
In[136]:= equivalenceClosure@R_?relationQD := transitiveClosure@

symmetricClosure@reflexiveClosure@relationToMatrix@RDDDD

As an example,  recall  the div6  relation representing the is  a  divisor  of  on 81, 2, 3, 4, 5, 6<.  We can
see that the smallest equivalence relation that contains div6  is the relation in which every number is
related to every other number.
In[137]:= equivalenceClosure@div6D êê MatrixForm

Out[137]//MatrixForm=
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

This  is  unsurprising,  since  1  is  a  divisor  of  every  number  meaning  that,  in  any  equivalence  relation
containing  the  “divides”  relation,  1  is  related  to  every  number.  We  can  make  this  example  slightly
more interesting by removing 1.
In[138]:= div17minus1 = dividesRelation@Range@2, 17DD

Out[138]= 882, 2<, 82, 4<, 82, 6<, 82, 8<, 82, 10<, 82, 12<, 82, 14<, 82, 16<,
83, 3<, 83, 6<, 83, 9<, 83, 12<, 83, 15<, 84, 4<, 84, 8<,
84, 12<, 84, 16<, 85, 5<, 85, 10<, 85, 15<, 86, 6<, 86, 12<,
87, 7<, 87, 14<, 88, 8<, 88, 16<, 89, 9<, 810, 10<, 811, 11<,
812, 12<, 813, 13<, 814, 14<, 815, 15<, 816, 16<, 817, 17<<
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In[139]:= equivalenceClosure@div17minus1D êê MatrixForm

Out[139]//MatrixForm=
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(Note  the  first  row and  column still  correspond  to  1  because  of  the  way  the  matrix  is  constructed  in
relationToMatrix.) In this example, you see that 11, 13, and 17 become isolated, being the three
primes in the set which do not have multiples of them also included.

9.6 Partial Orderings
In this  section,  we consider partial  orderings (or partial  orders)  and related topics,  including maximal
and minimal elements, Hasse diagrams, and lattices. We will explore these topics in Mathematica, and
leave the exploration of other topics related to partial orderings to the reader.

Partial Orders and Examples
First, we will define a new Mathematica predicate for partial orders and create some examples of them.
Recall that a partial order is a binary relation on a set that satisfies the three conditions of being reflex-
ive, antisymmetric, and transitive. We define the predicate to be a function that tests an object against
the definition of  a  partial  order.  It  is  very similar  to  the equivalenceQ  function we created in  the
previous section.
In[140]:= partialOrderQ@R_?relationQD :=

reflexiveQ@RD && antisymmetricQ@RD && transitiveQ@RD

Now  we  can  use  the  partialOrderQ  function  for  checking  to  see  if  a  list  is  a  partial  order.  For
example, we can check that the div6 relation we defined earlier (recall that this is the “divides” rela-
tion on the set 1 through 6) is a partial order.
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In[141]:= partialOrderQ@div6D

Out[141]= True

We create some additional examples of partial  orderings that we can use in the remainder of the sec-
tion. The div17minus1 relation (this was the “divides” relation on the set 2 through 17) is a partial
order.
In[142]:= partialOrderQ@div17minus1D

Out[142]= True

Indeed, all the relations created via the dividesRelation function will be partial orders.
Next,  we  create  a  function  to  produce  examples  of  a  class  of  lattices  (we  will  discuss  lattices  more
below, for now it is enough that these examples are partial orders). The divisorLattice function
will create the partial order whose domain is the set of positive divisors of a given number and whose
order is defined by the “divides” relation. We only need to apply the dividesRelation function to
the divisors of the given number.
In[143]:= divisorLattice@n_IntegerD := dividesRelation@Divisors@nDD

The Divisors function produces the list of positive divisors of the given integer.
In[144]:= divisorLattice@10D

Out[144]= 881, 1<, 81, 2<, 81, 5<, 81, 10<,
82, 2<, 82, 10<, 85, 5<, 85, 10<, 810, 10<<

Finally, for a bit of variety, we create the posets whose Hasse diagrams are shown in Figure 8(a) and
Figure 10 in Section 9.6. 
In[145]:= fig8A = 88"a", "a"<, 8"a", "b"<, 8"a", "c"<, 8"a", "d"<,

8"a", "e"<, 8"a", "f"<, 8"b", "b"<, 8"b", "c"<,
8"b", "d"<, 8"b", "e"<, 8"b", "f"<, 8"c", "c"<,
8"c", "e"<, 8"c", "f"<, 8"d", "d"<, 8"d", "e"<,
8"d", "f"<, 8"e", "e"<, 8"e", "f"<, 8"f", "f"<<;

