
13 Modeling Computation

Introduction
In this chapter we will use Mathematica to study theoretical models of computation. We will see how
to  generate  elements  of  a  language  from  a  type  2  phrase-structure  grammar  and  how  to  implement
finite-state machines with and without output. We will also examine Mathematica's support for regular
expressions and implement Turing machines.

13.1 Languages and Grammars
We will  write a function to generate elements of a language from a type 2 phrase-structure grammar.
Recall that a type 2 grammar has productions only of the form w1 Ø w2  with w1  a single nonterminal
symbol.
Our strategy for generating the language will be as follows. We initialize a list L  to the empty list. In
this list, we will store all words, that is, strings consisting only of terminal symbols. A list A is initial-
ized to the list consisting of the starting symbol.
We process  an  element  of  A  by  removing it  from the  list  and applying all  possible  productions  to  it.
The results of the productions are either added to L if they consist solely of terminal symbols, or placed
in A to be processed further.
In  order  to  prevent  the  time  taken  from  becoming  excessive,  we  will  impose  a  time  limit  using  the
TimeConstrained function. This limit will be an argument to the function.

Representation
We first need to determine how we will model the elements of the grammar in Mathematica.
We will generally represent terminal symbols as lower case letters stored as characters (strings). Nonter-
minal symbols will be upper case letters, also entered as strings. 
Strings containing nonterminal symbols and words will be stored as strings. Productions will be stored
in an indexed variable. The indices will be the nonterminal symbols (recall that we're considering only
type 2 grammars). The value associated to a nonterminal symbol will be the list of all products deriv-
able from that symbol.
In Example 12 in the textbook, S Ø AB is the only derivation from the starting symbol, so 8"AB"< will
be the entry associated to S in the indexed variable. On the other hand, B Ø Ba, B Ø Cb, and B Ø b are
all productions from B. Thus, 8"Ba", "Bc", "b"< would be the entry associated to B.
Here are the productions for Example 12.



In[1]:= ex12productions@"S"D = 8"AB"<;
ex12productions@"A"D = 8"Ca"<;
ex12productions@"B"D = 8"Ba", "Cb", "b"<;
ex12productions@"C"D = 8"cb", "b"<;
?ex12productions

Global`ex12productions

ex12productions@AD = 8Ca<

ex12productions@BD = 8Ba, Cb, b<

ex12productions@CD = 8cb, b<

ex12productions@SD = 8AB<

Our  function  will  require  the  following  arguments:  the  set  V  defining  the  vocabulary,  the  set  T  of
terminal symbols, the starting symbol S,  the table of productions P,  and the limit on the time, in sec-
onds,  timelimit.  Note  that,  with  the  exception  of  the  time limit,  this  is  the  same information  that
makes up a grammar.

Implementation
The function begins by initializing L to the empty set and A to the list containing the starting string as
the  sole  element.  Recall  that  L  and  A  will  store  the  words  that  have  been  produced  and  the  list  of
strings with nonterminal symbols that still require processing. 
After  the  initializations  are  complete,  we  begin  a  While  loop  controlled  by  the  condition  that  A  is
nonempty. Within the loop, set curString (the “current string”) equal to the first element of A and
remove it from A.
We need  to  find  all  the  strings  that  are  directly  derivable  from curString.  We do  this  as  follows.
First,  determine the nonterminal  symbols N  by computing the complement of  the terminal  symbols T
relative to the vocabulary V. Also initialize a list D (for derivations) to the empty list. We will store all
the strings derived from curString in this list and then later determine which should be added to L
and which to A.
Remember that curString is represented as a string. We can use StringPosition to determine
whether  a  particular  nonterminal  symbol  appears  in  a  string  by  evaluating  the  expression
StringPosition@ string, symbolD.  The  output  will  be  a  list  of  lists  with  each  inner  list
specifying the location of an occurance of symbol.

In[6]:= StringPosition@"AbcAb", "A"D

Out[6]= 881, 1<, 84, 4<<

Note that the positions for the string “A” are given as ranges. This is because StringPosition  is
often used to find substrings of more than one character, so the function is returning a list of ranges.
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In[7]:= StringPosition@"abccbabca", "ab"D

Out[7]= 881, 2<, 86, 7<<

Note that the result when the target string is not found is the empty list.
In[8]:= StringPosition@"AbcAb", "X"D

Out[8]= 8<

For  a  given  curString,  we  will  loop  over  the  nonterminal  symbols.  For  any  nonterminal  symbols
that  are  found,  we look the  symbol  up in  the  production  table  P.  For  each associated  production,  we
perform a substitution.
An example may be helpful to explain this step. Suppose we are processing the string “cBbaBa” as part
of the grammar given in Example 12 of Section 13.1.

In[9]:= curString = "cBbaBa"

Out[9]= cBbaBa

First we check for the nonterminal symbol “A”.
In[10]:= StringPosition@curString, "A"D

Out[10]= 8<

Since “A” is not present, we move on to “B”.
In[11]:= StringPosition@curString, "B"D

Out[11]= 882, 2<, 85, 5<<

We see that “B” does occur in the string. So we look up “B” in the production table.
In[12]:= ex12productions@"B"D

Out[12]= 8Ba, Cb, b<

We have two occurances of the nonterminal symbol “B” and three productions. Applying each produc-
tion  to  each  location  will  produce  six  new  strings,  each  of  which  has  one  of  the  occurances  of  “B”
replaced. We use a Do loop with two loop specifications: one over the productions and one over the list
of positions. We’ll be using the 8variable, list< form of the loop specifications. Note that if list
is the empty list, then no iteration will occur. 
We  apply  the  derivation  with  the  StringReplacePart  function.  This  function  requires  three
arguments. The first is the original string, in this case curString.  The second argument is the new
string,  in  this  case  the  element  from  the  list  of  productions.  And  the  third  argument  is  the  location
being  replaced,  in  the  same  format  as  output  from  StringPosition.  For  example,  below  we
replace “xyz” with “d”.

In[13]:= StringReplacePart@"abcxyzefg", "d", 84, 6<D

Out[13]= abcdefg

These elements combine to the following code.
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In[14]:= Do@Print@StringReplacePart@curString, p, lDD,
8p, ex12productions@"B"D<,
8l, StringPosition@curString, "B"D<

D

cBabaBa

cBbaBaa

cCbbaBa

cBbaCba

cbbaBa

cBbaba

In our function, instead of printing the productions, we will Sow them and enclose the loop in a Reap.
We  will  also  enclose  the  loop  illustrated  above  within  another  Do  loop  over  all  of  the  nonterminal
symbols. The resulting list of derived strings is stored as D.
Once  curString  has  been  completely  processed,  we  turn  to  deciding  whether  each  element  we
placed in D is a word or not. The most straightforward way to approach this is to consider whether or
not it contains any nonterminal symbols. We can do this by using StringPosition again, this time
with  the  list  of  all  nonterminal  symbols  as  the  second argument.  With  a  list  as  the  second argument,
StringPosition  outputs  the  list  of  all  matches  for  any  members  of  the  list.  If  the  output  is  the
empty list, that tells us that the string has no nonterminal symbols, and is thus a word.

