
11 Trees

Introduction
This  chapter  is  devoted  to  exploring  the  computational  aspects  of  the  study  of  trees.  Recall  from the
textbook that a tree is a connected simple graph with no simple circuits.
First, we will discuss how to represent, display, and work with trees using Mathematica. Specifically,
we will see how to represent rooted trees and ordered rooted trees in addition to simple trees. We then
use these representations to explore many of the topics discussed in the textbook. In particular, we will
see how to use binary trees to store data in such a way as to make searching more efficient and we will
see  an  implementation  of  Huffman  codes.  We  will  use  Mathematica  to  carry  out  the  different  tree
traversal methods described in the text. We will see how to construct spanning trees using both depth-
first  and  breadth-first  search  and  how to  use  backtracking  to  solve  a  variety  of  interesting  problems.
Finally,  we  will  implement  Prim's  algorithm  and  Kruskal's  algorithm  for  finding  spanning  trees  of
minimum weight for a weighted graph.

11.1 Introduction to Trees
In this section we will focus on how to construct trees in Mathematica and how to check basic proper-
ties,  such as determining if  a tree is balanced. To begin, we will  consider the simplest case, unrooted
trees, before moving on to rooted and ordered trees.

Unrooted Trees
Recall that a tree is defined to be a graph that is undirected, connected, and has no simple circuits (or
cycles). To create a tree, we can just create a Graph as we did in the previous chapter.



In[1]:= firstTree = Graph@8"a" Ø "b", "a" Ø "c", "b" Ø "d", "b" Ø "e"<,
DirectedEdges Ø False,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[1]=

The first thing you may notice is that Mathematica has automatically drawn this in the traditional way,
which suggests  that  Mathematica  recognized the  graph as  a  tree.  The TreeGraphQ  function can be
used to check if a graph is a tree.

In[2]:= TreeGraphQ@firstTreeD

Out[2]= True

Note that the order of the vertices can affect which vertex Mathematica draws at the top of the tree. For
example, in the tree above, we can encourage Mathematica  to draw the vertex b  at the top of the tree
by giving a list of the vertices as the first argument. We list the vertices in layered order, that is, the top
vertex will be first, followed by the vertices we wish to see in the second layer, then the vertices in the
third layer and so forth. Note that changing the order of vertices within a layer can affect their horizon-
tal position. 

In[3]:= Graph@8"b", "e", "d", "a", "c"<,
8"a" Ø "b", "a" Ø "c", "b" Ø "d", "b" Ø "e"<,
DirectedEdges Ø False, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[3]=

There  is  a  limit  to  the  amount  of  influence  this  provides,  however.  For  example,  Mathematica  has  a
strong  preference  for  shorter,  more  balanced,  trees.  Attempting  to  use  the  vertex  order  to  create  a
deeper tree will often be ignored. For example, below we attempt, and fail, to get e at the top of the tree.
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There  is  a  limit  to  the  amount  of  influence  this  provides,  however.  For  example,  Mathematica  has  a
strong  preference  for  shorter,  more  balanced,  trees.  Attempting  to  use  the  vertex  order  to  create  a
deeper tree will often be ignored. For example, below we attempt, and fail, to get e at the top of the tree.

In[4]:= Graph@8"e", "b", "d", "a", "c"<,
8"a" Ø "b", "a" Ø "c", "b" Ø "d", "b" Ø "e"<,
DirectedEdges Ø False, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[4]=

Mathematica provides functions for creating certain kinds of trees. Recall that a rooted tree is called k-
ary if every vertex has no more than k children. When k = 2, we say that it is a binary tree. Also recall
that the height of a rooted tree is the maximum number of levels in the tree, i.e., the height is the length
of the largest path from the root to any other vertex. (Mathematica says that the tree has h levels, which
is synonymous with height h.) Given the height as the first argument and k as the second, the function
CompleteKaryTree produces the complete k-ary tree of height h. If the second argument is omit-
ted, it defaults as 2, producing a complete binary tree of the specified height.

In[5]:= CompleteKaryTree@3, 4, VertexLabels Ø "Name", ImagePadding Ø 5D

Out[5]=

Rooted Trees
Next  we  consider  rooted  trees.  Recall  that  a  rooted  tree  is  a  directed  graph  whose  underlying  undi-
rected graph is a tree and in which one vertex is designated as the root and all edges are directed away
from the root. For example, the following graph is a rooted tree.
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In[6]:= firstRooted =
Graph@8"a" Ø "b", "a" Ø "c", "a" Ø "d", "b" Ø "e", "b" Ø "f",

"c" Ø "g"<, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[6]=

Note that Mathematica drew this graph as a tree, just as you would hope. In fact, Mathematica does not
make  a  distinction  between  directed  edges  and  undirected  edges  for  trees,  and  TreeGraphQ  will
identify this as a tree.

In[7]:= TreeGraphQ@firstRootedD

Out[7]= True

While Mathematica does recognize trees with directed edges, it does not identify a root. When drawing
the tree, Mathematica’s emphasis is on minimizing the height, as the following example illustrates.

In[8]:= secondRooted = Graph@81 Ø 2, 1 Ø 3, 2 Ø 4, 2 Ø 5, 4 Ø 6, 4 Ø 7<,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[8]=

Mathematica has drawn this tree with 2 at the top of the image, despite the fact that it does not satisfy
the definition of a root, as it has an edge directed towards it. 
To draw the tree as  intended,  we can apply TreePlot.  This  is  related to  the GraphPlot  function
discussed  in  the  previous  chapter,  used  for  multigraphs.  TreePlot  accepts  up  to  three  arguments.
The first argument is a list of edges that form the tree. The first argument can also be a Graph object.
The second argument, which is optional, specifies where the root of the tree should be drawn. Possible
positions are: Top, Bottom, Left, Right, Center. The third argument, which is also optional but
can  only  be  used  when  the  second  is  present,  specifies  one  of  the  vertices  in  the  tree  to  be  the  root.
After all arguments are given, you may use the same options as described for GraphPlot in Chapter
10. The following illustrates how to draw secondRooted with the root 1 in its proper position.
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To draw the tree as  intended,  we can apply TreePlot.  This  is  related to  the GraphPlot  function
discussed  in  the  previous  chapter,  used  for  multigraphs.  TreePlot  accepts  up  to  three  arguments.
The first argument is a list of edges that form the tree. The first argument can also be a Graph object.
The second argument, which is optional, specifies where the root of the tree should be drawn. Possible
positions are: Top, Bottom, Left, Right, Center. The third argument, which is also optional but
can  only  be  used  when  the  second  is  present,  specifies  one  of  the  vertices  in  the  tree  to  be  the  root.
After all arguments are given, you may use the same options as described for GraphPlot in Chapter
10. The following illustrates how to draw secondRooted with the root 1 in its proper position.

In[9]:= TreePlot@secondRooted, Top, 1, VertexLabeling Ø TrueD

Out[9]=

1

2 3

4 5

6 7

Identifying Roots and Rooted Trees
As  mentioned  above,  Mathematica’s  TreeGraphQ  will  tell  you  if  a  graph  is  a  tree.  For  directed
graphs, it will return false if the graph is not a rooted tree. However, Mathematica  does not include a
function for finding the root of a rooted tree.
We begin by creating an example of a directed graph which is not a rooted tree, but whose underlying
undirected graph is a tree.

In[10]:= notRooted = Graph@81 Ø 2, 1 Ø 3, 2 Ø 4, 2 Ø 5, 4 Ø 6, 7 Ø 4<,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[10]=

This is identical to secondRooted, except for the direction of the edge between vertex 4 and vertex
7. Note that TreeGraphQ identifies it correctly.

In[11]:= TreeGraphQ@notRootedD

Out[11]= False

However, the underlying undirected graph is a tree.
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In[12]:= TreeGraphQ@UndirectedGraph@notRootedDD

Out[12]= True

It will be useful to be able to distinguish, however, between a rooted tree and a non-rooted tree. That is,
we will need a function that returns True for firstRooted, but False on its undirected underly-
ing graph.

In[13]:= rootedTreeQ@T_GraphD := TreeGraphQ@TD &&
HDirectedGraphQ@TD »» Length@VertexList@TDD < 2L

The condition  on the  length  of  the  vertex  list  is  included in  the  above because  Mathematica  will  not
recognize  a  singleton  graph  or  the  empty  graph  as  being  directed.  As  promised,  this  distinguishes
between firstRooted and its underlying graph.

In[14]:= rootedTreeQ@firstRootedD

Out[14]= True

In[15]:= rootedTreeQ@UndirectedGraph@firstRootedDD

Out[15]= False

The root of a rooted tree is necessarily the unique vertex with in-degree 0. We can use VertexInDe-
gree to obtain a list of the in-degrees of the vertices of a directed graph.

In[16]:= VertexInDegree@firstRootedD

Out[16]= 80, 1, 1, 1, 1, 1, 1<

The  Position  function,  applied  to  the  list  of  in-degree,  will  tell  us  which  location  in  the  list  is  0.
Note that the output of Position is a list of the position specifications, themselves lists. 

In[17]:= Position@VertexInDegree@firstRootedD, 0D

Out[17]= 881<<

Since TreeGraphQ has identified this as a tree, we know that there will be exactly one vertex with in-
degree 0, so we confidently use Part ([[…]]) to obtain the root’s position in the list.

In[18]:= Position@VertexInDegree@firstRootedD, 0D@@1, 1DD

Out[18]= 1

Since the output of VertexInDegree matches the order of vertices from VertexList, we can use
the previous result with Part ([[…]]) and VertexList to obtain the name of the root.

In[19]:= VertexList@firstRootedD@@
Position@VertexInDegree@firstRootedD, 0D@@1, 1DD

DD

Out[19]= a

We create a function based on this example.
In[20]:= findRoot@G_?rootedTreeQD :=

VertexList@GD@@Position@VertexInDegree@GD, 0D@@1, 1DDDD

With this function in hand, we can automate the use of TreePlot to draw a rooted tree in its proper
form.
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With this function in hand, we can automate the use of TreePlot to draw a rooted tree in its proper
form.

In[21]:= rootedPlot@G_?rootedTreeQ, opts___D :=
TreePlot@G, Top, findRoot@GD, optsD

We use this function to draw secondRooted.
In[22]:= rootedPlot@secondRooted, VertexLabeling Ø TrueD

Out[22]=

1

2 3

4 5

6 7

The drawback to rootedPlot is that, while it produces the expected image of the tree, its output is
an  image  not  a  Graph  object.  In  particular,  secondRooted  still  displays  with  2  at  the  top  of  the
image.

In[23]:= secondRooted

Out[23]=

We can, however, leverage the TreePlot function to modify the Graph object in order to cause it to
draw as a rooted tree. To do this, we need to first be able to modify arguments to a function.
Modifying arguments with HoldFirst
We  use  the  HoldFirst  attribute  to  make  arguments  modifiable.  Normally  when  you  provide  an
argument  to  a  function,  the  function  cannot  assign  to  the  argument.  Consider  the  following  simple
function.

In[24]:= five = 5

Out[24]= 5
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In[25]:= addOne@n_D := n = n + 1

In[26]:= addOne@fiveD

Set::setraw : Cannot assign to raw object 5. à

Out[26]= 6

This function produces an error when we attempt to assign a value to the argument n. This is a feature
of programming in Mathematica that is designed to encourage good programming practices. In particu-
lar, for a function to modify one of its arguments, we need to be very explicit that we really want to do
so.  This  helps  prevent  unintended  consequences  —  accidentally  modifying  an  argument  can  cause
serious bugs in your programs.
You  can  think  about  what's  going  on  in  the  addOne  function  this  way:  when  you  call  the  function
with  the  syntax  addOne[five],  all  of  the  occurrences  of  the  name n  are  resolved to  the  object  5,
which is  the  value  stored in  five.  So the  command n=n+1  resolves  to  5=5+1.  Clearly  that's  not  a
legal command.
The  HoldFirst  attribute  provides  a  way  around  this.  If  we  attach  the  HoldFirst  attribute  to
addOne, by applying SetAttributes to the function name and the attribute, we are telling Mathe-
matica  to not evaluate the parameter n  into the object it  refers to, but to evaluate the argument into a
symbol. Instead of evaluating the symbol five to get the object 5 and replacing the parameter n with
5,  the symbol five  is held, and the parameter n  is replaced with the symbol five.  This means that
the command becomes five=five+1.

In[27]:= SetAttributes@addOne2, HoldFirstD;
addOne2@n_D := n = n + 1

Now we can see that this function modifies the variable it is given.
In[29]:= addOne2@fiveD

Out[29]= 6

In[30]:= five

Out[30]= 6

To summarize: we can create functions that modify an argument that is passed as a symbol by applying
SetAttributes  to the function name and the attribute HoldFirst.  This allows the parameter to
appear on the left side of an assignment and modify the symbol passed as input to the function.
Rooting a Graph Object
Now,  in  order  to  draw  a  Graph  object  as  a  rooted  tree,  we  need  to  better  understand  the  output  of
TreePlot. Consider the example below.
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In[31]:= treeplotExample = TreePlot@81 Ø 2<, Top, 1D

Out[31]=

We use FullForm to expose the underlying data.
In[32]:= TreePlot@81 Ø 2<, Top, 1D êê FullForm

Out[32]//FullForm=
Graphics@Annotation@

GraphicsComplex@List@List@0.`, 1.`D, List@0.`, 0.`DD,
List@List@RGBColor@0.5`, 0.`, 0.`D, Line@List@List@1, 2DDDD,
List@RGBColor@0, 0, 0.7`D,
Tooltip@Point@1D, 1D, Tooltip@Point@2D, 2DDD,

List@DD, Rule@VertexCoordinateRules,
List@List@0.`, 1.`D, List@0.`, 0.`DDDD,

Rule@FrameTicks, NoneD, Rule@PlotRange, AllD,
Rule@PlotRangePadding, Scaled@0.1`DD,
Rule@AspectRatio, AutomaticDD

Notice,  in the middle of  the output  above,  the VertexCoordinateRules  symbol.  This  is  always
present in the output from a TreePlot and is identified, via a Rule (->), with a list of vertex loca-
tions. Our strategy will be to extract those locations and impose them on the corresponding Graph.
To extract the vertex coordinates, we make use of the ReplaceAll (/.) operator. We typically use
ReplaceAll (/.) with an expression and a rule or a list of rules as below.

In[33]:= x^2 + 5 y ê. 8x Ø 3, y Ø 7<

Out[33]= 44

The  output  from  TreePlot  contains  a  rule  identifying  the  symbol  VertexCoordinateRules
with the list  of  vertex locations.  But  it  is  not  a  list  of  rules,  so it  cannot  be used with ReplaceAll
(/.). The Cases function, however, will apply to any expression and produce a list of all the subex-
pressions matching a pattern. The first argument to Cases is an expression, the second is a pattern to
search  for,  and  the  third  optional  argument  is  a  level  specification.  Since  the  VertexCoordi-
nateRules  rule  is  below  the  top  level,  we  will  need  to  tell  Cases  to  delve  down  to  find  it.  The
easist  level  specification  to  use  here  is  Infinity.  Observe  the  result  of  applying  Cases  to  our
simple example with pattern _Rule and level specification Infinity.
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In[34]:= Cases@treeplotExample, _Rule, InfinityD

Out[34]= 8VertexCoordinateRules Ø 880., 1.<, 80., 0.<<,
FrameTicks Ø None, PlotRange Ø All,
PlotRangePadding Ø Scaled@0.1D, AspectRatio Ø Automatic<

Using this as the list of rules in conjunction with the ReplaceAll (/.) operator allows us to access
the list of vertex locations.

In[35]:= VertexCoordinateRules ê.
Cases@treeplotExample, _Rule, InfinityD

Out[35]= 880., 1.<, 80., 0.<<

Now that we know how to extract the vertex coordinates from the result of TreePlot, we need to be
able to set the locations in a Graph object. We do this for an individual vertex by using the Proper-
tyValue  function  in  the  form
PropertyValue@8 graph, vertex<, VertexCoordinatesD = 8x, y<.  Our  function  will
loop  over  all  the  vertices  of  the  graph  and  assign  the  vertex’s  coordinate  to  that  obtained  from  the
TreePlot. 
The function is below. It uses HoldFirst in order to modify the graph object it is passed.

In[36]:= SetAttributes@drawRooted, HoldFirstD;
drawRooted@G_?rootedTreeQ, opts___D :=
Module@8plot, vertList, vertLocs<,
plot = TreePlot@G, Top, findRoot@GD, optsD;
vertList = VertexList@GD;
vertLocs =
VertexCoordinateRules ê. Cases@plot, _Rule, InfinityD;

For@i = 1, i § Length@vertListD, i++,
PropertyValue@8G, vertList@@iDD<,

VertexCoordinatesD = vertLocs@@iDD
D;
G

D

Appling this function to secondRooted moves the vertices so that it is drawn in the typical places.
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In[38]:= drawRooted@secondRootedD

Out[38]=

Note that this effect is permanent. 
In[39]:= secondRooted

Out[39]=

Parents, Children, Leaves, and Internal Vertices of Rooted Trees
We now consider functions related to identifying particular vertices in a rooted tree.
We  begin  with  the  question  of  whether  one  vertex  is  the  parent  of  another.  Given  the  two  vertices,
checking this requires determining whether the directed edge from the parent to the child is actually in
the tree. 

In[40]:= parentQ@T_?rootedTreeQ, p_, c_D := EdgeQ@T, DirectedEdge@p, cDD

In[41]:= parentQ@firstRooted, "b", "f"D

Out[41]= True

In[42]:= parentQ@firstRooted, "b", "d"D

Out[42]= False

Next, we consider the question of finding the parent of a given vertex. This can be done by searching
the  EdgeList  output  for  those  edges  that  have  the  given  vertex  at  the  terminal  end.  Assuming  the
graph is in fact a rooted tree, there can be at most one such edge. If the vertex is the root, there will be
no parent  and the function will  return Null.  Note the second argument  in  Cases  means that  it  will
search the edge list for those edges from the variable p  to the given edge v  but will put only p  in the
output.
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Next, we consider the question of finding the parent of a given vertex. This can be done by searching
the  EdgeList  output  for  those  edges  that  have  the  given  vertex  at  the  terminal  end.  Assuming  the
graph is in fact a rooted tree, there can be at most one such edge. If the vertex is the root, there will be
no parent  and the function will  return Null.  Note the second argument  in  Cases  means that  it  will
search the edge list for those edges from the variable p  to the given edge v  but will put only p  in the
output.

