
9 Relations

Introduction
In this chapter we will learn how to use Mathematica to work with relations. We explain how to repre-
sent binary relations using sets of ordered pairs, zero-one matrices, and directed graphs. We show how
to use Mathematica to determine whether a relation has various properties using these different repre-
sentations.
We also describe how to compute closures of relations. In particular, we show how to find the transi-
tive closure of a relation using two different algorithms and we compare the time performance of these
algorithms. After explaining how to use Mathematica to work with equivalence relations, we show
how to use Mathematica to work with partial orderings, to draw Hasse diagrams, and to implement
topological sorting.
Some readers may be familiar with the Combinatorica package. While this package has much to offer,
many of the functions it was created to provide are now part of Mathematica proper. In this manual,
we tend to avoid use of the Combinatorica package functions, particularly when there are Mathematica
functions that will suffice.

9.1 Relations and Their Properties
The first step in understanding and manipulating relations in Mathematica is to determine how to
represent them. There are no specific functions in Mathematica designed to handle relations. We will
implement relations in Mathematica using the most convenient form for the question at hand. In this
chapter, we will make use of sets of ordered pairs, zero-one matrices, and directed graphs in order to
explore relations in Mathematica.

Relations as Ordered Pairs
First, we will represent relations as lists of ordered pairs. We begin by defining a predicate to check
that an expression is a relation, i.e., a list of pairs. Our reason for defining a predicate is that it gives us
a way to ensure that when arguments are passed to functions we write, the arguments are valid for that
function. As an illustration of the utility of this approach, consider the function below.

In[1]:= posIntQ@n_D := IntegerQ@nD && n > 0

In[2]:= myFactorial@n_?posIntQD := Module@8<,
If@n ã 1,
Return@1D,
Return@n*myFactorial@n - 1DD

D
D

In this simple example, we define a predicate posIntQ that tests input for being both an integer and
positive. Then the function myFactorial uses the PatternTest (?) structure to declare that the
function’s definition is only valid for those input that satisfy the requirements of the posIntQ predi-
cate. Consider the result of attempting to compute the factorial of -3:

In[3]:= myFactorial@-3D

Out[3]= myFactorial@-3D

The function does not try to execute, but simply echoes the input, indicating that the function was not
able to operate on that input. It is usually better for a function to not try to compute on invalid input. In
the case of myFactorial, omitting the predicate would result in an infinite recursion.
We could also deal with the problem of potentially invalid arguments by checking the arguments
within the body of the function. The PatternTest (?) approach, however, makes it much clearer,
by just looking at the definition, what the argument’s expectations are.
As mentioned, we are going to represent relations as lists of ordered pairs. We will define two predi-
cates. First, an ordered pair predicate that we'll call pairQ. And then the relation type, which will be
called relationQ, will be defined to be a list of pairs. We define the pair predicate as follows:

In[4]:= pairQ@8_, _<D := True;
pairQ@___D := False

The first line of the definition says what a pair is. If pairQ is passed an argument which is a list
containing two elements, then it returns True. Those elements can be anything at all, including lists
and other structures, which allows us to define relations among complex structures. The second line of
the definition says that if pairQ is passed any argument at all, or no argument, it should produce
False. The BlankNullSequence (___), formed from three underscores, matches any expression,
comma-separated sequence of expressions, or no expression at all. This is different from BlankSe-
quence (__), two underscores, which cannot match an empty argument.
You might think that the second definition overwrites the first, since it is more general. In fact, Mathe-
matica keeps both definitions, in the order they are given, and applies the first definition that matches.
So if you give pairQ an argument that is in fact a pair, the argument will match the pattern of the first
definition and return True.

In[6]:= pairQ@85, "b"<D

Out[6]= True

But for any argument that does not match that pattern, Mathematica will go to the second definition,
which matches anything, and output False.

2 Chapter09.nb

In[7]:= pairQ@5D

Out[7]= False

In[8]:= pairQ@85, 6, 7<D

Out[8]= False

In[9]:= pairQ@2, 3D

Out[9]= False

In[10]:= pairQ@D

Out[10]= False

With pairQ in place, we define relationQ.
In[11]:= relationQ@8___?pairQ<D := True;

relationQ@___D := False

In this case, the first line insists that a relation must be a list containing a BlankNullSequence
(___), i.e., a comma-separated sequence of expressions, each one of which satisfies pairQ. That is, a
(binary) relation is a set of ordered pairs.

Creating Relations
Now that we’ve established the relation predicate, let’s create an actual relation.
The Divides Relation
Example 4 in Section 9.1 describes the “divides relation,” i.e., R = 8Ha, bL a divides b<. We will write a
function to construct this relation. The function will consider every possible ordered pair of elements
and will include them in the relation if they satisfy the condition that b is divisible by a, using the
Divisible function.
We use the Tuples function to generate all possible pairs of a list of elements. It takes two argu-
ments: the list of elements is the first argument, and 2 will be the second argument to indicate that we
desire pairs of elements. For example, the following creates all pairs of elements from 81, 2, 3<.

In[13]:= Tuples@81, 2, 3<, 2D

Out[13]= 881, 1<, 81, 2<, 81, 3<, 82, 1<,
82, 2<, 82, 3<, 83, 1<, 83, 2<, 83, 3<<

To the output of Tuples, we apply Select to obtain the sublist of elements that satisfy the divisibil-
ity condition. Select requires two arguments. The first is the list of elements to select from. The
second is a function name or a pure Function (&) that returns True for the desired elements. We
will use a pure Function (&) to apply the Divisible function to the arguments in reverse order.
The dividesRelation function below uses these ideas. Its argument is a list of integers, and it
produces the relation.

In[14]:= dividesRelation@A : 8__Integer<D :=
Select@Tuples@A, 2D, Divisible@Ò@@2DD, Ò@@1DDD &D

We use the function to construct the divides relation on the integers 1 through 4.

Chapter09.nb 3

In[15]:= dividesRelation@Range@4DD

Out[15]= 881, 1<, 81, 2<, 81, 3<, 81, 4<, 82, 2<, 82, 4<, 83, 3<, 84, 4<<

We can check that this function has produced an expression that satisfies relationQ.
In[16]:= relationQ@%D

Out[16]= True

For convenience, we can overload the dividesRelation symbol to also accept a single positive
integer n as the argument and construct the “divides relation” on 81, 2, …, n<.

In[17]:= dividesRelation@n_IntegerD :=
Select@Tuples@Range@nD, 2D, Divisible@Ò@@2DD, Ò@@1DDD &D

For example:
In[18]:= div6 = dividesRelation@6D

Out[18]= 881, 1<, 81, 2<, 81, 3<, 81, 4<, 81, 5<, 81, 6<, 82, 2<,
82, 4<, 82, 6<, 83, 3<, 83, 6<, 84, 4<, 85, 5<, 86, 6<<

The Inverse of a Relation
Now that we have seen an example of a function that creates a relation, let's look at a simple example
of a function that manipulates a relation.

For any relation R, its inverse relation, denoted R-1 is defined by R-1 = 8Hb, aL Ha, bL œ R<. The follow-
ing function computes the inverse of a relation.

In[19]:= inverseRelation@R_?relationQD := Reverse@R, 2D

The Reverse function is used to reverse the elements of a list. Given a list as a sole argument,
Reverse simply inverts the order.

In[20]:= Reverse@81, 2, 3<D

Out[20]= 83, 2, 1<

Reverse accepts a second optional argument to specify a level. In this case we use 2 to indicate that
we want Reverse to change the order of the sublists of the relation, not the order of the elements of R
itself.
Since we’ve defined the “divides” relation, we can use the inverseRelation function to create the
“multiple of” relation.

In[21]:= mul6 = inverseRelation@div6D

Out[21]= 881, 1<, 82, 1<, 83, 1<, 84, 1<, 85, 1<, 86, 1<, 82, 2<,
84, 2<, 86, 2<, 83, 3<, 86, 3<, 84, 4<, 85, 5<, 86, 6<<

Properties of Relations
Mathematica can be used to determine if a relation has a particular property, such as reflexivity, symme-
try, antisymmetry or transitivity. This can be accomplished by creating Mathematica functions that
take as input the given relation, examine the elements of the relation, and return True or False based
on whether the relation has the property or not.
Before writing functions to test for properties of relations, it will be convenient to have a routine that
extracts the domain of a given relation. This function works by applying Flatten to the relation.
Note that it may be the case that the objects in our relation are themselves lists, e.g., the subset relation.
So we give Flatten the second argument 1, indicating that it should only flatten the list down to the
first level. This way, if the pairs in the relation are elements, the pairs will be preserved, as shown
below.

4 Chapter09.nb

Before writing functions to test for properties of relations, it will be convenient to have a routine that
extracts the domain of a given relation. This function works by applying Flatten to the relation.
Note that it may be the case that the objects in our relation are themselves lists, e.g., the subset relation.
So we give Flatten the second argument 1, indicating that it should only flatten the list down to the
first level. This way, if the pairs in the relation are elements, the pairs will be preserved, as shown
below.

In[22]:= subsets3 = 888<, 81<<, 88<, 82<<, 88<, 81, 2<<,
881<, 81, 2<<, 882<, 81, 2<<, 881, 2<, 81, 2<<<;

In[23]:= Flatten@subsets3, 1D

Out[23]= 88<, 81<, 8<, 82<, 8<, 81, 2<,
81<, 81, 2<, 82<, 81, 2<, 81, 2<, 81, 2<<

After flattening, we apply Union to remove duplicates and put the output in canonical order.
Note that, strictly speaking, the result from this function need not equal the domain of the relation,
since there may exist elements in the domain that are not related to any object in the domain. It might
be better to call this the "effective domain" of the relation.