In[15]:= StringPosition@"babaaa", 8"S", "A", "B", "C"<D

Out[15]= 8<

Here is the function.
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In[16]:= formWords@V_, T_, S_, P_, timelimit_D :=
Module@8L = 8<, A = 8"S"<, N, curString, D, s, d<,
N = Complement@V, TD;
TimeConstrained@
While@A ¹≠ 8<,
curString = A@@1DD;
A = Delete@A, 1D;
D = Reap@

Do@
Do@Sow@StringReplacePart@curString, p, lDD,
8p, P@sD<,
8l, StringPosition@curString, sD<

D
, 8s, N<DD@@2, 1DD;

Do@If@StringPosition@d, ND ã 8<,
AppendTo@L, dD,
AppendTo@A, dDD,

8d, D<
D

D, timelimitD;
DeleteDuplicates@LD

D

We use our function on the grammar defined by Example 12, up to one tenth of a second.
In[17]:= formWords@8"a", "b", "c", "A", "B", "C", "S"<,

8"a", "b", "c"<, "S", ex12productions, .1D

Out[17]= 8cbab, bab, cbaba, baba, cbacbb, cbabb, bacbb, babb,
cbabaa, babaa, cbacbba, cbabba, bacbba, babba, cbabaaa,
babaaa, cbacbbaa, cbabbaa, bacbbaa, babbaa, cbabaaaa,
babaaaa, cbacbbaaa, cbabbaaa, bacbbaaa, babbaaa,
cbabaaaaa, babaaaaa, cbacbbaaaa, cbabbaaaa, bacbbaaaa,
babbaaaa, cbabaaaaaa, babaaaaaa, cbacbbaaaaa, cbabbaaaaa,
bacbbaaaaa, babbaaaaa, cbabaaaaaaa, babaaaaaaa,
cbacbbaaaaaa, cbabbaaaaaa, bacbbaaaaaa, babbaaaaaa,
cbabaaaaaaaa, babaaaaaaaa, cbacbbaaaaaaa, cbabbaaaaaaa,
bacbbaaaaaaa, babbaaaaaaa, cbabaaaaaaaaa, babaaaaaaaaa,
cbacbbaaaaaaaa, cbabbaaaaaaaa, bacbbaaaaaaaa, babbaaaaaaaa,
cbabaaaaaaaaaa, babaaaaaaaaaa, cbacbbaaaaaaaaa,
cbabbaaaaaaaaa, bacbbaaaaaaaaa, babbaaaaaaaaa,
cbabaaaaaaaaaaa, babaaaaaaaaaaa, cbacbbaaaaaaaaaa,
cbabbaaaaaaaaaa, bacbbaaaaaaaaaa, babbaaaaaaaaaa<

13.2 Finite-State Machines with Output
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13.2 Finite-State Machines with Output
Example 4 from Section 13.2 describes a finite-state machine with five states and with input and output
alphabets both equal to 80, 1<. Example 6 describes how to implement addition of integers using their
binary  expressions  with  a  finite-state  machine  with  output.  Here,  we  will  use  Mathematica  to  model
those two finite-state machines. We will model strings in the language as lists.

A First Example
Recall  from Definition 1 in Section 13.2 that  a  finite-state  machine consists  of  six objects:  a  set  S  of
states, an input alphabet I,  an output alphabet O,  a transition function f ,  an output function g,  and an
initial state s0.
We  will  write  a  function  that,  given  that  information  and  an  input  string,  will  return  the  associated
output string. Specifically, we will give as an argument to the function a list of members of the input
alphabet, and the function will return a list of members of the output alphabet such that the ith element
in the output list is the output associated with the ith member of the input list.
Representation
As is typical, we must first describe how we will represent the necessary objects in Mathematica.
The states will  be represented by nonnegative integers.  For example,  in Example 4,  the states will  be
80, 1, 2, 3, 4<.  We will  assume, for the sake of simplicity,  that  the initial  state will  always be state 0.
Neither S nor s0 are therefore required as arguments to the function.
The input and output alphabets, I and O can be represented by lists of Mathematica objects but will not
be required arguments to the function as they can be inferred from the transition and output function.
In Example 4, these are both equal to the set 80, 1<.
The transition function and output function will be represented by a single indexed variable. This will
have the benefit of making the definition of the functions less cumbersome. The indices to the variable
will be pairs @state, inputD where state is a nonnegative integer and input will be a member of I.
The values of the variable will be pairs 8newState, output<,  where newState  is the state transi-
tioned to and output is the output corresponding to the original state and the input.
Here is the definition of the transition-output table for Example 4. (Refer to Table 3 of Section 13.2 as
the source of the values in the table.)

6   Chapter13.nb



In[18]:= ex4Table@0, 0D = 81, 1<;
ex4Table@0, 1D = 83, 0<;
ex4Table@1, 0D = 81, 1<;
ex4Table@1, 1D = 82, 1<;
ex4Table@2, 0D = 83, 0<;
ex4Table@2, 1D = 84, 0<;
ex4Table@3, 0D = 81, 0<;
ex4Table@3, 1D = 80, 0<;
ex4Table@4, 0D = 83, 0<;
ex4Table@4, 1D = 84, 0<;
?ex4Table

Global`ex4Table

ex4Table@0, 0D = 81, 1<

ex4Table@0, 1D = 83, 0<

ex4Table@1, 0D = 81, 1<

ex4Table@1, 1D = 82, 1<

ex4Table@2, 0D = 83, 0<

ex4Table@2, 1D = 84, 0<

ex4Table@3, 0D = 81, 0<

ex4Table@3, 1D = 80, 0<

ex4Table@4, 0D = 83, 0<

ex4Table@4, 1D = 84, 0<

Observe that the indices for the transition-output table consist of every possible state-input pair.
The Machine Modeling Function
The  function  we  create  will  accept  as  arguments  the  name  of  the  indexed  variable  representing  the
transition-output table and the input string. It will produce the output string.
The function is fairly straightforward. Initialize the current state of the machine, stored in curState,
to  0,  since  we  are  insisting  that  0  represent  the  starting  state.  Also  initialize  the  output  string,
outString,  to  the  list  of  all  0s  of  the  same length  as  the  input  list.  (It  is  more  efficient,  when  the
length of a list is known in advance, to initialize it to the correct length than it is to build it one element
at a time.)
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The function is fairly straightforward. Initialize the current state of the machine, stored in curState,
to  0,  since  we  are  insisting  that  0  represent  the  starting  state.  Also  initialize  the  output  string,
outString,  to  the  list  of  all  0s  of  the  same length  as  the  input  list.  (It  is  more  efficient,  when  the
length of a list is known in advance, to initialize it to the correct length than it is to build it one element
at a time.)
Begin a For loop from 1 to the length of the input string. For each index, look up the pair consisting of
curState and the element in the input string in the transition-output table. The second element in the
result  is  placed  in  the  output  string  at  the  correct  position,  and  the  first  element  is  used  to  update
curState. Once the loop is complete, the output list is returned.
Here is the function.