In[43]:= findParent@T_?rootedTreeQ, v_D := Module@8P, p<,
P = Cases@EdgeList@TD, DirectedEdge@p_, vD Ø pD;
If@Length@PD ¹≠ 1, Null, P@@1DDD

D

In[44]:= findParent@firstRooted, "d"D

Out[44]= a

In[45]:= findParent@firstRooted, "a"D

For the related question of determining all children of the given vertex, we take the same approach but
with the given vertex at the initial end.

In[46]:= findChildren@T_?rootedTreeQ, v_D :=
Module@8c<, Cases@EdgeList@TD, DirectedEdge@v, c_D Ø cDD

In[47]:= findChildren@firstRooted, "a"D

Out[47]= 8b, c, d<

In[48]:= findChildren@firstRooted, "f"D

Out[48]= 8<

The findChildren function also indicates how we can test a vertex to determine if it is an internal
vertex or a leaf.

In[49]:= internalVertexQ@T_?rootedTreeQ, v_D :=
Length@findChildren@T, vDD ¹≠ 0

In[50]:= leafQ@T_?rootedTreeQ, v_D := Length@findChildren@T, vDD ã 0

In[51]:= internalVertexQ@firstRooted, "a"D

Out[51]= True

In[52]:= leafQ@firstRooted, "a"D

Out[52]= False

In[53]:= leafQ@firstRooted, "f"D

Out[53]= True

We  can  determine  all  the  leaves  of  a  given  tree  by  testing  each  vertex  with  leafQ.  Here  we  use
Select in order to test all of the vertices of the graph with a pure Function (&) based on leafQ.

In[54]:= findLeaves@T_?rootedTreeQD := Module@8V<,
V = VertexList@TD;
Select@V, leafQ@T, ÒD &D

D

12   Chapter11.nb



In[55]:= findLeaves@firstRootedD

Out[55]= 8d, e, f, g<

Ordered Rooted Trees
Recall  that  an  ordered  rooted  tree  is  a  rooted  tree  in  which  the  children  of  each  internal  vertex  are
ordered. 
Representing Ordered Rooted Trees
To represent an ordered rooted tree in Mathematica, we'll need to store the order of children. There are
many  ways  to  accomplish  this,  but  perhaps  the  most  straightforward  is  to  mark  each  vertex  with  its
order among its siblings. By way of illustration, we'll make an ordered version of firstRooted.

In[56]:= firstRooted

Out[56]=

Mathematica  automatically  draws  the  vertices  in  alphabetical  order.  But  suppose  instead  we  wanted
the children of a to be in the order c, b, d, and the children of b to be in the order f  then e. Internally,
we'll represent this by assigning, for each vertex, a property called “order”. We set the order of the root
to be 0, and for all other vertices, the order attribute will represent the position of that vertex among its
siblings. In our example, c  will have “order” 1, b  will have “order” 2, and d  will have “order” 3. We
will define a function that will use PropertyValue to set the “order” property for each vertex.
The first argument to this function will be the name of a rooted tree. The second argument will be a list
of values representing the order value to be assigned to each vertex. The function will loop through the
vertices of the tree and set the “order” property.
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In[57]:= setChildOrder::argx =
"List of orders is of incorrect length.";

setChildOrder@G_?rootedTreeQ, orderL_ListD :=
Module@8T = G, V, v<,
V = VertexList@TD;
Check@
If@Length@VD ¹≠ Length@orderLD,
Message@setChildOrder::argxDD, Return@$FailedDD;

For@i = 1, i § Length@VD, i++,
PropertyValue@8T, V@@iDD<, "order"D = orderL@@iDD

D;
T

D

Since  the  order  values  in  the  list  given  to  the  function  must  match  the  order  of  the  vertices  that  is
returned  from  VertexList,  it  is  a  good  idea  to  double-check  the  output  of  VertexList  before
using  this  function.  Also  note  that  this  function  outputs  a  new graph,  it  does  not  modify  the  original
input, so we will need to make an assignment to the output.

In[59]:= VertexList@firstRootedD

Out[59]= 8a, b, c, d, e, f, g<

In[60]:= firstOrdered = setChildOrder@firstRooted, 80, 2, 1, 3, 2, 1, 1<D

Out[60]=

Note that the vertices in firstOrdered now have the “order” property set, but we still need to make
the tree drawn in the appropriate way.
A Test for Ordered Rooted Trees
Now that we know how to represent an ordered rooted tree in Mathematica, we will create a function
to test a graph object and ensure that it does in fact represent an ordered rooted tree. This will help us
make functions  we write  later  be  more  robust.  The  requirement  for  being  an  ordered  rooted  tree  are:
the  object  must  be  a  tree,  it  must  be  directed,  every vertex must  have the  order  property  set,  and the
root’s order must be 0. 
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In[61]:= orderedRootedTreeQ@T_D := Module@8v<,
Catch@
If@! rootedTreeQ, Throw@FalseDD;
Do@If@

PropertyValue@8T, v<, "order"D === $Failed, Throw@FalseDD
, 8v, VertexList@TD<D;

If@PropertyValue@8T, findRoot@TD<, "order"D ¹≠ 0,
Throw@FalseDD;

Throw@TrueD
D

D

In[62]:= orderedRootedTreeQ@firstRootedD

Out[62]= False

In[63]:= orderedRootedTreeQ@firstOrderedD

Out[63]= True

Drawing Ordered Rooted Trees
While firstOrdered is now officially an ordered rooted tree and is storing the order of children, it
will not be drawn with children in the proper order. To influence the order in which the vertices appear
in the drawing, we will use the fact that Mathematica draws vertices in the same order as is output by
VertexList. Consider the following example,

In[64]:= orderExample1 =
Graph@81 Ø 2, 1 Ø 5, 1 Ø 3, 2 Ø "bannana", 2 Ø "apple"<,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[64]=

In[65]:= VertexList@orderExample1D

Out[65]= 81, 2, 5, 3, bannana, apple<

The order of the vertex list is determined by the order of the edges. For example, the edge 1Ø5 appears
before the edge 1Ø3 in the definition of the Graph, so vertex 5 appears before vertex 3. When draw-
ing  the  tree,  Mathematica  uses  the  order  of  the  vertices  in  the  vertex  list  to  determine  the  relative
positions of vertices within a level. In the above, since vertex 5 appears before vertex 3, it also appears
to the left.
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The order of the vertex list is determined by the order of the edges. For example, the edge 1Ø5 appears
before the edge 1Ø3 in the definition of the Graph, so vertex 5 appears before vertex 3. When draw-
ing  the  tree,  Mathematica  uses  the  order  of  the  vertices  in  the  vertex  list  to  determine  the  relative
positions of vertices within a level. In the above, since vertex 5 appears before vertex 3, it also appears
to the left.
By explicitly providing a list  of vertices as an argument to Graph,  we can influence the positions in
the image.

In[66]:= orderExample2 = Graph@81, 5, 2, 3, "apple", "bannana"<,
81 Ø 2, 1 Ø 5, 1 Ø 3, 2 Ø "bannana", 2 Ø "apple"<,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[66]=

We will use this feature in order to properly draw ordered rooted graphs. Given an ordered rooted tree,
we'll explicitly sort the vertices based on the order property. 
To create the ordered list of vertices, we will begin by initializing a symbol, OVerts, to the list contain-
ing only the root  and we initialize  a  counter  i  to  1.  We then use findChildren  to  find all  of  the
children of the root. We sort the children according to their order property, using Sort with a Func-
tion  (&)  as  the  second  argument  that  compares  the  order  properties.  Once  the  children  are  sorted,
they  are  appended  to  the  OVerts  list.  Then,  increment  the  counter  i  and  repeat.  At  each  step,  the
counter i is used as an index into OVerts to determine which vertex is being processed. If that vertex
has any children, they are sorted and added to the list.
Once  the  vertex  list  is  properly  ordered,  we  recreate  the  graph.  We  use  HoldFirst  again  to  allow
this function to modify its argument.
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In[67]:= plotORTree@T_?orderedRootedTreeQ, opts___D :=
Module@8E, R, OVerts, i, numverts, children, G, VP, v, p<,
E = EdgeList@TD;
R = findRoot@TD;
OVerts = 8R<;
i = 1;
While@i § Length@OVertsD,
children = findChildren@T, OVerts@@iDDD;
children = Sort@children, PropertyValue@8T, Ò1<, "order"D §

PropertyValue@8T, Ò2<, "order"D &D;
OVerts = Join@OVerts, childrenD;
i++

D;
G = Graph@OVerts, E, optsD;
Do@PropertyValue@8G, v<, "order"D =

PropertyValue@8T, v<, "order"D
, 8v, OVerts<D;

G
D

Finally,  we  can  draw  our  ordered  tree  correctly.  Note  that  to  retain   the  order,  we  make  an  explicit
reassignment of the symbol.

In[68]:= firstOrdered = plotORTree@firstOrdered,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[68]=

Properties of Trees
We conclude this section with functions for calculating the level of a vertex, the height of a tree, and
for determining if a tree is balanced or not.
The level of a vertex in a rooted tree is the length of the path from the root to the vertex. We compute
the level in reverse. We first initialize a counter to 0. If the given vertex is the root, then the level is 0.
Otherwise, increment the counter and look at the parent of the original vertex. If this vertex is the root,
then  the  counter  holds  the  level.  Otherwise,  increment  the  counter  and  back  up  to  the  parent  of  the
current vertex. When we reach the root, then the value of the counter is the level of the vertex.
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The level of a vertex in a rooted tree is the length of the path from the root to the vertex. We compute
the level in reverse. We first initialize a counter to 0. If the given vertex is the root, then the level is 0.
Otherwise, increment the counter and look at the parent of the original vertex. If this vertex is the root,
then  the  counter  holds  the  level.  Otherwise,  increment  the  counter  and  back  up  to  the  parent  of  the
current vertex. When we reach the root, then the value of the counter is the level of the vertex.

In[69]:= findLevel@T_?rootedTreeQ, V_D := Module@8v, level<,
level = 0;
v = V;
While@findParent@T, vD =!= Null,
level++;
v = findParent@T, vD

D;
level

D

We can compute the levels of g and d in the firstOrdered tree.
In[70]:= findLevel@firstOrdered, "g"D

Out[70]= 2

In[71]:= findLevel@firstOrdered, "d"D

Out[71]= 1

The height of a tree is the maximum of the levels of the vertices. We can compute the height by check-
ing each vertex's level. We use a variable to hold the largest level and each time we find a vertex with a
level larger than the current maximum, we update the variable.

In[72]:= findHeight@T_?rootedTreeQD := Module@8v, height, level<,
height = 0;
Do@level = findLevel@T, vD;
If@level > height, height = levelD
, 8v, VertexList@TD<D;

height
D

In[73]:= findHeight@firstOrderedD

Out[73]= 2

Recall that a rooted tree of height h  is balanced if all  leaves are at level h  or h- 1. To determine if a
given tree is balanced, we need to: (1) calculate the height of the tree, (2) find all the leaves of the tree
with the findLeaves function we wrote earlier, and (3) test each leaf's level and return False if it
is higher than level h- 1.
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In[74]:= balancedTreeQ@T_?rootedTreeQD := Module@8height, leaves, v<,
height = findHeight@TD;
leaves = findLeaves@TD;
Catch@
Do@If@findLevel@T, vD < height - 1, Throw@FalseDD
, 8v, leaves<D;

Throw@TrueD
D

D

We see that our firstOrdered tree is balanced.
In[75]:= balancedTreeQ@firstOrderedD

Out[75]= True

11.2 Applications of Trees
This section is concerned with applications of trees, particularly binary trees. Specifically, we consider
the  use  of  trees  in  binary  search  algorithms  as  well  as  in  Huffman  codes.  The  reason  we  use  binary
trees is that we can use the binary structure of the tree to make binary decisions (e.g., less than/greater
than)  regarding  search  paths  or  insertion  of  elements.  Additionally,  the  binary  tree  structure  corre-
sponds well with the way computers store information as binary data.
Recall  that  a  tree  is  called  a  binary  tree  if  all  vertices  in  the  tree  have  at  most  two  children.  In  this
section,  we  will  be  using  ordered  binary  trees.  The  fact  that  the  vertices  are  ordered  means  that  the
children  of  a  vertex  can  be  considered  to  be  either  a  left  child  or  a  right  child.  By  convention,  we
consider the left child to be the first child and the right child to be second.

Representation in Mathematica
Before we get to the applications,  we will  discuss how we can represent binary trees in Mathematica
and  develop  some  functions  to  help  us  manipulate  them.  Since  a  binary  tree  is  a  particular  kind  of
ordered rooted tree, our work here should be consistent with what we did above.
A Binary Tree Test
We  will  construct  a  test,  binaryTreeQ  to  test  whether  a  graph  represents  a  binary  tree.  We  will
impose three conditions for an object to be considered a binary tree. First, it must be an ordered rooted
tree, i.e.,  it  must pass orderedRootedTreeQ.  Second, it  must be binary, that is,  each vertex must
have at most two children. And third, each vertex other than the root must have order attribute 1 or 2,
with 1 indicating that the vertex is a left child and 2 for right. The root will have its order attribute set
to 0.
First, let's construct an example of a binary tree. The tree we construct is the binary search tree for the
letters D, B, F, A, C, E.
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In[76]:= firstBinaryTree = Graph@8"D", "B", "F", "A", "C", "E"<,
8"D" Ø "B", "D" Ø "F", "B" Ø "A", "B" Ø "C", "F" Ø "E"<,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[76]=

In[77]:= firstBinaryTree =
setChildOrder@firstBinaryTree, 80, 1, 2, 1, 2, 1<D;

Now that we have an example, let's create the test. To check that the tree is in fact binary, we can use
the  VertexOutDegree  function  to  count  the  number  of  children  of  each  vertex.  If  any  vertex  has
more  than  two  children,  then  the  tree  is  not  binary.  And  we'll  make  sure  that  each  vertex  is  marked
with an order of 1 or 2, or 0 in the case of the vertex.

In[78]:= binaryTreeQ@T_GraphD := Module@8R, v, vpos<,
Catch@
If@! orderedRootedTreeQ@TD, Throw@FalseDD;
R = findRoot@TD;
Do@

If@VertexOutDegree@T, vD > 2, Throw@FalseDD;
vpos = PropertyValue@8T, v<, "order"D;
If@Hvpos ã 0 && v ¹≠ RL »»

Hvpos ¹≠ 0 && vpos ¹≠ 1 && vpos ¹≠ 2L, Throw@FalseDD
, 8v, VertexList@TD<D

Throw@TrueD
D

D

In[79]:= binaryTreeQ@firstBinaryTreeD

Out[79]= True

Drawing Binary Trees
Next we'll write a function for drawing binary trees. Note that, while plotORTree will draw a binary
tree, that function will display vertices that are only children directly below their parent rather than to
the left or right. Here we take more control over the locations by explicitly calculating the position of
each vertex.
Think about the tree as being drawn in a 1 by 1 box with H0, 0L at the bottom left corner. The y-coordi-
nate of each vertex will depend on the height of the tree and the level of the vertex. Specifically, the y
coordinate of any vertex is 1- l ê h, where l is the level of the vertex and h is the height of the tree. This
way, the root, which is at level 0, has y-coordinate 1 and the vertices in the last level have y-coordinate
0.
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Think about the tree as being drawn in a 1 by 1 box with H0, 0L at the bottom left corner. The y-coordi-
nate of each vertex will depend on the height of the tree and the level of the vertex. Specifically, the y
coordinate of any vertex is 1- l ê h, where l is the level of the vertex and h is the height of the tree. This
way, the root, which is at level 0, has y-coordinate 1 and the vertices in the last level have y-coordinate
0.
For the x-coordinates, the position of the vertex depends on the position of its parent and its level. We
start by setting the x-position of the root to 1

2
. The left child of the root will be drawn at x-coordinate 1

4

and the right child at 3
4

. We can think about the children of the root as being drawn 1
4

 to the left of the

root and 1
4

 to the right of the root, respectively. That is, the x-coordinate of the root's left child is 1
2
- 1
4

.

and the x-coordinate of the right child is 1
2
+ 1
4

. Generally, for a vertex in level l, we can calculate its x-

coordinate as the x-coordinate of its parent plus (for right children) or minus (for left) 1
2l+1

.

The  drawBinaryTree  function  is  below.  It  begins  by  calculating  the  height  of  the  tree  with  the
findHeight  function  we  created  earlier  and  finds  the  root  with  findRoot.  It  then  processes  the
root of the tree by setting its position to J 1

2
, 1N. (Note that we can set the position of the vertex by using

PropertyValue  to  set  the  VertexCoordinates  property.  This  is  in  some  ways  more  conve-
nient  than  assembling  all  of  the  vertex  positions  and  then  using  VertexCoordinates  within  a
Graph definition.) We also create a list, verts, and populate it with the root's children. 
We then begin a While loop. We initialize a counter i to 1. This counter serves as an index into the
verts list. At each step in the loop, we do several things. First, we use the findLevel function to
determine the  level  of  the  vertex.  Second,  the  y-coordinate  is  calculated by the  formula  1+ l

h
.  Third,

the  x-coordinate  is  calculated  by  accessing  the  x-coordinate  of  the  parent  and  adding  or  subtracting
1

2l+1
.  Fourth, we set the VertexCoordinates  property for the vertex. And finally, the children of

the current vertex are added to the verts list and the counter is incremented.
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In[80]:= SetAttributes@drawBinaryTree, HoldFirstD;
drawBinaryTree@T_?binaryTreeQD :=
Module@8height, v, i, level, verts, x, y, parent, side<,
height = findHeight@TD;
v = findRoot@TD;
PropertyValue@8T, v<, VertexCoordinatesD = 81ê2, 1<;
verts = findChildren@T, vD;
i = 1;
While@i § Length@vertsD,
v = verts@@iDD;
level = findLevel@T, vD;
y = 1 - levelêheight;
parent = findParent@T, vD;
x = PropertyValue@8T, parent<, VertexCoordinatesD@@1DD;
side = Switch@PropertyValue@8T, v<, "order"D, 1, -1, 2, 1D;
x = x + side*1êH2^Hlevel + 1LL;
PropertyValue@8T, v<, VertexCoordinatesD = 8x, y<;
verts = Join@verts, findChildren@T, vDD;
i++

D;
T

D

In[82]:= drawBinaryTree@firstBinaryTreeD

Out[82]=

Parents and Children
In  the  previous  section,  we  created  the  function  findParent,  which  returns  the  parent  of  a  given
vertex in the given tree. This function works on binary trees just as well.