In[24]:= findDomain@R_?relationQD := Union@Flatten@R, 1DD

Observe that this gives the expected output for both the “divides” relation and the subsets relation.
In[25]:= findDomain@div6D

Out[25]= 81, 2, 3, 4, 5, 6<

In[26]:= findDomain@subsets3D

Out[26]= 88<, 81<, 82<, 81, 2<<

Reflexivity
Now we are ready to begin testing relations for various properties. The first property we consider is
reflexivity. Remember that a relation R is reflexive if Ha, aL œ R for every a in the domain.
To check to see if a relation is reflexive, we compute the domain of the relation and then check each
element a of the domain to see if Ha, aL is in the relation. If the function finds an element of the domain
with Ha, aL – R, then it returns False immediately. If it checks all of the members of the domain with
no failures, then it returns True.

In[27]:= reflexiveQ@R_?relationQD := Module@8a, domain<,
domain = findDomain@RD;
Catch@
Do@If@! MemberQ@R, 8a, a<D, Throw@FalseDD
, 8a, domain<D;

Throw@TrueD
D

D

Recall that the Do function’s second argument, {a,domain} specifies that the variable a is to be
assigned to every member of the list domain. Also recall that MemberQ expects its first argument to
be the list and the second argument to be the element being sought.

Chapter09.nb 5

We can use this on the “divides” relation.
In[28]:= reflexiveQ@div6D

Out[28]= True

Symmetry
Next we will examine the symmetric and antisymmetric properties. To determine whether a relation is
symmetric, we simply use the definition. That is, we check, for every member Ha, bL œ R, whether
Hb, aL is also a member of the relation. If we discover a pair in the relation for which the reverse pair is
not in the relation, then we know that the relation is not symmetric. Otherwise, it must be symmetric.
This is the logic employed by the following function.

In[29]:= symmetricQ@R_?relationQD := Module@8u<,
Catch@
Do@If@! MemberQ@R, Reverse@uDD, Throw@FalseDD
, 8u, R<D;

Throw@TrueD
D

D

For example, we can see that the “divides” relation is not symmetric.
In[30]:= symmetricQ@div6D

Out[30]= False

The union of “divides” and “multiple of” is symmetric, however.
In[31]:= divOrMul6 = Union@div6, mul6D

Out[31]= 881, 1<, 81, 2<, 81, 3<, 81, 4<, 81, 5<, 81, 6<, 82, 1<, 82, 2<,
82, 4<, 82, 6<, 83, 1<, 83, 3<, 83, 6<, 84, 1<, 84, 2<,
84, 4<, 85, 1<, 85, 5<, 86, 1<, 86, 2<, 86, 3<, 86, 6<<

In[32]:= symmetricQ@divOrMul6D

Out[32]= True

To determine whether a given relation R is antisymmetric, we again use the definition. Remember that
a relation is antisymmetric when it has the property that whenever a pair Ha, bL and its reverse Hb, aL
both belong to R, then it must be that a = b. To check this, we simply loop over all members u of R and
see if the opposite pair belongs to R and whether the members of the pair are different.

In[33]:= antisymmetricQ@R_?relationQD := Module@8u<,
Catch@
Do@
If@MemberQ@R, Reverse@uDD && u@@1DD ¹≠ u@@2DD, Throw@FalseDD
, 8u, R<D;

Throw@TrueD
D

D

We now use this function to check to see if the “divides” and “multiple of” relations defined earlier are
antisymmetric.

6 Chapter09.nb

We now use this function to check to see if the “divides” and “multiple of” relations defined earlier are
antisymmetric.

In[34]:= antisymmetricQ@div6D

Out[34]= True

In[35]:= antisymmetricQ@mul6D

Out[35]= True

Transitivity
The transitive property is the most difficult to check. Recall the definition of transitive relations: a
relation R is transitive if, whenever Ha, bL and Hb, cL are in R, then Ha, cL must be as well.
To check transitivity, we will consider all possible a, b, and c in the domain of R. Then if Ha, bL œ R,
Hb, cL œ R, and Ha, cL – R, we know that the relation is not transitive. If there is no such triple a, b, c to
contradict transitivity, then we conclude that the relation is transitive.
Here is the function.

In[36]:= transitiveQ@R_?relationQD := Module@8domain, a, b, c<,
domain = findDomain@RD;
Catch@
Do@If@MemberQ@R, 8a, b<D && MemberQ@R, 8b, c<D &&

! MemberQ@R, 8a, c<D, Throw@FalseDD
, 8a, domain<, 8b, domain<, 8c, domain<D;

Throw@TrueD
D

D

We see that the “divisible” relation is transitive. But we can cause it to fail to be transitive by removing
the H1, 6L pair, since H1, 2L and H2, 6L are in R.

In[37]:= transitiveQ@div6D

Out[37]= True

In[38]:= r2 = Complement@div6, 881, 6<<D

Out[38]= 881, 1<, 81, 2<, 81, 3<, 81, 4<, 81, 5<, 82, 2<,
82, 4<, 82, 6<, 83, 3<, 83, 6<, 84, 4<, 85, 5<, 86, 6<<

In[39]:= transitiveQ@r2D

Out[39]= False

9.2 n-ary Relations and Their Applications
Using Mathematica, we can construct an n-ary relation where n is a positive integer. As in the previous
section, we will begin by defining predicates both for the elements of the relation (tupleQ) and for
the n-ary relation (nrelationQ). The only difference here, as compared to the predicates we defined
in the previous section, is that we do not know the length of the list that makes up a tuple.

Chapter09.nb 7

In[40]:= tupleQ@_ListD := True;
tupleQ@___D := False

In[42]:= nrelationQ@8__?tupleQ<D := True;
nrelationQ@___D := False

Consider the following 4-ary relation that represents student records.
In[44]:= r3 = 88"Adams", 9 012 345, "Politics", 2.98<,

8"Woo", 9 100 055, "Film Studies", 4.99<,
8"Warshall", 9 354 321, "Mathematics", 3.66<<;

The first field represents the name of the student, the second field is the student ID number, the third
field is the students' home department, and the last field stores the student's grade point average. Note
that this relation satisfies nrelationQ.

In[45]:= nrelationQ@r3D

Out[45]= True

While we created a very generic n-ary relation predicate, you can also create more specific predicates
for particular situations. For instance, the tuples in the relation above will always consist of a string,
integer, string, and a floating point number. So we could make the following predicate specifically for
that kind of relation.

In[46]:= studentRecordQ@8_String, _Integer, _String, _Real<D := True;
studentRecordQ@___D := False

In[48]:= studentRelationQ@8__?studentRecordQ<D := True;
studentRelationQ@___D := False

In[50]:= studentRelationQ@r3D

Out[50]= True

Operations on n-ary Relations
Now we will create functions that act on n-ary relations to compute projections and the join of relations.
Projection
We will construct a function for computing a projection of a relation. The function takes as input an
expression satisfying nrelationQ along with a list of integers representing the indices of the fields
that are to remain. The output will be another n-ary relation.

In[51]:= projectRelation@R_?nrelationQ, P : 8__Integer<D := R@@All, PDD

The expression R[[All,P]] returns the list formed by taking every element of R and extracting the
sublist defined by the indices in the list P.
We can use this function with the relation we created earlier.

In[52]:= projectRelation@r3, 82, 4<D

Out[52]= 889 012 345, 2.98<, 89 100 055, 4.99<, 89 354 321, 3.66<<

8 Chapter09.nb

In[53]:= projectRelation@r3, 83, 4, 1<D

Out[53]= 88Politics, 2.98, Adams<,
8Film Studies, 4.99, Woo<, 8Mathematics, 3.66, Warshall<<

Join
Now let's consider joins of relations. The join operation has applications to databases when tables of
information need to be combined in a meaningful manner.
The join function that we will implement here follows the following outline.
1. Input two relations R and S and a positive integer p, representing the overlap between the relations.
2. Examine each element u of R and determine the last p fields of u.
3. Examine all elements v of S to determine if the first p fields of v match the last p fields of u.
4. Upon finding a match, we combine the elements and place the result in a relation T, which is

returned as the output of the function.
In[54]:= joinRelation@R_?nrelationQ, S_?nrelationQ, p_IntegerD :=

Module@8overlapR, i, u, v, x, joinElement, T = 8<<,
Do@
x = u@@-p ;; -1DD;
Do@
If@v@@1 ;; pDD ã x,
joinElement = Join@u, v@@p + 1 ;; -1DDD;
AppendTo@T, joinElementD

D
, 8v, S<D

, 8u, R<D;
T

D

The joinRelation function beings by initializing the return relation, T, to the empty list. The outer
Do loop assigns the variable u to each tuple in the relation R. It immediately assigns x to the last p
elements of u. This is the portion that is supposed to overlap with elements from the other relation.
Note the use of the Span (;;) operator. The span -p ;; -1 in the Part ([[…]]) applied to u refers
to the span from -p to -1, that is, from the element p from the end of the list u to the last element of u.
The inner Do loop assigns the variable v to each tuple in the relation S. The body of the loop is an If
statement that checks whether the first p elements of v agree with the last p elements of u (stored in
x). If that holds, that is, the two elements overlap, then joinElement is created by applying the
Join function to u and the rest of v. This new object is then added to the relation T, which is the
output of the function.
We conclude this section by applying the joinRelation function to Example 11 of Section 9.2.