In[146]:= partialOrderQ@fig8AD

Out[146]= True

In[147]:= fig10 = 88"A", "A"<, 8"A", "B"<, 8"A", "D"<, 8"A", "F"<,
8"A", "G"<, 8"B", "B"<, 8"B", "D"<, 8"B", "F"<,
8"B", "G"<, 8"C", "C"<, 8"C", "B"<, 8"C", "D"<, 8"C", "F"<,
8"C", "G"<, 8"D", "D"<, 8"D", "G"<, 8"E", "E"<, 8"E", "F"<,
8"E", "G"<, 8"F", "F"<, 8"F", "G"<, 8"G", "G"<<;

In[148]:= partialOrderQ@fig10D

Out[148]= True

Hasse Diagrams
Now that  we have  defined  a  predicate  and have  examples  at  our  disposal,  we turn  to  the  problem of
having Mathematica draw Hasse diagrams of partial orders. As demonstrated in the textbook, a Hasse
diagram is a very useful tool for visualizing and understanding posets. Drawing the Hasse diagram for
a poset is not as simple as drawing all of the elements of the set and then connecting all related pairs
with  an  edge.  Doing  so  would  create  an  extremely  messy,  and  not  very  useful,  diagram.  Instead,  a
Hasse  diagram  contains  only  those  edges  that  are  absolutely  necessary  to  reveal  the  structure  of  the
poset.
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Now that  we have  defined  a  predicate  and have  examples  at  our  disposal,  we turn  to  the  problem of
having Mathematica draw Hasse diagrams of partial orders. As demonstrated in the textbook, a Hasse
diagram is a very useful tool for visualizing and understanding posets. Drawing the Hasse diagram for
a poset is not as simple as drawing all of the elements of the set and then connecting all related pairs
with  an  edge.  Doing  so  would  create  an  extremely  messy,  and  not  very  useful,  diagram.  Instead,  a
Hasse  diagram  contains  only  those  edges  that  are  absolutely  necessary  to  reveal  the  structure  of  the
poset.
Covering Relations
The covering relation for a partial order is a minimal representation of the partial order, from which the
partial order can be reconstructed via transitive and reflexive closure. 
Let Ç be a partial order on a set S. Recall that an element y in S covers an element x in S if x Ä y, x ¹≠ y,
and there is no element z of S, different from x and y, such that x Ä z Ä y. In other words, y covers x if
y is greater than x and there is no intermediary element. The set of pairs Hx, yL for which y covers x is
the covering relation of Ç.
As  a  simple  example,  consider  the  set  81, 2, 3, 4<  ordered  by  magnitude,  i.e.,  the  usual  “less  than  or
equal to.” This relation consists of 10 ordered pairs:

8H1, 1L, H1, 2L, H1, 3L, H1, 4L, H2, 2L, H2, 3L, H2, 4L, H3, 3L, H3, 4L, H4, 4L<

Its covering relation is the set 
8H1, 2L, H2, 3L, H3, 4L<

which consists of only 3 pairs. All the other pairs of the partial order can be inferred from the covering
relation  using  transitivity  and reflexivity.  For  instance,  H1, 3L  can  be  recovered  from H1, 2L  and  H2, 3L
via  transitivity.  Note  that  the  covering  relation  involves  many  fewer  pairs  and  thus  is  a  much  more
efficient way to represent the partial order, at least in terms of storage.
Our goal is to write a function that will have Mathematica  draw the Hasse diagram of a given partial
order. Since a Hasse diagram is, in fact, the graph of the associated covering relation, we will create a
function to find the covering relation of the partial order.
First, we need a test to check whether a given element covers another. 
In[149]:= coversQ@R_?partialOrderQ, 8x_, y_<D := Module@8z, checkSet<,

Catch@
If@x ã y, Throw@FalseDD;
If@! MemberQ@R, 8x, y<D, Throw@FalseDD;
checkSet = Complement@findDomain@RD, 8x, y<D;
Do@
If@MemberQ@R, 8x, z<D && MemberQ@R, 8z, y<D, Throw@FalseDD
, 8z, checkSet<D;