In[83]:= findParent@firstBinaryTree, "C"D

Out[83]= B

We had also created the findChildren  function, which we can also use with binary trees. But for
binary  trees,  we'll  want  to  be  more  specific  and  be  able  to  determine  the  left  and  right  children  of  a
given  vertex.  Finding  the  left  (respectively,  right)  child  of  a  given  vertex  can  be  done  by  looking  at
each child of the vertex and checking the order attribute. The child with order 1 is the left child and is
returned by the function (respectively, 2 and right child). If there is no left (respectively, right), child,
the function will return Null.
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We had also created the findChildren  function, which we can also use with binary trees. But for
binary  trees,  we'll  want  to  be  more  specific  and  be  able  to  determine  the  left  and  right  children  of  a
given  vertex.  Finding  the  left  (respectively,  right)  child  of  a  given  vertex  can  be  done  by  looking  at
each child of the vertex and checking the order attribute. The child with order 1 is the left child and is
returned by the function (respectively, 2 and right child). If there is no left (respectively, right), child,
the function will return Null.

In[84]:= findLeftChild@T_?binaryTreeQ, v_D ê; VertexQ@T, vD :=
Module@8children, w, pos<,
children = findChildren@T, vD;
Catch@
Do@pos = PropertyValue@8T, w<, "order"D;
If@pos ã 1, Throw@wDD
, 8w, children<D;

Throw@NullD
D

D

In[85]:= findRightChild@T_?binaryTreeQ, v_D ê; VertexQ@T, vD :=
Module@8children, w, pos<,
children = findChildren@T, vD;
Catch@
Do@pos = PropertyValue@8T, w<, "order"D;
If@pos ã 2, Throw@wDD
, 8w, children<D;

Throw@NullD
D

D

In[86]:= findLeftChild@firstBinaryTree, "F"D

Out[86]= E

In[87]:= findRightChild@firstBinaryTree, "F"D

Building Binary Trees
We will  also want  functions to  create  and build  up a  binary tree.  Specifically,  we'll  create  a  function
that,  given the label for the root of a binary tree,  creates the tree with that vertex as its root.  We will
then write functions that, given a binary tree, a vertex in the tree, and a label for a new vertex, adds the
new vertex as the left or right child of the given vertex.
The  newBinaryTree  function  creates  the  binary  tree  consisting  of  a  single  vertex,  the  root  of  the
tree. This function also accepts a list of options to be passed to the Graph.

In[88]:= newBinaryTree@r_, opts___D := Module@8T<,
T = Graph@8r<, 8<, optsD;
PropertyValue@8T, r<, "order"D = 0;
drawBinaryTree@TD

D

Adding a child to a vertex in a binary tree requires three basic steps. We must add a vertex to the graph
with  the  VertexAdd  function,  add  a  directed  edge  from  the  parent  to  the  new  vertex  with  the
EdgeAdd function, and then use PropertyValue to identify the new child as left or right by setting
the order attribute to 1 or 2, respectively. We conclude the functions with a call to drawBinaryTree
so as to ensure the resulting tree appears with the vertices in the correct order.
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Adding a child to a vertex in a binary tree requires three basic steps. We must add a vertex to the graph
with  the  VertexAdd  function,  add  a  directed  edge  from  the  parent  to  the  new  vertex  with  the
EdgeAdd function, and then use PropertyValue to identify the new child as left or right by setting
the order attribute to 1 or 2, respectively. We conclude the functions with a call to drawBinaryTree
so as to ensure the resulting tree appears with the vertices in the correct order.

In[89]:= addLeftChild@T_?binaryTreeQ, v_, newV_D ê; VertexQ@T, vD :=
Module@8newT, newedge, temp, w<,
If@findLeftChild@T, vD ¹≠ Null, Return@$FailedDD;
newT = VertexAdd@T, newVD;
newT = EdgeAdd@newT, DirectedEdge@v, newVDD;
PropertyValue@8newT, newV<, "order"D = 1;
drawBinaryTree@newTD

D

In[90]:= addRightChild@T_?binaryTreeQ, v_, newV_D ê; VertexQ@T, vD :=
Module@8newT, newedge, temp, w<,
If@findRightChild@T, vD ¹≠ Null, Return@$FailedDD;
newT = VertexAdd@T, newVD;
newT = EdgeAdd@newT, DirectedEdge@v, newVDD;
PropertyValue@8newT, newV<, "order"D = 2;
drawBinaryTree@newTD

D

With  newBinaryTree,  addLeftChild,  and  addRightChild,  we  can  now  construct  binary
trees one vertex at a time. We will illustrate this by creating the binary search tree described in Exam-
ple  1  of  the  text  by  following  the  steps  illustrated  in  Figure  1.  We  abbreviate  the  words  in  order  to
make the image more readable.

In[91]:= fig1Tree = newBinaryTree@"Math",
VertexLabels Ø "Name", ImagePadding Ø 10D;

fig1Tree = addRightChild@fig1Tree, "Math", "Phys"D;
fig1Tree = addLeftChild@fig1Tree, "Math", "Geog"D;
fig1Tree = addRightChild@fig1Tree, "Phys", "Zoo"D;
fig1Tree = addLeftChild@fig1Tree, "Phys", "Meteo"D;
fig1Tree = addRightChild@fig1Tree, "Geog", "Geol"D;
fig1Tree = addLeftChild@fig1Tree, "Zoo", "Psy"D;
fig1Tree = addLeftChild@fig1Tree, "Geog", "Chem"D;
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In[99]:= fig1Tree

Out[99]=

Binary Insertion
A key benefit  of  binary search trees  is  that  the  search time required to  find a  specific  element  of  the
tree is logarithmic in the number of vertices of the tree. The drawback is that the initial insertion of a
vertex is more expensive.
The procedure for constructing a binary search tree by insertion is described in Algorithm 1 in Section
11.2 of the textbook. We will implement this algorithm as the function binaryInsertion.
The binaryInsertion  function will  accept two input values: a binary search tree and a vertex to
be found or added. The function returns True if the vertex is found to already be in the tree, and if not,
it will add the vertex to the tree and return False.
We begin by locating the root of the tree and setting the local variable v to the root. Then we begin a
While  loop.  This  loop  continues  provided  two  conditions  are  met.  First,  that  v  is  not  Null.  If  we
discover that the value we're searching for is not in the tree, then we will add it to the tree and set v to
Null, to indicate that we had to add a vertex, and this terminates the While loop. The second condi-
tion  is  that  v  is  not  x,  where  x  is  the  value  we  are  searching  for.  If  v = x,  then  we  have  found  the
vertex and thus the loop should terminate. (Note that Mathematica identifies a vertex with its label, so,
unlike the text, we do not distinguish between v and its label.)
Within the While loop, there are two possibilities. Either the sought-after value is less than v or it is
greater than v. They cannot be equal because that is one of the terminating conditions for the While
loop. If the target value is less than v, then we consider the left child of v. If there is no left child, then
we know that the value is not in the tree and so we add the value as the left child of v and then set v to
Null to indicate that the desired value was not already in the tree. If there is a left child, then we set v
equal to it and continue the loop. If the target value is greater than v, we proceed in exactly the same
way, substituting right for left.
Once the loop terminates, we check the value of v. If v is Null, then we know that the desired value
was not found and the algorithm returns False. If v is not Null, then we return True.
Here, now, is the binary insertion algorithm.
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In[100]:= SetAttributes@binaryInsertion, HoldFirstD;
binaryInsertion@BST_?binaryTreeQ, x_D := Module@8v<,

v = findRoot@BSTD;
While@v =!= Null && v ¹≠ x,
If@Order@x, vD ã 1,
If@findLeftChild@BST, vD === Null,
H* no left child *L
BST = addLeftChild@BST, v, xD;
v = Null,
H* left child exists *L
v = findLeftChild@BST, vDD

, H* else x>v *L
If@findRightChild@BST, vD === Null,
H* no right child *L
BST = addRightChild@BST, v, xD;
v = Null,
H* right child exists *L
v = findRightChild@BST, vDD

D

D; H* end while loop *L
v =!= Null

D

Note  that  we  use  the  Order  function  to  compare  x  and  v.  Order  returns  1  if  the  first  argument  is
before  (“less  than”)  the  second in  the  canonical  order,  i.e.,  alphabetically  for  strings,  numerically  for
numbers. Mathematica does not allow you to use the less-than operator, Less (<) with strings. Order
is generic and will allow both string and integer vertex names. 
Also  note  that  binaryInsertion  requires  that  its  argument  already  be  a  binary  tree.  A  new tree
must be created with newBinaryTree.
Now let's see if oceanography is in the fig1Tree of academic subjects.
In[102]:= binaryInsertion@fig1Tree, "Oc"D

Out[102]= False

The function returned False indicating that “Oc” was not found in the tree. Displaying fig1Tree,
we see that it was added as a child of meteorology.
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In[103]:= fig1Tree

Out[103]=

On the other hand, zoology is already in the tree and so the tree is not modified.
In[104]:= binaryInsertion@fig1Tree, "Zoo"D

Out[104]= True

In[105]:= fig1Tree

Out[105]=

Constructing a Binary Search Tree from a List
To conclude our discussion of binary search trees, we will create a function that takes a list of values
and  successively  uses  the  binaryInsertion  function  to  create  a  binary  search  tree  for  the  given
list.
In[106]:= makeBST@L_List, opts___D := Module@8T, v<,

T = newBinaryTree@L@@1DD, optsD;
Do@binaryInsertion@T, L@@iDDD, 8i, 2, Length@LD<D;
T

D

We use this to complete Exercise 1 from Section 11.2.

Chapter11.nb  27



In[107]:= exercise1 =
makeBST@8"banana", "peach", "apple", "pear", "coconut",

"mango", "papaya"<, VertexLabels Ø "Name", ImagePadding Ø 15D

Out[107]=

Huffman Coding
Huffman coding is a method for constructing an efficient prefix code for a set of characters. It is based
on  a  greedy  algorithm,  where  at  each  step  the  vertices  with  the  least  weight  are  combined.  It  can  be
shown that  Huffman coding  produces  optimal  prefix  codes.  The  algorithm that  we  will  implement  is
described in Algorithm 2 of Section 11.2.
Creating the Initial Forest
We begin with a list of symbols and their weights, or frequencies. The first step is to create the initial
forest,  which  we  will  implement  as  a  list  of  trees.  For  each  symbol,  we  will  create  the  binary  tree
consisting of a single vertex corresponding to the symbol.
We create a function, similar to newBinaryTree, which, in addition to creating the binary tree, also
assigns a “weight” attribute to the graph to store the weight of the symbol.
In[108]:= newHTree@s_, w_, opts___D := Module@8T<,

T = Graph@8s<, 8<, optsD;
PropertyValue@T, "weight"D = w;
PropertyValue@8T, s<, "order"D = 0;
T

D

Now we write  a  function  to  create  the  initial  forest.  We assume that  the  data  is  provided  as  a  list  of
pairs consisting of the symbol and the weight.
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In[109]:= createForest@L_List, opts___D :=
Module@8forest = 8<, M, v, w, G<,
Do@8v, w< = M;
AppendTo@forest, newHTree@v, w, optsDD
, 8M, L<D;

forest
D

Using this function, we form the initial forest for Exercise 23 from Section 11.2. We use the Image-
Size option to limit the width of the images. Ordinarily, you would simply suppress the output from
this function.
In[110]:= ex23Forest = createForest@

88"a", 0.20<, 8"b", 0.10<, 8"c", 0.15<, 8"d", 0.25<,
8"e", 0.30<<, VertexLabels Ø "Name", ImageSize Ø 50D

Out[110]= : , , , , >

The main work of the Huffman coding algorithm is  to determine the two members of  the forest  with
the smallest weights. These two trees are then assembled into a single tree whose root is a new vertex
and with the trees with the lowest weight and second lowest weight as the right and left subtrees of the
root. The new tree's weight is the sum of the weights of the two original trees.
Sorting the Forest
Recall  that  the  Sort  function  accepts  an  optional  second  argument,  specifically,  a  function  on  two
arguments that returns True if the first argument precedes the second in the desired order. The follow-
ing function will be of this kind, accepting two binary trees as input and comparing their weights.
In[111]:= compareTrees@A_?binaryTreeQ, B_?binaryTreeQD := Module@8a, b<,

a = PropertyValue@A, "weight"D;
b = PropertyValue@B, "weight"D;
a < b

D

In[112]:= ex23Forest = Sort@ex23Forest, compareTreesD

Out[112]= : , , , , >

Combining Two Trees
Next, we need to take two binary trees and create a new binary tree with one tree as the left subtree of
the new root and the other as the right subtree. This function will require three arguments: the name of
the new root, the left subtree, and the right subtree.
We  create  the  new  tree  by:  (1)  combining  the  vertex  lists  of  the  original  trees  and  adding  the  new
vertex;  (2)  merging the  two sets  of  edges  of  the  original  tress  and adding two new edges  linking the
new  root  to  the  previous  roots;  (3)  copying  the  “position”  attribute  from  the  original  trees  and  then
changing  the  position  attributes  for  the  two  original  roots  to  reflect  their  new status  as  left  and  right
children in the new tree;  (4) copying the edge labels and assigning the new edges the labels 0 and 1;
and (5) setting the “weight” attribute to be the sum of the weights of the two original trees.
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We  create  the  new  tree  by:  (1)  combining  the  vertex  lists  of  the  original  trees  and  adding  the  new
vertex;  (2)  merging the  two sets  of  edges  of  the  original  tress  and adding two new edges  linking the
new  root  to  the  previous  roots;  (3)  copying  the  “position”  attribute  from  the  original  trees  and  then
changing  the  position  attributes  for  the  two  original  roots  to  reflect  their  new status  as  left  and  right
children in the new tree;  (4) copying the edge labels and assigning the new edges the labels 0 and 1;
and (5) setting the “weight” attribute to be the sum of the weights of the two original trees.
In[113]:= joinHTrees@newR_, A_?binaryTreeQ, B_?binaryTreeQ, opts___D :=

Module@8newT, newVerts, Aroot, Broot, newEdges, v, e, p, w<,
newVerts = Join@8newR<, VertexList@AD, VertexList@BDD;
Aroot = findRoot@AD;
Broot = findRoot@BD;
newEdges = Join@EdgeList@AD, EdgeList@BD,

8DirectedEdge@newR, ArootD, DirectedEdge@newR, BrootD<D;
newT = Graph@newVerts, newEdges, optsD;
Do@PropertyValue@8newT, v<, "order"D =

PropertyValue@8A, v<, "order"D
, 8v, VertexList@AD<D;

Do@PropertyValue@8newT, v<, "order"D =
PropertyValue@8B, v<, "order"D

, 8v, VertexList@BD<D;
PropertyValue@8newT, Aroot<, "order"D = 1;
PropertyValue@8newT, Broot<, "order"D = 2;
PropertyValue@8newT, newR<, "order"D = 0;
Do@PropertyValue@8newT, e<, EdgeLabelsD =

PropertyValue@8A, e<, EdgeLabelsD
, 8e, EdgeList@AD<D;

Do@PropertyValue@8newT, e<, EdgeLabelsD =
PropertyValue@8B, e<, EdgeLabelsD

, 8e, EdgeList@BD<D;
PropertyValue@

8newT, DirectedEdge@newR, ArootD<, EdgeLabelsD = 0;
PropertyValue@8newT, DirectedEdge@newR, BrootD<,

EdgeLabelsD = 1;
w = PropertyValue@A, "weight"D + PropertyValue@B, "weight"D;
PropertyValue@newT, "weight"D = w;
newT

D

For example, we'll join the first two graphs in our sorted ex23Forest.
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In[114]:= exampleJoin = joinHTrees@"newR", ex23Forest@@1DD,
ex23Forest@@2DD, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[114]=

Implementing the Main Function
We  now  have  the  major  pieces  of  the  Huffman  algorithm  assembled  and  we  can  write  the
huffmanCode function. This function will accept as input the same list of symbol-weight pairs as the
createForest  function  did.  The  function's  first  step  is  to  create  the  forest  F.  Then  we  begin  a
While  loop that  continues as  long as  the list  F  contains more than one element.  Inside the loop,  we
first  use the compareTrees  function to  sort  the forest  in  increasing order  of  weight.  Then,  we use
the joinHTrees function to join the first two trees in the forest and we add that new tree to the list,
replacing the original two.
In[115]:= huffmanCode@L_List, opts___D := Module@8F, i, tempT<,

F = createForest@L, optsD;
i = 0;
While@Length@FD > 1,
F = Sort@F, compareTreesD;
i++;
tempT = joinHTrees@"I" <> ToString@iD, F@@2DD, F@@1DD, optsD;
F = Append@F@@3 ;; -1DD, tempTD

D;
F@@1DD

D

Note  that  we  need  a  name for  the  new root  when  we  join  two  trees.  Since  these  will  be  the  internal
vertices of the final tree, we'll call them I1, I2, I3, etc. We keep a counter i and use the string concatena-
tion operator StringJoin (<>) to create the names of the internal vertices.
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In[116]:= ex23HCode = huffmanCode@88"a", 0.20<,
8"b", 0.10<, 8"c", 0.15<, 8"d", 0.25<, 8"e", 0.30<<,

VertexLabels Ø "Name", ImagePadding Ø 10D;
drawBinaryTree@ex23HCodeD

Out[117]=

Encoding Strings Using the Huffman Code Tree
We conclude this section by writing a function to encode a string of symbols using a given Huffman
tree. Note that you can use Characters to decompose a string into a list of the individual letters. For
example,
In[118]:= Characters@"Hello"D

Out[118]= 8H, e, l, l, o<

Since we encode a string by assembling the codes for individual characters, we'll start with a function
for  encoding  a  single  character.  We  assemble  the  character's  code  right  to  left.  Beginning  with  the
vertex corresponding to the desired character, we find that vertex's parent. The last digit of the code is
the weight of the corresponding edge. The next rightmost digit is the weight of the edge connecting the
next parent. We continue until we reach the root. We use the StringLength  function in this func-
tion to determine the length of the input string and ensure it contains only a single character.
In[119]:= encodeCharacter@H_?binaryTreeQ, c_StringD ê;

StringLength@cD ã 1 := Module@8code, vertex, parent, digit<,
vertex = c;
code = "";
While@findParent@H, vertexD =!= Null,
parent = findParent@H, vertexD;
digit = PropertyValue@

8H, DirectedEdge@parent, vertexD<, EdgeLabelsD;
code = ToString@digitD <> code;
vertex = parent

D;
code

D
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In[120]:= encodeCharacter@ex23HCode, "c"D

Out[120]= 100

To encode a string, we encode each character and assemble the results. 
In[121]:= encodeString@H_?binaryTreeQ, S_StringD :=