In[29]:= machineWithOutput@transTable_, inString_D :=
Module@8curState = 0, outString, i, newo, news<,
outString = ConstantArray@0, Length@inStringDD;
For@i = 1, i § Length@inStringD, i++,
8news, newo< = transTable@curState, inString@@iDDD;
outString@@iDD = newo;
curState = news

D;
outString

D

Example 4 asks to find the output string when the input is 101 011.
In[30]:= machineWithOutput@ex4Table, 81, 0, 1, 0, 1, 1<D

Out[30]= 80, 0, 1, 0, 0, 0<

A Finite-State Machine for Addition
Example  6  in  Section  13.2  describes  how  a  finite-state  machine  with  output  that  adds  two  integers
using  their  binary  expansions  can  be  designed.  Figure  5  in  the  text  gives  a  diagram  illustrating  the
machine.
The  input  alphabet  for  this  machine  are  the  four  bit  pairs:  00,  01,  10,  and  11.  We  will  represent  the
pairs as strings. As described by the text, we assume that the initial bits xn and yn are both 0.
As an example, consider adding 7 = 01112  and 6 = 01102. We input these two numbers as pairs and in
reverse order. Thus the input string will be 810, 11, 11, 00<.
The transition-output table is obtained from the diagram shown in Figure 5.

In[31]:= addTable@0, "00"D = 80, 0<;
addTable@0, "01"D = 80, 1<;
addTable@0, "10"D = 80, 1<;
addTable@0, "11"D = 81, 0<;
addTable@1, "00"D = 80, 1<;
addTable@1, "01"D = 81, 0<;
addTable@1, "10"D = 81, 0<;
addTable@1, "11"D = 81, 1<;

Applying  the  machineWithOutput  function  to  this  table  and  the  input  produces  the  sum  of  the
integers.
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In[39]:= machineWithOutput@addTable, 8"10", "11", "11", "00"<D

Out[39]= 81, 0, 1, 1<

This corresponds to 11012 = 13.

13.3 Finite-State Machines with No Output
In  this  section we will  see  how to  use  Mathematica  to  represent  finite-state  automata  and to  perform
language recognition.

Kleene Closure
We begin this section by writing functions to compute the concatenation of two sets of strings and the
partial Kleene closure of a set of strings. As in the previous section, we will model a string as a list.
Given two lists of strings (themselves represented as lists), we can form all possible concatenations by
using Table and Join to concatenate each pair. In order to simplify the appearance of input, particu-
larly to enter single-element strings as a simple number, this function will wrap any non-lists into a list
structure so that single-term strings can be given to the function without braces.

In[40]:= setCat@A_, B_D := Module@8a, b<,
Flatten@Table@Which@

Head@aD === List && Head@bD === List, Join@a, bD,
Head@aD === List && Head@bD =!= List, Join@a, 8b<D,
Head@aD =!= List && Head@bD === List, Join@8a<, bD,
Head@aD =!= List && Head@bD =!= List, Join@8a<, 8b<DD,

8a, A<, 8b, B<D, 1D
D

Note that Flatten is used since Table with more than one loop specification produces a nested list.
The argument 1 prevents Flatten from flattening the list beyond the highest level of nesting.
Applying this function to the sets from Example 1 produces the same output as in the solution to that
example.

In[41]:= listA = 80, 81, 1<<

Out[41]= 80, 81, 1<<

In[42]:= listB = 81, 81, 0<, 81, 1, 0<<

Out[42]= 81, 81, 0<, 81, 1, 0<<

In[43]:= setCat@listA, listBD

Out[43]= 880, 1<, 80, 1, 0<, 80, 1, 1, 0<,
81, 1, 1<, 81, 1, 1, 0<, 81, 1, 1, 1, 0<<

Given a set A, recall that A0 is defined to be the set of the empty string, and that for n > 0, An+1 = An A.
Also recall that the Kleene closure of A is A* =‹k=0

¶ Ak. We define the partial Kleene closure to level
n by A@nD =‹k=0

n Ak.
We write the following function to produce the powers of A. The function is modeled on the recursive
definition given in the text.
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We write the following function to produce the powers of A. The function is modeled on the recursive
definition given in the text.

In[44]:= setPow@A_, k_D := If@k ã 0, 88<<, setCat@setPow@A, k - 1D, ADD;

For example, with B = 81, 10, 110<, we can compute B3 as follows.
In[45]:= setPow@listB, 3D

Out[45]= 881, 1, 1<, 81, 1, 1, 0<, 81, 1, 1, 1, 0<, 81, 1, 0, 1<,
81, 1, 0, 1, 0<, 81, 1, 0, 1, 1, 0<, 81, 1, 1, 0, 1<,
81, 1, 1, 0, 1, 0<, 81, 1, 1, 0, 1, 1, 0<, 81, 0, 1, 1<,
81, 0, 1, 1, 0<, 81, 0, 1, 1, 1, 0<, 81, 0, 1, 0, 1<,
81, 0, 1, 0, 1, 0<, 81, 0, 1, 0, 1, 1, 0<, 81, 0, 1, 1, 0, 1<,
81, 0, 1, 1, 0, 1, 0<, 81, 0, 1, 1, 0, 1, 1, 0<,
81, 1, 0, 1, 1<, 81, 1, 0, 1, 1, 0<, 81, 1, 0, 1, 1, 1, 0<,
81, 1, 0, 1, 0, 1<, 81, 1, 0, 1, 0, 1, 0<,
81, 1, 0, 1, 0, 1, 1, 0<, 81, 1, 0, 1, 1, 0, 1<,
81, 1, 0, 1, 1, 0, 1, 0<, 81, 1, 0, 1, 1, 0, 1, 1, 0<<

To form the partial Kleene closure A@nD, we must find the union of A0, A1, …, An. Iteratively building
the Ak while taking unions is more efficient than using setPow.

In[46]:= kleene@A_, n_D := Module@8K = 88<<, x, Ak, i<,
Do@K = Union@K, 88x<<D, 8x, A<D;
Ak = K;
For@i = 2, i § n, i++,
Ak = setCat@Ak, AD;
K = Union@K, AkD

D;
K

D

We compute the Kleene closure up to level 3 of 80, 1<.
In[47]:= kleene@80, 1<, 3D

Out[47]= 88<, 80<, 81<, 80, 0<, 80, 1<, 81, 0<, 81, 1<, 80, 0, 0<, 80, 0, 1<,
80, 1, 0<, 80, 1, 1<, 81, 0, 0<, 81, 0, 1<, 81, 1, 0<, 81, 1, 1<<

Extended Transition Function for a Finite-State Automaton
Now we  will  create  a  function  that  serves  as  the  extension  of  the  transition  function  of  a  finite-state
automaton, as described following Example 4 in Section 13.3 of the text.
As in  Section 13.2,  we will  model  the transition function as  an indexed variable.  The indices  will  be
the pairs consisting of the current state of the automaton and the input. The corresponding value will be
the next state of the automaton.
For example, the transition function of the finite-state automaton M1 in Example 5 is as follows.
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In[48]:= ex51Table@0, 0D = 1;
ex51Table@0, 1D = 0;
ex51Table@1, 0D = 1;
ex51Table@1, 1D = 1;

To  model  the  extended  function  that  takes  a  pair  consisting  of  a  state  and  a  member  of  the  Kleene
closure of the alphabet and returns the final state, we write a function, extendedTransition. The
arguments of this function will be a state number, a list representing the input string, and the transition
function.
We will not use the recursive definition provided in the text, but will instead use an iterative approach.
Begin  by  initializing  the  current  state  to  the  input  state.  Then  loop  through  the  list  representing  the
input  string and apply the transition function to  update  the  current  state.  Once the loop is  concluded,
return the state.

