
13 Modeling Computation

Introduction
In this chapter we will use Mathematica to study theoretical models of computation. We will see how
to generate elements of a language from a type 2 phrase-structure grammar and how to implement
finite-state machines with and without output. We will also examine Mathematica's support for regular
expressions and implement Turing machines.

13.1 Languages and Grammars
We will write a function to generate elements of a language from a type 2 phrase-structure grammar.
Recall that a type 2 grammar has productions only of the form w1 Ø w2 with w1 a single nonterminal
symbol.
Our strategy for generating the language will be as follows. We initialize a list L to the empty list. In
this list, we will store all words, that is, strings consisting only of terminal symbols. A list A is initial-
ized to the list consisting of the starting symbol.
We process an element of A by removing it from the list and applying all possible productions to it.
The results of the productions are either added to L if they consist solely of terminal symbols, or placed
in A to be processed further.
In order to prevent the time taken from becoming excessive, we will impose a time limit using the
TimeConstrained function. This limit will be an argument to the function.

Representation
We first need to determine how we will model the elements of the grammar in Mathematica.
We will generally represent terminal symbols as lower case letters stored as characters (strings). Nonter-
minal symbols will be upper case letters, also entered as strings.
Strings containing nonterminal symbols and words will be stored as strings. Productions will be stored
in an indexed variable. The indices will be the nonterminal symbols (recall that we're considering only
type 2 grammars). The value associated to a nonterminal symbol will be the list of all products deriv-
able from that symbol.
In Example 12 in the textbook, S Ø AB is the only derivation from the starting symbol, so 8"AB"< will
be the entry associated to S in the indexed variable. On the other hand, B Ø Ba, B Ø Cb, and B Ø b are
all productions from B. Thus, 8"Ba", "Bc", "b"< would be the entry associated to B.
Here are the productions for Example 12.

In[1]:= ex12productions@"S"D = 8"AB"<;
ex12productions@"A"D = 8"Ca"<;
ex12productions@"B"D = 8"Ba", "Cb", "b"<;
ex12productions@"C"D = 8"cb", "b"<;
?ex12productions

Global`ex12productions

ex12productions@AD = 8Ca<

ex12productions@BD = 8Ba, Cb, b<

ex12productions@CD = 8cb, b<

ex12productions@SD = 8AB<

Our function will require the following arguments: the set V defining the vocabulary, the set T of
terminal symbols, the starting symbol S, the table of productions P, and the limit on the time, in sec-
onds, timelimit. Note that, with the exception of the time limit, this is the same information that
makes up a grammar.

Implementation
The function begins by initializing L to the empty set and A to the list containing the starting string as
the sole element. Recall that L and A will store the words that have been produced and the list of
strings with nonterminal symbols that still require processing.
After the initializations are complete, we begin a While loop controlled by the condition that A is
nonempty. Within the loop, set curString (the “current string”) equal to the first element of A and
remove it from A.
We need to find all the strings that are directly derivable from curString. We do this as follows.
First, determine the nonterminal symbols N by computing the complement of the terminal symbols T
relative to the vocabulary V. Also initialize a list D (for derivations) to the empty list. We will store all
the strings derived from curString in this list and then later determine which should be added to L
and which to A.
Remember that curString is represented as a string. We can use StringPosition to determine
whether a particular nonterminal symbol appears in a string by evaluating the expression
StringPosition@ string, symbolD. The output will be a list of lists with each inner list
specifying the location of an occurance of symbol.

In[6]:= StringPosition@"AbcAb", "A"D

Out[6]= 881, 1<, 84, 4<<

Note that the positions for the string “A” are given as ranges. This is because StringPosition is
often used to find substrings of more than one character, so the function is returning a list of ranges.

2 Chapter13.nb

In[7]:= StringPosition@"abccbabca", "ab"D

Out[7]= 881, 2<, 86, 7<<

Note that the result when the target string is not found is the empty list.
In[8]:= StringPosition@"AbcAb", "X"D

Out[8]= 8<

For a given curString, we will loop over the nonterminal symbols. For any nonterminal symbols
that are found, we look the symbol up in the production table P. For each associated production, we
perform a substitution.
An example may be helpful to explain this step. Suppose we are processing the string “cBbaBa” as part
of the grammar given in Example 12 of Section 13.1.

In[9]:= curString = "cBbaBa"

Out[9]= cBbaBa

First we check for the nonterminal symbol “A”.
In[10]:= StringPosition@curString, "A"D

Out[10]= 8<

Since “A” is not present, we move on to “B”.
In[11]:= StringPosition@curString, "B"D

Out[11]= 882, 2<, 85, 5<<

We see that “B” does occur in the string. So we look up “B” in the production table.
In[12]:= ex12productions@"B"D

Out[12]= 8Ba, Cb, b<

We have two occurances of the nonterminal symbol “B” and three productions. Applying each produc-
tion to each location will produce six new strings, each of which has one of the occurances of “B”
replaced. We use a Do loop with two loop specifications: one over the productions and one over the list
of positions. We’ll be using the 8variable, list< form of the loop specifications. Note that if list
is the empty list, then no iteration will occur.
We apply the derivation with the StringReplacePart function. This function requires three
arguments. The first is the original string, in this case curString. The second argument is the new
string, in this case the element from the list of productions. And the third argument is the location
being replaced, in the same format as output from StringPosition. For example, below we
replace “xyz” with “d”.

In[13]:= StringReplacePart@"abcxyzefg", "d", 84, 6<D

Out[13]= abcdefg

These elements combine to the following code.

Chapter13.nb 3

In[14]:= Do@Print@StringReplacePart@curString, p, lDD,
8p, ex12productions@"B"D<,
8l, StringPosition@curString, "B"D<

D

cBabaBa

cBbaBaa

cCbbaBa

cBbaCba

cbbaBa

cBbaba

In our function, instead of printing the productions, we will Sow them and enclose the loop in a Reap.
We will also enclose the loop illustrated above within another Do loop over all of the nonterminal
symbols. The resulting list of derived strings is stored as D.
Once curString has been completely processed, we turn to deciding whether each element we
placed in D is a word or not. The most straightforward way to approach this is to consider whether or
not it contains any nonterminal symbols. We can do this by using StringPosition again, this time
with the list of all nonterminal symbols as the second argument. With a list as the second argument,
StringPosition outputs the list of all matches for any members of the list. If the output is the
empty list, that tells us that the string has no nonterminal symbols, and is thus a word.

In[15]:= StringPosition@"babaaa", 8"S", "A", "B", "C"<D

Out[15]= 8<

Here is the function.

4 Chapter13.nb

In[16]:= formWords@V_, T_, S_, P_, timelimit_D :=
Module@8L = 8<, A = 8"S"<, N, curString, D, s, d<,
N = Complement@V, TD;
TimeConstrained@
While@A ¹≠ 8<,
curString = A@@1DD;
A = Delete@A, 1D;
D = Reap@

Do@
Do@Sow@StringReplacePart@curString, p, lDD,
8p, P@sD<,
8l, StringPosition@curString, sD<

D
, 8s, N<DD@@2, 1DD;

Do@If@StringPosition@d, ND ã 8<,
AppendTo@L, dD,
AppendTo@A, dDD,

8d, D<
D

D, timelimitD;
DeleteDuplicates@LD

D

We use our function on the grammar defined by Example 12, up to one tenth of a second.
In[17]:= formWords@8"a", "b", "c", "A", "B", "C", "S"<,

8"a", "b", "c"<, "S", ex12productions, .1D

Out[17]= 8cbab, bab, cbaba, baba, cbacbb, cbabb, bacbb, babb,
cbabaa, babaa, cbacbba, cbabba, bacbba, babba, cbabaaa,
babaaa, cbacbbaa, cbabbaa, bacbbaa, babbaa, cbabaaaa,
babaaaa, cbacbbaaa, cbabbaaa, bacbbaaa, babbaaa,
cbabaaaaa, babaaaaa, cbacbbaaaa, cbabbaaaa, bacbbaaaa,
babbaaaa, cbabaaaaaa, babaaaaaa, cbacbbaaaaa, cbabbaaaaa,
bacbbaaaaa, babbaaaaa, cbabaaaaaaa, babaaaaaaa,
cbacbbaaaaaa, cbabbaaaaaa, bacbbaaaaaa, babbaaaaaa,
cbabaaaaaaaa, babaaaaaaaa, cbacbbaaaaaaa, cbabbaaaaaaa,
bacbbaaaaaaa, babbaaaaaaa, cbabaaaaaaaaa, babaaaaaaaaa,
cbacbbaaaaaaaa, cbabbaaaaaaaa, bacbbaaaaaaaa, babbaaaaaaaa,
cbabaaaaaaaaaa, babaaaaaaaaaa, cbacbbaaaaaaaaa,
cbabbaaaaaaaaa, bacbbaaaaaaaaa, babbaaaaaaaaa,
cbabaaaaaaaaaaa, babaaaaaaaaaaa, cbacbbaaaaaaaaaa,
cbabbaaaaaaaaaa, bacbbaaaaaaaaaa, babbaaaaaaaaaa<

13.2 Finite-State Machines with Output

Chapter13.nb 5

13.2 Finite-State Machines with Output
Example 4 from Section 13.2 describes a finite-state machine with five states and with input and output
alphabets both equal to 80, 1<. Example 6 describes how to implement addition of integers using their
binary expressions with a finite-state machine with output. Here, we will use Mathematica to model
those two finite-state machines. We will model strings in the language as lists.