Chapter09.nb 9

In[55]:= teachingAssignments = 8

8"Cruz", "Zoology", 335<,
8"Cruz", "Zoology", 412<,
8"Farber", "Psychology", 501<,
8"Farber", "Psychology", 617<,
8"Grammer", "Physics", 551<,
8"Rosen", "Computer Science", 518<,
8"Rosen", "Mathematics", 575<<;

In[56]:= classSchedule = 8

8"Computer Science", 518, "N521", "2:00 P.M."<,
8"Mathematics", 575, "N502", "3:00 P.M."<,
8"Mathematics", 611, "N521", "4:00 P.M."<,
8"Physics", 544, "B505", "4:00 P.M."<,
8"Psychology", 501, "A100", "3:00 P.M."<,
8"Psychology", 617, "A110", "11:00 A.M."<,
8"Zoology", 335, "A100", "9:00 A.M."<,
8"Zoology", 412, "A100", "8:00 A.M."<<;

We apply joinRelation and use TableForm to make the output readable.
In[57]:= joinRelation@teachingAssignments,

classSchedule, 2D êê TableForm
Out[57]//TableForm=

Cruz Zoology 335 A100 9:00 A.M.
Cruz Zoology 412 A100 8:00 A.M.
Farber Psychology 501 A100 3:00 P.M.
Farber Psychology 617 A110 11:00 A.M.
Rosen Computer Science 518 N521 2:00 P.M.
Rosen Mathematics 575 N502 3:00 P.M.

9.3 Representing Relations
From this point forward, we will consider exclusively binary relations. This gives us additional options
for how we represent relations. In this section, we will see how to represent binary relations with zero-
one matrices and digraphs.

Representing Relations Using Matrices
We begin with representations of relations with zero-one matrices.
A First Example
We create a matrix as a list of lists, where the inner lists store the elements in the rows of the matrix.
The MatrixForm function will display the matrix in the usual form.

10 Chapter09.nb

In[58]:= 881, 2<, 83, 4<< êê MatrixForm
Out[58]//MatrixForm=

K
1 2
3 4

O

Be careful to not use MatrixForm in conjunction with an assignment, lest the MatrixForm be
permanently attached to the matrix, which can cause other functions to fail.
When working with matrix representations of relations, it can be useful to begin with a matrix of the
correct size filled entirely with 0s, and then modify that matrix as needed. To do this, you can use the
ConstantArray function. The first argument to ConstantArray is the constant that will be used
as the filler in the resulting list. The second argument specifies the dimension. For an ordinary list, the
second argument is the length of the list. For a matrix, the second argument must be a pair specifying
the number of rows and the number of columns.
For example, to create a 4µ 4 matrix filled with 0s, you would enter the following expression.

In[59]:= exampleMatrix = ConstantArray@0, 84, 4<D;
exampleMatrix êê MatrixForm

Out[60]//MatrixForm=
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Right now, this matrix doesn't represent a very interesting relation. We need to change entries to 1 to
represent elements of the domain that are related to each other. For instance, if H1, 2L œ R then we need
to change the H1, 2L entry to a 1. To do this, we use Part ([[…]]) and Set (=) to specify the location
and make the assignment.

In[61]:= exampleMatrix@@1, 2DD = 1

Out[61]= 1

We can see that it modified the matrix.
In[62]:= exampleMatrix êê MatrixForm

Out[62]//MatrixForm=
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Let's make this matrix represent the relation “is one less than” on 81, 2, 3, 4<, as in, “1 is one less than
2.”

Chapter09.nb 11

In[63]:= exampleMatrix@@2, 3DD = 1;
exampleMatrix@@3, 4DD = 1;
exampleMatrix êê MatrixForm

Out[65]//MatrixForm=
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

Transforming a Set of Pairs Representation into a Matrix Representation
Now we'll create a function to turn a relation satisfying relationQ (defined in the first section) into
a matrix representation. Doing so is fairly straightforward. Given a relation R, whose domain consists
of integers, we can use findDomain from above to extract the domain. We then create a square
matrix whose size is equal to the largest integer in the domain, which we can obtain with the Max
function. Then we simply loop through the elements of the relation and set the value of the correspond-
ing entry in the matrix to 1.

In[66]:= relationToMatrix@R_?relationQD := Module@8u, max, m<,
max = Max@findDomain@RDD;
m = ConstantArray@0, 8max, max<D;
Do@m = ReplacePart@m, u Ø 1D
, 8u, R<D;

m
D

Note the use of ReplacePart to modify the matrix m. Recall that elements of the relation R are
pairs, such as {1,2}. The expression m@@uDD = 1, therefore, would be resolved to an expression of
the form m@@81, 2<DD = 1. This does not set the H1, 2L element of m to 1, however. Rather,
m[[{1,2}]] represents the list consisting of the first element and second element of m, that is,
m[[{1,2}]] is the first two rows of m. ReplacePart allows us to use the pair {1,2} to reference
the H1, 2L entry of m. The ReplacePart function’s first argument is an expression to be manipulated,
such as the matrix m. Its second argument is a Rule (->) with left operand a location specification and
right operand the new value.
We use the function above to convert the relations we defined earlier, specifically div6 and
divOrMul6 into matrices.

In[67]:= div6M = relationToMatrix@div6D;
div6M êê MatrixForm

Out[68]//MatrixForm=
1 1 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

12 Chapter09.nb

In[69]:= divOrMul6M = relationToMatrix@divOrMul6D;
divOrMul6M êê MatrixForm

Out[70]//MatrixForm=
1 1 1 1 1 1
1 1 0 1 0 1
1 0 1 0 0 1
1 1 0 1 0 0
1 0 0 0 1 0
1 1 1 0 0 1

As before, it can be useful to have a predicate that we can use to ensure that an argument to a function
is in fact the matrix associated to a relation. Any such matrix must be square and consist entirely of 0s
and 1s.
The MatrixQ function can be used to ensure that an expression does represent a matrix. It requires
only one argument and returns True only if the expression is a list of lists. MatrixQ can also accept
a second optional argument to place specific demands on the allowed elements of the matrix. Here, we
insist that the elements be 0 or 1. So we create a pure Function (&) that tests equality for 0 or 1.
The other requirement is that the matrix be square. We use the Dimensions function to obtain a list
containing the number of rows and columns and compare those values. Here is the predicate.

In[71]:= matrix01Q@m_ListD := MatrixQ@m, HÒ ã 0 »» Ò ã 1L &D &&
Dimensions@mD@@1DD ã Dimensions@mD@@2DD;

matrix01Q@___D = False;

Now that we have zero-one matrix representations of relations to work with, we can use these matrices
to determine which properties apply to them. In this form, it is sometimes easier to determine whether
a relation is reflexive, symmetric, or antisymmetric.
Checking Properties
For example, to determine whether or not a relation is reflexive from its zero-one matrix representa-
tion, we only need to check the diagonal entries. If any diagonal entry is 0, then the relation is not
reflexive.

In[73]:= reflexiveMatrixQ@m_?matrix01QD := Module@8i, dim<,
dim = Dimensions@mD@@1DD;
Catch@
For@i = 1, i § dim, i++,
If@m@@i, iDD ã 0, Throw@FalseDD

D;
Throw@TrueD

D
D

We can now use this to test a few of the relations above.
In[74]:= reflexiveMatrixQ@exampleMatrixD

Out[74]= False

Chapter09.nb 13

In[75]:= reflexiveMatrixQ@div6MD

Out[75]= True

Symmetry is particularly easy to test, because of the fact that a relation is symmetric if and only if its
matrix representation is symmetric. Mathematica has a built-in test, SymmetricMatrixQ that
checks symmetry.

In[76]:= SymmetricMatrixQ@div6MD

Out[76]= False

In[77]:= SymmetricMatrixQ@divOrMul6MD

Out[77]= True

Representing Relations Using Digraphs
Now we turn to representing relations with directed graphs, commonly called digraphs. You can draw
a graph in Mathematica with the GraphPlot function. For graphs representing relations, the Lay-
eredGraphPlot function often produces a more informative plot. The two functions have very
similar options and syntax, although the defaults differ. Here, we focus on LayeredGraphPlot.
The LayeredGraphPlot function can take a wide variety of options, but its only requirement is a
list specifying the edges in the graph given as rules. For example, consider Bob and his sister Barb,
whose parents are Ann and Abe. We can make a directed graph representing the relation “parent of” as
follows.

In[78]:= LayeredGraphPlot@
8"Ann" Ø "Bob", "Ann" Ø "Barb", "Abe" Ø "Bob", "Abe" Ø "Barb"<D

Out[78]=

To make this more informative, we’ll need to provide some options. In particular, we want to see the
names of the people associated with each vertex. To do this, we use the option VertexLabeling
with value True.

14 Chapter09.nb

In[79]:= LayeredGraphPlot@8"Ann" Ø "Bob", "Ann" Ø "Barb",
"Abe" Ø "Bob", "Abe" Ø "Barb"<, VertexLabeling Ø TrueD

Out[79]=

Ann

Bob Barb

Abe

Other values for VertexLabeling are False, in which no labels are displayed; Tooltip, in
which labels are displayed if you hover the mouse over the vertex; All, which gives both labels and
tooltips; and Automatic, which displays labels as tooltips provided the number of vertices is not too
large.
LayeredGraphPlot can also be applied to an adjacency matrix, rather than a list of rules represent-
ing edges. The following draws a graph of the “divisible” relation using the div6M matrix. Note that
the labels in this case are automatically chosen to be the integers from 1 to n, where n is the size of the
matrix.