In[52]:= extendedTransition@state_, input_, transFunc_D :=
Module@8curState = state, i<,
For@i = 1, i § Length@inputD, i++,
curState = transFunc@curState, input@@iDDD

D;
curState

D

We can use this function to see that applying the automaton M1 from Example 5 to 81, 0, 1, 1, 0< from
initial state 0 ends in state 1.

In[53]:= extendedTransition@0, 81, 0, 1, 1, 0<, ex51TableD

Out[53]= 1

Language Recognition with Finite-State Automata
Recall  that  a  string  x  is  recognized  by  a  finite-state  automaton  if  the  extended  transition  function
applied to the initial state and the string x results in a final state.
We  will  write  a  function  that,  given  the  transition  table  for  a  finite-state  automaton  with  initial  state
init, the set of final states, and the string x, will return True or False indicating whether or not
the string is recognized by the machine.
The  function  only  needs  to  apply  extendedTransition  to  the  state  0,  the  transition  table,  and
string, and then check to see whether or not the result is in the set of final states.

In[54]:= recognizedQ@x_, transFunc_, init_, final_D :=
Module@8endState<,
endState = extendedTransition@init, x, transFuncD;
MemberQ@final, endStateD

D

The solution to Example 5 indicated that the only strings accepted by M1 are those consisting of consec-
utive 1s.
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In[55]:= recognizedQ@81, 1, 1, 1, 1<, ex51Table, 0, 80<D

Out[55]= True

In[56]:= recognizedQ@81, 1, 0, 1<, ex51Table, 0, 80<D

Out[56]= False

Using  the  kleene  function  from  the  beginning  of  this  section,  we  can  partially  determine  the  lan-
guage recognized by a machine.
Given the transition table, the initial state, the set of final states, a set A,  and a positive integer n,  the
following function will calculate the subset of A@nD  recognized by the finite-state automaton defined by
the transition table and set of final states.
This function operates by brute force; applying kleene and then using recognizedQ to check each
element of A@nD.

In[57]:= findLanguage@transFunc_, init_, final_, A_, n_D :=
Module@8An, x, L = 8<<,
An = kleene@A, nD;
Do@
If@recognizedQ@x, transFunc, init, finalD, AppendTo@L, xDD
, 8x, An<D;

L
D

Applying this function to our M1  machine and 80, 1<@10D, we see that the only strings in that set recog-
nized by the finite-state automaton are those consisting only of 1s.

In[58]:= findLanguage@ex51Table, 0, 80<, 80, 1<, 10D

Out[58]= 88<, 81<, 81, 1<, 81, 1, 1<, 81, 1, 1, 1<, 81, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1, 1, 1, 1<<

Nondeterministic Finite-State Automata
We conclude  this  section  with  an  implementation  of  the  constructive  proof  of  Theorem 1  of  Section
13.3. Given a nondeterministic finite-state automaton, our function will produce a deterministic finite-
state automaton.
In  particular,  given  the  transition  function  (indexed  variable)  for  a  nondeterministic  automaton,  its
input  alphabet,  its  starting  state,  and  its  set  of  final  states,  the  function  will  produce  the  transition
function for a deterministic automaton, its starting state, and its set of final states.
For a nondeterministic automaton, we will represent the transition function in the same way as for the
deterministic  automaton  earlier,  except  the  values  for  the  variable  will  be  sets  of  states,  rather  than
individual states.
For example,  here is  the transition function for the nondeterministic automaton described in Example
10, which has final states 0 and 4.
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In[59]:= ex10Table@0, 0D = 80, 2<;
ex10Table@0, 1D = 81<;
ex10Table@1, 0D = 83<;
ex10Table@1, 1D = 84<;
ex10Table@2, 0D = 8<;
ex10Table@2, 1D = 84<;
ex10Table@3, 0D = 83<;
ex10Table@3, 1D = 8<;
ex10Table@4, 0D = 83<;
ex10Table@4, 1D = 83<;

To determine the deterministic automaton's transition table, its starting state, and final states, we follow
the proof of Theorem 1. The deterministic automaton's states are sets of states of the nondeterministic
automaton. 
We begin with the set consisting of the nondeterministic automaton's starting state. This is the starting
state  for  the  deterministic  automaton.  Given  any  state  of  the  deterministic  automaton,  and  any  input,
the  deterministic  transition  is  the  union  over  all  members  of  the  state  of  the  results  of  applying  the
nondeterministic automaton's transition with that input value.
In our function, we will create an indexed variable. We will also create two sets S and T. The set S will
be initialized to the empty set and, at the conclusion of the procedure will be the set of all states of the
deterministic automaton. The set T  will be initialized to 88s0<<, the set containing the initial state of the
deterministic automaton.
As long as T  is non-empty, we will move one of its members from T  to S and apply the nondeterminis-
tic  automaton's  transition  function  with  all  possible  input  values.  The  results  are  the  entries  in  the
deterministic  transition  table  and  those  that  are  not  already  members  of  S  are  added  to  T  for  further
processing.
The final states of the deterministic automaton are those states which contain a final state of the nonde-
terministic automaton. That is, the final states are those whose intersection with the set of the original
final states is nonempty. Before exiting, the function calculates the set of final states for the determinis-
tic automaton.
Here is the function. Note that the function returns a list containing the new starting state, and the set of
final states. Provided that we give the function a symbol that has not been assigned a value, the func-
tion will be assign values to it as an indexed variable storing the deterministic transition function.
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In[69]:= makeDeterministic@newTable_Symbol,
transFunc_, alphabet_, init_, final_D :=

Module@8S = 8<, T = 88init<<, state, i, s, x, newfinal<,
While@T ¹≠ 8<,
state = T@@1DD;
T = Delete@T, 1D;
AppendTo@S, stateD;
Do@x = 8<;
Do@x = Union@x, transFunc@s, iDD, 8s, state<D;
x = Union@xD;
newTable@state, iD = x;
If@! MemberQ@S, xD, T = Union@T, 8x<DD
, 8i, alphabet<D

D;
newfinal = 8<;
Do@If@Intersection@state, finalD ¹≠ 8<,

newfinal = Union@newfinal, 8state<DD
, 8state, S<D;

88init<, newfinal<
D

Applying this function to the Example 10 information produces the following.
In[70]:= 8ex10Dinit, ex10Dfinal< =

makeDeterministic@ex10DTable, ex10Table, 80, 1<, 0, 80, 4<D

Out[70]= 880<, 880<, 84<, 80, 2<, 81, 4<, 83, 4<<<

We  can  inspect  the  transition  table  by  applying  Definition  or  the  ?  operator  to  the  symbol
ex10DTable.

In[71]:= Definition@ex10DTableD

Out[71]= ex10DTable@8<, 0D = 8<

ex10DTable@8<, 1D = 8<

ex10DTable@80<, 0D = 80, 2<

ex10DTable@80<, 1D = 81<

ex10DTable@81<, 0D = 83<

ex10DTable@81<, 1D = 84<

ex10DTable@83<, 0D = 83<
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Out[71]=

ex10DTable@83<, 1D = 8<

ex10DTable@84<, 0D = 83<

ex10DTable@84<, 1D = 83<

ex10DTable@80, 2<, 0D = 80, 2<

ex10DTable@80, 2<, 1D = 81, 4<

ex10DTable@81, 4<, 0D = 83<

ex10DTable@81, 4<, 1D = 83, 4<

ex10DTable@83, 4<, 0D = 83<

ex10DTable@83, 4<, 1D = 83<

You can confirm that this agrees with Figure 8 from Section 13.3. 
We use the output as the arguments to findLanguage.