A First Example
Recall from Definition 1 in Section 13.2 that a finite-state machine consists of six objects: a set S of
states, an input alphabet I, an output alphabet O, a transition function f , an output function g, and an
initial state s0.
We will write a function that, given that information and an input string, will return the associated
output string. Specifically, we will give as an argument to the function a list of members of the input
alphabet, and the function will return a list of members of the output alphabet such that the ith element
in the output list is the output associated with the ith member of the input list.
Representation
As is typical, we must first describe how we will represent the necessary objects in Mathematica.
The states will be represented by nonnegative integers. For example, in Example 4, the states will be
80, 1, 2, 3, 4<. We will assume, for the sake of simplicity, that the initial state will always be state 0.
Neither S nor s0 are therefore required as arguments to the function.
The input and output alphabets, I and O can be represented by lists of Mathematica objects but will not
be required arguments to the function as they can be inferred from the transition and output function.
In Example 4, these are both equal to the set 80, 1<.
The transition function and output function will be represented by a single indexed variable. This will
have the benefit of making the definition of the functions less cumbersome. The indices to the variable
will be pairs @state, inputD where state is a nonnegative integer and input will be a member of I.
The values of the variable will be pairs 8newState, output<, where newState is the state transi-
tioned to and output is the output corresponding to the original state and the input.
Here is the definition of the transition-output table for Example 4. (Refer to Table 3 of Section 13.2 as
the source of the values in the table.)

6 Chapter13.nb

In[18]:= ex4Table@0, 0D = 81, 1<;
ex4Table@0, 1D = 83, 0<;
ex4Table@1, 0D = 81, 1<;
ex4Table@1, 1D = 82, 1<;
ex4Table@2, 0D = 83, 0<;
ex4Table@2, 1D = 84, 0<;
ex4Table@3, 0D = 81, 0<;
ex4Table@3, 1D = 80, 0<;
ex4Table@4, 0D = 83, 0<;
ex4Table@4, 1D = 84, 0<;
?ex4Table

Global`ex4Table

ex4Table@0, 0D = 81, 1<

ex4Table@0, 1D = 83, 0<

ex4Table@1, 0D = 81, 1<

ex4Table@1, 1D = 82, 1<

ex4Table@2, 0D = 83, 0<

ex4Table@2, 1D = 84, 0<

ex4Table@3, 0D = 81, 0<

ex4Table@3, 1D = 80, 0<

ex4Table@4, 0D = 83, 0<

ex4Table@4, 1D = 84, 0<

Observe that the indices for the transition-output table consist of every possible state-input pair.
The Machine Modeling Function
The function we create will accept as arguments the name of the indexed variable representing the
transition-output table and the input string. It will produce the output string.
The function is fairly straightforward. Initialize the current state of the machine, stored in curState,
to 0, since we are insisting that 0 represent the starting state. Also initialize the output string,
outString, to the list of all 0s of the same length as the input list. (It is more efficient, when the
length of a list is known in advance, to initialize it to the correct length than it is to build it one element
at a time.)

Chapter13.nb 7

The function is fairly straightforward. Initialize the current state of the machine, stored in curState,
to 0, since we are insisting that 0 represent the starting state. Also initialize the output string,
outString, to the list of all 0s of the same length as the input list. (It is more efficient, when the
length of a list is known in advance, to initialize it to the correct length than it is to build it one element
at a time.)
Begin a For loop from 1 to the length of the input string. For each index, look up the pair consisting of
curState and the element in the input string in the transition-output table. The second element in the
result is placed in the output string at the correct position, and the first element is used to update
curState. Once the loop is complete, the output list is returned.
Here is the function.

In[29]:= machineWithOutput@transTable_, inString_D :=
Module@8curState = 0, outString, i, newo, news<,
outString = ConstantArray@0, Length@inStringDD;
For@i = 1, i § Length@inStringD, i++,
8news, newo< = transTable@curState, inString@@iDDD;
outString@@iDD = newo;
curState = news

D;
outString

D

Example 4 asks to find the output string when the input is 101 011.
In[30]:= machineWithOutput@ex4Table, 81, 0, 1, 0, 1, 1<D

Out[30]= 80, 0, 1, 0, 0, 0<

A Finite-State Machine for Addition
Example 6 in Section 13.2 describes how a finite-state machine with output that adds two integers
using their binary expansions can be designed. Figure 5 in the text gives a diagram illustrating the
machine.
The input alphabet for this machine are the four bit pairs: 00, 01, 10, and 11. We will represent the
pairs as strings. As described by the text, we assume that the initial bits xn and yn are both 0.
As an example, consider adding 7 = 01112 and 6 = 01102. We input these two numbers as pairs and in
reverse order. Thus the input string will be 810, 11, 11, 00<.
The transition-output table is obtained from the diagram shown in Figure 5.

In[31]:= addTable@0, "00"D = 80, 0<;
addTable@0, "01"D = 80, 1<;
addTable@0, "10"D = 80, 1<;
addTable@0, "11"D = 81, 0<;
addTable@1, "00"D = 80, 1<;
addTable@1, "01"D = 81, 0<;
addTable@1, "10"D = 81, 0<;
addTable@1, "11"D = 81, 1<;

Applying the machineWithOutput function to this table and the input produces the sum of the
integers.

8 Chapter13.nb

In[39]:= machineWithOutput@addTable, 8"10", "11", "11", "00"<D

Out[39]= 81, 0, 1, 1<

This corresponds to 11012 = 13.

13.3 Finite-State Machines with No Output
In this section we will see how to use Mathematica to represent finite-state automata and to perform
language recognition.

Kleene Closure
We begin this section by writing functions to compute the concatenation of two sets of strings and the
partial Kleene closure of a set of strings. As in the previous section, we will model a string as a list.
Given two lists of strings (themselves represented as lists), we can form all possible concatenations by
using Table and Join to concatenate each pair. In order to simplify the appearance of input, particu-
larly to enter single-element strings as a simple number, this function will wrap any non-lists into a list
structure so that single-term strings can be given to the function without braces.

In[40]:= setCat@A_, B_D := Module@8a, b<,
Flatten@Table@Which@

Head@aD === List && Head@bD === List, Join@a, bD,
Head@aD === List && Head@bD =!= List, Join@a, 8b<D,
Head@aD =!= List && Head@bD === List, Join@8a<, bD,
Head@aD =!= List && Head@bD =!= List, Join@8a<, 8b<DD,

8a, A<, 8b, B<D, 1D
D

Note that Flatten is used since Table with more than one loop specification produces a nested list.
The argument 1 prevents Flatten from flattening the list beyond the highest level of nesting.
Applying this function to the sets from Example 1 produces the same output as in the solution to that
example.

In[41]:= listA = 80, 81, 1<<

Out[41]= 80, 81, 1<<

In[42]:= listB = 81, 81, 0<, 81, 1, 0<<

Out[42]= 81, 81, 0<, 81, 1, 0<<

In[43]:= setCat@listA, listBD

Out[43]= 880, 1<, 80, 1, 0<, 80, 1, 1, 0<,
81, 1, 1<, 81, 1, 1, 0<, 81, 1, 1, 1, 0<<

Given a set A, recall that A0 is defined to be the set of the empty string, and that for n > 0, An+1 = An A.
Also recall that the Kleene closure of A is A* =‹k=0

¶ Ak. We define the partial Kleene closure to level
n by A@nD =‹k=0

n Ak.
We write the following function to produce the powers of A. The function is modeled on the recursive
definition given in the text.

Chapter13.nb 9

We write the following function to produce the powers of A. The function is modeled on the recursive
definition given in the text.

In[44]:= setPow@A_, k_D := If@k ã 0, 88<<, setCat@setPow@A, k - 1D, ADD;

For example, with B = 81, 10, 110<, we can compute B3 as follows.
In[45]:= setPow@listB, 3D

Out[45]= 881, 1, 1<, 81, 1, 1, 0<, 81, 1, 1, 1, 0<, 81, 1, 0, 1<,
81, 1, 0, 1, 0<, 81, 1, 0, 1, 1, 0<, 81, 1, 1, 0, 1<,
81, 1, 1, 0, 1, 0<, 81, 1, 1, 0, 1, 1, 0<, 81, 0, 1, 1<,
81, 0, 1, 1, 0<, 81, 0, 1, 1, 1, 0<, 81, 0, 1, 0, 1<,
81, 0, 1, 0, 1, 0<, 81, 0, 1, 0, 1, 1, 0<, 81, 0, 1, 1, 0, 1<,
81, 0, 1, 1, 0, 1, 0<, 81, 0, 1, 1, 0, 1, 1, 0<,
81, 1, 0, 1, 1<, 81, 1, 0, 1, 1, 0<, 81, 1, 0, 1, 1, 1, 0<,
81, 1, 0, 1, 0, 1<, 81, 1, 0, 1, 0, 1, 0<,
81, 1, 0, 1, 0, 1, 1, 0<, 81, 1, 0, 1, 1, 0, 1<,
81, 1, 0, 1, 1, 0, 1, 0<, 81, 1, 0, 1, 1, 0, 1, 1, 0<<

To form the partial Kleene closure A@nD, we must find the union of A0, A1, …, An. Iteratively building
the Ak while taking unions is more efficient than using setPow.