Module@8charList, code, char, charcode<,
charList = Characters@SD;
code = "";
Do@
charcode = encodeCharacter@H, charD;
code = code <> charcode
, 8char, charList<D;

code
D

We use this to encode the word “ace”.
In[122]:= encodeString@ex23HCode, "ace"D

Out[122]= 1110000

11.3 Tree Traversal
In this section we show how to use Mathematica to carry out tree traversals. Recall that a tree traversal
algorithm  is  a  procedure  for  systematically  visiting  every  vertex  of  an  ordered  rooted  tree.  We  will
provide  procedures  for  three  important  tree  traversal  algorithms:  preorder  traversal,  inorder  traversal,
and postorder traversal.  We will  then show how to use these traversal methods to produce the prefix,
infix, and postfix notations for arithmetic expressions.
These  tree  traversal  algorithms all  require  that  the  tree  be  rooted  and ordered.  Recall  how we imple-
mented  ordered  rooted  trees  in  Section  1.  A  tree  that  satisfies  orderedRootedTree  is  a  Graph
that is a rooted tree and with the additional restriction that each vertex has an “order” attribute.
Also  recall  that  we  illustrated  in  Section  1  how  to  use  Sort  to  sort  lists  of  vertices  based  on  the
“order” attribute. This is done by giving Sort a second argument, which is a pure Function (&) that
accesses and compares the “order” attribute of two vertices of the tree.
To begin,  we will  create an ordered tree to use as an example as we explore the three traversal  algo-
rithms. This example is a reproduction of Figure 3 from Section 11.3.
In[123]:= fig3Tree =

Graph@8"a" Ø "b", "a" Ø "c", "a" Ø "d", "b" Ø "e", "b" Ø "f",
"d" Ø "g", "d" Ø "h", "d" Ø "i", "e" Ø "j", "e" Ø "k",
"g" Ø "l", "g" Ø "m", "k" Ø "n", "k" Ø "o", "k" Ø "p"<,

VertexLabels Ø "Name", ImagePadding Ø 10D;

In[124]:= VertexList@fig3TreeD

Out[124]= 8a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p<
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In[125]:= fig3Tree = setChildOrder@fig3Tree,
80, 1, 2, 3, 1, 2, 1, 2, 3, 1, 2, 1, 2, 1, 2, 3<D

Out[125]=

Subtrees
Before implementing the traversal algorithms, we need a function that determines a subtree of a tree. In
particular,  we want  an  function that,  given a  tree  and a  vertex,  will  return  the  subtree  with  the  given
vertex as the root and that includes all of its descendants.
To produce the subtree, we will use the Subgraph function and then copy the “order” attributes to the
new tree  from the  original.  The  vertices  that  we  want  included  in  the  subgraph  are  the  given  vertex,
which will be the root of the subtree, together with all of its descendants. We begin by creating a func-
tion that finds all of the descendants of the given vertex. This function can apply to any rooted tree.
The approach is the same as we've used before. We begin with the given vertex and create a list consist-
ing of its children, which we obtain with the findChildren function. We then begin a loop over the
list  of  descendants.  At each step,  we add all  of  the children of the current  vertex to the list,  and then
move on to the next vertex in the list. This continues until we reach the end of the list and there are no
more children to add. (Note: this is referred to as a level-order traversal.)
In[126]:= descendants@T_?rootedTreeQ, parent_D := Module@8dList, v, i<,

dList = findChildren@T, parentD;
i = 1;
While@i § Length@dListD,
v = dList@@iDD;
dList = Join@dList, findChildren@T, vDD;
i++

D;
dList

D

Compute the descendants of e in the example tree above.
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In[127]:= descendants@fig3Tree, "e"D

Out[127]= 8j, k, n, o, p<

To construct the subtree of an ordered rooted tree with a given vertex as its root, we need to: find the
descendants  of  the  given vertex;  use  the  Subgraph  function  on the  given vertex  and all  its  descen-
dants; copy the “order” attribute to the new tree; and set the “order” attribute of the root to 0.
In[128]:= subTree@T_?orderedRootedTreeQ, newRoot_, opts___D :=

Module@8vList, subT, v<,
vList = descendants@T, newRootD;
PrependTo@vList, newRootD;
subT = Subgraph@T, vList, optsD;
Do@PropertyValue@8subT, v<, "order"D =

PropertyValue@8T, v<, "order"D
, 8v, vList<D;

PropertyValue@8subT, newRoot<, "order"D = 0;
subT

D

Let's  check  this  function  by  finding  the  subtree  with  root  e  and  making  sure  it  satisfies
orderedRootedTreeQ.
In[129]:= subExample = subTree@fig3Tree, "e",

VertexLabels Ø "Name", ImagePadding Ø 10D

Out[129]=

In[130]:= orderedRootedTreeQ@subExampleD

Out[130]= True

Traversal Algorithms
We now implement the three traversal algorithms described in Section 11.3 of the text. We begin with
the preorder traversal algorithm, which is given as Algorithm 1 in the text.
Preorder
Given  an  ordered  rooted  tree,  the  preorder  algorithm  acts  as  follows.  First,  it  prints  the  name  of  the
root. Then it  calculates the children of the root and stores them in order. For each child, in order, the
function recursively applies itself to the subtree with the given child as root.

Chapter11.nb  35



Given  an  ordered  rooted  tree,  the  preorder  algorithm  acts  as  follows.  First,  it  prints  the  name  of  the
root. Then it  calculates the children of the root and stores them in order. For each child, in order, the
function recursively applies itself to the subtree with the given child as root.
In[131]:= preorder@T_?orderedRootedTreeQD :=

Module@8root, children, i, tempSubT<,
root = findRoot@TD;
Print@rootD;
children = findChildren@T, rootD;
children = Sort@children, HPropertyValue@8T, Ò1<, "order"D <

PropertyValue@8T, Ò2<, "order"DL &D;
For@i = 1, i § Length@childrenD, i++,
tempSubT = subTree@T, children@@iDDD;
preorder@tempSubTD;

D
D

In[132]:= preorder@fig3TreeD

a

b

e

j

k

n

o

p

f

c

d

g

l

m

h

i

You can confirm that this output is consistent with the preorder traversal demonstrated in Figure 4 of
Section 11.3 of the textbook.
Postorder
Postorder traversal, described in Algorithm 3 of the text, is very similar to preorder traversal. The only
change needed in the code is that, instead of printing the root at the start of the algorithm, the vertex is
printed after the loop is completed.
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In[133]:= postorder@T_?orderedRootedTreeQD :=
Module@8root, children, i, tempSubT<,
root = findRoot@TD;
children = findChildren@T, rootD;
children = Sort@children, HPropertyValue@8T, Ò1<, "order"D <

PropertyValue@8T, Ò2<, "order"DL &D;
For@i = 1, i § Length@childrenD, i++,
tempSubT = subTree@T, children@@iDDD;
postorder@tempSubTD;

D;
Print@rootD

D

In[134]:= postorder@fig3TreeD

j

n
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p
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e
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l

m

g

h

i

d

a

Inorder
In inorder traversal, the algorithm first applies itself recursively to the first child of the vertex, then it
prints the vertex, and then it applies itself to the remainder of the children, in order.
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In[135]:= inorder@T_?orderedRootedTreeQD :=
Module@8root, children, i, tempSubT<,
root = findRoot@TD;
children = findChildren@T, rootD;
children = Sort@children, HPropertyValue@8T, Ò1<, "order"D <

PropertyValue@8T, Ò2<, "order"DL &D;
If@Length@childrenD ¹≠ 0,
tempSubT = subTree@T, children@@1DDD;
inorder@tempSubTD

D;
Print@rootD;
For@i = 2, i § Length@childrenD, i++,
tempSubT = subTree@T, children@@iDDD;
inorder@tempSubTD;

D
D

In[136]:= inorder@fig3TreeD
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Infix Notation
In the remainder of this section, we discuss how to use Mathematica to work with the infix, prefix, and
postfix forms of arithmetic expressions, as described in Section 11.3 of the text. In this subsection, we
will  show how to  create  a  tree  representation  of  an  infix  expression.  In  the  next  subsection,  we  will
explore how to evaluate expressions from their postfix and prefix forms.
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In the remainder of this section, we discuss how to use Mathematica to work with the infix, prefix, and
postfix forms of arithmetic expressions, as described in Section 11.3 of the text. In this subsection, we
will  show how to  create  a  tree  representation  of  an  infix  expression.  In  the  next  subsection,  we  will
explore how to evaluate expressions from their postfix and prefix forms.
Recall that infix notation is the usual notation for basic arithmetic and algebraic expressions. We will
construct a Mathematica  function that takes an infix expression and converts it  into a tree representa-
tion. This tree representation can then be traversed using the traversals of the previous sections to form
various arithmetic representation formats.
The  algorithm  we  use  to  turn  an  arithmetic  expression  in  infix  notation  into  a  tree  is  recursive.  The
basis  case  occurs  when  the  expression  consists  of  a  single  number  or  variable.  In  this  case,  the  tree
consists of a single vertex.
Otherwise, the expression consists of a left operand, an operator, and a right operand. In this case, we
(1)  apply  the  algorithm  to  the  left  and  right  operands,  and  (2)  combine  the  resulting  trees  with  the
operator as the common root. Implementing this will require some preliminary work. 
First, we need to represent arithmetic expressions in Mathematica in such a way that we can work with
them and ensure that Mathematica  won't evaluate them. This can be accomplished by applying Hold
to the expression when entering it, as illustrated below.
In[137]:= Hold@2 + 3*5D

Out[137]= Hold@2 + 3 µ 5D

Second, we need to be able to distinguish the basis case from the recursive case.
Third, the leaves in the tree will be numbers and variables and the internal vertices will be operations.
In  an  expression  like  3 ÿ 4+ 7 ÿ H3+ xL,  we have  repetition  among the  operators  and the  operands  (two
3's,  two  additions,  and  two  multiplications).  We  need  a  way  to  get  Mathematica  to  consider  each  of
these  to  be  a  distinct  object,  since  Mathematica  insists  that  the  vertices  in  a  graph  be  distinct,  while
displaying them with the same symbol in the tree.
Fourth, in the recursive step, we need to be able to identify the operator and separate the left and right
operands.
And fifth,  we will  need to  implement  a  function to  perform the combination of  subtrees  described in
part (2) of the recursive step.
Distinguishing the Basis and Recursive Cases
Any arithmetic  expression  is  either  a  single  integer  or  variable,  or  it  is  two expressions  joined  by  an
arithmetic operator. 
We can determine which kind it is by testing the head of the expression.
In[138]:= Head@5D

Out[138]= Integer

In[139]:= Head@xD

Out[139]= Symbol

However, observe that an expression such as 3+ 5 also reports having head Integer.
In[140]:= Head@3 + 5D

Out[140]= Integer

This  is  because  Mathematica  evaluates  the  arithmetic  before  apply  the  Head  function.  Recall  from
above  that  we  will  be  using  Hold  to  prevent  arithmetic  evaluation  and  algebraic  simplification.  But
with Hold in place, Head will identify the head of the expression as Hold.
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This  is  because  Mathematica  evaluates  the  arithmetic  before  apply  the  Head  function.  Recall  from
above  that  we  will  be  using  Hold  to  prevent  arithmetic  evaluation  and  algebraic  simplification.  But
with Hold in place, Head will identify the head of the expression as Hold.
In[141]:= Head@Hold@3 + 5DD

Out[141]= Hold

To obtain the correct head of an expression such as 3+ 5 while preventing evaluation, we need to use
Part ([[…]]). Remember that 0 represents the head within a Part ([[…]]). 
In[142]:= 5@@0DD

Out[142]= Integer

For a held expression, [[1,0]] will give the head of the expression within the Hold.
In[143]:= Hold@3 + 5D@@1, 0DD

Out[143]= Plus

Ensuring That Each Occurrence of an Object Is Considered Distinct
The  tree  associated  to  the  expression  3 ÿ 4+ 7 ÿ H3+ xL  will  have  9  vertices.  The  internal  vertices,  the
operations,  consist  of  two  additions  and  two  multiplications.  The  leaves,  the  numbers  and  variables,
consist of 4, 7, x, and two 3s.
In  Mathematica  graphs,  each  vertex  must  be  unique  and  distinct  from  all  other  vertices.  In  order  to
make Mathematica consider two 3s or two additions to be different, we will take advantage of the fact
that a Module structure attaches an integer to each variable name in order to ensure it is unique. The
following reveals the internal symbol associated to a local variable.
In[144]:= Module@8var<, ToString@varDD

Out[144]= var$2829

To  use  this  while  building  our  expression  tree,  we  will  define  an  alternate  version  of
newBinaryTree,  which  was  defined  earlier  in  the  chapter.  This  new  function,
newExpressionTree,  will  declare  a  local  variable  and  set  it  equal  to  the  result  of  applying
ToString  to  the  variable.  Since  the  local  variable  had not  previously  been assigned,  this  will  store
the internal representation of the variable. We then use that as the name of the vertex in a new tree. We
set the VertexLabels property in order to have the graph displayed with the elements of the expres-
sion rather than the internal name.
In[145]:= newExpressionTree@r_, opts___D := Module@8T, v<,

v = ToString@vD;
T = Graph@8v<, 8<, optsD;
PropertyValue@8T, v<, VertexLabelsD = r;
PropertyValue@8T, v<, "order"D = 0;
drawBinaryTree@TD

D

Now we are able to create trees and we will be assured that each one will have distinct vertex names,
internally.
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Identifying the Operator and Operands
In  the  recursive  case,  we  must  separate  a  complex  expression  into  its  operator  and  the  left  and  right
operands. Consider the following example.
In[146]:= exampleExpr = Hold@3*4 + 7*H3 + xLD

Out[146]= Hold@3 µ 4 + 7 H3 + xLD

This  expression,  3 ÿ 4+ 7 ÿ H3+ xL  consists  of  the  sum  of  3 ÿ 4  and  7 ÿ H3+ xL.  In  Mathematica,  we  will
obtain these two operands by applying Extract.
Extract is similar to Part ([[…]]) or Take in that it returns a part of an expression. However, it
allows  an  optional  third  argument  to  apply  a  head  to  the  part  of  the  expression  before  it  is  returned.
This is important here because we need to prevent Mathematica from simplifying the operands.
The arguments to Extract will be the expression, the part specification, and the head Hold. To see
what the part specification should be, look at the full form of exampleExpr.
In[147]:= FullForm@exampleExprD

Out[147]//FullForm=
Hold@Plus@Times@3, 4D, Times@7, Plus@3, xDDDD

We  see  that  the  expression  is  entirely  enclosed  in  Hold,  so  part  specification  {1}  will  refer  to  the
entire algebraic expression, which has head Plus. The arguments of the top Plus are then referenced
as {1,1} and {1,2}. 
In[148]:= Extract@exampleExpr, 81, 1<, HoldD

Out[148]= Hold@3 µ 4D

In[149]:= Extract@exampleExpr, 81, 2<, HoldD

Out[149]= Hold@7 H3 + xLD

Note that we can use {1,0} to obtain the head of the expression, that is, the operator. This is equiva-
lent to the use of Part ([[…]]) described above for the same purpose.
In[150]:= Extract@exampleExpr, 81, 0<D

Out[150]= Plus

In[151]:= exampleExpr@@1, 0DD

Out[151]= Plus

Combining Subtrees
As part of Huffman coding in Section 2, we wrote a function, joinHTrees, for joining two existing
trees at a new root. We recreate that function here, with the weights removed.
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In[152]:= joinTrees@newR_, A_?binaryTreeQ,
B_?binaryTreeQ, opts___D := Module@
8newRI, newT, newVerts, Aroot, Broot, newEdges, v, e, p, w<,
newRI = ToString@newRID;
newVerts = Join@8newRI<, VertexList@AD, VertexList@BDD;
Aroot = findRoot@AD;
Broot = findRoot@BD;
newEdges = Join@EdgeList@AD, EdgeList@BD,

8DirectedEdge@newRI, ArootD, DirectedEdge@newRI, BrootD<D;
newT = Graph@newVerts, newEdges, optsD;
Do@PropertyValue@8newT, v<, "order"D =

PropertyValue@8A, v<, "order"D
, 8v, VertexList@AD<D;

Do@PropertyValue@8newT, v<, "order"D =
PropertyValue@8B, v<, "order"D

, 8v, VertexList@BD<D;
PropertyValue@8newT, Aroot<, "order"D = 1;
PropertyValue@8newT, Broot<, "order"D = 2;
PropertyValue@8newT, newRI<, "order"D = 0;
Do@PropertyValue@8newT, v<, VertexLabelsD =

PropertyValue@8A, v<, VertexLabelsD
, 8v, VertexList@AD<D;

Do@PropertyValue@8newT, v<, VertexLabelsD =
PropertyValue@8B, v<, VertexLabelsD

, 8v, VertexList@BD<D;
PropertyValue@8newT, newRI<, VertexLabelsD = newR;
drawBinaryTree@newTD

D

The Main Function
With  joinTrees  and  newExpressionTree  from  above,  we  are  ready  to  write  the  function  for
turning infix expression into binary trees.
The  function  accepts  a  single  argument,  expr,  the  expression.  We will  give  the  function  the  Hold-
First attribute, so that the expression will be held without our having to explicitly type Hold when
executing the function. This holds the argument only until it is first evaluated, so we must immediately
place a more permanent Hold on it, provided it was not already explicitly held, and assign it to e.
We  first  test  the  type  of  e.  If  it  is  an  integer  or  a  symbol,  then  we  use  newExpressionTree  to
create a new binary tree with e as the only vertex. 
Otherwise, we're in the recursive case. We use Extract to determine the left and right operands and
the operator. After recursive calls to the function to create the trees for the two operands, the subtrees
are joined at the operator into the result tree.
Here is the function.
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In[153]:= SetAttributes@expressionTree, HoldFirstD;
expressionTree@expr_, opts___D :=
Module@8e, lhs, rhs, operator, lhsTree, rhsTree, result<,
If@expr@@0DD === Hold,
e = expr,
e = Hold@exprD

D;
If@e@@1, 0DD === Integer »» e@@1, 0DD === Symbol,
result = newExpressionTree@ReleaseHold@eD, optsD,
lhs = Extract@e, 81, 1<, HoldD;
operator = Extract@e, 81, 0<D;
rhs = Extract@e, 81, 2<, HoldD;
lhsTree = expressionTree@lhsD;
rhsTree = expressionTree@rhsD;
result = joinTrees@operator, lhsTree, rhsTree, optsD

D;
drawBinaryTree@resultD

D

We test the function on the example expression.
In[155]:= exampleTree = expressionTree@3*4 + 7*H3 + xL, ImagePadding Ø 10D

Out[155]=

Prefix and Postfix Notation
Suppose  we are  given a  binary  tree  representation of  an  arithmetic  expression.  We can express  these
trees in postfix, infix, or prefix form by applying the respective traversal algorithm we designed above.
It is left to the reader to make the necessary functions to output infix, prefix, and postfix expressions.
Be careful while doing so to keep in mind that the integers, variables, and operators are stored as the
VertexLabels property of the vertices of the tree, not as the vertices themselves.
As a final example in this section, we demonstrate how to evaluate a given postfix expression. We will
represent  the  postfix  expression  as  a  list  of  symbols,  each  of  which  is  either  a  number  or  one  of  the
arithmetic operations' symbols as a string.
Since we're considering postfix expressions,  we read the list  of  symbols from left  to right.  Each time
we encounter an operation, that operation is applied to the previous two numbers and we update the list
by replacing the two numbers and the operation symbol by the result of the operation.