In[72]:= findLanguage@ex10DTable, ex10Dinit, ex10Dfinal, 80, 1<, 10D

Out[72]= 88<, 80<, 80, 0<, 80, 1<, 81, 1<, 80, 0, 0<, 80, 0, 1<,
80, 1, 1<, 80, 0, 0, 0<, 80, 0, 0, 1<, 80, 0, 1, 1<,
80, 0, 0, 0, 0<, 80, 0, 0, 0, 1<, 80, 0, 0, 1, 1<,
80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 1<, 80, 0, 0, 0, 1, 1<,
80, 0, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0, 1<,
80, 0, 0, 0, 0, 1, 1<, 80, 0, 0, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0, 0, 1<, 80, 0, 0, 0, 0, 0, 1, 1<,
80, 0, 0, 0, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0, 0, 0, 1<,
80, 0, 0, 0, 0, 0, 0, 1, 1<, 80, 0, 0, 0, 0, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0, 0, 0, 0, 1<, 80, 0, 0, 0, 0, 0, 0, 0, 1, 1<<

This list of strings suggests that the language recognized by this automaton are those strings consisting
of a number of 0s followed by no more than two 1's.

13.4 Language Recognition
In  this  section  we  will  introduce  Mathematica's  support  for  regular  expressions  for  working  with
strings. Note, however, that Mathematica’s general patterns can also be used with strings. We will also
develop a function for calculating the concatenation of two nondeterministic automata.
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Regular Expressions
In Mathematica,  a  regular  expression is  enclosed in the RegularExpression  head.  It  is  typically
used  in  the  second  argument  to  a  string  information  or  manipulation  function,  such  as  String-
MatchQ,  StringReplace,  StringCases,  or  StringSplit.  We will  illustrate  Mathematica’s
syntax for regular expressions using the StringMatchQ function. This function takes a string as the
first argument and a regular expression, enclosed in RegularExpression, as the second argument.
It returns True if the regular expression matches the string.
Perhaps  the  most  basic  form of  a  regular  expression  is  the  concatenation  of  elements  of  the  set.  For
example, “01” is a regular expression. This expression matches itself, of course.

In[73]:= StringMatchQ@"01", RegularExpression@"01"DD

Out[73]= True

The output indicates that yes, the string “01” matches the regular expression “01”.
Kleene Closure
The asterisk is a symbol used in a regular expression to represent the Kleene closure.
For example, the regular expression “10*” will match a 1 followed by any number of 0s.

In[74]:= StringMatchQ@"10000000", RegularExpression@"10*"DD

Out[74]= True

In[75]:= StringMatchQ@"1", RegularExpression@"10*"DD

Out[75]= True

In[76]:= StringMatchQ@"0111000", RegularExpression@"10*"DD

Out[76]= False

As in the text, parentheses can be used to group symbols. For example “(10)*” matches any number of
copies of “10”.

In[77]:= StringMatchQ@"101010101010101010", RegularExpression@"H10L*"DD

Out[77]= True

In[78]:= StringMatchQ@"101010101", RegularExpression@"H10L*"DD

Out[78]= False

Mathematica, and most languages that support regular expressions, also recognizes “+“ and “?”. These
are used like “*” but with different meaning. The expression “A+“ is used to match one or more copies
of “A”. Essentially, it is the Kleene closure minus the empty string. For example, “1*0+“ matches any
number of 1s followed by at least one 0.

In[79]:= StringMatchQ@"1111000", RegularExpression@"1*0+"DD

Out[79]= True

In[80]:= StringMatchQ@"00", RegularExpression@"1*0+"DD

Out[80]= True
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In[81]:= StringMatchQ@"111", RegularExpression@"1*0+"DD

Out[81]= False

The “A?” expression is used to match 0 or 1 copies of “A”. For example, “1*0?” matches any number
of 1s which may be followed by at most one 0.

In[82]:= StringMatchQ@"111111", RegularExpression@"1*0?"DD

Out[82]= True

In[83]:= StringMatchQ@"1111110", RegularExpression@"1*0?"DD

Out[83]= True

In[84]:= StringMatchQ@"11111100", RegularExpression@"1*0?"DD

Out[84]= False

Union
To represent union, the vertical line is used. A “|” placed between two expressions will match either of
them. The “|” can take the place of the “‹” symbol in an expression such as “0(0‹1)*”.

In[85]:= StringMatchQ@"011010", RegularExpression@"0H0»1L*"DD

Out[85]= True

In[86]:= StringMatchQ@"1011010", RegularExpression@"0H0»1L*"DD

Out[86]= False

This can also be done in more complicated expressions. For example, “2((10)*‹(01)*)2” describes the
set of strings beginning and ending with 2s with an alternating sequence of 0s and 1s in between.

In[87]:= StringMatchQ@"21010102", RegularExpression@"2HH10L*»H01L*L2"DD

Out[87]= True

In[88]:= StringMatchQ@"201012", RegularExpression@"2HH10L*»H01L*L2"DD

Out[88]= True

In[89]:= StringMatchQ@"210012", RegularExpression@"2HH10L*»H01L*L2"DD

Out[89]= False

In some circumstances, union can be replaced by character classes. By placing characters within a pair
of brackets, you indicate that any of the characters inside the brackets are allowed. For example, “0(0‹
1)*” can be expressed as follows.

In[90]:= StringMatchQ@"011010", RegularExpression@"0@01D*"DD

Out[90]= True

Note that this is only allowed when the options are single characters.
Character classes can also be used to specify a range of characters with a hyphen. For example, “(0‹
1‹2‹3‹4)*” can be specified as follows.
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In[91]:= StringMatchQ@"4213442101", RegularExpression@"@0-4D*"DD

Out[91]= True

Character classes can be complemented. By beginning a character class with a caret, you indicate that
any character other than those specified are allowed. For example, in the following, the regular expres-
sion matches all strings beginning with 1, ending with 0, and which include no other 1s nor 0s.

In[92]:= StringMatchQ@"169jwq0", RegularExpression@"1@^01D*0"DD

Out[92]= True

In[93]:= StringMatchQ@"169j1wq0", RegularExpression@"1@^01D*0"DD

Out[93]= False

There are also several defined character classes: you enter “\\d” for a digit, “\\D” for a non-digit, “\\s”
for space, including newline and tab, “\\S” for any non-whitespace character, “\\w” for a word charac-
ter (letters, digits, and underscores), and “\\W” for a non-word character.

In[94]:= StringMatchQ@"126qb", RegularExpression@"\\d*\\w\\w"DD

Out[94]= True

In[95]:= StringMatchQ@"b32xy", RegularExpression@"\\d*\\w\\w"DD

Out[95]= False

The  special  character  dot,  “.”,  is  used  to  match  any  character.  For  example,  “1...0”  will  match  any
string beginning with a 1, followed by any three characters and ending with a 0.