In[46]:= kleene@A_, n_D := Module@8K = 88<<, x, Ak, i<,
Do@K = Union@K, 88x<<D, 8x, A<D;
Ak = K;
For@i = 2, i § n, i++,
Ak = setCat@Ak, AD;
K = Union@K, AkD

D;
K

D

We compute the Kleene closure up to level 3 of 80, 1<.
In[47]:= kleene@80, 1<, 3D

Out[47]= 88<, 80<, 81<, 80, 0<, 80, 1<, 81, 0<, 81, 1<, 80, 0, 0<, 80, 0, 1<,
80, 1, 0<, 80, 1, 1<, 81, 0, 0<, 81, 0, 1<, 81, 1, 0<, 81, 1, 1<<

Extended Transition Function for a Finite-State Automaton
Now we will create a function that serves as the extension of the transition function of a finite-state
automaton, as described following Example 4 in Section 13.3 of the text.
As in Section 13.2, we will model the transition function as an indexed variable. The indices will be
the pairs consisting of the current state of the automaton and the input. The corresponding value will be
the next state of the automaton.
For example, the transition function of the finite-state automaton M1 in Example 5 is as follows.

10 Chapter13.nb

In[48]:= ex51Table@0, 0D = 1;
ex51Table@0, 1D = 0;
ex51Table@1, 0D = 1;
ex51Table@1, 1D = 1;

To model the extended function that takes a pair consisting of a state and a member of the Kleene
closure of the alphabet and returns the final state, we write a function, extendedTransition. The
arguments of this function will be a state number, a list representing the input string, and the transition
function.
We will not use the recursive definition provided in the text, but will instead use an iterative approach.
Begin by initializing the current state to the input state. Then loop through the list representing the
input string and apply the transition function to update the current state. Once the loop is concluded,
return the state.

In[52]:= extendedTransition@state_, input_, transFunc_D :=
Module@8curState = state, i<,
For@i = 1, i § Length@inputD, i++,
curState = transFunc@curState, input@@iDDD

D;
curState

D

We can use this function to see that applying the automaton M1 from Example 5 to 81, 0, 1, 1, 0< from
initial state 0 ends in state 1.

In[53]:= extendedTransition@0, 81, 0, 1, 1, 0<, ex51TableD

Out[53]= 1

Language Recognition with Finite-State Automata
Recall that a string x is recognized by a finite-state automaton if the extended transition function
applied to the initial state and the string x results in a final state.
We will write a function that, given the transition table for a finite-state automaton with initial state
init, the set of final states, and the string x, will return True or False indicating whether or not
the string is recognized by the machine.
The function only needs to apply extendedTransition to the state 0, the transition table, and
string, and then check to see whether or not the result is in the set of final states.

In[54]:= recognizedQ@x_, transFunc_, init_, final_D :=
Module@8endState<,
endState = extendedTransition@init, x, transFuncD;
MemberQ@final, endStateD

D

The solution to Example 5 indicated that the only strings accepted by M1 are those consisting of consec-
utive 1s.

Chapter13.nb 11

In[55]:= recognizedQ@81, 1, 1, 1, 1<, ex51Table, 0, 80<D

Out[55]= True

In[56]:= recognizedQ@81, 1, 0, 1<, ex51Table, 0, 80<D

Out[56]= False

Using the kleene function from the beginning of this section, we can partially determine the lan-
guage recognized by a machine.
Given the transition table, the initial state, the set of final states, a set A, and a positive integer n, the
following function will calculate the subset of A@nD recognized by the finite-state automaton defined by
the transition table and set of final states.
This function operates by brute force; applying kleene and then using recognizedQ to check each
element of A@nD.

In[57]:= findLanguage@transFunc_, init_, final_, A_, n_D :=
Module@8An, x, L = 8<<,
An = kleene@A, nD;
Do@
If@recognizedQ@x, transFunc, init, finalD, AppendTo@L, xDD
, 8x, An<D;

L
D

Applying this function to our M1 machine and 80, 1<@10D, we see that the only strings in that set recog-
nized by the finite-state automaton are those consisting only of 1s.

In[58]:= findLanguage@ex51Table, 0, 80<, 80, 1<, 10D

Out[58]= 88<, 81<, 81, 1<, 81, 1, 1<, 81, 1, 1, 1<, 81, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1, 1, 1, 1<<

Nondeterministic Finite-State Automata
We conclude this section with an implementation of the constructive proof of Theorem 1 of Section
13.3. Given a nondeterministic finite-state automaton, our function will produce a deterministic finite-
state automaton.
In particular, given the transition function (indexed variable) for a nondeterministic automaton, its
input alphabet, its starting state, and its set of final states, the function will produce the transition
function for a deterministic automaton, its starting state, and its set of final states.
For a nondeterministic automaton, we will represent the transition function in the same way as for the
deterministic automaton earlier, except the values for the variable will be sets of states, rather than
individual states.
For example, here is the transition function for the nondeterministic automaton described in Example
10, which has final states 0 and 4.

12 Chapter13.nb

In[59]:= ex10Table@0, 0D = 80, 2<;
ex10Table@0, 1D = 81<;
ex10Table@1, 0D = 83<;
ex10Table@1, 1D = 84<;
ex10Table@2, 0D = 8<;
ex10Table@2, 1D = 84<;
ex10Table@3, 0D = 83<;
ex10Table@3, 1D = 8<;
ex10Table@4, 0D = 83<;
ex10Table@4, 1D = 83<;

To determine the deterministic automaton's transition table, its starting state, and final states, we follow
the proof of Theorem 1. The deterministic automaton's states are sets of states of the nondeterministic
automaton.
We begin with the set consisting of the nondeterministic automaton's starting state. This is the starting
state for the deterministic automaton. Given any state of the deterministic automaton, and any input,
the deterministic transition is the union over all members of the state of the results of applying the
nondeterministic automaton's transition with that input value.
In our function, we will create an indexed variable. We will also create two sets S and T. The set S will
be initialized to the empty set and, at the conclusion of the procedure will be the set of all states of the
deterministic automaton. The set T will be initialized to 88s0<<, the set containing the initial state of the
deterministic automaton.
As long as T is non-empty, we will move one of its members from T to S and apply the nondeterminis-
tic automaton's transition function with all possible input values. The results are the entries in the
deterministic transition table and those that are not already members of S are added to T for further
processing.
The final states of the deterministic automaton are those states which contain a final state of the nonde-
terministic automaton. That is, the final states are those whose intersection with the set of the original
final states is nonempty. Before exiting, the function calculates the set of final states for the determinis-
tic automaton.
Here is the function. Note that the function returns a list containing the new starting state, and the set of
final states. Provided that we give the function a symbol that has not been assigned a value, the func-
tion will be assign values to it as an indexed variable storing the deterministic transition function.

Chapter13.nb 13

In[69]:= makeDeterministic@newTable_Symbol,
transFunc_, alphabet_, init_, final_D :=

Module@8S = 8<, T = 88init<<, state, i, s, x, newfinal<,
While@T ¹≠ 8<,
state = T@@1DD;
T = Delete@T, 1D;
AppendTo@S, stateD;
Do@x = 8<;
Do@x = Union@x, transFunc@s, iDD, 8s, state<D;
x = Union@xD;
newTable@state, iD = x;
If@! MemberQ@S, xD, T = Union@T, 8x<DD
, 8i, alphabet<D

D;
newfinal = 8<;
Do@If@Intersection@state, finalD ¹≠ 8<,

newfinal = Union@newfinal, 8state<DD
, 8state, S<D;

88init<, newfinal<
D

Applying this function to the Example 10 information produces the following.
In[70]:= 8ex10Dinit, ex10Dfinal< =

makeDeterministic@ex10DTable, ex10Table, 80, 1<, 0, 80, 4<D

Out[70]= 880<, 880<, 84<, 80, 2<, 81, 4<, 83, 4<<<

We can inspect the transition table by applying Definition or the ? operator to the symbol
ex10DTable.

In[71]:= Definition@ex10DTableD

Out[71]= ex10DTable@8<, 0D = 8<

ex10DTable@8<, 1D = 8<

ex10DTable@80<, 0D = 80, 2<

ex10DTable@80<, 1D = 81<

ex10DTable@81<, 0D = 83<

ex10DTable@81<, 1D = 84<

ex10DTable@83<, 0D = 83<

14 Chapter13.nb

Out[71]=

ex10DTable@83<, 1D = 8<

ex10DTable@84<, 0D = 83<

ex10DTable@84<, 1D = 83<

ex10DTable@80, 2<, 0D = 80, 2<

ex10DTable@80, 2<, 1D = 81, 4<

ex10DTable@81, 4<, 0D = 83<

ex10DTable@81, 4<, 1D = 83, 4<

ex10DTable@83, 4<, 0D = 83<

ex10DTable@83, 4<, 1D = 83<

You can confirm that this agrees with Figure 8 from Section 13.3.
We use the output as the arguments to findLanguage.

In[72]:= findLanguage@ex10DTable, ex10Dinit, ex10Dfinal, 80, 1<, 10D

Out[72]= 88<, 80<, 80, 0<, 80, 1<, 81, 1<, 80, 0, 0<, 80, 0, 1<,
80, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 1<, 80, 0, 1, 1<,
80, 0, 0, 0, 0<, 80, 0, 0, 0, 1<, 80, 0, 0, 1, 1<,
80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 1<, 80, 0, 0, 0, 1, 1<,
80, 0, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0, 1<,
80, 0, 0, 0, 0, 1, 1<, 80, 0, 0, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0, 0, 1<, 80, 0, 0, 0, 0, 0, 1, 1<,
80, 0, 0, 0, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0, 0, 0, 1<,
80, 0, 0, 0, 0, 0, 0, 1, 1<, 80, 0, 0, 0, 0, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0, 0, 0, 0, 1<, 80, 0, 0, 0, 0, 0, 0, 0, 1, 1<<

This list of strings suggests that the language recognized by this automaton are those strings consisting
of a number of 0s followed by no more than two 1's.