In[80]:= LayeredGraphPlot@div6M, VertexLabeling Ø TrueD

Out[80]=

1

2 3

4

5

6

Note that when using a matrix representation, the fact that the relation is reflexive is not represented by
default. You can have Mathematica display loops indicating reflexivity by using the option
SelfLoopStyle->All.
In order to represent a relation satisfying relationQ as a graph, we'll create a function
drawRelation. At minimum, we need to transform the ordered pairs of the relation into the rules
that LayeredGraphPlot requires. To do this, we can use the Apply function at level 1 as shown
below.

Chapter09.nb 15

In[81]:= Apply@Rule, div6, 81<D

Out[81]= 81 Ø 1, 1 Ø 2, 1 Ø 3, 1 Ø 4, 1 Ø 5, 1 Ø 6,
2 Ø 2, 2 Ø 4, 2 Ø 6, 3 Ø 3, 3 Ø 6, 4 Ø 4, 5 Ø 5, 6 Ø 6<

Recall that @@@ is the operator form of the above expression.
In[82]:= Rule üüü div6

Out[82]= 81 Ø 1, 1 Ø 2, 1 Ø 3, 1 Ø 4, 1 Ø 5, 1 Ø 6,
2 Ø 2, 2 Ø 4, 2 Ø 6, 3 Ø 3, 3 Ø 6, 4 Ø 4, 5 Ø 5, 6 Ø 6<

That is all that is necessary to graph the relation.
In[83]:= LayeredGraphPlot@Rule üüü div6, VertexLabeling Ø TrueD

Out[83]=

1

2 3

4

5

6

The example above shows us how to define drawRelation. We will also use the Self-
LoopStyle to turn off the self-loops so as to make cleaner looking graphs.

In[84]:= drawRelation@R_?relationQD := LayeredGraphPlot@
Rule üüü R, VertexLabeling Ø True, SelfLoopStyle Ø NoneD

In[85]:= drawRelation@dividesRelation@10DD

Out[85]=

1

23

4

5

6

7

8

9 10

The Graph Object
In addition to being able to draw graphs, as described above, Mathematica includes the capability to
treat a graph as a raw object. This is the same distinction as is made between the plot of a function and
the function itself.
To create a graph as an object, you use the Graph function, which is also the head of the object. Just
as with GraphPlot and LayeredGraphPlot, you can use a list of rules indicating the edges as
the input to Graph. For example, the following defines a Graph object representing the div6
relation.

16 Chapter09.nb

To create a graph as an object, you use the Graph function, which is also the head of the object. Just
as with GraphPlot and LayeredGraphPlot, you can use a list of rules indicating the edges as
the input to Graph. For example, the following defines a Graph object representing the div6
relation.

In[86]:= div6G = Graph@Rule üüü div6D

Out[86]=

Observe that the output is a plot of the graph. However, div6G stores a Graph object, not the plot.
The images displayed by Graph may be very different from those produced by LayeredGraph-
Plot. The plotting algorithms for Graph emphasize avoiding edge crossings, while LayeredGraph-
Plot produces images that oftentimes better reveal the structure of a relation. Fortunately, Layered-
GraphPlot will accept a Graph object as its argument.

In[87]:= LayeredGraphPlot@div6G, VertexLabeling Ø TrueD

Out[87]=

1

2 3

4

5

6

The main benefit of the Graph object is Mathematica can perform computations with it. For example,
we can use this representation to determine whether or not the relation is transitive. To do this, we use
Mathematica's implementation of the Floyd-Warshall all-pairs shortest path algorithm called
GraphDistanceMatrix. This function returns a matrix whose Hi, jL entry represents the shortest
path from vertex i to vertex j. For example, the distance matrix for the div6 relation is:

Chapter09.nb 17

In[88]:= GraphDistanceMatrix@div6GD êê MatrixForm

Out[88]//MatrixForm=
0 1 1 1 1 1
¶ 0 ¶ 1 ¶ 1
¶ ¶ 0 ¶ ¶ 1
¶ ¶ ¶ 0 ¶ ¶

¶ ¶ ¶ ¶ 0 ¶

¶ ¶ ¶ ¶ ¶ 0

In a graph of a transitive relation, the distance between any two distinct elements must be either 1 or
infinite (meaning there is no path between them). To see this, assume that you have a transitive relation
and suppose there are elements A and Z that the all-pairs algorithm has determined have distance 3.
That means there must be two elements, say M and N, such that A is connected to M is connected to N
is connected to Z. From the point of view of the relation, then, HA, ML and HM , NL and HN, ZL are all
members of the relation. But if the relation is transitive, the fact that HA, ML and HM , NL are in the
relation means that HA, NL is in the relation. So, A to N to Z is a shorter path (of length 2). Applying
transitivity again shows that A and Z are adjacent. While this does not amount to a proof, it should be
convincing that we can check for transitivity by making sure that no two vertices in the graph of a
relation have distance which is finite and greater than 1.
Here is the function.

In[89]:= transitiveGraphQ@g_GraphD := Module@8d, i, j<,
d = GraphDistanceMatrix@gD;
Cases@Flatten@dD, Except@0 1 InfinityDD ã 8<

D

After computing the distance matrix, the function uses Cases to identify any elements of the matrix
that are not 0, 1, or ¶. Cases takes a list as the first argument, for which we Flatten the distance
matrix, and a pattern as the second argument. In this case, we apply Except to 0, 1, and Infinity,
separated by the Alternatives (|) operator. This means that anything other than those three sym-
bols will match the pattern. The result of Cases will be the list of all the elements of the matrix that
are other than 0, 1, and Infinity. Consequently, the relation is transitive if and only if that output is
equal to the empty list.

In[90]:= transitiveGraphQ@div6GD

Out[90]= True

In this section we have barely scratched the surface of graphs in Mathematica. We will return to them
in much greater detail in Chapter 10.

9.4 Closures of Relations
In this section, we will develop algorithms to compute the reflexive, symmetric, and transitive closures
of binary relations. We begin with the reflexive closure.

18 Chapter09.nb

Reflexive Closure
The algorithm for computing the reflexive closure of a relation, with the matrix representation, is very
simple. We simply set each diagonal entry equal to 1. The resulting matrix represents the reflexive
closure of the relation.
Note that this function will accept a matrix as input and return a modified version of that matrix. Inter-
nally, the function will need to work with a copy of the argument. That is, we will need to declare a
local variable and set it equal to the argument. The reason for this is that when you execute a function
in Mathematica, the argument is immediately substituted for the symbol used to represent it every-
where it appears. Thus, if x is the argument to a function and you call the function with a value of 3, an
assignment such as x=5 will be interpreted as the illegal assignment 3=5.
Here is the function for computing the reflexive closure on a matrix representation.

In[91]:= reflexiveClosure@m_?matrix01QD := Module@8ans = m, i<,
Do@ans@@i, iDD = 1, 8i, Dimensions@mD@@1DD<D;
ans

D

(Note that all the closure operations only apply to a relation on a set and are generally not valid for a
relation from one set to a different set. This means we may assume that the matrix representation of the
relation is square, which is imposed by matrix01Q.)
We use this function to find the reflexive closure of the example relation we introduced earlier in the
chapter.

In[92]:= reflexiveClosure@exampleMatrixD êê MatrixForm

Out[92]//MatrixForm=
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

Recall that exampleMatrix represented the “is one less than” relation. Looking at the matrix above,
you can see that the reflexive closure includes equality.

Symmetric Closure
Next we write a function for constructing the symmetric closure of a relation R. We use the observa-
tion that if Ha, bL is a member of R then Hb, aL must be included in the symmetric closure, so we can
simply add it to the relation.

In[93]:= symmetricClosure@m_?matrix01QD := Module@8ans = m, i, j<,
Do@If@ans@@i, jDD ã 1, ans@@j, iDD = 1D
, 8i, Dimensions@mD@@1DD<, 8j, Dimensions@mD@@2DD<D;

ans
D

Applying this to our exampleMatrix yields the “different by 1” relation. And applying it to the “is
a divisor of” relation yields the “is a divisor or multiple of” relation.

Chapter09.nb 19

In[94]:= symmetricClosure@exampleMatrixD êê MatrixForm

Out[94]//MatrixForm=
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

In[95]:= symmetricClosure@div6MD êê MatrixForm
Out[95]//MatrixForm=

1 1 1 1 1 1
1 1 0 1 0 1
1 0 1 0 0 1
1 1 0 1 0 0
1 0 0 0 1 0
1 1 1 0 0 1

Transitive Closure
Having created the reflexive and symmetric closures, we turn to implementing the transitive closure in
Mathematica. This is a more difficult problem than the earlier cases, both in terms of computational
complexity and implementation. In the text, there are two algorithms outlined (a generic transitive
closure and Warshall’s algorithm) and both will be covered in this section.
A Transitive Closure Function
First we will implement the transitive closure algorithm presented as Algorithm 1 in Chapter 9 of the
text. This will require the Boolean join and Boolean product operations on zero-one matrices that were
introduced in Chapter 2. Recall from Section 2.6 of this manual that the BitAnd and BitOr func-
tions correspond to the Boolean operations fl and fi . Here are some examples.