Chapter11.nb  43



Since we're considering postfix expressions,  we read the list  of  symbols from left  to right.  Each time
we encounter an operation, that operation is applied to the previous two numbers and we update the list
by replacing the two numbers and the operation symbol by the result of the operation.
In[156]:= evalPostfix@expr_ListD := Module@8i, L<,

L = expr;
While@Length@LD > 1,
i = 1;
While@FreeQ@8"+", "-", "*", "ê", "^"<, L@@iDDD, i++D;
Switch@L@@iDD,
"+", L@@iDD = L@@i - 2DD + L@@i - 1DD,
"-", L@@iDD = L@@i - 2DD - L@@i - 1DD,
"*", L@@iDD = L@@i - 2DD*L@@i - 1DD,
"ê", L@@iDD = L@@i - 2DDêL@@i - 1DD,
"^", L@@iDD = L@@i - 2DD^L@@i - 1DDD;

L = Drop@L, 8i - 2, i - 1<D
D;
L@@1DD

D

Note that the Drop function removes a range of elements of the list.
In[157]:= postfixExample = 87, 2, 3, "*", "-", 4, "^", 9, 3, "ê", "+"<

Out[157]= 87, 2, 3, *, -, 4, ^, 9, 3, ê, +<

In[158]:= evalPostfix@postfixExampleD

Out[158]= 4

The reader is left to explore evaluation in the prefix case, which requires only a simple modification.

11.4 Spanning Trees
This  section explains how to use Mathematica  to  construct  spanning trees  for  graphs and how to use
spanning  trees  to  solve  many  different  types  of  problems.  Spanning  trees  have  a  myriad  of  applica-
tions, including coloring graphs, placing n  queens on a nµ n  chessboard so that no two of the queens
attack each other, and finding a subset of a set of numbers with a specified sum. All of these problems,
which are described in detail in the text, will be explored computationally in this section. First we will
show  how  to  use  Mathematica  to  form  spanning  trees  using  two  algorithms:  depth-first  search  and
breadth-first search. Then we will show how to use Mathematica to solve the problems just mentioned.
Mathematica  includes  two  functions,  DepthFirstScan  and  BreadthFirstScan  that  will  per-
form a  search  on  a  graph.  Both  functions  accept  a  Graph  and  a  vertex  of  the  graph  as  the  first  two
arguments. With these two arguments, the functions will return a list of vertices 8v1, v2, …, vn<.  Sup-
pose that the VertexList function returns 8u1, u2, …, un<. Then the output of DepthFirstScan
or  BreadthFirstScan  indicates  that  the  tree  whose  edges  are  vi ð ui  is  a  spanning  tree  of  the
graph, with root the vertex such that ui = vi. 
The  function  TreeGraph  can  be  used  to  form  a  tree  from  the  output  of  DepthFirstScan  or
BreadthFirstScan.  TreeGraph  can  accept  as  input  two  lists  of  vertices,  where  the  first  is  the
list of all vertices to appear in the tree and the second is the list each of whose elements is the predeces-
sor of the corresponding element of the first list. A simple example is shown below of a tree with root
2, vertices 1 and 3 are the children of 2, and 4 and 5 are the children of 3, and vertex 6 is the child of 1.
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The  function  TreeGraph  can  be  used  to  form  a  tree  from  the  output  of  DepthFirstScan  or
BreadthFirstScan.  TreeGraph  can  accept  as  input  two  lists  of  vertices,  where  the  first  is  the
list of all vertices to appear in the tree and the second is the list each of whose elements is the predeces-
sor of the corresponding element of the first list. A simple example is shown below of a tree with root
2, vertices 1 and 3 are the children of 2, and 4 and 5 are the children of 3, and vertex 6 is the child of 1.
In[159]:= TreeGraph@81, 2, 3, 4, 5, 6<, 82, 2, 2, 3, 3, 1<,

VertexLabels Ø "Name", ImagePadding Ø 10D

Out[159]=

We  will  illustrate  the  use  of  DepthFirstScan  or  BreadthFirstScan  with  the  graph  from
Exercise 13 of Section 11.4, which we recreate.
In[160]:= exercise13 =

Graph@8"a", "b", "c", "d", "e", "f", "g", "h", "i", "j"<,
8"a" Ø "b", "a" Ø "c", "b" Ø "c", "c" Ø "d", "d" Ø "e",
"d" Ø "f", "e" Ø "f", "e" Ø "h", "f" Ø "g", "g" Ø "h",
"g" Ø "j", "h" Ø "i"<, DirectedEdges Ø False,

VertexCoordinates Ø 880, 1<, 80, 0<, 81, 0.5<, 82, 0.5<,
83, 1<, 83, 0<, 84, 0<, 84, 1<, 85, 1<, 85, 0<<,

VertexLabels Ø "Name", ImagePadding Ø 5D

Out[160]=

Using DepthFirstScan and passing the output to TreeGraph allows us to draw the spanning tree
obtained by a depth-first search.
In[161]:= exercise13DepthFirst = DepthFirstScan@exercise13, "a"D

Out[161]= 8a, a, b, c, d, e, f, g, h, g<
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In[162]:= TreeGraph@VertexList@exercise13D, exercise13DepthFirst,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[162]=

Observe that BreadthFirstScan produces a different tree.
In[163]:= TreeGraph@VertexList@exercise13D,

BreadthFirstScan@exercise13, "a"D,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[163]=

Note that in both cases, the initial vertex, a, is not drawn at the root of the tree. As we described previ-
ously, Mathematica draws trees to minimize depth, irrespective of the logical root.
DepthFirstScan  and  BreadthFirstScan  both  accept  an  optional  third  argument,  which  is
given as a list of rules. The rules in the list identify an “event” with a pure Function (&) to be exe-
cuted  when  the  event  occurs.  We  will  illustrate  this  by  highlighting  the  BreadthFirstScan  tree
within  the  graph.  We  make  a  copy  of  the  graph  first,  since  our  execution  of  BreadthFirstScan
will modify the graph.
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In[164]:= exercise13Copy = exercise13;
BreadthFirstScan@exercise13Copy, "a", 8"FrontierEdge" Ø

HHPropertyValue@8exercise13Copy, Ò<, EdgeStyleD =
Directive@Thick, RedDL &L<D; exercise13Copy

Out[165]=

We  now  analyze  the  function  executed  above.  BreadthFirstScan  is  called  on  the  graph
exercise13Copy  and told to start with vertex a.  The third argument is the list  containing a single
Rule (->) identifying the event “FrontierEdge” with a pure Function (&). A frontier edge refers to
an edge between a vertex that is currently being visited and a vertex that is newly discovered as a result
of visiting the current vertex. The pure Function (&) associated to the event “FrontierEdge” is called
with  a  single  argument,  the  edge  in  question.  In  this  example,  we  use  the  function  to  highlight  the
edges which are traversed by the breadth-first exploration. 
Alternately,  we could use Sow  and Reap  to obtain a list  of the edges in the order they are followed.
Note that Sow accepts a single argument so it is not necessary to explicitly call it on a Slot (#).
In[166]:= exercise13breadthList = Reap@BreadthFirstScan@

exercise13, "a", 8"FrontierEdge" Ø Sow<DD@@2, 1DD

Out[166]= 8a ê b, a ê c, c ê d, d ê e, d ê f, e ê h, f ê g, h ê i, g ê j<

We can now use this list to create an animation.
In[167]:= Animate@

HighlightGraph@exercise13, exercise13breadthList@@1 ;; iDDD,
8i, 0, Length@exercise13breadthListD, 1<,
AnimationRunning Ø False, AnimationRepetitions Ø 1D

Out[167]=

i

We leave it to the reader to create a function that generates such an animation automatically.
A  second  useful  event  that  can  be  used  with  DepthFirstScan  and  BreadthFirstScan  is
“DiscoverVertex”.  This  event  occurs  when  a  vertex  is  discovered  for  the  first  time.  The  associated
function is  called with up to three arguments:  the vertex being discovered,  the vertex currently being
visited, and the distance the visited vertex is from the starting vertex.
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A  second  useful  event  that  can  be  used  with  DepthFirstScan  and  BreadthFirstScan  is
“DiscoverVertex”.  This  event  occurs  when  a  vertex  is  discovered  for  the  first  time.  The  associated
function is  called with up to three arguments:  the vertex being discovered,  the vertex currently being
visited, and the distance the visited vertex is from the starting vertex.
The interested  reader  is  encouraged to  consult  the  help  pages  for  DepthFirstScan  or  Breadth-
FirstScan for information on other events that can be used.
Despite Mathematica's  existing functions, we will develop our own using depth-first and breadth-first
search functions as a way to illustrate these important algorithms.

Depth-First Search
We  begin  by  implementing  depth-first  search.  As  the  name  of  the  algorithm  suggests,  vertices  are
visited in order of increasing depth of the spanning tree. Our implementation is based on Algorithm 1
of Section 11.4 of the textbook. 
Recall  the  terminology  defined  in  the  textbook.  We  say  that  we  are  “exploring  a  vertex”  v  from the
time the vertex is first added to the spanning tree until we have backtracked back to v for the last time.
Note that at any step in the process, we are generally exploring multiple vertices. In particular, the root
of  the  spanning  tree  starts  being  explored  at  the  very  beginning  of  the  process  and  continues  being
explored until it terminates.
The  function,  which  we  call  depthSearch,  will  take  two  arguments:  an  undirected  graph  and  a
vertex in that graph. The function operates as follows:
1. First, we check that the graph is connected using Mathematica's ConnectedGraphQ function. 

If not, there can be no spanning tree and the function returns $Failed.
2. Next, we initialize the following variables. 
a. toVisit will be the set of vertices of the graph that have not yet been visited. It is initialized 

to the set of vertices of the graph minus the initial vertex.
b. exploring will be the list of vertices that are currently being explored. As vertices are 

visited, they are added to the end of the exploring list. When a vertex has been fully 
explored, i.e., when it has no neighbors not already in the tree, then we remove it from the 
exploring list. exploring is initialized to the vertex that is given as the second argument.

c. T will be the spanning tree that is constructed. It is initialized to the graph consisting of all the 
vertices of the graph, but with no edges. Provided that the graph is connected, we know that all 
the vertices will appear in T and this saves us from adding them one at a time. 

3. Following initialization, we begin a While loop which terminates when the exploring list is 
empty. The variable v is set to the last element of the exploring list. We then compute the 
intersection, N, of the neighbors of v and the toVisit set of vertices not already contained in the 
tree. Either,
a. N is non-empty, in which case, one of its elements is chosen as w, the next vertex to visit. The 

edge vðw is added to the tree T. Also, w is removed from the toVisit set and added to the 
end of the exploring list. In the next iteration of the While loop, this new vertex will be set 
to be v.

b. N is empty, in which case the vertex v has been explored completely and so it can be removed 
from the exploring list. The next iteration of the While loop will set v to be the vertex one 
step back in the exploring list. This is the “backtracking” step.

Here, now, is the function.
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In[168]:= depthSearch@G_?UndirectedGraphQ, startV_, opts___D :=
Module@8toVisit, exploring, T, v, N, w<,
If@! ConnectedGraphQ@GD, Return@$FailedDD;
toVisit = Complement@VertexList@GD, 8startV<D;
exploring = 8startV<;
T = Graph@VertexList@GD, 8<, optsD;
While@Length@exploringD > 0,
v = exploring@@-1DD;
N = Intersection@AdjacencyList@G, vD, toVisitD;
If@Length@ND > 0,
w = N@@1DD;
T = EdgeAdd@T, v ð wD;
toVisit = Complement@toVisit, 8w<D;
AppendTo@exploring, wD,
H*else*L
exploring = Delete@exploring, -1D

D
D;
T

D

Let's test this with our Exercise 13 example from above.
In[169]:= depthExercise13 = depthSearch@exercise13,

"a", VertexLabels Ø "Name", ImagePadding Ø 10D

Out[169]=

We can  reposition  the  vertices  to  match  the  original  with  PropertyValue  and  VertexCoordi-
nates.
In[170]:= Do@PropertyValue@8depthExercise13, v<, VertexCoordinatesD =

PropertyValue@8exercise13, v<, VertexCoordinatesD
, 8v, VertexList@exercise13D<D
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In[171]:= depthExercise13

Out[171]=

Breadth-First Search
We  now  turn  to  an  implementation  of  a  breadth-first  search.  Recall  that  the  breadth-first  algorithm
works by examining all vertices at the current depth of the spanning tree before moving on to the next
level of the graph. Our implementation will follow Algorithm 2 of Section 11.4 of the text. 
The function,  to  be called breadthSearch,  again takes two arguments:  an undirected graph and a
vertex to act as the starting point. It proceeds as follows.
1.  First, we check that the graph is connected using Mathematica's ConnectedGraphQ function.
2. Next, we initialize the following variables. 
a. toVisit, as before, will be the set of vertices of the graph not yet visited. It is initialized to 

the set of vertices of the graph with the initial vertex excluded.
b. toProcess will be the list of vertices that have been determined to be incident to a vertex in 

the tree but which have not yet been processed. toProcess is initialized to the vertex that is 
given as the second argument to the procedure.

c. T will be the spanning tree that is constructed. Once again, it is initialized to the tree consisting 
of all the vertices of the given graph, but with no edges.

3. Following initialization, we begin a While loop that terminates when the toProcess list is 
empty. The variable v is set to the first element of the toProcess list. We then compute the 
intersection, N, of the neighbors of v and the toVisit set. For each element w of N, an edge vð
w is added to T and w is added to the end of the toProcess list and removed from the 
toVisit set. Then v is removed from toProcess.

Observe that, since neighbors are added to the end of the toProcess list and are processed from the
beginning  of  the  list,  we  are  assured  that  all  vertices  on  a  given  level  will  be  processed  before  any
vertex at a lower level.
Here is the implementation. 
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In[172]:= breadthSearch@G_?UndirectedGraphQ, startV_, opts___D :=
Module@8toVisit, toProcess, T, v, N, w<,
If@! ConnectedGraphQ@GD, Return@$FailedDD;
toVisit = Complement@VertexList@GD, 8startV<D;
toProcess = 8startV<;
T = Graph@VertexList@GD, 8<, optsD;
While@Length@toProcessD > 0,
v = toProcess@@1DD;
N = Intersection@AdjacencyList@G, vD, toVisitD;
Do@
T = EdgeAdd@T, v ð wD;
AppendTo@toProcess, wD;
toVisit = Complement@toVisit, 8w<D;
, 8w, N<D;

toProcess = Delete@toProcess, 1D;
D;
T

D

Once again, we illustrate using Exercise 13.
In[173]:= breadthExercise13 = breadthSearch@exercise13,

"a", VertexLabels Ø "Name", ImagePadding Ø 5D;
Do@PropertyValue@8breadthExercise13, v<, VertexCoordinatesD =

PropertyValue@8exercise13, v<, VertexCoordinatesD
, 8v, VertexList@exercise13D<D;

breadthExercise13

Out[175]=

Before  moving  on  to  backtracking,  let's  take  a  moment  to  compare  the  trees  produced  by  the  two
algorithms.
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In[176]:= Grid@88breadthSearch@exercise13, "a"D,
depthSearch@exercise13, "a"D<<, Frame Ø AllD

Out[176]=

Notice  that  the  two  spanning  trees  are  quite  different,  even  though  Mathematica  roots  them to  be  as
balanced  as  possible.  In  particular,  the  depth-first  search  has  a  deep  and  thin  structure,  whereas  the
breadth-first search is shorter and wider appearing.

Graph Coloring via Backtracking
Backtracking is  a  method that  can be  used to  find solutions  to  problems that  might  be  impractical  to
solve using exhaustive search techniques. Backtracking is based on the systematic search for a solution
to a problem using a decision tree. (See the text for a complete discussion.) Here we show how to use
backtracking  to  solve  several  different  problems,  including  coloring  a  graph,  the  n-queens  problem,
and the subset sum problem. 
The first problem we will attack via a backtracking procedure is the problem of coloring a graph using
n colors, where n is a positive integer. Given a graph, we will attempt to color it using n colors using
the method described in Example 6 of Section 11.4.
1. Fix an order on the vertices of the graph, say v1, v2, …, vm and fix an ordering of the colors as 

color 1, color 2, ..., color n. We will use the ordering of the vertices that Mathematica 
automatically imposes. For the colors, we will require an ordered list of colors as one of the 
arguments to the function.

2.We store the current state of the coloring in a list we will call coloring. The ith entry in this list 
will correspond to the color of the ith vertex. For example, coloring = {1,2,1}, 
corresponds to vertex v1 assigned color 1, vertex v2 assigned color 2, and vertex v3 assigned color 
1. This coloring list is similar to the exploring list from depthSearch. In both cases, 
you can think of the list as storing the path from the root of the tree to the current vertex. In this 
case, the level, which corresponds to the position in the list, carries additional information. 
Specifically, level k in the decision tree (i.e., position k in the coloring list) corresponds to 
deciding the color of vertex vk.
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3.We initialize coloring to 81< and set a counter variable i to 2. The variable i will indicate the 
vertex that requires a decision.

4. Set N equal to the neighbors of the ith vertex of the graph, and then construct a set, used, 
consisting of the indices of the colors assigned to the neighbors. The ith vertex will be assigned 
the color with the smallest index not in used, assuming there are any remaining colors.

5. If there are no possible colors for the ith vertex, then we must backtrack. We decrease i by one. To 
ensure that we do not repeat a choice already made when we revisit a vertex, we make the 
following modification to how colors are chosen. If the ith position of coloring has already 
been set, then we know we're in the process of backtracking. We insist that the new choice for the 
color of vertex i is the smallest possible color greater than the current color.