13.4 Language Recognition
In this section we will introduce Mathematica's support for regular expressions for working with
strings. Note, however, that Mathematica’s general patterns can also be used with strings. We will also
develop a function for calculating the concatenation of two nondeterministic automata.

Chapter13.nb 15

Regular Expressions
In Mathematica, a regular expression is enclosed in the RegularExpression head. It is typically
used in the second argument to a string information or manipulation function, such as String-
MatchQ, StringReplace, StringCases, or StringSplit. We will illustrate Mathematica’s
syntax for regular expressions using the StringMatchQ function. This function takes a string as the
first argument and a regular expression, enclosed in RegularExpression, as the second argument.
It returns True if the regular expression matches the string.
Perhaps the most basic form of a regular expression is the concatenation of elements of the set. For
example, “01” is a regular expression. This expression matches itself, of course.

In[73]:= StringMatchQ@"01", RegularExpression@"01"DD

Out[73]= True

The output indicates that yes, the string “01” matches the regular expression “01”.
Kleene Closure
The asterisk is a symbol used in a regular expression to represent the Kleene closure.
For example, the regular expression “10*” will match a 1 followed by any number of 0s.

In[74]:= StringMatchQ@"10000000", RegularExpression@"10*"DD

Out[74]= True

In[75]:= StringMatchQ@"1", RegularExpression@"10*"DD

Out[75]= True

In[76]:= StringMatchQ@"0111000", RegularExpression@"10*"DD

Out[76]= False

As in the text, parentheses can be used to group symbols. For example “(10)*” matches any number of
copies of “10”.

In[77]:= StringMatchQ@"101010101010101010", RegularExpression@"H10L*"DD

Out[77]= True

In[78]:= StringMatchQ@"101010101", RegularExpression@"H10L*"DD

Out[78]= False

Mathematica, and most languages that support regular expressions, also recognizes “+“ and “?”. These
are used like “*” but with different meaning. The expression “A+“ is used to match one or more copies
of “A”. Essentially, it is the Kleene closure minus the empty string. For example, “1*0+“ matches any
number of 1s followed by at least one 0.

In[79]:= StringMatchQ@"1111000", RegularExpression@"1*0+"DD

Out[79]= True

In[80]:= StringMatchQ@"00", RegularExpression@"1*0+"DD

Out[80]= True

16 Chapter13.nb

In[81]:= StringMatchQ@"111", RegularExpression@"1*0+"DD

Out[81]= False

The “A?” expression is used to match 0 or 1 copies of “A”. For example, “1*0?” matches any number
of 1s which may be followed by at most one 0.

In[82]:= StringMatchQ@"111111", RegularExpression@"1*0?"DD

Out[82]= True

In[83]:= StringMatchQ@"1111110", RegularExpression@"1*0?"DD

Out[83]= True

In[84]:= StringMatchQ@"11111100", RegularExpression@"1*0?"DD

Out[84]= False

Union
To represent union, the vertical line is used. A “|” placed between two expressions will match either of
them. The “|” can take the place of the “‹” symbol in an expression such as “0(0‹1)*”.

In[85]:= StringMatchQ@"011010", RegularExpression@"0H0»1L*"DD

Out[85]= True

In[86]:= StringMatchQ@"1011010", RegularExpression@"0H0»1L*"DD

Out[86]= False

This can also be done in more complicated expressions. For example, “2((10)*‹(01)*)2” describes the
set of strings beginning and ending with 2s with an alternating sequence of 0s and 1s in between.

In[87]:= StringMatchQ@"21010102", RegularExpression@"2HH10L*»H01L*L2"DD

Out[87]= True

In[88]:= StringMatchQ@"201012", RegularExpression@"2HH10L*»H01L*L2"DD

Out[88]= True

In[89]:= StringMatchQ@"210012", RegularExpression@"2HH10L*»H01L*L2"DD

Out[89]= False

In some circumstances, union can be replaced by character classes. By placing characters within a pair
of brackets, you indicate that any of the characters inside the brackets are allowed. For example, “0(0‹
1)*” can be expressed as follows.

In[90]:= StringMatchQ@"011010", RegularExpression@"0@01D*"DD

Out[90]= True

Note that this is only allowed when the options are single characters.
Character classes can also be used to specify a range of characters with a hyphen. For example, “(0‹
1‹2‹3‹4)*” can be specified as follows.

Chapter13.nb 17

In[91]:= StringMatchQ@"4213442101", RegularExpression@"@0-4D*"DD

Out[91]= True

Character classes can be complemented. By beginning a character class with a caret, you indicate that
any character other than those specified are allowed. For example, in the following, the regular expres-
sion matches all strings beginning with 1, ending with 0, and which include no other 1s nor 0s.

In[92]:= StringMatchQ@"169jwq0", RegularExpression@"1@^01D*0"DD

Out[92]= True

In[93]:= StringMatchQ@"169j1wq0", RegularExpression@"1@^01D*0"DD

Out[93]= False

There are also several defined character classes: you enter “\\d” for a digit, “\\D” for a non-digit, “\\s”
for space, including newline and tab, “\\S” for any non-whitespace character, “\\w” for a word charac-
ter (letters, digits, and underscores), and “\\W” for a non-word character.

In[94]:= StringMatchQ@"126qb", RegularExpression@"\\d*\\w\\w"DD

Out[94]= True

In[95]:= StringMatchQ@"b32xy", RegularExpression@"\\d*\\w\\w"DD

Out[95]= False

The special character dot, “.”, is used to match any character. For example, “1...0” will match any
string beginning with a 1, followed by any three characters and ending with a 0.

In[96]:= StringMatchQ@"12340", RegularExpression@"1...0"DD

Out[96]= True

In[97]:= StringMatchQ@"1230", RegularExpression@"1...0"DD

Out[97]= False

In[98]:= StringMatchQ@"1234567890", RegularExpression@"1...0"DD

Out[98]= False

Regular expressions in Mathematica are extremely flexible. The interested reader is referred to the
tutorial page on regular expressions for more information.

Concatenation of Automata
We will write a function that concatenates two nondeterministic finite-state automata, as described in
the proof of Theorem 1 of the text.
Two Automata
We begin by defining two automata that our function will concatenate.
The first automata is the result of Example 3, for recognizing “1*‹01”. Our implementation is based
on the simple form shown in Figure3b.
Note that the diagram in the text omits the results of transitioning from certain states via certain input
values. For example, it does not show the result of the transition from state s1 with input 0. This makes
for a simpler and cleaner diagram, but the transition table will need to include this information. It will
be assumed that all such omissions correspond to a transition to the state 8 <.

18 Chapter13.nb

Note that the diagram in the text omits the results of transitioning from certain states via certain input
values. For example, it does not show the result of the transition from state s1 with input 0. This makes
for a simpler and cleaner diagram, but the transition table will need to include this information. It will
be assumed that all such omissions correspond to a transition to the state 8 <.
Here is the transition table corresponding to the automaton shown in Figure 3b.

In[99]:= atable@0, 0D = 82<;
atable@0, 1D = 81<;
atable@1, 0D = 8<;
atable@1, 1D = 81<;
atable@2, 0D = 8<;
atable@2, 1D = 83<;
atable@3, 0D = 8<;
atable@3, 1D = 8<;

The final states for this automaton are 80, 1, 3<. We can confirm that it recognizes “1*‹01” by apply-
ing makeDeterministic and findLanguage.
In[107]:= 8aDinit, aDfinal< =

makeDeterministic@aDtable, atable, 80, 1<, 0, 80, 1, 3<D

Out[107]= 880<, 880<, 81<, 83<<<

In[108]:= findLanguage@aDtable, aDinit, aDfinal, 80, 1<, 10D

Out[108]= 88<, 81<, 80, 1<, 81, 1<, 81, 1, 1<, 81, 1, 1, 1<, 81, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1, 1, 1, 1<<

As you can see, the language recognized by this machine includes the string “01” as well as “1*”.
The second automaton we create will recognize the language “101”.
In[109]:= btable@0, 0D = 8<;

btable@0, 1D = 81<;
btable@1, 0D = 82<;
btable@1, 1D = 8<;
btable@2, 0D = 8<;
btable@2, 1D = 83<;
btable@3, 0D = 8<;
btable@3, 1D = 8<;

The only final state is 3. We confirm that this models that machine that recognizes 101.
In[117]:= 8bDinit, bDfinal< =

makeDeterministic@bDtable, btable, 80, 1<, 0, 83<D

Out[117]= 880<, 883<<<

In[118]:= findLanguage@bDtable, bDinit, bDfinal, 80, 1<, 10D

Out[118]= 881, 0, 1<<

Concatenating the Machines
Our concatenation function will require the following arguments, for both machines: the transition
table, the starting state, and the final states. It will also require that the two machines have a common
input alphabet but that alphabet does not need to be an argument.