Throw@TrueD
D

D

This function works by first checking to see if the two elements x and y are equal to each other or if the
pair Hx, yL fails to be in the partial order. In either of these situations, y does not cover x. Assuming the
pair  of  elements  passes  these  basic  hurdles,  the  function  then  checks  every  other  element  of  the
domain. If it can find an element that sits between x  and y,  then we know they don't cover. If no ele-
ment sits between them, then in fact y does cover x.
Now we can construct  the covering relation of a partial  order using the following Mathematica  func-
tion. This function simply checks every element of the given relation to see if one covers the other and
includes  only  those  that  do  in  the  output  relation.  It  uses  Select  to  execute  the  check  over  each
element  of  the  given  relation  and  eliminate  those  that  do  not  belong.  The  test  used  is  a  pure  Func-
tion (&) formed from coversQ. 
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Now we can construct  the covering relation of a partial  order using the following Mathematica  func-
tion. This function simply checks every element of the given relation to see if one covers the other and
includes  only  those  that  do  in  the  output  relation.  It  uses  Select  to  execute  the  check  over  each
element  of  the  given  relation  and  eliminate  those  that  do  not  belong.  The  test  used  is  a  pure  Func-
tion (&) formed from coversQ. 
In[150]:= coveringRelation@R_?partialOrderQD := Select@R, coversQ@R, ÒD &D

Let's look at a couple of examples. First, the example described above, of the set 81, 2, 3, 4< ordered by
magnitude.
In[151]:= coveringRelation@881, 1<, 81, 2<, 81, 3<, 81, 4<,

82, 2<, 82, 3<, 82, 4<, 83, 3<, 83, 4<, 84, 4<<D

Out[151]= 881, 2<, 82, 3<, 83, 4<<

As a second example, let’s consider a lattice.
In[152]:= coveringRelation@divisorLattice@30DD

Out[152]= 881, 2<, 81, 3<, 81, 5<, 82, 6<, 82, 10<, 83, 6<,
83, 15<, 85, 10<, 85, 15<, 86, 30<, 810, 30<, 815, 30<<

Drawing Hasse Diagrams
Now we will use the covering relation in order to write a function to draw the Hasse diagram for partial
orders. By using the coveringRelation function that we just completed and the LayeredGraph-
Plot function, we can draw the graph associated to a partial order. 
Because LayeredGraphPlot draws graphs with arrows pointing downwards, we interpret 8a, b< as
an edge b Ø a  in order to have the smallest elements at the bottom, as is typical. We accomplish that
by  applying  ReplaceAll  (/.)  to  the  covering  relation,  which  remember  is  represented  as  a  list  of
pairs, transforming a pair into the rule in the reverse order.
In[153]:= hasseDiagram@R_?partialOrderQD := Module@8edges<,

edges = coveringRelation@RD ê. 8a_, b_< Ø Rule@b, aD;
LayeredGraphPlot@edges, VertexLabeling Ø TrueD

D

As an example, here is a diagram representing the divisor lattice of 210. 
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In[154]:= hasseDiagram@divisorLattice@2*3*5*7DD

Out[154]=

2

1

3 5 7

6 10 14 15 21 35

30 42 70 105

210

And here are the Hasse diagrams for some of the other examples we discussed in this section.
In[155]:= hasseDiagram@fig8AD

Out[155]=

b

a

c d

e

f
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In[156]:= hasseDiagram@div17minus1D

Out[156]=

4

2

610 14

3

915

8 12

5 7

16

In[157]:= hasseDiagram@fig10D

Out[157]=

B

A

DF

C

G

E

Comparing this last example to the diagram given in the textbook illustrates that, while using Mathemat-
ica's  LayeredGraphPlot  function  doesn't  result  in  quite  as  appealing  graphs  as  those  that  are
created  by  hand,  it  still  provides  a  fairly  useful  graph.  Also  note  that  you  can  tweak  the  results  of
LayeredGraphPlot  dynamically. To adjust the location of a vertex, place the mouse pointer over
the vertex, double-click to enter editing mode for the graph, and double-click again to edit the vertex.
Then you can click and drag the vertex to specify a different position. 