In[96]:= BitAnd@1, 1D

Out[96]= 1

In[97]:= BitAnd@1, 0D

Out[97]= 0

In[98]:= BitOr@0, 1D

Out[98]= 1

In[99]:= BitOr@1, 1D

Out[99]= 1

Now we turn to the Boolean join matrix operation. Recall that for zero-one matrices A and B of the
same size, the join of A and B is the matrix AfiB whose Hi, jL entry is Ai jÍBi j. Since BitOr automati-
cally threads over lists, it serves the role of the matrix join function without any additional work. For
example,

20 Chapter09.nb

In[100]:= joinA = 881, 0<, 80, 1<<;
joinA êê MatrixForm

Out[101]//MatrixForm=

K
1 0
0 1

O

In[102]:= joinB = 881, 1<, 80, 0<<;
joinB êê MatrixForm

Out[103]//MatrixForm=

K
1 1
0 0

O

In[104]:= BitOr@joinA, joinBD êê MatrixForm
Out[104]//MatrixForm=

K
1 1
0 1

O

Next, recall that for appropriately sized zero-one matrices, the Boolean product AüB is the matrix
whose Hi, jL entry is obtained by the formula

fi
k=1

n

Iai kÏ bk jM

where n is the number of columns of A, which is also the number of rows of B. This is implemented in
the boolProduct function. Refer to Section 2.6 where we first developed this function.
In[105]:= boolProduct::dimmismatch =

"The dimensions of the input matrices do not match.";

In[106]:= boolProduct@A_?matrix01Q, B_?matrix01QD :=
Module@8m, kA, kB, n, output, i, j, c, p<,
8m, kA< = Dimensions@AD;
8kB, n< = Dimensions@BD;
If@kA ¹≠ kB, Message@boolProduct::dimmismatchD; Return@DD;
output = ConstantArray@0, 8m, n<D;
For@i = 1, i § m, i++,
For@j = 1, j § n, j++,
c = BitAnd@A@@i, 1DD, B@@1, jDDD;
For@p = 2, p § kA, p++,
c = BitOr@c, BitAnd@A@@i, pDD, B@@p, jDDDD;

D;
output@@i, jDD = c;

D
D;
output

D

Chapter09.nb 21

As an example,
In[107]:= productA = 881, 0, 1<, 80, 1, 0<, 81, 0, 1<<;

productA êê MatrixForm

Out[108]//MatrixForm=
1 0 1
0 1 0
1 0 1

In[109]:= productB = 881, 1, 0<, 80, 1, 0<, 80, 0, 1<<;
productB êê MatrixForm

Out[110]//MatrixForm=
1 1 0
0 1 0
0 0 1

In[111]:= boolProduct@productA, productBD êê MatrixForm
Out[111]//MatrixForm=

1 1 1
0 1 0
1 1 1

We are now ready to implement Algorithm 1 from Section 9.4 for calculating the transitive closure.
Recall that the idea of this algorithm is that we compute Boolean powers of the matrix of the relation,
up to the size of the domain. At each step, we use the Boolean join on A = M @iD and the result matrix B.
In[112]:= transitiveClosure@m_?matrix01QD := Module@8i, a = m, b = m<,

Do@a = boolProduct@a, mD;
b = BitOr@b, aD
, 8i, 2, Dimensions@mD@@1DD<D;

b
D

We test our transitive closure function on Example 7 from Section 9.4, where it was found that the
relation with matrix representation

MR =
1 0 1
0 1 0
1 1 0

has transitive closure

MR* =
1 1 1
0 1 0
1 1 1

22 Chapter09.nb

In[113]:= example7 = 881, 0, 1<, 80, 1, 0<, 81, 1, 0<<;
example7 êê MatrixForm

Out[114]//MatrixForm=
1 0 1
0 1 0
1 1 0

In[115]:= transitiveClosure@example7D êê MatrixForm
Out[115]//MatrixForm=

1 1 1
0 1 0
1 1 1

Warshall’s Algorithm
Next we consider Warshall's algorithm, as presented as Algorithm 2 in Section 9.4. This algorithm is
straightforward to implement.
In[116]:= warshall@m_?matrix01QD := Module@8i, j, k, w = m, n<,

n = Dimensions@mD@@1DD;
For@k = 1, k § n, k++,
For@i = 1, i § n, i++,
For@j = 1, j § n, j++,
w@@i, jDD = BitOr@w@@i, jDD, BitAnd@w@@i, kDD, w@@k, jDDDD

D
D

D;
w

D

Applying this to the same example as before, we see that the result is correct.
In[117]:= warshall@example7D êê MatrixForm

Out[117]//MatrixForm=
1 1 1
0 1 0
1 1 1

We can compare these two functions in terms of execution time using Mathematica's Timing func-
tion. But we must point out that this comparison for a single example does not prove anything about
the complexity or relative performance of the two algorithms. Rather, it serves as a demonstration that,
even for relations on small domains, the difference in the computational complexity of the algorithms
is noticeable. We shall consider the following zero-one matrix that represents a relation on the set
81, 2, 3, 4, 5, 6<.

Chapter09.nb 23

In[118]:= transitiveCompare =
880, 0, 0, 0, 0, 1<, 81, 0, 1, 0, 0, 0<, 81, 0, 0, 1, 0, 0<,
81, 0, 0, 0, 1, 0<, 81, 0, 0, 0, 0, 1<, 80, 1, 0, 0, 0, 0<<;

transitiveCompare êê MatrixForm

Out[119]//MatrixForm=
0 0 0 0 0 1
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 0 0

In[120]:= Timing@warshall@transitiveCompareDD

Out[120]= 80.001027,
881, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<<<

In[121]:= Timing@transitiveClosure@transitiveCompareDD

Out[121]= 80.004604,
881, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<<<

From this example, we can see that Warshall's algorithm can be a substantial improvement over the
alternative, at least on this specific example. The reader is encouraged to explore this further.

9.5 Equivalence Relations
In this section we will examine how we can use Mathematica to compute with equivalence relations.
There are three specific problems that we will address here: given an equivalence relation on a set, how
to compute the equivalence class of an element; how to determine the number of equivalence relations
on a finite set; and how to compute the smallest equivalence relation that contains a given relation on
some finite set. Note that in this section, relations are assumed to be represented as in the start of this
chapter, as satisfying relationQ.
First, we provide a test that determines whether or not a relation is an equivalence relation. Using the
work that we've already done and recalling that an equivalence relation is simply a relation that is
reflexive, symmetric, and transitive, this task is a simple one.
In[122]:= equivalenceQ@R_?relationQD :=

reflexiveQ@RD && symmetricQ@RD && transitiveQ@RD

As an example, let's define the equivalence relation “congruent mod 4” on the integers from 0 to n.

24 Chapter09.nb

In[123]:= makeMod4@n_IntegerD := Module@8i, j<,
Reap@

Do@If@Mod@i - j, 4D ã 0, Sow@8i, j<DD
, 8i, 0, n<, 8j, 0, n<D

D@@2, 1DD
D

In[124]:= mod4to8 = makeMod4@8D

Out[124]= 880, 0<, 80, 4<, 80, 8<, 81, 1<, 81, 5<, 82, 2<, 82, 6<,
83, 3<, 83, 7<, 84, 0<, 84, 4<, 84, 8<, 85, 1<, 85, 5<,
86, 2<, 86, 6<, 87, 3<, 87, 7<, 88, 0<, 88, 4<, 88, 8<<

In[125]:= equivalenceQ@mod4to8D

Out[125]= True

Equivalence Classes
Recall that, given an equivalence relation R and a member a of the domain of R, the equivalence class
of a is the set of all members b of the domain for which the pair Ha, bL belongs to R. In other words, it
is the set of all elements in the domain that are R-equivalent to a. So to determine the equivalence class
of a particular element of the domain, the algorithm is fairly simple. We just search through R looking
for all pairs of the form Ha, bL, adding each such second element b to the class. We do not have to
search for pairs of the form Hb, aL because equivalence relations are symmetric.
We can use the Cases function to implement this approach. Previously, we have used Select as a
way to compute a sublist based on a criteria. Cases is similar, with two important differences. First,
where Select uses a function to decide which elements of the original list to include, Cases uses a
pattern. For example, to find all of the elements of mod4to8 with first element 3, we would need to
match the pattern {3,_}, as shown below.
In[126]:= Cases@mod4to8, 83, _<D

Out[126]= 883, 3<, 83, 7<<

The second difference is that Cases can not only list those elements of the original list that match the
pattern, but it can use a rule so that the output involves a modified version of the elements that match
the pattern. For example, in order to return only the second elements, i.e., the 3 and 7, in the above, we
enter the following.
In[127]:= Cases@mod4to8, 83, b_< Ø bD

Out[127]= 83, 7<

The following function returns the equivalence class for a given equivalence relation and a point in the
domain. We use Cases as illustrated above and apply Union to be certain that there are no duplicates
in the output and to order the result.
In[128]:= equivalenceClass@R_?equivalenceQ, a_D := Module@8b<,

Union@Cases@R, 8a, b_< Ø bDD
D

As an example, we compute the equivalence class of 3 in the modulo 4 relation on the domain
81, 2, …, 30<.