Chapter13.nb 19

Our concatenation function will require the following arguments, for both machines: the transition
table, the starting state, and the final states. It will also require that the two machines have a common
input alphabet but that alphabet does not need to be an argument.
Recall the following elements of the construction of the concatenation as described in the proof of
Theorem 1 of Section 13.4.
1. The states of the concatenation is the union of the states of the original machines, which are

assumed to be disjoint.
2. The starting state of the concatenation is the starting state of the first of the two machines.
3. The final states of the concatenation include the set of final states of the second machine.
4. The final states of the concatenation also include the starting state if the empty string is a member

of both languages.
5. All transitions of the original machines are transitions of the new machine.
6. Additionally, for every transition in the first machine leading to a final state, we add a transition in

the concatenation to the starting state of the second machine.
7. Finally, if the starting state of the first machine is final, then for every transition from the starting

state of the second machine, we add a transition from the starting state of the new machine.
The assumption that the states of the original two machines are disjoint means that we will need to
make them so. There are a variety of ways in which we could do this. Since we assume that states are
designated by nonnegative integers, we can make the states distinct by multiplying each state by 10
and adding 1 if it is in the first machine and 2 if it is in the second machine.
Therefore, the starting state of the concatenation is found by 10 ÿ sA + 1 where sA is the starting state of
the first machine. In our example, this will be equal to 10 ÿ 0+ 1 = 1.
Next, we find the final states of the concatenation. Let finalA and finalB be the sets of final states
for the original two machines. According to point 3 above, the final states of the concatenated machine
include the final states of the second machine. We only need to update the names.
The final states of the machines we defined above are as follows.
In[119]:= finalA = 80, 1, 3<

Out[119]= 80, 1, 3<

In[120]:= finalB = 83<

Out[120]= 83<

We can obtain the final states of the concatenation by applying the function s Ø 10 s+ 2 to the set of
final states of the second machine.
In[121]:= Map@H10*Ò + 2L &, finalBD

Out[121]= 832<

Item 4 asserts that the starting state of the concatenated machine is a final state if and only if the empty
string is a member of both languages. Another way to put this is that the starting state of the concate-
nated machine is a final state when both of the original machines have their own starting states as final
states. This is not the case in our example. We will include this possibility in our general function by
checking to see if the starting states are members of the sets of final states.
To form the transitions of the new machine, we begin with an unassigned variable. We will apply
Clear to be certain nothing has been assigned.

20 Chapter13.nb

In[122]:= Clear@abtableD

We proceed as follows. First we need to obtain a list of all indices in the table atable. To do this, we
use DownValues to obtain a list of the rules that make up the indexed variable.
In[123]:= DownValues@atableD

Out[123]= 8HoldPattern@atable@0, 0DD ß 82<,
HoldPattern@atable@0, 1DD ß 81<,
HoldPattern@atable@1, 0DD ß 8<,
HoldPattern@atable@1, 1DD ß 81<,
HoldPattern@atable@2, 0DD ß 8<,
HoldPattern@atable@2, 1DD ß 83<,
HoldPattern@atable@3, 0DD ß 8<, HoldPattern@atable@3, 1DD ß 8<<

We can extract the indices by applying Part ([[…]]) and ReplaceAll (/.) as follows.
In[124]:= indicesA = DownValues@atableD@@All, 1DD

Out[124]= 8HoldPattern@atable@0, 0DD, HoldPattern@atable@0, 1DD,
HoldPattern@atable@1, 0DD, HoldPattern@atable@1, 1DD,
HoldPattern@atable@2, 0DD, HoldPattern@atable@2, 1DD,
HoldPattern@atable@3, 0DD, HoldPattern@atable@3, 1DD<

In[125]:= indicesA = indicesA ê. HoldPattern@atable@x__DD Ø 8x<

Out[125]= 8HoldPattern@80, 0<D, HoldPattern@80, 1<D,
HoldPattern@81, 0<D, HoldPattern@81, 1<D, HoldPattern@82, 0<D,
HoldPattern@82, 1<D, HoldPattern@83, 0<D, HoldPattern@83, 1<D<

In[126]:= indicesA = indicesA@@All, 1DD

Out[126]= 880, 0<, 80, 1<, 81, 0<, 81, 1<, 82, 0<, 82, 1<, 83, 0<, 83, 1<<

We create a general function following this pattern which we call getIndices.
In[127]:= getIndices@indexedV_D := Module@8indices, k<,

indices = DownValues@indexedVD@@All, 1DD;
indices = indices ê. HoldPattern@indexedV@k__DD Ø 8k<;
indices@@All, 1DD

D

For each index i, the index in abtable will be [10*i[[1]]+1,i[[2]]]. This computes the
appropriate state name in the concatenated machine and keeps the same input value. The associated
entry will be obtained by using Map and the pure function 10*#+1 applied to the previous value. Note
that we Apply (@@) atable to i to replace the List head with atable in order to access the
value.
In[128]:= Do@abtable@10*i@@1DD + 1, i@@2DDD = Map@H10*Ò + 1L &, atable üü iD

, 8i, indicesA<D

We can now inspect the values of abtable.
In[129]:= ?abtable

Global`abtable

Chapter13.nb 21

Global`abtable

abtable@1, 0D = 821<

abtable@1, 1D = 811<

abtable@11, 0D = 8<

abtable@11, 1D = 811<

abtable@21, 0D = 8<

abtable@21, 1D = 831<

abtable@31, 0D = 8<

abtable@31, 1D = 8<

For the second machine, we do the same thing except adding 2 instead of 1.
In[130]:= indicesB = getIndices@btableD;

Do@
abtable@10*i@@1DD + 2, i@@2DDD = Map@H10*Ò + 2L &, btable üü iD
, 8i, indicesB<D

In[132]:= ?abtable

Global`abtable

abtable@1, 0D = 821<

abtable@1, 1D = 811<

abtable@2, 0D = 8<

abtable@2, 1D = 812<

abtable@11, 0D = 8<

abtable@11, 1D = 811<

abtable@12, 0D = 822<

22 Chapter13.nb

abtable@12, 1D = 8<

abtable@21, 0D = 8<

abtable@21, 1D = 831<

abtable@22, 0D = 8<

abtable@22, 1D = 832<

abtable@31, 0D = 8<

abtable@31, 1D = 8<

abtable@32, 0D = 8<

abtable@32, 1D = 8<

Next, we must add transitions between the two components. As item 6 instructs, for each transition in
the first of the two machines that leads to a final state, we must add a transition in the concatenated
machine to the starting state of the second machine.
We will again loop through the indices of atable, this time checking whether the image contains any
states that are final for machine A. If so, we will add the transition to state 2 (the name of the starting
state in the second machine in the concatenation). (Note that we must update the entry in the abtable
rather than replace it.)
In[133]:= Do@If@Intersection@atable üü i, finalAD ¹≠ 8<,

abtable@10*i@@1DD + 1, i@@2DDD =
Union@abtable@10*i@@1DD + 1, i@@2DDD, 82<DD

, 8i, indicesA<D

We can see that this has added transitions to state 2.
In[134]:= ?abtable

Global`abtable

abtable@1, 0D = 821<

abtable@1, 1D = 82, 11<

abtable@2, 0D = 8<

abtable@2, 1D = 812<

Chapter13.nb 23

abtable@11, 0D = 8<

abtable@11, 1D = 82, 11<

abtable@12, 0D = 822<

abtable@12, 1D = 8<

abtable@21, 0D = 8<

abtable@21, 1D = 82, 31<

abtable@22, 0D = 8<

abtable@22, 1D = 832<

abtable@31, 0D = 8<

abtable@31, 1D = 8<

abtable@32, 0D = 8<

abtable@32, 1D = 8<

Finally, since the starting state of the first machine is final, we must add transitions from the starting
state of the concatenated machine for each of the transitions from the starting state of the second
machine. The starting state of the second machine in this example is 0, and the starting state of the
concatenation is 1.
In[135]:= Do@If@i@@1DD ã 0,

abtable@1, i@@2DDD =
Union@abtable@1, i@@2DDD, Map@H10*Ò + 2L &, btable üü iDDD

, 8i, indicesB<D

Inspect the table again.
In[136]:= ?abtable

Global`abtable

abtable@1, 0D = 821<

abtable@1, 1D = 82, 11, 12<

abtable@2, 0D = 8<

24 Chapter13.nb

abtable@2, 1D = 812<

abtable@11, 0D = 8<

abtable@11, 1D = 82, 11<

abtable@12, 0D = 822<

abtable@12, 1D = 8<

abtable@21, 0D = 8<

abtable@21, 1D = 82, 31<

abtable@22, 0D = 8<

abtable@22, 1D = 832<

abtable@31, 0D = 8<

abtable@31, 1D = 8<

abtable@32, 0D = 8<

abtable@32, 1D = 8<

Note that this modified the entry for @1, 1D. (Recall that state 1 is the starting state for the combined
machine.) Before, @1, 1D was associated with 82, 11<, the starting state of the second machine and state
1 of the first machine. Now, the entry for @1, 1D also includes 12, state 1 of the second machine.
That @1, 1D is associated with 82, 11, 12< means that from the starting state of the concatenation and
input 1, there are three options. Going to state 2, the starting state of the second machine, corresponds
to recognizing the string 1 followed by a string recognized by the second machine. Going to state 11,
state 1 of the first machine, corresponds to building a string of all 1s, which is recognized by the first
machine. And going to state 12, state 1 of the second machine, corresponds to the first machine con-
tributing the empty string followed by 1 as the first character of a string recognized by the second
machine.
Implementation as a Function
Here is the complete function based on the example above.