Maximal and Minimal Elements
We will construct a function that determines the set of minimal elements of a partially ordered set.
The function takes two arguments: a partial order R and a subset S of the domain of R. It returns the set
of minimal elements of S with respect to R. It first initializes the set of minimal elements to all of S and
then removes those that are not minimal.
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In[158]:= minimalElements@R_?partialOrderQ, S_ListD := Module@8M, s, t<,
M = S;
Do@
Do@
If@MemberQ@R, 8t, s<D, M = Complement@M, 8s<DD
, 8t, Complement@S, 8s<D<D

, 8s, S<D;
M

D

We can see this work on our div6 partial order. Since we'll be using the div6 partial order for many
examples in this section, it's Hasse diagram may also be useful.
In[159]:= hasseDiagram@div6D

Out[159]= 2

1

35

4 6

In[160]:= minimalElements@div6, Range@6DD

Out[160]= 81<

In[161]:= minimalElements@div6, Range@2, 6DD

Out[161]= 82, 3, 5<

Note that, by reversing the relation and thus the order, we can compute maximal elements very easily.
In[162]:= maximalElements@R_?partialOrderQ, S_ListD :=

minimalElements@inverseRelation@RD, SD

In[163]:= maximalElements@div6, Range@6DD

Out[163]= 84, 5, 6<

Least Upper Bound
Next  we  will  write  a  function  for  computing  the  least  upper  bound  of  a  set  with  respect  to  a  partial
order,  if  it  exists.  Our function will  return the value Null  in  the case that  the set  has  no least  upper
bound.
First we create a function upperBoundQ that determines whether a given element is an upper bound
of a set with respect to a relation. It accomplishes this by checking to make sure that the given element
is greater than every element of the set.

Chapter09.nb  35



First we create a function upperBoundQ that determines whether a given element is an upper bound
of a set with respect to a relation. It accomplishes this by checking to make sure that the given element
is greater than every element of the set.
In[164]:= upperBoundQ@R_?partialOrderQ, S_List, u_D := Module@8s<,

Catch@
Do@If@! MemberQ@R, 8s, u<D, Throw@FalseDD
, 8s, S<D;

Throw@TrueD
D

D

For example, under the div6 relation, 6 is an upper bound of 81, 2, 3<, but not of 81, 2, 3, 4<.
In[165]:= upperBoundQ@div6, 81, 2, 3<, 6D

Out[165]= True

In[166]:= upperBoundQ@div6, 81, 2, 3, 4<, 6D

Out[166]= False

Next  we  write  a  function  to  find  all  of  the  upper  bounds  for  a  given  set.  We  do  this  by  considering
every  element  of  the  domain  of  the  relation  and  checking  to  see  which  are  upper  bounds,  using  the
upperBoundQ function.
In[167]:= upperBounds@R_?partialOrderQ, S_ListD :=

Module@8domR, d, U = 8<<,
domR = findDomain@RD;
Do@If@upperBoundQ@R, S, dD, AppendTo@U, dDD
, 8d, domR<D;

U
D

For instance, the upper bounds of the set 81, 2< under div6 are:
In[168]:= upperBounds@div6, 81, 2<D

Out[168]= 82, 4, 6<

To  complete  the  task  of  finding  the  least  upper  bound  of  a  set,  we  merely  use  upperBounds  to
compute  all  of  the  upper  bounds  for  the  set,  use  minimalElements  to  see  which  of  the  upper
bounds  are  minimal,  and  then  check  to  see  how  many  minimal  upper  bounds  are  found.  If  there  is
exactly  one  minimal  upper  bound,  then  this  is  the  least  upper  bound.  Otherwise,  the  set  has  no  least
upper bound.
In[169]:= leastUpperBound@R_?partialOrderQ, S_ListD := Module@8U, M<,

U = upperBounds@R, SD;
M = minimalElements@R, UD;
If@Length@MD ¹≠ 1, Null, M@@1DDD

D

For example, the least upper bounds of 81, 2<  and 81, 2, 3<  are found below, while 84, 5<  has no least
upper bound in the domain of div6 and so does not return a value.

36   Chapter09.nb



In[170]:= leastUpperBound@div6, 81, 2<D

Out[170]= 2

In[171]:= leastUpperBound@div6, 81, 2, 3<D

Out[171]= 6

In[172]:= leastUpperBound@div6, 84, 5<D

Lattices
As the last topic in this section, we will consider the problem of determining whether a partial order is
a lattice. The approach we will take is a good example of top down programming. The test we design
here  will  confirm that  the  function  divisorLattice  written  at  the  beginning  of  this  section  does
indeed produce lattices.
Recall that a partial order is a lattice if every pair of elements has both a least upper bound and a great-
est lower bound (in lattices, these are also referred to as the supremum and infimum of the pair or as
their  meet  and  join).  With  this  in  mind,  we can  write  the  following function  (with  the  understanding
that the helper functions still need to be written).
In[173]:= latticeQ@R_?partialOrderQD := hasLUBs@RD && hasGLBs@RD