In[96]:= StringMatchQ@"12340", RegularExpression@"1...0"DD

Out[96]= True

In[97]:= StringMatchQ@"1230", RegularExpression@"1...0"DD

Out[97]= False

In[98]:= StringMatchQ@"1234567890", RegularExpression@"1...0"DD

Out[98]= False

Regular  expressions  in  Mathematica  are  extremely  flexible.  The  interested  reader  is  referred  to  the
tutorial page on regular expressions for more information.

Concatenation of Automata
We will  write a function that  concatenates two nondeterministic finite-state automata,  as described in
the proof of Theorem 1 of the text.
Two Automata
We begin by defining two automata that our function will concatenate.
The first automata is the result of Example 3, for recognizing “1*‹01”. Our implementation is based
on the simple form shown in Figure3b.
Note that the diagram in the text omits the results of transitioning from certain states via certain input
values. For example, it does not show the result of the transition from state s1 with input 0. This makes
for a simpler and cleaner diagram, but the transition table will need to include this information. It will
be assumed that all such omissions correspond to a transition to the state 8 <.
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Note that the diagram in the text omits the results of transitioning from certain states via certain input
values. For example, it does not show the result of the transition from state s1 with input 0. This makes
for a simpler and cleaner diagram, but the transition table will need to include this information. It will
be assumed that all such omissions correspond to a transition to the state 8 <.
Here is the transition table corresponding to the automaton shown in Figure 3b. 

In[99]:= atable@0, 0D = 82<;
atable@0, 1D = 81<;
atable@1, 0D = 8<;
atable@1, 1D = 81<;
atable@2, 0D = 8<;
atable@2, 1D = 83<;
atable@3, 0D = 8<;
atable@3, 1D = 8<;

The final states for this automaton are 80, 1, 3<. We can confirm that it recognizes “1*‹01” by apply-
ing makeDeterministic and findLanguage.
In[107]:= 8aDinit, aDfinal< =

makeDeterministic@aDtable, atable, 80, 1<, 0, 80, 1, 3<D

Out[107]= 880<, 880<, 81<, 83<<<

In[108]:= findLanguage@aDtable, aDinit, aDfinal, 80, 1<, 10D

Out[108]= 88<, 81<, 80, 1<, 81, 1<, 81, 1, 1<, 81, 1, 1, 1<, 81, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1, 1, 1, 1, 1<<

As you can see, the language recognized by this machine includes the string “01” as well as “1*”.
The second automaton we create will recognize the language “101”.
In[109]:= btable@0, 0D = 8<;

btable@0, 1D = 81<;
btable@1, 0D = 82<;
btable@1, 1D = 8<;
btable@2, 0D = 8<;
btable@2, 1D = 83<;
btable@3, 0D = 8<;
btable@3, 1D = 8<;

The only final state is 3. We confirm that this models that machine that recognizes 101.
In[117]:= 8bDinit, bDfinal< =

makeDeterministic@bDtable, btable, 80, 1<, 0, 83<D

Out[117]= 880<, 883<<<

In[118]:= findLanguage@bDtable, bDinit, bDfinal, 80, 1<, 10D

Out[118]= 881, 0, 1<<

Concatenating the Machines
Our  concatenation  function  will  require  the  following  arguments,  for  both  machines:  the  transition
table, the starting state, and the final states. It will also require that the two machines have a common
input alphabet but that alphabet does not need to be an argument.
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Our  concatenation  function  will  require  the  following  arguments,  for  both  machines:  the  transition
table, the starting state, and the final states. It will also require that the two machines have a common
input alphabet but that alphabet does not need to be an argument.
Recall  the  following  elements  of  the  construction  of  the  concatenation  as  described  in  the  proof  of
Theorem 1 of Section 13.4.
1. The states of the concatenation is the union of the states of the original machines, which are 

assumed to be disjoint.
2. The starting state of the concatenation is the starting state of the first of the two machines.
3. The final states of the concatenation include the set of final states of the second machine.
4. The final states of the concatenation also include the starting state if the empty string is a member 

of both languages.
5. All transitions of the original machines are transitions of the new machine.
6. Additionally, for every transition in the first machine leading to a final state, we add a transition in 

the concatenation to the starting state of the second machine.
7. Finally, if the starting state of the first machine is final, then for every transition from the starting 

state of the second machine, we add a transition from the starting state of the new machine.
The  assumption  that  the  states  of  the  original  two  machines  are  disjoint  means  that  we  will  need  to
make them so. There are a variety of ways in which we could do this. Since we assume that states are
designated  by  nonnegative  integers,  we  can  make  the  states  distinct  by  multiplying  each  state  by  10
and adding 1 if it is in the first machine and 2 if it is in the second machine.
Therefore, the starting state of the concatenation is found by 10 ÿ sA + 1 where sA  is the starting state of
the first machine. In our example, this will be equal to 10 ÿ 0+ 1 = 1.
Next, we find the final states of the concatenation. Let finalA and finalB be the sets of final states
for the original two machines. According to point 3 above, the final states of the concatenated machine
include the final states of the second machine. We only need to update the names.
The final states of the machines we defined above are as follows.
In[119]:= finalA = 80, 1, 3<

Out[119]= 80, 1, 3<

In[120]:= finalB = 83<

Out[120]= 83<

We can obtain the final states of the concatenation by applying the function s Ø 10 s+ 2 to the set of
final states of the second machine.
In[121]:= Map@H10*Ò + 2L &, finalBD

Out[121]= 832<

Item 4 asserts that the starting state of the concatenated machine is a final state if and only if the empty
string is a member of both languages. Another way to put this is that the starting state of the concate-
nated machine is a final state when both of the original machines have their own starting states as final
states. This is not the case in our example. We will include this possibility in our general function by
checking to see if the starting states are members of the sets of final states.
To  form  the  transitions  of  the  new  machine,  we  begin  with  an  unassigned  variable.  We  will  apply
Clear to be certain nothing has been assigned.
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In[122]:= Clear@abtableD

We proceed as follows. First we need to obtain a list of all indices in the table atable. To do this, we
use DownValues to obtain a list of the rules that make up the indexed variable. 
In[123]:= DownValues@atableD

Out[123]= 8HoldPattern@atable@0, 0DD ß 82<,
HoldPattern@atable@0, 1DD ß 81<,
HoldPattern@atable@1, 0DD ß 8<,
HoldPattern@atable@1, 1DD ß 81<,
HoldPattern@atable@2, 0DD ß 8<,
HoldPattern@atable@2, 1DD ß 83<,
HoldPattern@atable@3, 0DD ß 8<, HoldPattern@atable@3, 1DD ß 8<<

We can extract the indices by applying Part ([[…]]) and ReplaceAll (/.) as follows.
In[124]:= indicesA = DownValues@atableD@@All, 1DD

Out[124]= 8HoldPattern@atable@0, 0DD, HoldPattern@atable@0, 1DD,
HoldPattern@atable@1, 0DD, HoldPattern@atable@1, 1DD,
HoldPattern@atable@2, 0DD, HoldPattern@atable@2, 1DD,
HoldPattern@atable@3, 0DD, HoldPattern@atable@3, 1DD<

In[125]:= indicesA = indicesA ê. HoldPattern@atable@x__DD Ø 8x<

Out[125]= 8HoldPattern@80, 0<D, HoldPattern@80, 1<D,
HoldPattern@81, 0<D, HoldPattern@81, 1<D, HoldPattern@82, 0<D,
HoldPattern@82, 1<D, HoldPattern@83, 0<D, HoldPattern@83, 1<D<