Chapter13.nb 25

In[137]:= SetAttributes@catAutomata, 8HoldFirst<D;
catAutomata@abtable_, atable_,

astart_, afinal_, btable_, bstart_, bfinal_D :=
Module@8abstart, abfinal, indicesA, indicesB, i<,
abstart = 10*astart + 1;
abfinal = Map@H10*Ò + 2L &, bfinalD;
If@MemberQ@afinal, astartD && MemberQ@bfinal, bstartD,
abfinal = Union@abfinal, 8abstart<DD;

Clear@abtableD;
indicesA = getIndices@atableD;
indicesB = getIndices@btableD;
Do@
abtable@10*i@@1DD + 1, i@@2DDD = Map@H10*Ò + 1L &, atable üü iD
, 8i, indicesA<D;

Do@
abtable@10*i@@1DD + 2, i@@2DDD = Map@H10*Ò + 2L &, btable üü iD
, 8i, indicesB<D;

Do@If@Intersection@atable üü i, finalAD ¹≠ 8<,
abtable@10*i@@1DD + 1, i@@2DDD =
Union@abtable@10*i@@1DD + 1, i@@2DDD, 82<DD

, 8i, indicesA<D;
If@MemberQ@afinal, astartD,
Do@If@i@@1DD ã 0,

abtable@1, i@@2DDD =
Union@abtable@1, i@@2DDD,
Map@H10*Ò + 2L &, btable üü iDDD

, 8i, indicesB<D
D;
8abstart, abfinal<

D

Applying this to our examples and passing the results on to makeDeterministic and
findLanguage shows us that the result does indeed recognize “(1*‹01)101”.
In[139]:= 8cstart, cfinal< =

catAutomata@ctable, atable, 0, 80, 1, 3<, btable, 0, 83<D

Out[139]= 81, 832<<

In[140]:= 8cDstart, cDfinal< =
makeDeterministic@cDtable, ctable, 80, 1<, cstart, cfinalD

Out[140]= 881<, 8832<<<

26 Chapter13.nb

In[141]:= findLanguage@cDtable, cDstart, cDfinal, 80, 1<, 10D

Out[141]= 881, 0, 1<, 81, 1, 0, 1<, 80, 1, 1, 0, 1<, 81, 1, 1, 0, 1<,
81, 1, 1, 1, 0, 1<, 81, 1, 1, 1, 1, 0, 1<, 81, 1, 1, 1, 1, 1, 0, 1<,
81, 1, 1, 1, 1, 1, 1, 0, 1<, 81, 1, 1, 1, 1, 1, 1, 1, 0, 1<<

13.5 Turing Machines
In this section we will explore Mathematica’s TuringMachine function. We will then create our
own model of a Turing machine to help you better understand this important concept in detail.

TuringMachine
To illustrate Mathematica’s built-in function, we will use Example 1 from Section 13.5. This Turing
machine is defined by seven tuples: Hs0, 0, s0, 0, RL, Hs0, 1, s1, 1, RL, Hs0, B, s3, B, RL, Hs1, 0, s0, 0, RL,
Hs1, 1, s2, 0, LL, Hs1, B, s3, B, RL, and Hs2, 1, s3, 0, RL.
The first argument of TuringMachine will be that data, but in the form of Rules (->) of the form
8state, entry< -> 8newstate, newentry, move<, where state and entry are the current
state of the machine and the value seen by the head and newstate and newentry are the next state and
the value to be written on the tape. The move is an integer representing how the head is to move, with
+1 representing right and -1 left. So the machine of Example 1 is described by the following.
In[142]:= example1Rules = 880, 0< Ø 80, 0, 1<,

80, 1< Ø 81, 1, 1<, 80, ""< Ø 83, "", 1<, 81, 0< Ø 80, 0, 1<,
81, 1< Ø 82, 0, -1<, 81, ""< Ø 83, "", 1<, 82, 1< Ø 83, 0, 1<<

Out[142]= 880, 0< Ø 80, 0, 1<, 80, 1< Ø 81, 1, 1<,
80, < Ø 83, , 1<, 81, 0< Ø 80, 0, 1<,
81, 1< Ø 82, 0, -1<, 81, < Ø 83, , 1<, 82, 1< Ø 83, 0, 1<<

The second argument to TuringMachine specifies the initial conditions. It is a list containing two
members. The first element of the initial conditions list will be the initial state of the machine. The
second element of the initial conditions is a list with two members, the first being a list representing a
finite portion of the tape and the second specifying the value appearing at every position of the infinite
tape outside the finite area.
In our example, the machine will begin in state 0. The tape is initally {0,1,0,1,1,0} with blanks outside
that range. So the second argument to TuringMachine will be
In[143]:= example1Init = 80, 880, 1, 0, 1, 1, 0<, ""<<

Out[143]= 80, 880, 1, 0, 1, 1, 0<, <<

Applying TuringMachine to these two elements produces the following output:
In[144]:= TuringMachine@example1Rules, example1InitD

Out[144]= 880, 2, 1<, 880, 1, 0, 1, 1, 0<, <<

This output represents the result of one step of the Turing machine. It is of the form

Chapter13.nb 27

 88 state, pos, distance <, 8 tape, rest <<

where state is the new state of the machine, tape is the current state of the finite segment of tape with
rest filling the rest of the infinite tape, pos is the position of the head relative to the list tape, and dis-
tance is how far the head has moved from its starting position. So the output above indicates that the
machine is still in state 0 but has moved one position to the left.
Note that you can initialize a machine with a position argument similar to this output, but without the
distance. The following will start the machine at the final 1 of the tape.
In[145]:= TuringMachine@example1Rules, 880, 5<, 880, 1, 0, 1, 1, 0<, ""<<D

Out[145]= 881, 6, 1<, 880, 1, 0, 1, 1, 0<, <<

Note that the machine has moved one position to the left and changed to state 1.
An optional third argument allows you run the machine more than one step.
In[146]:= TuringMachine@example1Rules, example1Init, 5D

Out[146]= 8880, 1, 0<, 80, 1, 0, 1, 1, 0<<, 880, 2, 1<, 80, 1, 0, 1, 1, 0<<,
881, 3, 2<, 80, 1, 0, 1, 1, 0<<, 880, 4, 3<, 80, 1, 0, 1, 1, 0<<,
881, 5, 4<, 80, 1, 0, 1, 1, 0<<, 882, 4, 3<, 80, 1, 0, 1, 0, 0<<<

Note that the output is a list of lists representing each step along the way. The final element indicates
that after 5 steps, the machine is in state 2 at position 4.
For a machine with a terminal state, we can run it to completion with a While loop as below. Note
that TuringMachine allows its initialization argument to include the distance parameter, so that we
can feed its output back to it.
In[147]:= machinestate = 880, 1<, 880, 1, 0, 1, 1, 0<, ""<<;

While@machinestate@@1, 1DD ¹≠ 3,
machinestate = TuringMachine@example1Rules, machinestateD

D;
machinestate

Out[149]= 883, 5, 4<, 880, 1, 0, 0, 0, 0<, <<

Note that this agrees with the result of Example 1 in the textbook.

Creating a Turing Machine Function
In our model, the tape will be represented by a list, with the assumption that all elements to the left and
right of the bounds of the list are blanks. The blank symbol will be represented by the symbol B and
left and right by the symbols L and R. We ensure that these have not been assigned values by applying
Clear.
In[150]:= Clear@B, L, RD

The Partial Function
The text uses the convention that the partial function that controls the operation of the Turing machine
is defined by a set of five-tuples. It will be more convenient for our functions to represent the partial
function as an indexed variable whose indices are pairs @s, xD and whose values are triples 8s ', x ', d<.
We create a function that will transform the set of 5-tuples representation into the indexed variable
representation. The indexed variable to be defined is given as the first argument.

28 Chapter13.nb

We create a function that will transform the set of 5-tuples representation into the indexed variable
representation. The indexed variable to be defined is given as the first argument.
In[151]:= tuplesToIndexed@indexedV_Symbol, S_D := Module@8x<,

Clear@indexedVD;
Do@indexedV@x@@1DD, x@@2DDD = x@@83, 4, 5<DD
, 8x, S<D

D

Applying this function to the set of tuples given in Example 1 provides us with an example of a partial
function to work with.
In[152]:= tuplesToIndexed@ex1,

880, 0, 0, 0, R<, 80, 1, 1, 1, R<, 80, B, 3, B, R<, 81, 0, 0, 0, R<,
81, 1, 2, 0, L<, 81, B, 3, B, R<, 82, 1, 3, 0, R<<D

In[153]:= ?ex1

Global`ex1

ex1@0, 0D = 80, 0, R<

ex1@0, 1D = 81, 1, R<

ex1@0, BD = 83, B, R<

ex1@1, 0D = 80, 0, R<

ex1@1, 1D = 82, 0, L<

ex1@1, BD = 83, B, R<

ex1@2, 1D = 83, 0, R<

Note that B, L, and R must all be unassigned symbols, otherwise they will be evaluated within the set
of 5-tuples and will produce unexpected results.
The Turing Machine Function
Our Turing machine function will accept as input an indexed variable representing the partial function,
a list representing the status of the tape before running the machine, and the initial state. It will return
the final tape and the final state.
When the function begins, we initialize the symbol pos to 1, indicating that the control head is posi-
tioned at the leftmost element in the tape. We set the state of the machine to the initial state and
copy the tape from the argument as well. We also compute the domain of the partial function using
the getIndices function we created in the previous section. This will make it easier to check
whether we have reached a halt.
The main work of the function will take place within a While loop controlled by the condition that the
domain of the function includes the pair consisting of the current state and the entry on the tape at the
current position.