6. The function terminates in one of two cases. If i is set to a value greater then the number of 
vertices, then we know that coloring contains a valid assignment for all vertices. On the other 
hand, if i is ever set to 1, then we know that we have backtracked all the way to the root. Since 
the color of the first vertex doesn't affect the validity of the coloring, this indicates that we have 
exhausted all possible colorings and that the graph cannot be colored with n colors.

Our function will be called backColor. It will accept two arguments: the graph to be colored and a
list of colors. If it is successful, it will display the graph with the vertices colored. If it determines that
there is no n-coloring of the graph, it will return $Failed.
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In[177]:= backColor@G_Graph, C : 8__RGBColor<D :=
Module@8verts, numverts, allcolorsL,

k, coloring, i, N, j, used, available, g<,
verts = VertexList@GD;
numverts = Length@vertsD;
allcolorsL = Range@Length@CDD;
coloring = 81<;
i = 2;
While@i > 1 && i § numverts,
N = VertexList@NeighborhoodGraph@G, verts@@iDDDD;
used = 8<;
For@j = 1, j § i - 1, j++,
If@MemberQ@N, verts@@jDDD, AppendTo@used, coloring@@jDDDD;

D;
If@Length@coloringD ¥ i,
used = Union@used, Range@coloring@@iDDDDD;

available = Complement@allcolorsL, usedD;
If@Length@availableD > 0,
coloring = Append@coloring@@1 ;; i - 1DD, First@availableDD;
i++,
H*else*L
If@Length@coloringD ¥ i, coloring = coloring@@1 ;; i - 1DDD;
i--

D
D;
If@i > numverts,
g = G;
For@k = 1, k § numverts, k++,
PropertyValue@8g, verts@@kDD<, VertexStyleD =
C@@coloring@@kDDDD

D;
Return@gD,
H*else*L
Return@$FailedD

D
D

We test our function on the example given in Figure 11 of Section 11.4 of the text.
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In[178]:= figure11Graph = Graph@8"a", "b", "c", "d", "e"<,
8"a" Ø "b", "a" Ø "e", "b" Ø "c", "b" Ø "d", "b" Ø "e",
"c" Ø "d", "d" Ø "e"<, DirectedEdges Ø False,

VertexCoordinates Ø 880, 0<, 81, 0<, 82, 0<, 82, 1<, 80, 1<<,
VertexLabels Ø "Name", ImagePadding Ø 10D

Out[178]=

In[179]:= backColor@figure11Graph, 8Red, Blue, Green<D

Out[179]=

On the other hand, the complete graph on 5 vertices cannot be 3-colored or 4-colored.
In[180]:= K5 = CompleteGraph@5D;

In[181]:= backColor@K5, 8Red, Blue, Green<D

Out[181]= $Failed

In[182]:= backColor@K5, 8Red, Blue, Green, Yellow<D

Out[182]= $Failed
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In[183]:= backColor@K5, 8Red, Blue, Green, Yellow, Brown<D

Out[183]=

Before moving on to the n-queens problem, we illustrate how we can modify our backtracking function
to  record  and  display  the  decision  tree.  Instead  of  displaying  the  graph,  our  modified  algorithm  will
produce the decision tree. We do this by building a list of the decisions. Each time a color is assigned,
we create a new vertex by adding the current state of the coloring list (converted to a string) and con-
necting it to the previous state. Note that we use TreePlot here, rather than a Graph object, so as to
be able to draw the root at the top of the image.
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In[184]:= backColorDT@G_Graph, C : 8__RGBColor<D :=
Module@8verts, numverts, allcolorsL, k, coloring,

i, N, j, used, available, DTList, parentV, newV<,
verts = VertexList@GD;
numverts = Length@vertsD;
allcolorsL = Range@Length@CDD;
coloring = 81<;
newV = ToString@coloringD;
DTList = 8<;
i = 2;
While@i > 1 && i § numverts,
N = VertexList@NeighborhoodGraph@G, verts@@iDDDD;
used = 8<;
For@j = 1, j § i - 1, j++,
If@MemberQ@N, verts@@jDDD, AppendTo@used, coloring@@jDDDD;

D;
If@Length@coloringD ¥ i,
used = Union@used, Range@coloring@@iDDDDD;

available = Complement@allcolorsL, usedD;
If@Length@availableD > 0,
parentV = ToString@coloring@@1 ;; i - 1DDD;
coloring =
Append@coloring@@1 ;; i - 1DD, First@availableDD;

newV = ToString@coloringD;
AppendTo@DTList, parentV Ø newVD;
i++,
H*else*L
If@Length@coloringD ¥ i, coloring = coloring@@1 ;; i - 1DDD;
i--

D
D;
TreePlot@DTList, Top, "81<", VertexLabeling Ø TrueD

D
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In[185]:= backColorDT@figure11Graph, 8Red, Blue, Green<D

Out[185]=

81<

81, 2<

81, 2, 1<

81, 2, 1, 3<

81, 2, 3<

81, 2, 3, 1<

81, 2, 3, 1, 3<

In[186]:= backColorDT@K5, 8Red, Blue, Green, Yellow<D

Out[186]=

81<

81, 2<

81, 2, 3<

81, 2, 3, 4<

81, 2, 4<

81, 2, 4, 3<

81, 3<

81, 3, 2<

81, 3, 2, 4<

81, 3, 4<

81, 3, 4, 2<

81, 4<

81, 4, 2<

81, 4, 2, 3<

81, 4, 3<

81, 4, 3, 2<
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n-Queens Problem via Backtracking
Another problem with an elegant backtracking solution is the problem of placing n queens on an nµ n
chessboard so that  no queen can attack another.  This means that  no two queens can be placed on the
same horizontal,  vertical,  or diagonal line. We will solve this problem with a backtracking algorithm.
The solution we present  here  is  based on the  solution given in  Example  7  in  Section 11.4.  We place
queens in a greedy fashion on the chessboard until either all the queens are placed or there is no avail-
able position for a queen to be placed without coming under attack from a queen already on the board.
Following the  textbook,  the  ith  step  in  the  backtracking algorithm will  be  to  place  a  queen in  the  ith
column  (or  file,  in  chess  terms).  Like  the  coloring  list  and  exploring  list,  the  algorithm  will
build a queens  list.  In this  case,  queens@@iDD = j  will  indicate that  a  queen is  placed in the jth
row (rank)  in  the  ith  column (file).  We will  build  a  helper  function,  validQueens,  that,  given  the
dimension of the board and the current queens list, will determine the possible locations for a queen
in the next column.
To implement  validQueens,  we will  need a  representation of  the status  of  the board;  specifically,
for each square on the board, whether it is safe or under attack. It is natural to represent the board as a
matrix with an entry 1 indicating that the corresponding square is safe and 0 that it is under attack. We
create a square matrix with all entries initialized to 1 by issuing the ConstantArray  function with
two arguments: the common value 1 and the dimension of the matrix in a list. For example, the follow-
ing initializes the matrix representing the board of dimension 5 on which no queens have been placed.
In[187]:= ConstantArray@1, 85, 5<D êê MatrixForm

Out[187]//MatrixForm=
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

We now build a boardStatus function that, given the current list of queen locations and the dimen-
sion of  the board will  return a  matrix  representing the board with that  configuration.  The matrix  will
contain 1 in positions not  under  attack,  0 in positions under attack,  and will  represent  the location of
queens by the symbol Q.

Chapter11.nb  59



In[188]:= boardStatus@queenList_List, dim_IntegerD :=
Module@8board, i, dif, qRank, qFile, vQueens<,
board = ConstantArray@1, 8dim, dim<D;
For@qFile = 1, qFile § Length@queenListD, qFile++,
qRank = queenList@@qFileDD;
For@i = 1, i § dim, i++,
board@@qRank, iDD = 0;
board@@i, qFileDD = 0;
dif = i - qFile;
If@qRank + dif § dim && qRank + dif ¥ 1,
board@@qRank + dif, iDD = 0D;

If@qRank - dif § dim && qRank - dif ¥ 1,
board@@qRank - dif, iDD = 0D

D
D;
For@qFile = 1, qFile § Length@queenListD, qFile++,
board@@queenList@@qFileDD, qFileDD = "Q"

D;
board

D

For example,  on a 10µ 10 board,  with the first  queen in the second row and the second queen in the
seventh row, the board looks as follows.
In[189]:= boardStatus@82, 7<, 10D êê MatrixForm

Out[189]//MatrixForm=
0 0 1 1 1 1 1 0 1 1
Q 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 1 1 1 1
0 0 0 1 0 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1
0 0 0 1 0 1 1 1 1 1
0 Q 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 1 1
0 0 1 0 1 1 1 0 1 1
0 0 1 1 0 1 1 1 0 1

The validQueens function will take the same arguments, the list of queen locations and dimension
of  the board,  pass  them to boardStatus,  and use the resulting matrix  to  determine available  posi-
tions  in  the  next  column.  We  could  omit  the  boardStatus  function  and  instead  create
validQueens independently, but, as you see above, the boardStatus function provides a useful
visualization.
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In[190]:= validQueens@queenList_List, dim_IntegerD :=
Module@8board, file, i, freeSet<,
board = boardStatus@queenList, dimD;
file = Length@queenListD + 1;
freeSet = 8<;
For@i = 1, i § dim, i++,
If@board@@i, fileDD ã 1, AppendTo@freeSet, iDD

D;
freeSet

D

With this preliminary work out of the way, we are ready to write the main program, nQueens. It will
work in much the same way as our previous examples.
1.We keep a queens list, initialized to the empty list, that records the locations of queens.
2.We initialize a counter file to 1. This indicates the column in which we need to place a queen. 

Notice that, in the backColor algorithm, we initialized the counter to 2. The reason for the 
difference is that, in the coloring algorithm, the color of the first vertex was arbitrary and changing 
it from color 1 to a different color could not possibly affect the outcome. In this case, it may be the 
case that there is no solution with the first queen in file 1, rank 1, but there is a solution if the file 
1 queen is in a different rank.

3. Apply the validQueens function with the queens list and the board dimension. Store the 
resulting set as open.

4. As with the backColor algorithm, we determine if the current assignment is a new assignment 
or a result of backtracking. If it is a backtracking step, we remove from open the positions equal 
to or smaller than the previous attempt.

5.We terminate when file either exceeds the board dimension, in which case we have found a 
solution, or when it is backtracked to 0, in which case we have exhausted all possibilities.
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In[191]:= nQueens@boardDim_IntegerD ê; boardDim > 0 :=
Module@8queens = 8<, file = 1, open, i<,
While@file > 0 && file § boardDim,
open = validQueens@queens@@1 ;; file - 1DD, boardDimD;
If@Length@queensD ¥ file,
open = Complement@open, Range@queens@@fileDDDDD;

If@open ¹≠ 8<,
queens = Join@queens@@1 ;; file - 1DD, 8open@@1DD<D;
file++,
H*else backtrack*L
queens = queens@@1 ;; file - 1DD;
file--

D
D;
If@file > boardDim,
Return@MatrixForm@boardStatus@queens, boardDimDDD,
Return@$FailedD

D
D

We can use this to find one solution to the 8-queens problem (8µ 8 is the size of the standard board).
In[192]:= nQueens@8D

Out[192]//MatrixForm=
Q 0 0 0 0 0 0 0
0 0 0 0 0 0 Q 0
0 0 0 0 Q 0 0 0
0 0 0 0 0 0 0 Q
0 Q 0 0 0 0 0 0
0 0 0 Q 0 0 0 0
0 0 0 0 0 Q 0 0
0 0 Q 0 0 0 0 0

Subset Sum Problem via Backtracking
Finally, we consider the subset sum problem. Given a set of integers S and a value M , we want to find
a subset B of S whose sum is M . To use backtracking on this problem, we first impose an ordering on
the  set  S.  We  successively  select  integers  from S  to  include  in  B  until  the  sum of  the  elements  of  B
equals or exceeds M , and backtrack when the sum exceeds M .
Before  we get  to  the  main algorithm,  it  is  worth  reviewing two items of  syntax.  First,  given a  list  of
values, we can compute their sum with the Plus function by using Apply (@@) to replace the List
head with the Plus head, which then results in the sum being computed.
In[193]:= listofvalues = 83, 7, 11, 15, -4<

Out[193]= 83, 7, 11, 15, -4<
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In[194]:= Plus üü listofvalues

Out[194]= 32

Second, given a list of values and a second list consisting of indices into the first list, we can obtain the
sublist  of  values  corresponding  to  the  positions  described  by  the  second  list  by  using  the  Part
([[…]]) operator with the list of indices.
In[195]:= listofstuff = 8"a", "b", "c", "d", "e", "f", "g"<

Out[195]= 8a, b, c, d, e, f, g<

In[196]:= listofindices = 81, 3, 4, 7<

Out[196]= 81, 3, 4, 7<

In[197]:= listofstuff@@listofindicesDD

Out[197]= 8a, c, d, g<

In[198]:= listofstuff@@83, 4, 6<DD

Out[198]= 8c, d, f<

As  the  general  pattern  of  backtracking  algorithms  should  be  clear  by  this  point,  we  omit  a  detailed
description of the function.
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In[199]:= subsetSum@S : 8__Integer<, M_IntegerD :=
Module@8bIndices, allIndices, i, availIndices, k, currentSum<,
bIndices = 8<;
allIndices = Range@Length@SDD;
i = 1;
currentSum = 0;
While@i > 0 && currentSum ¹≠ M,
availIndices = Complement@allIndices, bIndicesD;
If@Length@bIndicesD ¥ i, availIndices =

Complement@availIndices, Range@bIndices@@iDDDDD;
Do@If@currentSum + S@@kDD > M,

availIndices = Complement@availIndices, 8k<DD
, 8k, availIndices<D;

If@availIndices ¹≠ 8<,
bIndices =
Append@bIndices@@1 ;; i - 1DD, availIndices@@1DDD;

i++,
H*else*L
If@Length@bIndicesD ¥ i, bIndices = bIndices@@1 ;; i - 1DDD;
i--

D;
currentSum = Plus üü S@@bIndices@@1 ;; i - 1DDDD

D;
If@i ã 0,
Return@$FailedD,
Return@S@@bIndicesDDD

D
D

In[200]:= subsetSum@831, 27, 15, 11, 7, 5<, 39D

Out[200]= 827, 7, 5<

In[201]:= subsetSum@831, 27, 15, 11, 7, 5<, 40D

Out[201]= $Failed

11.5 Minimum Spanning Trees
This section explains how to use Mathematica to find the minimum spanning tree of a weighted graph.
Recall that a minimum spanning tree T  of a weighted graph G  is a spanning tree of G  with the mini-
mum  weight  of  all  spanning  trees  of  G.  The  two  best  known  algorithms  for  constructing  minimum
spanning trees are called Prim's algorithm and Kruskal's algorithm. In this section, we will implement
these algorithms, as this is another case in which understanding the implementation can help you better
understand the algorithms. 
Before  implementing  the  algorithms  and  finding  minimum  spanning  trees,  though,  we  will  describe
two built-in Mathematica commands, GraphDistance and GraphDistanceMatrix, that calcu-
late the minimum distance between two vertices in a graph. 
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Before  implementing  the  algorithms  and  finding  minimum  spanning  trees,  though,  we  will  describe
two built-in Mathematica commands, GraphDistance and GraphDistanceMatrix, that calcu-
late the minimum distance between two vertices in a graph. 
First,  we construct  a  graph to  use  as  an  example.  We will  recreate  Exercise  3  from Section 11.5.  To
define undirected, weighted edges, we will  give EdgeWeight  as an option to Graph,  associating it
with the list  of the edge weights in the same order as the edges are given. Recall that to get the edge
weights  to  appear  as  labels  on  the  graph,  we  need  to  explicitly  set  the  edge  labels,  which  we  do  by
constructing a loop setting the label of each each to its weight.
In[202]:= exercise3 = Graph@8"a", "b", "c", "d", "e", "f", "g", "h", "i"<,

8"a" Ø "b", "a" Ø "d", "b" Ø "c", "b" Ø "d",
"b" Ø "e", "b" Ø "f", "c" Ø "f", "d" Ø "e", "d" Ø "g",
"d" Ø "h", "e" Ø "f", "e" Ø "h", "f" Ø "h", "f" Ø "i",
"g" Ø "h", "h" Ø "i"<, DirectedEdges Ø False,

EdgeWeight Ø 85, 2, 4, 3, 5, 6, 3, 7, 6, 8, 1, 3, 4, 4, 4, 2<,
VertexCoordinates Ø 880, 2<, 81, 2<, 82, 2<,

80, 1<, 81, 1<, 82, 1<, 80, 0<, 81, 0<, 82, 0<<,
VertexLabels Ø "Name", ImagePadding Ø 10D;

Do@PropertyValue@8exercise3, e<, EdgeLabelsD =
PropertyValue@8exercise3, e<, EdgeWeightD,

8e, EdgeList@exercise3D<D;
exercise3

Out[204]=

Mathematica’s  GraphDistance  function  accepts  two  or  three  arguments.  Given  a  graph  and  two
vertices in the graph, it returns the distance between the two vertices. For example, in the graph above,
we compute the distance from c to e as follows.
In[205]:= GraphDistance@exercise3, "c", "e"D

Out[205]= 4.

You can also apply GraphDistance  to a graph and just one of its vertices. In this case, the output
will  be  a  list  of  the  shortest  distances  from the  given vertex  to  each of  the  vertices  in  the  graph.  For
example,  the  following  shows  the  distances  from  the  central  vertex  e  to  each  of  the  vertices  in  the
graph. The 0 in the output corresponds to the distance from the vertex to itself.

Chapter11.nb  65



In[206]:= GraphDistance@exercise3, "e"D

Out[206]= 89., 5., 4., 7., 0, 1., 7., 3., 5.<

The GraphDistanceMatrix function applied to a graph produces the matrix whose entries are the
distances between corresponding vertices. The rows and columns are ordered according to the order of
vertices in the graph, agreeing with the output of VertexList.
In[207]:= GraphDistanceMatrix@exercise3D êê MatrixForm

Out[207]//MatrixForm=
0. 5. 9. 2. 9. 10. 8. 10. 12.
5. 0. 4. 3. 5. 6. 9. 8. 10.
9. 4. 0. 7. 4. 3. 11. 7. 7.
2. 3. 7. 0. 7. 8. 6. 8. 10.
9. 5. 4. 7. 0. 1. 7. 3. 5.
10. 6. 3. 8. 1. 0. 8. 4. 4.
8. 9. 11. 6. 7. 8. 0. 4. 6.
10. 8. 7. 8. 3. 4. 4. 0. 2.
12. 10. 7. 10. 5. 4. 6. 2. 0.