We  need  to  write  the  two  helper  functions:  hasLUBs  to  determine  if  the  partial  order  satisfies  the
property that every pair of elements has a least upper bound, and hasGLBs to determine if every pair
has  a  greatest  lower  bound.  Just  as  we  did  above  with  the  maximalElements  function,  we  really
only need to write one function if  we recognize that  a partial  order satisfies the greatest  lower bound
property if the inverse relation satisfies the least upper bound property. So we compose hasLUBs with
the inverseRelation function to create hasGLBs.
In[174]:= hasGLBs@R_?partialOrderQD := hasLUBs@inverseRelation@RDD

Now  we  complete  the  work  by  coding  the  hasLUBs  function.  We  must  test  whether,  for  a  given
relation R, each pair a and b in the domain of R has a least upper bound with respect to R.
In[175]:= hasLUBs@R_?partialOrderQD := Module@8domR, a, b<,

domR = findDomain@RD;
Catch@
Do@If@leastUpperBound@R, 8a, b<D === Null, Throw@FalseDD
, 8a, domR<, 8b, domR<D;

Throw@TrueD
D

D

Finally,  all  of  the  subroutines  that  go  into  making up the  latticeQ  program are  complete,  and we
can test it on some examples. Contrast the relations constructed by the dividesRelation function
versus those made by divisorLattice.
In[176]:= latticeQ@dividesRelation@10DD

Out[176]= False
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In[177]:= latticeQ@divisorLattice@20DD

Out[177]= True

Solutions to Computer Projects and Computations and 
Explorations

Computer Projects 15

Given a partial ordering on a finite set, find a total ordering compatible with it using 
topological sorting.

Solution:  The  textbook  contains  a  detailed  explanation  of  topological  sorting  and  summarizes  it  as
Algorithm 1 of Section 9.6.
The set S is initialized to the domain of the given relation. At each step, find a minimal element (using
the minimalElements  function we created above) of  S.  This  minimal element  is  removed from S
and  added  as  the  next  largest  element  of  the  total  ordering.  This  repeats  until  S  is  empty  and  conse-
quently all elements are in the total order.
In[178]:= topologicalSort@R_?partialOrderQD := Module@8S, a, T<,

T = 8<;
S = findDomain@RD;
While@S ¹≠ 8<,
a = minimalElements@R, SD@@1DD;
S = Complement@S, 8a<D;
T = AppendTo@T, aD

D;
T

D

We apply this procedure to fig10.
In[179]:= topologicalSort@fig10D

Out[179]= 8A, C, B, D, E, F, G<

Computations and Explorations 1

Display all the different relations on a set with four elements.

Solution: As usual, Mathematica is much too powerful to solve only the single instance of the general
problem suggested by this question. We provide a very simple function that will compute all relations
on any finite set. This procedure merely constructs the Cartesian product C = Sµ S using Tuples and
then makes use of the Subsets function to obtain all of the relations on the set.
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In[180]:= allRelations@S_ListD := Subsets@Tuples@S, 2DD

We now test our procedure on a set with 2 elements. (This keeps the output to a reasonable length.) We
use Column to display each relation on its own line.
In[181]:= allRelations@81, 2<D êê Column

Out[181]=

8<

881, 1<<
881, 2<<
882, 1<<
882, 2<<
881, 1<, 81, 2<<
881, 1<, 82, 1<<
881, 1<, 82, 2<<
881, 2<, 82, 1<<
881, 2<, 82, 2<<
882, 1<, 82, 2<<
881, 1<, 81, 2<, 82, 1<<
881, 1<, 81, 2<, 82, 2<<
881, 1<, 82, 1<, 82, 2<<
881, 2<, 82, 1<, 82, 2<<
881, 1<, 81, 2<, 82, 1<, 82, 2<<

The  reader  is  encouraged  to  determine  the  running  time  and  output  length  for  the  function  when  the
input set has cardinality 4 or 5. Keep in mind that there are 2n2  relations on a set with n members.

Computations and Explorations 4

Determine how many transitive relations there are on a set with n elements for all positive 
integers n with n § 7.

Solution:  We will  construct  each  possible  nµ n  zero-one  matrix  using  an  algorithm similar  to  binary
counting. The approach is as follows:

1. For each number from 0 to 2n2 - 1, we create a list of 0s and 1s that is the base 2 representation of 
that integer. We can do this with the IntegerDigits function. The syntax 
IntegerDigits@ i, 2, n^2D returns a list whose entries are the base 2 representation of the 
integer i, padded with 0s if necessary to obtain a list of length n2.