Chapter09.nb 25

As an example, we compute the equivalence class of 3 in the modulo 4 relation on the domain
81, 2, …, 30<.
In[129]:= equivalenceClass@makeMod4@30D, 3D

Out[129]= 83, 7, 11, 15, 19, 23, 27<

Number of Equivalence Relations on a Set
Next, we consider how to construct all of the equivalence relations on a given (finite) set. The straight-
forward way to do this is to construct all relations on the given domain and then check them to see if
they are equivalence relations. Since a relation on a set A is merely a subset of Aµ A, generating all
relations is the same as generating all subsets of Aµ A.
To implement this, we begin by creating the set Aµ A using Mathematica’s Tuples function.
Tuples will take a list and a positive integer, e.g., 2, and return the list of all possible tuples of the
specified length. In effect, Tuples[A,2] produces Aµ A. For example, to compute 81, 2<µ 81, 2<,
we would enter the following.
In[130]:= Tuples@81, 2<, 2D

Out[130]= 881, 1<, 81, 2<, 82, 1<, 82, 2<<

We apply the Subsets function to Aµ A in order to find all subsets. Given a list, Subsets produces
the list of all sublists. For example, applying Subsets to the output from Tuples above produces
the following.
In[131]:= Subsets@Tuples@81, 2<, 2DD

Out[131]= 88<, 881, 1<<, 881, 2<<, 882, 1<<, 882, 2<<, 881, 1<, 81, 2<<,
881, 1<, 82, 1<<, 881, 1<, 82, 2<<, 881, 2<, 82, 1<<,
881, 2<, 82, 2<<, 882, 1<, 82, 2<<, 881, 1<, 81, 2<, 82, 1<<,
881, 1<, 81, 2<, 82, 2<<, 881, 1<, 82, 1<, 82, 2<<,
881, 2<, 82, 1<, 82, 2<<, 881, 1<, 81, 2<, 82, 1<, 82, 2<<<

The Column function will place each element of the output from Subsets on a separate line, so as to
make it easier to read.
In[132]:= Column@%D

Out[132]=

8<

881, 1<<
881, 2<<
882, 1<<
882, 2<<
881, 1<, 81, 2<<
881, 1<, 82, 1<<
881, 1<, 82, 2<<
881, 2<, 82, 1<<
881, 2<, 82, 2<<
882, 1<, 82, 2<<

26 Chapter09.nb

Out[132]=

881, 1<, 81, 2<, 82, 1<<
881, 1<, 81, 2<, 82, 2<<
881, 1<, 82, 1<, 82, 2<<
881, 2<, 82, 1<, 82, 2<<
881, 1<, 81, 2<, 82, 1<, 82, 2<<

To complete the process, we need to limit the output to those subsets of Aµ A which are equivalence
relations. For this, we will apply Select. Recall that Select applied to a list and a function will
produce the sublist of the original for which the function returns True. In this case, the function we
use will be equivalenceQ.
In[133]:= Select@Subsets@Tuples@81, 2<, 2DD, equivalenceQD êê Column

Out[133]=

8<

881, 1<<
882, 2<<
881, 1<, 82, 2<<
881, 1<, 81, 2<, 82, 1<, 82, 2<<

This example shows us how to build a more general function. allEquivalenceRelations below
will accept a list as its argument and will output all of the equivalence relations.
In[134]:= allEquivalenceRelations@A_ListD :=

Select@Subsets@Tuples@A, 2DD, equivalenceQD

For example, there are 15 equivalence relations on 81, 2, 3<.
In[135]:= Length@allEquivalenceRelations@81, 2, 3<DD

Out[135]= 15

Closure
The last question to be considered in this section is the problem of finding the smallest equivalence
relation containing a relation R.
The key idea is that we need to find the smallest relation containing R that is reflexive, symmetric, and
transitive. Recalling the previous section on closures, it is natural to think that we may compute the
reflexive closure, the symmetric closure, and then the transitive closure, one after the other. The only
concern would be that one closure would no longer have one of the previous properties. The following
outlines why this is not the case.
1. First create the reflexive closure of R, call it P.
2. Compute the symmetric closure of P and call this Q. Note that Q is still reflexive since no pairs

were removed from the relation and no elements were added to the domain. So Q is both
symmetric and reflexive.

3. Compute the transitive closure of Q and name this S. Note that S is still reflexive for the same
reason as above. And S is still symmetric since, if Ha, bL and Hb, cL are in Q to force the addition of
Ha, cL, then since Q is symmetric, Hc, bL and Hb, aL must also be in Q forcing Hc, aL to also be
included in S. Hence, S is an equivalence relation.

We implement this method as the composition of the four methods relationToMatrix,
reflexiveClosure, symmetricClosure, and then transitiveClosure.

Chapter09.nb 27

We implement this method as the composition of the four methods relationToMatrix,
reflexiveClosure, symmetricClosure, and then transitiveClosure.
In[136]:= equivalenceClosure@R_?relationQD := transitiveClosure@

symmetricClosure@reflexiveClosure@relationToMatrix@RDDDD

As an example, recall the div6 relation representing the is a divisor of on 81, 2, 3, 4, 5, 6<. We can
see that the smallest equivalence relation that contains div6 is the relation in which every number is
related to every other number.
In[137]:= equivalenceClosure@div6D êê MatrixForm

Out[137]//MatrixForm=
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

This is unsurprising, since 1 is a divisor of every number meaning that, in any equivalence relation
containing the “divides” relation, 1 is related to every number. We can make this example slightly
more interesting by removing 1.
In[138]:= div17minus1 = dividesRelation@Range@2, 17DD

Out[138]= 882, 2<, 82, 4<, 82, 6<, 82, 8<, 82, 10<, 82, 12<, 82, 14<, 82, 16<,
83, 3<, 83, 6<, 83, 9<, 83, 12<, 83, 15<, 84, 4<, 84, 8<,
84, 12<, 84, 16<, 85, 5<, 85, 10<, 85, 15<, 86, 6<, 86, 12<,
87, 7<, 87, 14<, 88, 8<, 88, 16<, 89, 9<, 810, 10<, 811, 11<,
812, 12<, 813, 13<, 814, 14<, 815, 15<, 816, 16<, 817, 17<<

28 Chapter09.nb

In[139]:= equivalenceClosure@div17minus1D êê MatrixForm

Out[139]//MatrixForm=
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(Note the first row and column still correspond to 1 because of the way the matrix is constructed in
relationToMatrix.) In this example, you see that 11, 13, and 17 become isolated, being the three
primes in the set which do not have multiples of them also included.

9.6 Partial Orderings
In this section, we consider partial orderings (or partial orders) and related topics, including maximal
and minimal elements, Hasse diagrams, and lattices. We will explore these topics in Mathematica, and
leave the exploration of other topics related to partial orderings to the reader.

Partial Orders and Examples
First, we will define a new Mathematica predicate for partial orders and create some examples of them.
Recall that a partial order is a binary relation on a set that satisfies the three conditions of being reflex-
ive, antisymmetric, and transitive. We define the predicate to be a function that tests an object against
the definition of a partial order. It is very similar to the equivalenceQ function we created in the
previous section.
In[140]:= partialOrderQ@R_?relationQD :=

reflexiveQ@RD && antisymmetricQ@RD && transitiveQ@RD

Now we can use the partialOrderQ function for checking to see if a list is a partial order. For
example, we can check that the div6 relation we defined earlier (recall that this is the “divides” rela-
tion on the set 1 through 6) is a partial order.

Chapter09.nb 29

In[141]:= partialOrderQ@div6D

Out[141]= True

We create some additional examples of partial orderings that we can use in the remainder of the sec-
tion. The div17minus1 relation (this was the “divides” relation on the set 2 through 17) is a partial
order.
In[142]:= partialOrderQ@div17minus1D

Out[142]= True

Indeed, all the relations created via the dividesRelation function will be partial orders.
Next, we create a function to produce examples of a class of lattices (we will discuss lattices more
below, for now it is enough that these examples are partial orders). The divisorLattice function
will create the partial order whose domain is the set of positive divisors of a given number and whose
order is defined by the “divides” relation. We only need to apply the dividesRelation function to
the divisors of the given number.
In[143]:= divisorLattice@n_IntegerD := dividesRelation@Divisors@nDD

The Divisors function produces the list of positive divisors of the given integer.
In[144]:= divisorLattice@10D

Out[144]= 881, 1<, 81, 2<, 81, 5<, 81, 10<,
82, 2<, 82, 10<, 85, 5<, 85, 10<, 810, 10<<

Finally, for a bit of variety, we create the posets whose Hasse diagrams are shown in Figure 8(a) and
Figure 10 in Section 9.6.
In[145]:= fig8A = 88"a", "a"<, 8"a", "b"<, 8"a", "c"<, 8"a", "d"<,

8"a", "e"<, 8"a", "f"<, 8"b", "b"<, 8"b", "c"<,
8"b", "d"<, 8"b", "e"<, 8"b", "f"<, 8"c", "c"<,
8"c", "e"<, 8"c", "f"<, 8"d", "d"<, 8"d", "e"<,
8"d", "f"<, 8"e", "e"<, 8"e", "f"<, 8"f", "f"<<;

In[146]:= partialOrderQ@fig8AD

Out[146]= True

In[147]:= fig10 = 88"A", "A"<, 8"A", "B"<, 8"A", "D"<, 8"A", "F"<,
8"A", "G"<, 8"B", "B"<, 8"B", "D"<, 8"B", "F"<,
8"B", "G"<, 8"C", "C"<, 8"C", "B"<, 8"C", "D"<, 8"C", "F"<,
8"C", "G"<, 8"D", "D"<, 8"D", "G"<, 8"E", "E"<, 8"E", "F"<,
8"E", "G"<, 8"F", "F"<, 8"F", "G"<, 8"G", "G"<<;

In[148]:= partialOrderQ@fig10D

Out[148]= True

Hasse Diagrams
Now that we have defined a predicate and have examples at our disposal, we turn to the problem of
having Mathematica draw Hasse diagrams of partial orders. As demonstrated in the textbook, a Hasse
diagram is a very useful tool for visualizing and understanding posets. Drawing the Hasse diagram for
a poset is not as simple as drawing all of the elements of the set and then connecting all related pairs
with an edge. Doing so would create an extremely messy, and not very useful, diagram. Instead, a
Hasse diagram contains only those edges that are absolutely necessary to reveal the structure of the
poset.