Using  TableForm  and  the  TableHeadings  option,  we  can  easily  create  a  table  of  the  distances
with  row  and  column  headings  making  the  vertices  explicit.  TableHeadings  is  associated  with  a
list of two lists in order to label the rows and columns.
In[208]:= TableForm@GraphDistanceMatrix@exercise3D, TableHeadings Ø

8VertexList@exercise3D, VertexList@exercise3D<D
Out[208]//TableForm=

a b c d e f g h i
a 0. 5. 9. 2. 9. 10. 8. 10. 12.
b 5. 0. 4. 3. 5. 6. 9. 8. 10.
c 9. 4. 0. 7. 4. 3. 11. 7. 7.
d 2. 3. 7. 0. 7. 8. 6. 8. 10.
e 9. 5. 4. 7. 0. 1. 7. 3. 5.
f 10. 6. 3. 8. 1. 0. 8. 4. 4.
g 8. 9. 11. 6. 7. 8. 0. 4. 6.
h 10. 8. 7. 8. 3. 4. 4. 0. 2.
i 12. 10. 7. 10. 5. 4. 6. 2. 0.

Prim’s Algorithm
We will now build functions to implement Prim’s algorithm. We will also see how to create animations
that illustrate the process of building the spanning tree.
Since both Prim’s algorithm and Kruskal’s depend on choosing an edge of smallest weight, it  will be
useful to be able to apply Sort to a list of edges. Recall that Sort accepts an optional second argu-
ment: a function that takes 2 arguments and returns True if the first argument is less than the second.
Since this function needs to also depend on the graph, as well as the two edges, we will create a func-
tion that takes a graph as the argument and produces a pure Function (&) that requires only the two
edges as arguments.
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Since both Prim’s algorithm and Kruskal’s depend on choosing an edge of smallest weight, it  will be
useful to be able to apply Sort to a list of edges. Recall that Sort accepts an optional second argu-
ment: a function that takes 2 arguments and returns True if the first argument is less than the second.
Since this function needs to also depend on the graph, as well as the two edges, we will create a func-
tion that takes a graph as the argument and produces a pure Function (&) that requires only the two
edges as arguments.
In[209]:= edgeCompare@G_D := Function@8e1, e2<,

PropertyValue@8G, e1<, EdgeWeightD <
PropertyValue@8G, e2<, EdgeWeightD

D

The list we provided to Function as its first argument specifies that the symbols e1 and e2 will be
interpreted as parameters, in place of the generic Slot (#).
Applying  edgeCompare  to  a  graph  will  output  a  function.  Assigning  the  result  to  a  symbol  means
that  symbol  can then be  used as  a  function.  The expression below will  cause  testComp  to  act  as  a
function on two argument, edges in exercise3, and return True if the weight of the first is less than
or equal to the weight of the second. 
In[210]:= testComp = edgeCompare@exercise3D

Out[210]= FunctionB8e1$, e2$<,

PropertyValueB: , e1$>, EdgeWeightF <

PropertyValueB: , e2$>, EdgeWeightFF

In[211]:= testComp@"a" ê "d", "a" ê "b"D

Out[211]= True

Prim’s  algorithm  is  given  as  Algorithm  1  in  Section  11.5  of  the  textbook.  It  constructs  a  minimum
spanning tree by successively selecting an edge of smallest weight that extends the tree without creat-
ing any loops. 
To  simplify  our  implementation  of  Prim's  algorithm,  we  will  create  a  function  minEdge.  Given  the
original  graph  and  the  list  of  vertices  already  included  in  the  spanning  tree,  minEdge  determines
which edge of the graph should be added next.
minEdge first needs to determine the set of edges that are incident with a vertex currently in the tree.
It will do this by applying NeighborhoodGraph to the graph and the list of vertices in the tree. The
minEdge function then eliminates any edge with both ends already in the spanning tree or neither end
in the spanning tree. (This is equivalent to the condition that the edge not introduce a simple circuit but
that  the  new  graph  will  be  connected.)  Once  it  has  determined  the  valid  candidates,  the  minEdge
function returns the edge with smallest weight. We also include the special case that the spanning tree
has not yet been started, in which case we call the function with the empty list as the second argument.
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minEdge first needs to determine the set of edges that are incident with a vertex currently in the tree.
It will do this by applying NeighborhoodGraph to the graph and the list of vertices in the tree. The
minEdge function then eliminates any edge with both ends already in the spanning tree or neither end
in the spanning tree. (This is equivalent to the condition that the edge not introduce a simple circuit but
that  the  new  graph  will  be  connected.)  Once  it  has  determined  the  valid  candidates,  the  minEdge
function returns the edge with smallest weight. We also include the special case that the spanning tree
has not yet been started, in which case we call the function with the empty list as the second argument.
In[212]:= minEdge@G_Graph, V_ListD := Module@8possibleEdges, i<,

If@V ã 8<,
H* empty tree case *L
possibleEdges = EdgeList@GD,
H* nonempty case *L
possibleEdges = EdgeList@NeighborhoodGraph@G, VDD;
i = 1;
While@i § Length@possibleEdgesD,
If@MemberQ@V, possibleEdges@@iDD@@1DDD ã

MemberQ@V, possibleEdges@@iDD@@2DDD,
possibleEdges = Delete@possibleEdges, iD,
i++D

D
D;
If@possibleEdges ã 8<, Return@NullDD;
possibleEdges = Sort@possibleEdges, edgeCompare@GDD;
possibleEdges@@1DD

D

With this function in place, Prim's algorithm is fairly straightforward to implement.
1. Begin building the spanning tree by finding the edge of minimum weight by calling the function 
minEdge on the graph and the empty list.

2. Continue building the spanning tree one edge at a time by adding the edge returned by minEdge. 
(Note that we must add the new vertex before the edge, since EdgeAdd expects both endpoints of 
the edge to be added to already be in the graph.)

3. After n- 2 repetitions of step 2, where n is the number of vertices in the graph, the spanning tree 
is complete.

4. For the sake of displaying the resulting tree, we conclude the function by copying the vertex 
positions from the original graph to the tree. 
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In[213]:= prim@G_Graph, opts___D := Module@8newEdge, T, n, i, v<,
newEdge = minEdge@G, 8<D;
T = Graph@8newEdge<, optsD;
PropertyValue@8T, newEdge<, EdgeWeightD =
PropertyValue@8G, newEdge<, EdgeWeightD;

PropertyValue@8T, newEdge<, EdgeLabelsD =
PropertyValue@8G, newEdge<, EdgeWeightD;

n = VertexCount@GD;
For@i = 1, i § n - 2, i++,
newEdge = minEdge@G, VertexList@TDD;
If@VertexQ@T, newEdge@@1DDD,
T = VertexAdd@T, newEdge@@2DDD,
T = VertexAdd@T, newEdge@@1DDD

D;
T = EdgeAdd@T, newEdgeD;
PropertyValue@8T, newEdge<, EdgeWeightD =
PropertyValue@8G, newEdge<, EdgeWeightD;

PropertyValue@8T, newEdge<, EdgeLabelsD =
PropertyValue@8G, newEdge<, EdgeWeightD

D;
Do@PropertyValue@8T, v<, VertexCoordinatesD =

PropertyValue@8G, v<, VertexCoordinatesD;
PropertyValue@8T, v<, VertexLabelsD =
PropertyValue@8G, v<, VertexLabelsD

, 8v, VertexList@TD<D;
T

D

We can now use this algorithm to find the minimum spanning tree for Exercise 3.
In[214]:= primExercise3 = prim@exercise3, ImagePadding Ø 10D

Out[214]=

Before moving on to Kruskal’s algorithm, we’ll create a function to produce an animation demonstrat-
ing Prim’s  algorithm in  action.  First,  we’ll  modify  the  prim  function to  record the  list  of  edges  that
form the tree and return this list of edges rather than the tree.
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Before moving on to Kruskal’s algorithm, we’ll create a function to produce an animation demonstrat-
ing Prim’s  algorithm in  action.  First,  we’ll  modify  the  prim  function to  record the  list  of  edges  that
form the tree and return this list of edges rather than the tree.
In[215]:= primEdges@G_GraphD := Module@8newEdge, T, edgeList, n, i, v<,

newEdge = minEdge@G, 8<D;
T = Graph@8newEdge<D;
edgeList = 8newEdge<;
n = VertexCount@GD;
For@i = 1, i § n - 2, i++,
newEdge = minEdge@G, VertexList@TDD;
If@VertexQ@T, newEdge@@1DDD,
T = VertexAdd@T, newEdge@@2DDD,
T = VertexAdd@T, newEdge@@1DDD

D;
T = EdgeAdd@T, newEdgeD;
AppendTo@edgeList, newEdgeD

D;
edgeList

D

In[216]:= primEdges@exercise3D

Out[216]= 8e ê f, c ê f, e ê h, h ê i, g ê h, b ê c, b ê d, a ê d<

We  now  write  the  function  that  will  produce  the  animation.  Since  this  is  nearly  identical  to  the
animatePath  function  from  Chapter  10,  we  refer  the  reader  to  Section  10.5  of  this  manual  for  a
detailed explanation.
In[217]:= animateTree@G_Graph, T_List, opts___D := Module@8i, len<,

len = Length@TD;
Animate@HighlightGraph@G, T@@1 ;; iDD, optsD,
88i, 0, "step"<, 0, len, 1<,
AnimationRunning Ø False, AnimationRepetitions Ø 1D

D
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In[218]:= animateTree@exercise3, primEdges@exercise3DD

step

Kruskal’s Algorithm
Recall  that  Kruskal's  algorithm, Algorithm 2 in Section 11.5,  begins in the same way as Prim's  algo-
rithm,  with  the  edge of  smallest  weight.  The difference is  that  at  each step,  Kruskal's  algorithm adds
whatever  edge  is  of  least  weight  which  does  not  create  a  simple  circuit,  regardless  of  whether  it  is
incident to an edge already in the graph.
We begin  with  a  function  to  test  whether  or  not  a  given  edge  will  create  a  simple  circuit.  Note  that,
during the steps of Kruskal's algorithm, we have a forest of trees. An edge will create a simple circuit if
and only if both of its endpoints are in the same tree within the forest. We use the ConnectedCompo-
nents  function  to  find  the  trees.  The  ConnectedComponents  function  returns  a  list  of  lists,
where each inner list is the vertices within one of the connected components of the graph. We test an
edge  by  looping  through  each  of  the  connected  components  and  making  sure  that  both  ends  do  not
appear in the same component.
In[219]:= noCircuitQ@G_Graph, edge_D := Module@8components, C<,

components = ConnectedComponents@GD;
Catch@
Do@If@MemberQ@C, edge@@1DDD &&

MemberQ@C, edge@@2DDD, Throw@FalseDD
, 8C, components<D;

Throw@TrueD
D

D

Now we implement Kruskal's algorithm. The function is as follows.
1. Initialize edges to the list of edges of the given graph and sort this list using the edgeCompare 

function created above.
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2. Initialize T to the graph with all the vertices of G and no edges..
3. Consider the first edge in the edges list. Use noCircuitQ to determine if it is safe to add to 

the tree. If we can add it to the tree, add one or both of its ends as new vertices to T as needed and 
add the edge.

4. Regardless of whether noCircuitQ approves the addition of the first edge in edges to the tree, 
remove the edge from edges — either the edge is now used in the tree and so won't be used 
again, or its addition would create a circuit (a fact which won't change later).

5. Repeat steps 3 and 4 until n- 1 edges have been added, where n is the number of vertices.
In[220]:= kruskal@G_Graph, opts___D :=

Module@8edges, T, n, i, newEdge, v<,
edges = Sort@EdgeList@GD, edgeCompare@GDD;
T = Graph@VertexList@GD, 8<, optsD;
n = VertexCount@GD;
i = 1;
While@i § n - 1,
newEdge = edges@@1DD;
If@noCircuitQ@T, newEdgeD,
T = EdgeAdd@T, newEdgeD;
PropertyValue@8T, newEdge<, EdgeWeightD =
PropertyValue@8G, newEdge<, EdgeWeightD;

PropertyValue@8T, newEdge<, EdgeLabelsD =
PropertyValue@8G, newEdge<, EdgeWeightD;

i++
D;
edges = Delete@edges, 1D

D;
Do@PropertyValue@8T, v<, VertexCoordinatesD =

PropertyValue@8G, v<, VertexCoordinatesD;
PropertyValue@8T, v<, VertexLabelsD =
PropertyValue@8G, v<, VertexLabelsD

, 8v, VertexList@TD<D;
T

D

Note  that  Kruskal's  algorithm  produces  the  same  minimum  spanning  tree  for  Exercise  3  as  did  our
implementation of Prim's algorithm (in fact, this graph has a unique minimum spanning tree).
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In[221]:= kruskalExercise3 = kruskal@exercise3, ImagePadding Ø 10D

Out[221]=

We can produce an animation, like we did for Prim's algorithm, by modifying the function to produce
the list of edges in the order they are added and then using the animateTree function once again.
In[222]:= kruskalEdges@G_GraphD :=

Module@8edges, edgeList, T, n, i, newEdge, v<,
edges = Sort@EdgeList@GD, edgeCompare@GDD;
edgeList = 8<;
T = Graph@VertexList@GD, 8<D;
n = VertexCount@GD;
i = 1;
While@i § n - 1,
newEdge = edges@@1DD;
If@noCircuitQ@T, newEdgeD,
T = EdgeAdd@T, newEdgeD;
AppendTo@edgeList, newEdgeD;
i++

D;
edges = Delete@edges, 1D

D;
edgeList

D
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In[223]:= animateTree@exercise3, kruskalEdges@exercise3DD

step

By comparing the two animations, you can see how the two algorithms provide different routes to the
same end result.

Solutions to Computer Projects and Computations and 
Explorations

Computer Projects 6

Given the ordered list of edges of an ordered rooted tree, find the universal addresses of its 
vertices.

Solution:  Recall  that the universal address of a vertex in an ordered rooted tree is defined as follows.
The root has address 0 and its children have addresses 1, 2, 3, etc., in order. The address of every other
vertex is defined recursively as p.n where p is the address of the vertex's parent and n is 1 if the vertex
is the first child of its parent, 2 if it is the second child, etc.
Before solving this problem, we will make the following assumption on the input: the edges are sorted
according to the lexicographical order of the universal address of their terminal vertex. That is to say,
the edges are listed in the order of their appearance from left to right and top to bottom when the tree is
drawn in the usual way. 
We  build  the  ordered  rooted  tree  (satisfying  orderedRootedTreeQ)  determined  by  the  list  of
edges and add a “univ-address” property to each vertex containing the vertex's universal address. First,
here is an ordered list of edges for an ordered rooted tree.
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In[224]:= cp6Example = 8"D" Ø "E", "D" Ø "C", "D" Ø "I", "E" Ø "L", "E" Ø "F",
"I" Ø "B", "I" Ø "K", "I" Ø "H", "F" Ø "J", "F" Ø "G", "F" Ø "A"<

Out[224]= 8D Ø E, D Ø C, D Ø I, E Ø L, E Ø F,
I Ø B, I Ø K, I Ø H, F Ø J, F Ø G, F Ø A<

We  have  purposefully  chosen  vertex  names  that  are  out  of  order  with  respect  to  the  ordering  of  the
edges so that our construction is sure to rely only on the ordering of the edges and not the vertex labels.
Note that creating a graph with these edges only requires passing it to the Graph function.
In[225]:= cp6Graph = Graph@cp6ExampleD;

Our first task is to turn this into an ordered rooted tree. Since we provided directed edges, it is already
a rooted tree.
In[226]:= rootedTreeQ@cp6GraphD

Out[226]= True

To make this graph an ordered rooted tree, we need to set the “order” property for each vertex. For the
root, we just set the root's “order” to 0.
In[227]:= PropertyValue@8cp6Graph, findRoot@cp6GraphD<, "order"D = 0

Out[227]= 0

For  the  rest  of  the  vertices,  we  need  to  do  some  more  work.  Our  approach  will  be  as  follows.  Loop
through all of the edges in the original edge list, in order, keeping track of two variables, curParent,
the current parent, and the childOrder. The curParent will initially be set to the root of the tree
and childOrder will be initialized to 1. For the first edge in the list, we assign the child vertex (the
terminal vertex of the ordered edge) “order” equal to childOrder.  We then go to the next edge. If
the curParent is the same as the parent vertex in this edge, then childOrder is incremented and
we assign the child vertex of this edge an order equal to the new childOrder value. Otherwise, the
parent vertex of this new edge is different from curParent. This indicates that we have moved on to
a  new  parent  with  a  new  set  of  children,  so  we  set  curParent  to  this  new  parent  and  reset
childOrder to 1. Here is the code for this step in the process.
In[228]:= curParent = findRoot@cp6GraphD;

childOrder = 1;
Do@If@thisEdge@@1DD ¹≠ curParent,

curParent = thisEdge@@1DD;
childOrder = 1D;

PropertyValue@8cp6Graph, thisEdge@@2DD<, "order"D =
childOrder;

childOrder++
, 8thisEdge, cp6Example<D

Now that the order attributes are set, our graph is an ordered rooted tree. 
In[231]:= orderedRootedTreeQ@cp6GraphD

Out[231]= True
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In[232]:= plotORTree@cp6Graph, VertexLabels Ø "Name", ImagePadding Ø 10D

Out[232]=

We use the approach above to define a function.
In[233]:= treeFromList@L_List, opts___D :=

Module@8T, e, curParent, childOrder, thisEdge<,
T = Graph@L, optsD;
PropertyValue@8T, findRoot@TD<, "order"D = 0;
curParent = findRoot@TD;
childOrder = 1;
Do@If@thisEdge@@1DD ¹≠ curParent,

curParent = thisEdge@@1DD;
childOrder = 1

D;
PropertyValue@8T, thisEdge@@2DD<, "order"D = childOrder;
childOrder++
, 8thisEdge, L<D;

T
D

We could now create  a  function that  uses  the  pattern  of  a  breadth  first  search to  assign the  universal
addresses. But instead we will take this opportunity to use the built-in function BreadthFirstScan
instead.  The  first  two  arguments  will  be  the  graph  and  the  root  of  the  graph,  which  explicitly  tells
Mathematica  where  to  begin  the  breadth  first  search.  The  third  argument  will  be  a  list  specifying  a
function  to  use  when  the  event  “DiscoverVertex”  occurs.  The  function  is  applied  to  two  argu-
ments,  #1  refers  to  the vertex being discovered,  and #2  refers  to  the vertex from which it  is  discov-
ered, that is, its parent. The body of our function will check if the parent has “order” property 0, indicat-
ing that the discovered vertex is either the root or a child of the root.  In this case, the “univ-address”
property will be set to the vertex’s order. Otherwise, the “univ-address” will be set to the concatenation
of the parent’s address and the vertex’s order.
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In[234]:= universalAddress@edgeList_List, opts___D := Module@8G<,
G = treeFromList@edgeList, optsD;
BreadthFirstScan@G, findRoot@GD, 8"DiscoverVertex" Ø

HHIf@PropertyValue@8G, Ò2<, "order"D ã 0,
H* root or root's child *L
PropertyValue@8G, Ò1<, "univ-address"D =
ToString@PropertyValue@8G, Ò1<, "order"DD,

H* descendant of a root's child *L
PropertyValue@8G, Ò1<, "univ-address"D =
PropertyValue@8G, Ò2<, "univ-address"D <> "." <>
ToString@PropertyValue@8G, Ò1<, "order"DDD;

H* set address as vertex label *L
PropertyValue@8G, Ò1<, VertexLabelsD =
PropertyValue@8G, Ò1<, "univ-address"D

L &L<D;
G

D

In[235]:= universalAddress@cp6Example, ImagePadding Ø 10D

Out[235]=

Computations and Explorations 1

Display all trees with six vertices.