2. Then create a matrix M  whose entries are that list of values. These are all possible 2n2  zero-one 
matrices (the reader is encouraged to prove this statement). We use the Partition function on 
the list with second argument n to split the list of n2 values into a nµ n matrix. 

3. Finally, evaluate the transitive closure of each of those matrices, using the warshall function 
from Section 9.4 above. We test to see if the matrix is transitive by checking to see if it is equal to 
its transitive closure. If so, it is counted as a transitive relation.
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The implementation is as follows:
In[182]:= countTransitive@n_IntegerD := Module@8i, j, T, M, count = 0<,

For@i = 0, i § 2^Hn^2L - 1, i++,
T = IntegerDigits@i, 2, n^2D;
M = Partition@T, nD;
If@warshall@MD ã M, count++D

D;
count

D

We use the function on a relatively small value and leave further computations to the reader.
In[183]:= countTransitive@3D

Out[183]= 171

Computations and Explorations 5

Find the transitive closure of a relation of your choice on a set with at least 20 elements. 
Either use a relation that corresponds to direct links in a particular transportation or 
communications network or use a randomly generated relation. 

Solution: We will generate a random zero-one matrix with dimension 8µ 8, and then apply Warshall's
algorithm to compute the transitive closure. (We use a smaller size than specified in the problem so as
to be able to display the result easily.)
To generate a random zero-one matrix, we use the RandomVariate function. This function was first
discussed in Section 7.2.  The first  argument to RandomVariate  must  be a probability distribution.
We  will  use  the  BernoulliDistribution,  which  randomly  chooses  0  or  1,  with  parameter  .1.
This means that  1 is  chosen with probability .1,  resulting in a fairly sparse matrix.  This increases the
chance  that  the  transitive  closure  will  have  entries  that  are  not  1.  The  second  argument  to  Random-
Variate  specifies  the  number  of  times  to  sample  the  distribution.  By  using  a  list,  for  example
{8,8}, the function will output a matrix of that size.
In[184]:= randomMatrix =

RandomVariate@BernoulliDistribution@.1D, 88, 8<D;
randomMatrix êê MatrixForm

Out[185]//MatrixForm=
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
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In[186]:= warshall@randomMatrixD êê MatrixForm
Out[186]//MatrixForm=

0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

Exercises
1. The relationToMatrix function converts a relation satisfying relationQ to a zero-

one matrix representation. Write a function to convert a zero-one matrix representation of a 
relation to a relationQ representation.

2. Write a Mathematica function with the signature

makeRelation@S : 8__Integer<, f_FunctionD

that creates the relation 8Ha, bL œ Sµ S : f Ha, bL is true<. That is, makeRelation should 
return the set of all ordered pairs Ha, bL of elements of S for which the pure Function (&) f 
evaluates to true when a and b are substituted for the Slots (#) in f. For example, your 
function should accept an expression such as

Ò1 + Ò2 < Ò1*Ò2 &

3. Write a Mathematica function to generate a random relation on a given finite set of integers.
4. Use the function you wrote in the preceding exercise to investigate the probability that an 

arbitrary relation has each of the following properties: (a) reflexivity; (b) symmetry; (c) anti-
symmetry; and (d) transitivity.

5. Write Mathematica functions to determine whether a given relation is irreflexive or 
asymmetric. (See the text for definitions of these properties.)

6. Investigate the ratio of the size of an arbitrary relation to the size of its transitive closure. How 
much does the transitive closure make a relation “grow” on average?

7. Examine the function j defined as follows. For a positive integer n, we define jHnL to be the 
number of relations on a set of n elements whose transitive closure is the “all” relation. (If A is 
a set, then the “all” relation on A is the relation Aµ A with respect to which every member of 
A is related to every other member of A, including itself.)

8. Write a Mathematica function that finds the antichain with the greatest number of elements in 
a partial ordering. (See the text for the definition of antichain.)
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9. The transitive reduction of a relation G is the smallest relation H such that the transitive 
closure of H is equal to the transitive closure of G. Use Mathematica to generate some 
random relations on a set with ten elements and find the transitive reduction of each of these 
random relations.

10. Write a Mathematica function that computes a partial order, given its covering relation.
11. Write a Mathematica function to determine whether a given lattice is a Boolean algebra, by 

checking whether it is distributive and complemented. (See the text for definitions.)
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