In[126]:= indicesA = indicesA@@All, 1DD

Out[126]= 880, 0<, 80, 1<, 81, 0<, 81, 1<, 82, 0<, 82, 1<, 83, 0<, 83, 1<<

We create a general function following this pattern which we call getIndices.
In[127]:= getIndices@indexedV_D := Module@8indices, k<,

indices = DownValues@indexedVD@@All, 1DD;
indices = indices ê. HoldPattern@indexedV@k__DD Ø 8k<;
indices@@All, 1DD

D

For  each  index  i,  the  index  in  abtable  will  be  [10*i[[1]]+1,i[[2]]].  This  computes  the
appropriate  state  name  in  the  concatenated  machine  and  keeps  the  same  input  value.  The  associated
entry will be obtained by using Map and the pure function 10*#+1 applied to the previous value. Note
that  we  Apply  (@@)  atable  to  i  to  replace  the  List  head  with  atable  in  order  to  access  the
value.
In[128]:= Do@abtable@10*i@@1DD + 1, i@@2DDD = Map@H10*Ò + 1L &, atable üü iD

, 8i, indicesA<D

We can now inspect the values of abtable.
In[129]:= ?abtable

Global`abtable
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Global`abtable

abtable@1, 0D = 821<

abtable@1, 1D = 811<

abtable@11, 0D = 8<

abtable@11, 1D = 811<

abtable@21, 0D = 8<

abtable@21, 1D = 831<

abtable@31, 0D = 8<

abtable@31, 1D = 8<

For the second machine, we do the same thing except adding 2 instead of 1.
In[130]:= indicesB = getIndices@btableD;

Do@
abtable@10*i@@1DD + 2, i@@2DDD = Map@H10*Ò + 2L &, btable üü iD
, 8i, indicesB<D

In[132]:= ?abtable

Global`abtable

abtable@1, 0D = 821<

abtable@1, 1D = 811<

abtable@2, 0D = 8<

abtable@2, 1D = 812<

abtable@11, 0D = 8<

abtable@11, 1D = 811<

abtable@12, 0D = 822<
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abtable@12, 1D = 8<

abtable@21, 0D = 8<

abtable@21, 1D = 831<

abtable@22, 0D = 8<

abtable@22, 1D = 832<

abtable@31, 0D = 8<

abtable@31, 1D = 8<

abtable@32, 0D = 8<

abtable@32, 1D = 8<

Next, we must add transitions between the two components. As item 6 instructs, for each transition in
the  first  of  the  two machines  that  leads  to  a  final  state,  we  must  add  a  transition  in  the  concatenated
machine to the starting state of the second machine.
We will again loop through the indices of atable, this time checking whether the image contains any
states that are final for machine A. If so, we will add the transition to state 2 (the name of the starting
state in the second machine in the concatenation). (Note that we must update the entry in the abtable
rather than replace it.)
In[133]:= Do@If@Intersection@atable üü i, finalAD ¹≠ 8<,

abtable@10*i@@1DD + 1, i@@2DDD =
Union@abtable@10*i@@1DD + 1, i@@2DDD, 82<DD

, 8i, indicesA<D

We can see that this has added transitions to state 2.
In[134]:= ?abtable

Global`abtable

abtable@1, 0D = 821<

abtable@1, 1D = 82, 11<

abtable@2, 0D = 8<

abtable@2, 1D = 812<
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abtable@11, 0D = 8<

abtable@11, 1D = 82, 11<

abtable@12, 0D = 822<

abtable@12, 1D = 8<

abtable@21, 0D = 8<

abtable@21, 1D = 82, 31<

abtable@22, 0D = 8<

abtable@22, 1D = 832<

abtable@31, 0D = 8<

abtable@31, 1D = 8<

abtable@32, 0D = 8<

abtable@32, 1D = 8<

Finally,  since the starting state of the first  machine is  final,  we must add transitions from the starting
state  of  the  concatenated  machine  for  each  of  the  transitions  from  the  starting  state  of  the  second
machine.  The  starting  state  of  the  second  machine  in  this  example  is  0,  and  the  starting  state  of  the
concatenation is 1.
In[135]:= Do@If@i@@1DD ã 0,

abtable@1, i@@2DDD =
Union@abtable@1, i@@2DDD, Map@H10*Ò + 2L &, btable üü iDDD

, 8i, indicesB<D

Inspect the table again.
In[136]:= ?abtable

Global`abtable

abtable@1, 0D = 821<

abtable@1, 1D = 82, 11, 12<

abtable@2, 0D = 8<
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abtable@2, 1D = 812<

abtable@11, 0D = 8<

abtable@11, 1D = 82, 11<

abtable@12, 0D = 822<

abtable@12, 1D = 8<

abtable@21, 0D = 8<

abtable@21, 1D = 82, 31<

abtable@22, 0D = 8<

abtable@22, 1D = 832<

abtable@31, 0D = 8<

abtable@31, 1D = 8<

abtable@32, 0D = 8<

abtable@32, 1D = 8<

Note  that  this  modified  the  entry  for  @1, 1D.  (Recall  that  state  1  is  the  starting  state  for  the  combined
machine.) Before, @1, 1D was associated with 82, 11<, the starting state of the second machine and state
1 of the first machine. Now, the entry for @1, 1D also includes 12, state 1 of the second machine.
That  @1, 1D  is  associated  with  82, 11, 12<  means  that  from the  starting  state  of  the  concatenation  and
input 1, there are three options. Going to state 2, the starting state of the second machine, corresponds
to recognizing the string 1 followed by a string recognized by the second machine. Going to state 11,
state 1 of the first machine, corresponds to building a string of all 1s, which is recognized by the first
machine. And going to state 12, state 1 of the second machine, corresponds to the first  machine con-
tributing  the  empty  string  followed  by  1  as  the  first  character  of  a  string  recognized  by  the  second
machine.
Implementation as a Function
Here is the complete function based on the example above.
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In[137]:= SetAttributes@catAutomata, 8HoldFirst<D;
catAutomata@abtable_, atable_,

astart_, afinal_, btable_, bstart_, bfinal_D :=
Module@8abstart, abfinal, indicesA, indicesB, i<,
abstart = 10*astart + 1;
abfinal = Map@H10*Ò + 2L &, bfinalD;
If@MemberQ@afinal, astartD && MemberQ@bfinal, bstartD,
abfinal = Union@abfinal, 8abstart<DD;

Clear@abtableD;
indicesA = getIndices@atableD;
indicesB = getIndices@btableD;
Do@
abtable@10*i@@1DD + 1, i@@2DDD = Map@H10*Ò + 1L &, atable üü iD
, 8i, indicesA<D;

Do@
abtable@10*i@@1DD + 2, i@@2DDD = Map@H10*Ò + 2L &, btable üü iD
, 8i, indicesB<D;

Do@If@Intersection@atable üü i, finalAD ¹≠ 8<,
abtable@10*i@@1DD + 1, i@@2DDD =
Union@abtable@10*i@@1DD + 1, i@@2DDD, 82<DD