Solution:  To solve this problem, we make use of a recursive definition of tress. The empty graph is a
tree, the graph with a single vertex is also a tree, and the graph with two vertices with an edge between
them is a tree. Given any tree, we can form a new tree with one additional vertex by adding the new
vertex as  a  leaf  connected to  any one of  the  original  vertices.  (The reader  can verify  that  this  indeed
creates all trees with one more vertex.)
We shall create a function, called extendTrees, that accepts as input a list of trees on n vertices and
returns  the  resulting  list  of  trees  on  n+ 1  vertices.  For  each  of  the  original  trees,  we  consider  each
vertex of the tree and create a new tree by adding a leaf to it.
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In[236]:= extendTrees@trees_ListD := Module@8newTrees, newV, T, v, newT<,
newTrees = 8<;
newV = VertexCount@trees@@1DDD + 1;
Do@
Do@
newT = VertexAdd@T, newVD;
newT = EdgeAdd@newT, v Ø newVD;
AppendTo@newTrees, newTD
, 8v, VertexList@TD<D

, 8T, trees<D;
newTrees

D

We can now use this  procedure to  determine all  trees  on four  vertices.  Finding all  the  trees  of  larger
sizes is left to the reader. 
In[237]:= allTrees = 8Graph@81, 2<, 81 Ø 2<, DirectedEdges Ø TrueD<

Out[237]= 8 <

In[238]:= For@i = 3, i § 4, i++, allTrees = extendTrees@allTreesDD;

We now display the trees on four vertices. We Map rootedPlot over the list in order to display the
trees properly.
In[239]:= Grid@Partition@Map@rootedPlot@Ò, VertexLabeling Ø TrueD &,

allTreesD, 3D, Frame Ø AllD
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Computations and Explorations 3

Construct a Huffman code for the symbols with ASCII codes given the frequency of their 
occurrence in representative input. 

Solution: ASCII, which stands for American Standard Code for Information Interchange, includes 128
characters,  including 33 non-printing characters.  Most  of  the  non-printing characters,  with  the excep-
tion of the space and the carriage return or newline character, however, are rarely used. We will focus
on the standard characters of English and the newline character.
Since we've already created the function,  huffmanCode,  which creates a Huffman code based on a
list of character/weight pairs, the main work we need to do is determine the frequencies of characters
in a sample input. We use the following input, which contains letters, punctuation, and newline charac-
ters. 
In[240]:= inputText = "The quick brown fox said,

\"How do you do, my friend?\"
Then he ran very quickly off into the sunset."

Out[240]= The quick brown fox said,
"How do you do, my friend?"
Then he ran very quickly off into the sunset.

We can turn this string into a list by applying the Characters function.
In[241]:= textList = Characters@inputTextD

Out[241]= 8T, h, e, , q, u, i, c, k, , b,
r, o, w, n, , f, o, x, , s, a, i, d, ,,

, ", H, o, w, , d, o, , y, o, u, , d, o,
,, , m, y, , f, r, i, e, n, d, ?, ",

, T, h, e, n, , h, e, , r, a, n, , v, e, r, y, , q, u, i, c, k,
l, y, , o, f, f, , i, n, t, o, , t, h, e, , s, u, n, s, e, t, .<

Using  FullForm,  we  can  have  Mathematica  display  the  newline  characters  for  us  explicitly.  Also,
Mathematica differentiates between a newline character and a space character.
In[242]:= textList@@26DD êê FullForm

Out[242]//FullForm=
"\n"

In[243]:= textList@@4DD êê FullForm
Out[243]//FullForm=

" "

In[244]:= textList@@26DD ã textList@@4DD

Out[244]= False

We will calculate the frequencies of the characters in our text by applying the Tally function. When
applied to a list, Tally returns a list of pairs consisting of the unique elements of the original list and
the number of times each appears.

Chapter11.nb  79



In[245]:= Tally@Characters@inputTextDD

Out[245]= 88T, 2<, 8h, 4<, 8e, 7<, 8 , 17<, 8q, 2<, 8u, 4<,
8i, 5<, 8c, 2<, 8k, 2<, 8b, 1<, 8r, 4<, 8o, 8<, 8w, 2<,
8n, 6<, 8f, 4<, 8x, 1<, 8s, 3<, 8a, 2<, 8d, 4<, 8,, 2<, 8

, 2<, 8", 2<, 8H, 1<, 8y, 4<, 8m, 1<,
8?, 1<, 8v, 1<, 8l, 1<, 8t, 3<, 8., 1<<

The Huffman function expects the input to consist of the characters and their relative frequency. So we
need to divide the counts from the Tally output by the number of characters.
In[246]:= Length@Characters@inputTextDD

Out[246]= 99

In[247]:= foxList = Tally@Characters@inputTextDD ê. 8c_, n_< Ø 8c, nê99<

Out[247]= ::T,
2

99
>, :h,

4

99
>, :e,

7

99
>, : ,

17

99
>, :q,

2

99
>, :u,

4

99
>, :i,

5

99
>,

:c,
2

99
>, :k,

2

99
>, :b,

1

99
>, :r,

4

99
>, :o,

8

99
>, :w,

2

99
>, :n,

2

33
>,

:f,
4

99
>, :x,

1

99
>, :s,

1

33
>, :a,

2

99
>, :d,

4

99
>, :,,

2

99
>, :

,
2

99
>, :",

2

99
>, :H,

1

99
>, :y,

4

99
>, :m,

1

99
>,

:?,
1

99
>, :v,

1

99
>, :l,

1

99
>, :t,

1

33
>, :.,

1

99
>>

Finally, we're able to apply the huffmanCode function.
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In[248]:= foxCode =
huffmanCode@foxList, VertexLabels Ø "Name", ImagePadding Ø 5D

Out[248]=
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In[249]:= drawBinaryTree@foxCodeD

Out[249]=

You will need to enlarge the image substantially in order to see the result in a readable format.

Computations and Explorations 8

Draw the complete game tree for a game of checkers on a 4µ 4 board.

Solution:  We  will  provide  a  partial  solution  to  this  problem;  the  reader  is  left  to  complete  the  full
solution.  Specifically,  we will  create  a  Mathematica  function called movePiece  that  will  determine
all possible new checker arrangements given the current state of the board and the player whose turn it
is.  Once this function is  created,  the reader must determine how to represent these board positions as
vertices and edges, how to determine the next level of the game tree, as well as the halting conditions.
Before writing this  function,  however,  we must  establish a representation of  the board.  Naturally,  we
will use a matrix whose size is the size of the board. Empty board spaces will contain 0. Board spaces
in which a regular white or black piece is sitting will be represented by 1 or 2, respectively. Kings will
be represented by negative values, -1 for a white king and -2 for a black king. The following represents
an initial board before any moves have been made.
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Before writing this  function,  however,  we must  establish a representation of  the board.  Naturally,  we
will use a matrix whose size is the size of the board. Empty board spaces will contain 0. Board spaces
in which a regular white or black piece is sitting will be represented by 1 or 2, respectively. Kings will
be represented by negative values, -1 for a white king and -2 for a black king. The following represents
an initial board before any moves have been made.
In[250]:= checkersStart =

880, 2, 0, 2<, 80, 0, 0, 0<, 80, 0, 0, 0<, 81, 0, 1, 0<<;
checkersStart êê MatrixForm

Out[251]//MatrixForm=
0 2 0 2
0 0 0 0
0 0 0 0
1 0 1 0

Given a matrix representing a board state and an integer representing which side's turn it is, the func-
tion movePiece will list all of the possible results of the player's move. It operates as follows:
1. Initialize newBoards, which will be the list of all possible boards that result from the current 

move, to the empty list.
2. If side is 1, then normal pieces move up the board from bottom to top and we set direction 

to -1, since the index of rows in a matrix decrease as we move up the board. If the side is 2, then 
direction is set to +1.

3. Begin a pair of For loops, with indices r and c. These For loops allow us to consider each 
possible board location. In each position, we want to know if that location holds a piece belonging 
to the current player. If it is 1's turn, then that player's normal pieces are represented by a 1 in the 
position and the player's kings are represented by a -1 in the position. Likewise, 2's pieces are 
represent by 2 or by -2. Thus we can determine if a position holds a player's piece by comparing 
the absolute value of the matrix entry with the side. If the square does not hold a piece 
belonging to the current player, we simply move on to the next location.

4. Check to see if the piece is a king and set the variable isKing to 1 if it is a king or 0 if not. We 
then begin a For loop from 0 to the value of isKing. If isKing is 0, the loop executes only 
once. If isKing is 1, then the loop will execute twice. The index of this loop, king, is used to 
control rowDir, the current direction being considered. rowDir is either the same as 
direction or, in the case of the second iteration for a king, the reverse direction.

5.We now check to see if the possible moves keep the piece on the board. First, we make sure that 
r+rowDir, that is, the row in which the piece would move to, is still between 1 and 4 (the 
possible rows).

6. Assuming moving the piece won't take it off the top or bottom of the board, consider the left and 
right moves. We do this with a For loop which sets the variable colDir to -1 and then to +1. 
Again, we check to see that c+colDir, the current column plus the proposed change to the 
column position, is still on the board.

7. At this point we know that the board position (r+rowDir,c+colDir) is actually a board 
position. There are now three possibilities: the position is empty, there is an enemy piece in the 
square, there is a friendly piece in the square.

8. In the first case, the position is empty, we want to move the piece to that location. We make a 
copy of the board matrix (so we don't modify the original board). Then we make the move and 
add the new board to the list. Note that we also check to see if the piece becomes a king by 
moving into this position.
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9. In the second case, there is an enemy in the square, then we test to see if it is possible to jump. 
That is, we must make sure that the landing location after the jump is both on the board and 
empty. If so, we make the jump, i.e., we copy the board and make the necessary modifications. 
If not, then the move is not possible.

10. In the third case, the move is not possible and we do nothing.
Here is the function.
In[252]:= movePiece@board_List, side_IntegerD :=

Module@8newBoards = 8<, direction, r,
c, isKing, king, rowDir, colDir, newB<,

direction = Switch@side, 1, -1, 2, 1D;
For@r = 1, r § 4, r++,
For@c = 1, c § 4, c++,
If@Abs@board@@r, cDDD ã side,
If@board@@r, cDD < 0, isKing = 1, isKing = 0D;
For@king = 0, king § isKing, king++,
rowDir = Switch@king, 0, direction, 1, -directionD;
If@r + rowDir ¥ 1 && r + rowDir § 4,
For@colDir = -1, colDir § 1, colDir = colDir + 2,
If@c + colDir ¥ 1 && c + colDir § 4,
Which@board@@r + rowDir, c + colDirDD ã 0,
newB = board;
If@HHr + rowDir ã 1 && side ã 1L »»

Hr + rowDir ã 4 && side ã 2LL && board@@r, cDD > 0,
newB@@r + rowDir, c + colDirDD = -1*board@@r, cDD,
newB@@r + rowDir, c + colDirDD = board@@r, cDD

D;
newB@@r, cDD = 0;
AppendTo@newBoards, newBD,
Abs@board@@r + rowDir, c + colDirDDD ¹≠ side,
If@r + 2*rowDir ¥ 1 && r + 2*rowDir § 4 &&

c + 2*colDir ¥ 1 && c + 2*colDir § 4,
If@board@@r + 2*rowDir, c + 2*colDirDD ã 0,
newB = board;
If@HHr + 2*rowDir ã 1 && side ã 1L »» Hr + 2*rowDir ã

4 && side ã 2LL && board@@r, cDD > 0, newB@@r +
2*rowDir, c + 2*colDirDD = -board@@r, cDD,

newB@@r + 2*rowDir, c + 2*colDirDD = board@@r, cDD
D;
newB@@r, cDD = 0;
newB@@r + rowDir, c + colDirDD = 0;
AppendTo@newBoards, newBD

D
D

D
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In[252]:=

D
D

D
D

D
D

D
D;
newBoards

D

We now demonstrate a few steps using the function.
In[253]:= move1 = movePiece@checkersStart, 1D;

MatrixForm êü move1

Out[254]= :

0 2 0 2
0 0 0 0
0 1 0 0
0 0 1 0

,

0 2 0 2
0 0 0 0
0 1 0 0
1 0 0 0

,

0 2 0 2
0 0 0 0
0 0 0 1
1 0 0 0

>

In[255]:= move2 = movePiece@move1@@1DD, 2D;
MatrixForm êü move2

Out[256]= :

0 0 0 2
2 0 0 0
0 1 0 0
0 0 1 0

,

0 0 0 2
0 0 2 0
0 1 0 0
0 0 1 0

,

0 2 0 0
0 0 2 0
0 1 0 0
0 0 1 0

>

In[257]:= move3 = movePiece@move2@@3DD, 1D;
MatrixForm êü move3

Out[258]= :

0 2 0 0
1 0 2 0
0 0 0 0
0 0 1 0

,

0 2 0 -1
0 0 0 0
0 0 0 0
0 0 1 0

,

0 2 0 0
0 0 2 0
0 1 0 1
0 0 0 0

>

In[259]:= move4 = movePiece@move3@@2DD, 2D;
MatrixForm êü move4

Out[260]= :

0 0 0 -1
2 0 0 0
0 0 0 0
0 0 1 0

,

0 0 0 -1
0 0 2 0
0 0 0 0
0 0 1 0

>
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Exercises
1. Write Mathematica functions for finding the eccentricity of a vertex in an unrooted tree and 

for finding the center of an unrooted tree. (Eccentricity and center are defined in prelude to 
Exercise 39 of Section 11.1 of the text.)

2. Develop a Mathematica function for constructing rooted Fibonacci trees. (See the prelude to 
Exercise 45 of Section 11.1 for a definition of a Fibonacci tree.)

3. Develop a Mathematica function for listing the vertices of an ordered rooted tree in level 
order.

4. Compare the performance of binary search trees to linear search as follows:
a. Write a function, linearSearch, that takes two inputs, a list of integers and an integer 

to find, and checks each element of the list in order until the input is found, at which time it 
returns True. If the desired integer is not found, it is added the end of the list.

b. Use the function RandomSample[Range[n],n] for a positive integer n to create a list 
of the first n integers in random order, with an appropriately large n. Apply the makeBST 
function to the list to create a binary search tree for the data.

c. Randomly select some positive integers to search for. The RandomInteger function 
could be useful here.

d. Use both linearSearch and binaryInsertion to find the integers from part c in 
the list and tree, respectively. Time them using the typical Timing function. Repeat this 
for 100 different initial lists of integers and compare the resulting times. Compare these 
data (representing average-case complexity) with the theoretical worst-case results of n 
comparisons for linearSearch and logHnL for binaryInsertion.

5. Construct a Mathematica function for decoding a message which was encoded with a 
Huffman code. That is, given a Huffman coding tree produced by the HuffmanCode 
procedure and a message encoded by the encodeString function, the algorithm should 
return the original string.

6. Use the Shakespearean sonnets to estimate the frequency of characters used by Shakespeare. 
(See Section 7.3 of this manual to see how to read the data into Mathematica and make use of 
the functions given in the solution to Computations and Explorations 3 above to compute the 
frequencies of characters used in the poems.) Then create a Huffman code based on the 
sonnets and encode the ShakespeareData.txt with the Huffman code. Compare the storage 
space required by the Huffman encoded version of the file as opposed to the space that would 
be used to encode the file in ASCII format, assuming each ASCII character requires 7 bits.

7. Construct an undirected weighted graph which has at least two different minimum spanning 
trees and for which the prim and kruskal algorithms will return different results.

8. Write a Mathematica function implementing the reverse-delete algorithm for constructing 
minimal spanning trees. (The reverse-delete algorithm is described in the prelude to Exercise 
34 in Section 11.5.)

9. Explore the relative complexity of prim, kruskal, and the reverse-delete function you 
created in the previous exercise. Use the RandomGraph function to experiment with their 
performance. The expression RandomGraph[{v,e}] will produce a random weighted 
connected graph with v vertices and e edges. You will then need to add edge weights with a 
function you design yourself. For each algorithm, can you find properties that you can impose 
on the graphs that will ensure that the algorithm will outperform the others?
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9.

Explore the relative complexity of prim, kruskal, and the reverse-delete function you 
created in the previous exercise. Use the RandomGraph function to experiment with their 
performance. The expression RandomGraph[{v,e}] will produce a random weighted 
connected graph with v vertices and e edges. You will then need to add edge weights with a 
function you design yourself. For each algorithm, can you find properties that you can impose 
on the graphs that will ensure that the algorithm will outperform the others?

10. Develop a Mathematica function for producing degree-constrained spanning trees, which are 
defined in the Supplementary Exercises for Chapter 11. Use this function on a set of randomly 
generated graphs to attempt to construct degree-constrained spanning trees in which each 
vertex has degree no larger than 3.

11. Use Mathematica to analyze the game of Nim with different starting conditions via the 
technique of game trees. (See Example 6 in Section 11.2 for a description of the game of 
Nim.)

12. Use Mathematica to analyze the game of checkers on square boards of different sizes via the 
technique of game trees. (See the solution to Computations and Explorations 8 for the 
beginnings of a solution.)

13. Develop Mathematica functions for finding a path through a maze using the technique of 
backtracking.

14. Develop Mathematica functions for solving Sudoku puzzles using the technique of 
backtracking.

15. Use Mathematica to generate as many graceful trees as possible. (See the Supplementary 
Exercises of Chapter 11 for a definition of graceful.) Based on the examples you find, make 
conjectures about graceful trees.

16. Alter the postfix expression evaluator, evalPostfix, to handle prefix expressions.
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