30 Chapter09.nb

Now that we have defined a predicate and have examples at our disposal, we turn to the problem of
having Mathematica draw Hasse diagrams of partial orders. As demonstrated in the textbook, a Hasse
diagram is a very useful tool for visualizing and understanding posets. Drawing the Hasse diagram for
a poset is not as simple as drawing all of the elements of the set and then connecting all related pairs
with an edge. Doing so would create an extremely messy, and not very useful, diagram. Instead, a
Hasse diagram contains only those edges that are absolutely necessary to reveal the structure of the
poset.
Covering Relations
The covering relation for a partial order is a minimal representation of the partial order, from which the
partial order can be reconstructed via transitive and reflexive closure.
Let Ç be a partial order on a set S. Recall that an element y in S covers an element x in S if x Ä y, x ¹≠ y,
and there is no element z of S, different from x and y, such that x Ä z Ä y. In other words, y covers x if
y is greater than x and there is no intermediary element. The set of pairs Hx, yL for which y covers x is
the covering relation of Ç.
As a simple example, consider the set 81, 2, 3, 4< ordered by magnitude, i.e., the usual “less than or
equal to.” This relation consists of 10 ordered pairs:

8H1, 1L, H1, 2L, H1, 3L, H1, 4L, H2, 2L, H2, 3L, H2, 4L, H3, 3L, H3, 4L, H4, 4L<

Its covering relation is the set
8H1, 2L, H2, 3L, H3, 4L<

which consists of only 3 pairs. All the other pairs of the partial order can be inferred from the covering
relation using transitivity and reflexivity. For instance, H1, 3L can be recovered from H1, 2L and H2, 3L
via transitivity. Note that the covering relation involves many fewer pairs and thus is a much more
efficient way to represent the partial order, at least in terms of storage.
Our goal is to write a function that will have Mathematica draw the Hasse diagram of a given partial
order. Since a Hasse diagram is, in fact, the graph of the associated covering relation, we will create a
function to find the covering relation of the partial order.
First, we need a test to check whether a given element covers another.
In[149]:= coversQ@R_?partialOrderQ, 8x_, y_<D := Module@8z, checkSet<,

Catch@
If@x ã y, Throw@FalseDD;
If@! MemberQ@R, 8x, y<D, Throw@FalseDD;
checkSet = Complement@findDomain@RD, 8x, y<D;
Do@
If@MemberQ@R, 8x, z<D && MemberQ@R, 8z, y<D, Throw@FalseDD
, 8z, checkSet<D;

Throw@TrueD
D

D

This function works by first checking to see if the two elements x and y are equal to each other or if the
pair Hx, yL fails to be in the partial order. In either of these situations, y does not cover x. Assuming the
pair of elements passes these basic hurdles, the function then checks every other element of the
domain. If it can find an element that sits between x and y, then we know they don't cover. If no ele-
ment sits between them, then in fact y does cover x.
Now we can construct the covering relation of a partial order using the following Mathematica func-
tion. This function simply checks every element of the given relation to see if one covers the other and
includes only those that do in the output relation. It uses Select to execute the check over each
element of the given relation and eliminate those that do not belong. The test used is a pure Func-
tion (&) formed from coversQ.

Chapter09.nb 31

Now we can construct the covering relation of a partial order using the following Mathematica func-
tion. This function simply checks every element of the given relation to see if one covers the other and
includes only those that do in the output relation. It uses Select to execute the check over each
element of the given relation and eliminate those that do not belong. The test used is a pure Func-
tion (&) formed from coversQ.
In[150]:= coveringRelation@R_?partialOrderQD := Select@R, coversQ@R, ÒD &D

Let's look at a couple of examples. First, the example described above, of the set 81, 2, 3, 4< ordered by
magnitude.
In[151]:= coveringRelation@881, 1<, 81, 2<, 81, 3<, 81, 4<,

82, 2<, 82, 3<, 82, 4<, 83, 3<, 83, 4<, 84, 4<<D

Out[151]= 881, 2<, 82, 3<, 83, 4<<

As a second example, let’s consider a lattice.
In[152]:= coveringRelation@divisorLattice@30DD

Out[152]= 881, 2<, 81, 3<, 81, 5<, 82, 6<, 82, 10<, 83, 6<,
83, 15<, 85, 10<, 85, 15<, 86, 30<, 810, 30<, 815, 30<<

Drawing Hasse Diagrams
Now we will use the covering relation in order to write a function to draw the Hasse diagram for partial
orders. By using the coveringRelation function that we just completed and the LayeredGraph-
Plot function, we can draw the graph associated to a partial order.
Because LayeredGraphPlot draws graphs with arrows pointing downwards, we interpret 8a, b< as
an edge b Ø a in order to have the smallest elements at the bottom, as is typical. We accomplish that
by applying ReplaceAll (/.) to the covering relation, which remember is represented as a list of
pairs, transforming a pair into the rule in the reverse order.
In[153]:= hasseDiagram@R_?partialOrderQD := Module@8edges<,

edges = coveringRelation@RD ê. 8a_, b_< Ø Rule@b, aD;
LayeredGraphPlot@edges, VertexLabeling Ø TrueD

D

As an example, here is a diagram representing the divisor lattice of 210.

32 Chapter09.nb

In[154]:= hasseDiagram@divisorLattice@2*3*5*7DD

Out[154]=

2

1

3 5 7

6 10 14 15 21 35

30 42 70 105

210

And here are the Hasse diagrams for some of the other examples we discussed in this section.
In[155]:= hasseDiagram@fig8AD

Out[155]=

b

a

c d

e

f

Chapter09.nb 33

In[156]:= hasseDiagram@div17minus1D

Out[156]=

4

2

610 14

3

915

8 12

5 7

16

In[157]:= hasseDiagram@fig10D

Out[157]=

B

A

DF

C

G

E

Comparing this last example to the diagram given in the textbook illustrates that, while using Mathemat-
ica's LayeredGraphPlot function doesn't result in quite as appealing graphs as those that are
created by hand, it still provides a fairly useful graph. Also note that you can tweak the results of
LayeredGraphPlot dynamically. To adjust the location of a vertex, place the mouse pointer over
the vertex, double-click to enter editing mode for the graph, and double-click again to edit the vertex.
Then you can click and drag the vertex to specify a different position.

Maximal and Minimal Elements
We will construct a function that determines the set of minimal elements of a partially ordered set.
The function takes two arguments: a partial order R and a subset S of the domain of R. It returns the set
of minimal elements of S with respect to R. It first initializes the set of minimal elements to all of S and
then removes those that are not minimal.

34 Chapter09.nb

In[158]:= minimalElements@R_?partialOrderQ, S_ListD := Module@8M, s, t<,
M = S;
Do@
Do@
If@MemberQ@R, 8t, s<D, M = Complement@M, 8s<DD
, 8t, Complement@S, 8s<D<D

, 8s, S<D;
M

D

We can see this work on our div6 partial order. Since we'll be using the div6 partial order for many
examples in this section, it's Hasse diagram may also be useful.
In[159]:= hasseDiagram@div6D

Out[159]= 2

1

35

4 6

In[160]:= minimalElements@div6, Range@6DD

Out[160]= 81<

In[161]:= minimalElements@div6, Range@2, 6DD

Out[161]= 82, 3, 5<

Note that, by reversing the relation and thus the order, we can compute maximal elements very easily.
In[162]:= maximalElements@R_?partialOrderQ, S_ListD :=

minimalElements@inverseRelation@RD, SD

In[163]:= maximalElements@div6, Range@6DD

Out[163]= 84, 5, 6<

Least Upper Bound
Next we will write a function for computing the least upper bound of a set with respect to a partial
order, if it exists. Our function will return the value Null in the case that the set has no least upper
bound.
First we create a function upperBoundQ that determines whether a given element is an upper bound
of a set with respect to a relation. It accomplishes this by checking to make sure that the given element
is greater than every element of the set.

Chapter09.nb 35

First we create a function upperBoundQ that determines whether a given element is an upper bound
of a set with respect to a relation. It accomplishes this by checking to make sure that the given element
is greater than every element of the set.
In[164]:= upperBoundQ@R_?partialOrderQ, S_List, u_D := Module@8s<,

Catch@
Do@If@! MemberQ@R, 8s, u<D, Throw@FalseDD
, 8s, S<D;

Throw@TrueD
D

D

For example, under the div6 relation, 6 is an upper bound of 81, 2, 3<, but not of 81, 2, 3, 4<.
In[165]:= upperBoundQ@div6, 81, 2, 3<, 6D

Out[165]= True

In[166]:= upperBoundQ@div6, 81, 2, 3, 4<, 6D

Out[166]= False

Next we write a function to find all of the upper bounds for a given set. We do this by considering
every element of the domain of the relation and checking to see which are upper bounds, using the
upperBoundQ function.
In[167]:= upperBounds@R_?partialOrderQ, S_ListD :=

Module@8domR, d, U = 8<<,
domR = findDomain@RD;
Do@If@upperBoundQ@R, S, dD, AppendTo@U, dDD
, 8d, domR<D;

U
D

For instance, the upper bounds of the set 81, 2< under div6 are:
In[168]:= upperBounds@div6, 81, 2<D

Out[168]= 82, 4, 6<

To complete the task of finding the least upper bound of a set, we merely use upperBounds to
compute all of the upper bounds for the set, use minimalElements to see which of the upper
bounds are minimal, and then check to see how many minimal upper bounds are found. If there is
exactly one minimal upper bound, then this is the least upper bound. Otherwise, the set has no least
upper bound.
In[169]:= leastUpperBound@R_?partialOrderQ, S_ListD := Module@8U, M<,

U = upperBounds@R, SD;
M = minimalElements@R, UD;
If@Length@MD ¹≠ 1, Null, M@@1DDD

D

For example, the least upper bounds of 81, 2< and 81, 2, 3< are found below, while 84, 5< has no least
upper bound in the domain of div6 and so does not return a value.