Chapter13.nb 29

The main work of the function will take place within a While loop controlled by the condition that the
domain of the function includes the pair consisting of the current state and the entry on the tape at the
current position.
Within the loop, we first obtain the values of the new state, new tape entry, and direction from the
partial function. We then set the state to the new state, change the entry on the tape, and update the
position pos. Note that when changing the position of the control head, we must take care not to
exceed the bounds of the list representing the tape. If the previous position was location 1 in the list
and the direction is left, then instead of changing the position, we extend the list by adding a blank on
the left with the PrependTo function. On the other hand, if the previous position was the right end of
the tape and the direction is right, then we increase the position and extend the tape to the right via
AppendTo.
Here is the function.
In[154]:= Turing@f_, t_, init_D :=

Module@8pos = 1, state = init, tape = t, domain, y<,
domain = getIndices@fD;
While@MemberQ@domain, 8state, tape@@posDD<D,
y = f@state, tape@@posDDD;
state = y@@1DD;
tape@@posDD = y@@2DD;
Which@pos ã 1 && y@@3DD === L, PrependTo@tape, BD,
pos ã Length@tapeD && y@@3DD === R,
AppendTo@tape, BD; pos++,
y@@3DD === L, pos--,
y@@3DD === R, pos++D;

D;
8tape, state<

D

We use the function to run the Turing machine from Example 1 on the tape shown in Figure 2a.
In[155]:= Turing@ex1, 80, 1, 0, 1, 1, 0<, 0D

Out[155]= 880, 1, 0, 0, 0, 0<, 3<

Observe that this agrees with Figure 2 from Section 13.5 in the text.
We create a verbose version of this function as well. The operation of the verbose version is identical
to Turing, but it displays the status of the machine at every step.

30 Chapter13.nb

In[156]:= verboseTuring@f_, t_, init_D := Module@
8pos = 1, state = init, tape = t, domain, y, displayTape<,
domain = getIndices@fD;
displayTape = t;
displayTape@@posDD = "Ø" <> ToString@tape@@posDDD;
Print@displayTape, stateD;
While@MemberQ@domain, 8state, tape@@posDD<D,
y = f@state, tape@@posDDD;
state = y@@1DD;
tape@@posDD = y@@2DD;
Which@pos ã 1 && y@@3DD === L, PrependTo@tape, BD,
pos ã Length@tapeD && y@@3DD === R,
AppendTo@tape, BD; pos++,
y@@3DD === L, pos--,
y@@3DD === R, pos++D;

displayTape = tape;
displayTape@@posDD = "Ø" <> ToString@tape@@posDDD;
Print@displayTape, stateD;

D;
8tape, state<

D

In[157]:= verboseTuring@ex1, 80, 1, 0, 1, 1, 0<, 0D

8Ø0, 1, 0, 1, 1, 0<0

80, Ø1, 0, 1, 1, 0<0

80, 1, Ø0, 1, 1, 0<1

80, 1, 0, Ø1, 1, 0<0

80, 1, 0, 1, Ø1, 0<1

80, 1, 0, Ø1, 0, 0<2

80, 1, 0, 0, Ø0, 0<3

Out[157]= 880, 1, 0, 0, 0, 0<, 3<

Applications of Turing Machines
We now apply our Turing machine function to two applications: recognizing strings in a language and
computing functions.
Recognizing Sets
We will implement the Turing machine for recognizing 80n 1n n ¥ 1<.
The partial function was given in the solution to Example 3. To be safe, we again clear all the symbols
used.

Chapter13.nb 31

In[158]:= Clear@M, B, L, RD;
tuplesToIndexed@ex3,
880, 0, 1, M, R<, 81, 0, 1, 0, R<, 81, 1, 1, 1, R<, 81, M, 2, M, L<,
81, B, 2, B, L<, 82, 1, 3, M, L<, 83, 1, 3, 1, L<, 83, 0, 4, 0, L<,
83, M, 5, M, R<, 84, 0, 4, 0, L<, 84, M, 0, M, R<, 85, M, 6, M, R<<D

In[160]:= ?ex3

Global`ex3

ex3@0, 0D = 81, M, R<

ex3@1, 0D = 81, 0, R<

ex3@1, 1D = 81, 1, R<

ex3@1, BD = 82, B, L<

ex3@1, MD = 82, M, L<

ex3@2, 1D = 83, M, L<

ex3@3, 0D = 84, 0, L<

ex3@3, 1D = 83, 1, L<

ex3@3, MD = 85, M, R<

ex3@4, 0D = 84, 0, L<

ex3@4, MD = 80, M, R<

ex3@5, MD = 86, M, R<

To determine whether or not a string is in the language, we only have to apply the Turing machine to
the string and check the exit state.
In[161]:= Turing@ex3, 80, 0, 0, 0, 1, 1, 1, 1<, 0D

Out[161]= 88M, M, M, M, M, M, M, M, B<, 6<

The fact that the machine halted in state 6, the final state, indicates that it recognizes the string. On the
other hand,
In[162]:= Turing@ex3, 80, 0, 0, 1, 1<, 0D

Out[162]= 88M, M, M, M, M, B<, 2<

32 Chapter13.nb

halted in state 2, indicating that the string is not in the language.
Adding Nonnegative Integers
Example 4 describes how to use Turing machines to perform addition.
The machine is described by the following tuples.
In[163]:= tuplesToIndexed@adder, 880, 1, 1, B, R<, 81, "*", 3, B, R<,

81, 1, 2, B, R<, 82, 1, 2, 1, R<, 82, "*", 3, 1, R<<D

We add two numbers a and b by using the unary representation tape consisting of a+ 1 ones followed
by an asterisk and then b+ 1 ones. We create a small function to create the tape given a and b.
In[164]:= unaryTape@a_, b_D := Join@

ConstantArray@1, 8a + 1<D, 8"*"<, ConstantArray@1, 8b + 1<DD

The tape used to add 3 and 4 is shown below.
In[165]:= unaryTape@3, 4D

Out[165]= 81, 1, 1, 1, *, 1, 1, 1, 1, 1<

Performing addition is accomplished by applying Turing to the transition function and the tape.
In[166]:= Turing@adder, unaryTape@3, 4D, 0D

Out[166]= 88B, B, 1, 1, 1, 1, 1, 1, 1, 1<, 3<

You can see that this contains a string of 8 ones, indicating a result of 7.
Using the verbose form of Turing, you can see how the Turing adder operates.
In[167]:= verboseTuring@adder, unaryTape@3, 4D, 0D

8Ø1, 1, 1, 1, *, 1, 1, 1, 1, 1<0

8B, Ø1, 1, 1, *, 1, 1, 1, 1, 1<1

8B, B, Ø1, 1, *, 1, 1, 1, 1, 1<2

8B, B, 1, Ø1, *, 1, 1, 1, 1, 1<2

8B, B, 1, 1, Ø*, 1, 1, 1, 1, 1<2

8B, B, 1, 1, 1, Ø1, 1, 1, 1, 1<3

Out[167]= 88B, B, 1, 1, 1, 1, 1, 1, 1, 1<, 3<

Solutions to Computer Projects and Computations and
Explorations

Computer Projects 8

Given the state table of a nondeterministic finite-state automaton and a string, decide
whether this string is recognized by the automaton.

Solution: One solution to this problem, the solution used earlier in this chapter, is to find the determinis-
tic automaton that recognizes the same language and use it to decide whether the string is recognized
or not. This is what we have been doing when we apply findLanguage to the result of
makeDeterministic.

Chapter13.nb 33

Solution: One solution to this problem, the solution used earlier in this chapter, is to find the determinis-
tic automaton that recognizes the same language and use it to decide whether the string is recognized
or not. This is what we have been doing when we apply findLanguage to the result of
makeDeterministic.
Here we will take a direct approach. For deterministic machines, we created two functions:
extendedTransition and recognizedQ. The recognizedQ function merely called
extendedTransition and checked whether the result was a final state or not. The
extendedTransition function took a state, an input string, and a transition table, and determined
the state of the machine following the processing of the input.
Our approach for nondeterministic machines will be similar. We will create two functions:
extendedTransitionND and recognizedNDQ. The main difference between the deterministic
machines and nondeterministic machines is that with nondeterministic machines, given the initial state
and an input, we do not know the next state. Instead, there is a set of possible states.
extendedTransitionND will therefore take a set of possible states, an input, and a transition table
as its arguments. For each member of the input string, it will apply the transition table to each of the
possible states, producing a new set of possible states. It will return the set of possible states after
processing each element in the input string.
In[168]:= extendedTransitionND@states_, input_, transFunc_D :=

Module@8curStates, i, s, newStates<,
curStates = states;
For@i = 1, i § Length@inputD, i++,
newStates = 8<;
Do@newStates = Union@newStates, transFunc@s, input@@iDDDD
, 8s, curStates<D;

curStates = newStates
D;
curStates

D

A nondeterministic machine recognizes a string if the result of running the machine from the starting
state with the input string results in a set of possible ending states that includes at least one final state.
We write recognizedNDQ to call extendedTransitionND and check to see if the result inter-
sects the set of final states.
In[169]:= recognizedNDQ@x_, transFunc_, init_, final_D :=

Module@8endStates<,
endStates = extendedTransitionND@8init<, x, transFuncD;
Intersection@endStates, finalD ¹≠ 8<

D

With recognizedNDQ in hand, we can create findLanguageND. This is effectively identical to
findLanguage.