36 Chapter09.nb

In[170]:= leastUpperBound@div6, 81, 2<D

Out[170]= 2

In[171]:= leastUpperBound@div6, 81, 2, 3<D

Out[171]= 6

In[172]:= leastUpperBound@div6, 84, 5<D

Lattices
As the last topic in this section, we will consider the problem of determining whether a partial order is
a lattice. The approach we will take is a good example of top down programming. The test we design
here will confirm that the function divisorLattice written at the beginning of this section does
indeed produce lattices.
Recall that a partial order is a lattice if every pair of elements has both a least upper bound and a great-
est lower bound (in lattices, these are also referred to as the supremum and infimum of the pair or as
their meet and join). With this in mind, we can write the following function (with the understanding
that the helper functions still need to be written).
In[173]:= latticeQ@R_?partialOrderQD := hasLUBs@RD && hasGLBs@RD

We need to write the two helper functions: hasLUBs to determine if the partial order satisfies the
property that every pair of elements has a least upper bound, and hasGLBs to determine if every pair
has a greatest lower bound. Just as we did above with the maximalElements function, we really
only need to write one function if we recognize that a partial order satisfies the greatest lower bound
property if the inverse relation satisfies the least upper bound property. So we compose hasLUBs with
the inverseRelation function to create hasGLBs.
In[174]:= hasGLBs@R_?partialOrderQD := hasLUBs@inverseRelation@RDD

Now we complete the work by coding the hasLUBs function. We must test whether, for a given
relation R, each pair a and b in the domain of R has a least upper bound with respect to R.
In[175]:= hasLUBs@R_?partialOrderQD := Module@8domR, a, b<,

domR = findDomain@RD;
Catch@
Do@If@leastUpperBound@R, 8a, b<D === Null, Throw@FalseDD
, 8a, domR<, 8b, domR<D;

Throw@TrueD
D

D

Finally, all of the subroutines that go into making up the latticeQ program are complete, and we
can test it on some examples. Contrast the relations constructed by the dividesRelation function
versus those made by divisorLattice.
In[176]:= latticeQ@dividesRelation@10DD

Out[176]= False

Chapter09.nb 37

In[177]:= latticeQ@divisorLattice@20DD

Out[177]= True

Solutions to Computer Projects and Computations and
Explorations

Computer Projects 15

Given a partial ordering on a finite set, find a total ordering compatible with it using
topological sorting.

Solution: The textbook contains a detailed explanation of topological sorting and summarizes it as
Algorithm 1 of Section 9.6.
The set S is initialized to the domain of the given relation. At each step, find a minimal element (using
the minimalElements function we created above) of S. This minimal element is removed from S
and added as the next largest element of the total ordering. This repeats until S is empty and conse-
quently all elements are in the total order.
In[178]:= topologicalSort@R_?partialOrderQD := Module@8S, a, T<,

T = 8<;
S = findDomain@RD;
While@S ¹≠ 8<,
a = minimalElements@R, SD@@1DD;
S = Complement@S, 8a<D;
T = AppendTo@T, aD

D;
T

D

We apply this procedure to fig10.
In[179]:= topologicalSort@fig10D

Out[179]= 8A, C, B, D, E, F, G<

Computations and Explorations 1

Display all the different relations on a set with four elements.

Solution: As usual, Mathematica is much too powerful to solve only the single instance of the general
problem suggested by this question. We provide a very simple function that will compute all relations
on any finite set. This procedure merely constructs the Cartesian product C = Sµ S using Tuples and
then makes use of the Subsets function to obtain all of the relations on the set.

38 Chapter09.nb

In[180]:= allRelations@S_ListD := Subsets@Tuples@S, 2DD

We now test our procedure on a set with 2 elements. (This keeps the output to a reasonable length.) We
use Column to display each relation on its own line.
In[181]:= allRelations@81, 2<D êê Column

Out[181]=

8<

881, 1<<
881, 2<<
882, 1<<
882, 2<<
881, 1<, 81, 2<<
881, 1<, 82, 1<<
881, 1<, 82, 2<<
881, 2<, 82, 1<<
881, 2<, 82, 2<<
882, 1<, 82, 2<<
881, 1<, 81, 2<, 82, 1<<
881, 1<, 81, 2<, 82, 2<<
881, 1<, 82, 1<, 82, 2<<
881, 2<, 82, 1<, 82, 2<<
881, 1<, 81, 2<, 82, 1<, 82, 2<<

The reader is encouraged to determine the running time and output length for the function when the
input set has cardinality 4 or 5. Keep in mind that there are 2n2 relations on a set with n members.

Computations and Explorations 4

Determine how many transitive relations there are on a set with n elements for all positive
integers n with n § 7.

Solution: We will construct each possible nµ n zero-one matrix using an algorithm similar to binary
counting. The approach is as follows:

1. For each number from 0 to 2n2 - 1, we create a list of 0s and 1s that is the base 2 representation of
that integer. We can do this with the IntegerDigits function. The syntax
IntegerDigits@ i, 2, n^2D returns a list whose entries are the base 2 representation of the
integer i, padded with 0s if necessary to obtain a list of length n2.

2. Then create a matrix M whose entries are that list of values. These are all possible 2n2 zero-one
matrices (the reader is encouraged to prove this statement). We use the Partition function on
the list with second argument n to split the list of n2 values into a nµ n matrix.

3. Finally, evaluate the transitive closure of each of those matrices, using the warshall function
from Section 9.4 above. We test to see if the matrix is transitive by checking to see if it is equal to
its transitive closure. If so, it is counted as a transitive relation.

Chapter09.nb 39

The implementation is as follows:
In[182]:= countTransitive@n_IntegerD := Module@8i, j, T, M, count = 0<,

For@i = 0, i § 2^Hn^2L - 1, i++,
T = IntegerDigits@i, 2, n^2D;
M = Partition@T, nD;
If@warshall@MD ã M, count++D

D;
count

D

We use the function on a relatively small value and leave further computations to the reader.
In[183]:= countTransitive@3D

Out[183]= 171

Computations and Explorations 5

Find the transitive closure of a relation of your choice on a set with at least 20 elements.
Either use a relation that corresponds to direct links in a particular transportation or
communications network or use a randomly generated relation.

Solution: We will generate a random zero-one matrix with dimension 8µ 8, and then apply Warshall's
algorithm to compute the transitive closure. (We use a smaller size than specified in the problem so as
to be able to display the result easily.)
To generate a random zero-one matrix, we use the RandomVariate function. This function was first
discussed in Section 7.2. The first argument to RandomVariate must be a probability distribution.
We will use the BernoulliDistribution, which randomly chooses 0 or 1, with parameter .1.
This means that 1 is chosen with probability .1, resulting in a fairly sparse matrix. This increases the
chance that the transitive closure will have entries that are not 1. The second argument to Random-
Variate specifies the number of times to sample the distribution. By using a list, for example
{8,8}, the function will output a matrix of that size.
In[184]:= randomMatrix =

RandomVariate@BernoulliDistribution@.1D, 88, 8<D;
randomMatrix êê MatrixForm

Out[185]//MatrixForm=
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

40 Chapter09.nb

In[186]:= warshall@randomMatrixD êê MatrixForm
Out[186]//MatrixForm=

0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

Exercises
1. The relationToMatrix function converts a relation satisfying relationQ to a zero-

one matrix representation. Write a function to convert a zero-one matrix representation of a
relation to a relationQ representation.

2. Write a Mathematica function with the signature

makeRelation@S : 8__Integer<, f_FunctionD

that creates the relation 8Ha, bL œ Sµ S : f Ha, bL is true<. That is, makeRelation should
return the set of all ordered pairs Ha, bL of elements of S for which the pure Function (&) f
evaluates to true when a and b are substituted for the Slots (#) in f. For example, your
function should accept an expression such as

Ò1 + Ò2 < Ò1*Ò2 &

3. Write a Mathematica function to generate a random relation on a given finite set of integers.
4. Use the function you wrote in the preceding exercise to investigate the probability that an

arbitrary relation has each of the following properties: (a) reflexivity; (b) symmetry; (c) anti-
symmetry; and (d) transitivity.

5. Write Mathematica functions to determine whether a given relation is irreflexive or
asymmetric. (See the text for definitions of these properties.)

6. Investigate the ratio of the size of an arbitrary relation to the size of its transitive closure. How
much does the transitive closure make a relation “grow” on average?

7. Examine the function j defined as follows. For a positive integer n, we define jHnL to be the
number of relations on a set of n elements whose transitive closure is the “all” relation. (If A is
a set, then the “all” relation on A is the relation Aµ A with respect to which every member of
A is related to every other member of A, including itself.)

8. Write a Mathematica function that finds the antichain with the greatest number of elements in
a partial ordering. (See the text for the definition of antichain.)

Chapter09.nb 41

9. The transitive reduction of a relation G is the smallest relation H such that the transitive
closure of H is equal to the transitive closure of G. Use Mathematica to generate some
random relations on a set with ten elements and find the transitive reduction of each of these
random relations.

10. Write a Mathematica function that computes a partial order, given its covering relation.
11. Write a Mathematica function to determine whether a given lattice is a Boolean algebra, by

checking whether it is distributive and complemented. (See the text for definitions.)

42 Chapter09.nb