34 Chapter13.nb

In[170]:= findLanguageND@transFunc_, init_, final_, A_, n_D :=
Module@8An, x, L<,
An = kleene@A, nD;
L = 8<;
Do@If@

recognizedNDQ@x, transFunc, init, finalD, L = Union@L, 8x<DD
, 8x, An<D;

L
D

Applying this function to the machine defined by transition function ctable, starting state 1, final
state 832<, and alphabet 80, 1<, which was produced by catAutomata, we see that the result is the
same as when we applied findLanguage and makeDeterministic in Section 13.4.
In[171]:= findLanguageND@ctable, 1, 832<, 80, 1<, 10D

Out[171]= 881, 0, 1<, 81, 1, 0, 1<, 80, 1, 1, 0, 1<, 81, 1, 1, 0, 1<,
81, 1, 1, 1, 0, 1<, 81, 1, 1, 1, 1, 0, 1<, 81, 1, 1, 1, 1, 1, 0, 1<,
81, 1, 1, 1, 1, 1, 1, 0, 1<, 81, 1, 1, 1, 1, 1, 1, 1, 0, 1<<

Computations and Explorations 1

Solve the busy beaver problem for two states by testing all possible Turing machines with
two states and alphabet 81, B<.

Solution: The busy beaver problem, described in the preface to Exercise 31 in Section 13.5, asks: what
is the maximum number of ones that a Turing machine with n states on the alphabet 81, B< may print
on an initially blank tape? This exercise asks us to solve the busy beaver problem with a brute force
approach for n = 2.
We will construct all possible Turing machines on 2 states with the given alphabet. For each possible
Turing machine, we will allow it to run until either it halts, or until it has reached a predefined limit on
the number of steps it is allowed. This later condition is important, since some of the possible machines
will not halt on their own.
Generating all possible Turing machines on 81, B< with two states is equivalent to finding all possible
transition functions. The domain of a transition function is the set Sµ I = 80, 1<µ 81, B<. The codomain
is the set 80, 1, 2<µ 81, B<µ 8L, R<, where we use state 2 as a halting state, that is, a state which will
cause the machine to halt.
We create the domain and codomain using the Tuples function.
In[172]:= dom = Tuples@880, 1<, 81, B<<D

Out[172]= 880, 1<, 80, B<, 81, 1<, 81, B<<

In[173]:= codom = Tuples@880, 1, 2<, 81, B<, 8L, R<<D

Out[173]= 880, 1, L<, 80, 1, R<, 80, B, L<, 80, B, R<, 81, 1, L<, 81, 1, R<,
81, B, L<, 81, B, R<, 82, 1, L<, 82, 1, R<, 82, B, L<, 82, B, R<<

Now, each possible transition function is an assignment of each member of dom to one of the members
of codom. We can think of this as a member of codom4, the Cartesian product of codom with itself
four times. Each 4-tuple of codom4 corresponds to the function that maps the ith member of dom to
the ith element of the tuple. The function below accepts a member of codom4 and produces the corre-
sponding transition table.

Chapter13.nb 35

Now, each possible transition function is an assignment of each member of dom to one of the members
of codom. We can think of this as a member of codom4, the Cartesian product of codom with itself
four times. Each 4-tuple of codom4 corresponds to the function that maps the ith member of dom to
the ith element of the tuple. The function below accepts a member of codom4 and produces the corre-
sponding transition table.
In[174]:= SetAttributes@makeTable, 8HoldFirst<D;

makeTable@T_, t_D := Module@8j, d<,
For@j = 1, j § 4, j++,
d = dom@@jDD;
T@d@@1DD, d@@2DDD = t@@jDD

D
D

We now apply this function to each member of codom4.
In[176]:= codom4 = Tuples@codom, 4D;

In[177]:= Length@codom4D

Out[177]= 20 736

In[178]:= For@i = 1, i § Length@codom4D, i++,
makeTable@Symbol@"TF" <> ToString@iDD, codom4@@iDDD

D

The Symbol function is used to convert a string into a symbol object. Here we use it to create vari-
ables TF1, TF2, ..., for the indexed variables that store the 20, 736 transition tables.
The following function will count the number of ones that appear on a tape.
In[179]:= count1s@L_D := Module@8count = 0, i<,

For@i = 1, i § Length@LD, i++,
If@L@@iDD ã 1, count++D

D;
count

D

We need to place a limit on the number of steps the Turing machine can take to avoid getting stuck in
an infinite loop because of a machine that does not halt. For this, we create a version of Turing
specifically for this problem. It includes an extra argument for the limit on the number of steps and
incorporates this limit into the main loop. We remove the argument for the initial tape and initial state,
and instead set these to 0 and 8B< in the function. Rather than returning the tape, this function will
return the number of 1s appearing on the tape, assuming the machine halted. If it did not halt, we return
-1.

36 Chapter13.nb

In[180]:= beaverTuring@f_, maxsteps_D :=
Module@8pos = 1, state = 0, tape = 8B<, domain, y, numsteps = 0<,
domain = getIndices@fD;
While@MemberQ@domain, 8state, tape@@posDD<D &&

numsteps < maxsteps,
y = f@state, tape@@posDDD;
state = y@@1DD;
tape@@posDD = y@@2DD;
Which@pos ã 1 && y@@3DD === L, PrependTo@tape, BD,
pos ã Length@tapeD && y@@3DD === R,
AppendTo@tape, BD; pos++,
y@@3DD === L, pos--,
y@@3DD === R, pos++D;

numsteps++
D;
If@numsteps < maxsteps, count1s@tapeD, -1D

D

Now we apply beaverTuring to each of the transition tables with a step limit of 100, keeping track
of the number of 1s along the way.
In[181]:= onesList = 8<;

For@i = 1, i § Length@codom4D, i++,
AppendTo@onesList,
beaverTuring@Symbol@"TF" <> ToString@iDD, 100DD

D;
Max@onesListD

Out[183]= 4

Using the Tally function, we can see how many of the Turing machines produces tapes with each
number of ones.
In[184]:= Tally@onesListD

Out[184]= 88-1, 10 952<, 82, 704<, 81, 4876<, 80, 4184<, 83, 16<, 84, 4<<

This shows us that 4184 of the machines halted with no ones on the tape, 4 machines halted with four
ones, and 10 952 of the machines failed to halt.
We can see the four machines that produced four ones as follows. The Position function applied to
a list and an expression will return the list of indices to the list at which the expression can be found.
In[185]:= Position@onesList, 4D

Out[185]= 887729<, 87741<, 89314<, 89326<<

These are the transition functions for the four machines.
In[186]:= ?TF7729

Chapter13.nb 37

Global`TF7729

TF7729@0, 1D = 81, 1, L<

TF7729@0, BD = 81, 1, R<

TF7729@1, 1D = 82, 1, L<

TF7729@1, BD = 80, 1, L<

In[187]:= ?TF7741

Global`TF7741

TF7741@0, 1D = 81, 1, L<

TF7741@0, BD = 81, 1, R<

TF7741@1, 1D = 82, 1, R<

TF7741@1, BD = 80, 1, L<

In[188]:= ?TF9314

Global`TF9314

TF9314@0, 1D = 81, 1, R<

TF9314@0, BD = 81, 1, L<

TF9314@1, 1D = 82, 1, L<

TF9314@1, BD = 80, 1, R<

In[189]:= ?TF9327

38 Chapter13.nb

Global`TF9327

TF9327@0, 1D = 81, 1, R<

TF9327@0, BD = 81, 1, L<

TF9327@1, 1D = 82, 1, R<

TF9327@1, BD = 80, B, L<

The busy beaver problem becomes very time consuming very quickly. Beyond n = 2, it is imperative
to use more efficient approaches than was done here.

Exercises
1. Construct the unit-delay machine described in Example 5 of Section 13.2.
2. Construct a Mathematica function for simulating the action of a Moore machine. (See the

prelude to Exercise 21 in Section 13.2 for the definition of a Moore machine.)
3. Develop Mathematica functions for computing the union of two nondeterministic finite-state

automata and for computing the Kleene closure of a nondeterministic finite-state machine, as
described in the proof of Theorem 1 of Section 13.4 of the text.

4. Develop Mathematica functions for finding all the states of a finite-state machine that are
reachable from a given state and for finding all transient states and sinks of the machine. (See
Supplementary Exercise 16 for definitions.)

5. Construct a Mathematica function that computes the star height of a regular expression. (See
Supplementary Exercise 11 for the definition of star height.)

6. Construct a Turing machine that computes n1 - n2 for n1 ¥ n2. Test that this Turing machine
produces the desired results for sample input values.

7. Construct a Mathematica function that simulates the action of a Turing machine that may
move right, left, or not at all at each step.

8. Construct a Mathematica function that simulates the action of a Turing machine that may
have more than one tape.

9. Construct a Mathematica function that simulates the action of a Turing machine with a two-
dimensional tape. Represent a machine for multiplying integers and test it with your
procedure.

Chapter13.nb 39