, 8i, indicesA<D;
If@MemberQ@afinal, astartD,
Do@If@i@@1DD ã 0,

abtable@1, i@@2DDD =
Union@abtable@1, i@@2DDD,
Map@H10*Ò + 2L &, btable üü iDDD

, 8i, indicesB<D
D;
8abstart, abfinal<

D

Applying  this  to  our  examples  and  passing  the  results  on  to  makeDeterministic  and
findLanguage shows us that the result does indeed recognize “(1*‹01)101”.
In[139]:= 8cstart, cfinal< =

catAutomata@ctable, atable, 0, 80, 1, 3<, btable, 0, 83<D

Out[139]= 81, 832<<

In[140]:= 8cDstart, cDfinal< =
makeDeterministic@cDtable, ctable, 80, 1<, cstart, cfinalD

Out[140]= 881<, 8832<<<
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In[141]:= findLanguage@cDtable, cDstart, cDfinal, 80, 1<, 10D

Out[141]= 881, 0, 1<, 81, 1, 0, 1<, 80, 1, 1, 0, 1<, 81, 1, 1, 0, 1<,
81, 1, 1, 1, 0, 1<, 81, 1, 1, 1, 1, 0, 1<, 81, 1, 1, 1, 1, 1, 0, 1<,
81, 1, 1, 1, 1, 1, 1, 0, 1<, 81, 1, 1, 1, 1, 1, 1, 1, 0, 1<<

13.5 Turing Machines
In  this  section  we  will  explore  Mathematica’s  TuringMachine  function.  We  will  then  create  our
own model of a Turing machine to help you better understand this important concept in detail.

TuringMachine
To illustrate  Mathematica’s  built-in  function,  we will  use  Example  1  from Section 13.5.  This  Turing
machine is defined by seven tuples: Hs0, 0, s0, 0, RL, Hs0, 1, s1, 1, RL, Hs0, B, s3, B, RL, Hs1, 0, s0, 0, RL,
Hs1, 1, s2, 0, LL, Hs1, B, s3, B, RL, and Hs2, 1, s3, 0, RL. 
The first argument of TuringMachine will be that data, but in the form of Rules (->) of the form
8state, entry< -> 8newstate, newentry, move<,  where  state  and  entry  are  the  current
state of the machine and the value seen by the head and newstate and newentry are the next state and
the value to be written on the tape. The move is an integer representing how the head is to move, with
+1 representing right and -1 left. So the machine of Example 1 is described by the following.
In[142]:= example1Rules = 880, 0< Ø 80, 0, 1<,

80, 1< Ø 81, 1, 1<, 80, ""< Ø 83, "", 1<, 81, 0< Ø 80, 0, 1<,
81, 1< Ø 82, 0, -1<, 81, ""< Ø 83, "", 1<, 82, 1< Ø 83, 0, 1<<

Out[142]= 880, 0< Ø 80, 0, 1<, 80, 1< Ø 81, 1, 1<,
80, < Ø 83, , 1<, 81, 0< Ø 80, 0, 1<,
81, 1< Ø 82, 0, -1<, 81, < Ø 83, , 1<, 82, 1< Ø 83, 0, 1<<

The second argument to TuringMachine  specifies  the initial  conditions.  It  is  a  list  containing two
members.  The  first  element  of  the  initial  conditions  list  will  be  the  initial  state  of  the  machine.  The
second element of the initial conditions is a list with two members, the first being a list representing a
finite portion of the tape and the second specifying the value appearing at every position of the infinite
tape outside the finite area. 
In our example, the machine will begin in state 0. The tape is initally {0,1,0,1,1,0} with blanks outside
that range. So the second argument to TuringMachine will be 
In[143]:= example1Init = 80, 880, 1, 0, 1, 1, 0<, ""<<

Out[143]= 80, 880, 1, 0, 1, 1, 0<, <<

Applying TuringMachine to these two elements produces the following output:
In[144]:= TuringMachine@example1Rules, example1InitD

Out[144]= 880, 2, 1<, 880, 1, 0, 1, 1, 0<, <<

This output represents the result of one step of the Turing machine. It is of the form
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 88 state, pos, distance <, 8 tape, rest <<

where state is the new state of the machine, tape is the current state of the finite segment of tape with
rest filling the rest of the infinite tape, pos is the position of the head relative to the list tape, and dis-
tance  is how far the head has moved from its starting position. So the output above indicates that the
machine is still in state 0 but has moved one position to the left.
Note that you can initialize a machine with a position argument similar to this output, but without the
distance. The following will start the machine at the final 1 of the tape.
In[145]:= TuringMachine@example1Rules, 880, 5<, 880, 1, 0, 1, 1, 0<, ""<<D

Out[145]= 881, 6, 1<, 880, 1, 0, 1, 1, 0<, <<

Note that the machine has moved one position to the left and changed to state 1.
An optional third argument allows you run the machine more than one step.
In[146]:= TuringMachine@example1Rules, example1Init, 5D

Out[146]= 8880, 1, 0<, 80, 1, 0, 1, 1, 0<<, 880, 2, 1<, 80, 1, 0, 1, 1, 0<<,
881, 3, 2<, 80, 1, 0, 1, 1, 0<<, 880, 4, 3<, 80, 1, 0, 1, 1, 0<<,
881, 5, 4<, 80, 1, 0, 1, 1, 0<<, 882, 4, 3<, 80, 1, 0, 1, 0, 0<<<

Note that the output is a list of lists representing each step along the way. The final element indicates
that after 5 steps, the machine is in state 2 at position 4.
For  a  machine with a  terminal  state,  we can run it  to  completion with a  While  loop as  below. Note
that TuringMachine allows its initialization argument to include the distance parameter, so that we
can feed its output back to it.
In[147]:= machinestate = 880, 1<, 880, 1, 0, 1, 1, 0<, ""<<;

While@machinestate@@1, 1DD ¹≠ 3,
machinestate = TuringMachine@example1Rules, machinestateD

D;
machinestate

Out[149]= 883, 5, 4<, 880, 1, 0, 0, 0, 0<, <<

Note that this agrees with the result of Example 1 in the textbook.

Creating a Turing Machine Function
In our model, the tape will be represented by a list, with the assumption that all elements to the left and
right of the bounds of the list  are blanks.  The blank symbol will  be represented by the symbol B  and
left and right by the symbols L and R. We ensure that these have not been assigned values by applying
Clear.
In[150]:= Clear@B, L, RD

The Partial Function
The text uses the convention that the partial function that controls the operation of the Turing machine
is defined by a set  of five-tuples.  It  will  be more convenient for our functions to represent the partial
function as an indexed variable whose indices are pairs @s, xD and whose values are triples 8s ', x ', d<.
We  create  a  function  that  will  transform  the  set  of  5-tuples  representation  into  the  indexed  variable
representation. The indexed variable to be defined is given as the first argument.
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We  create  a  function  that  will  transform  the  set  of  5-tuples  representation  into  the  indexed  variable
representation. The indexed variable to be defined is given as the first argument.
In[151]:= tuplesToIndexed@indexedV_Symbol, S_D := Module@8x<,

Clear@indexedVD;
Do@indexedV@x@@1DD, x@@2DDD = x@@83, 4, 5<DD
, 8x, S<D

D

Applying this function to the set of tuples given in Example 1 provides us with an example of a partial
function to work with.
In[152]:= tuplesToIndexed@ex1,

880, 0, 0, 0, R<, 80, 1, 1, 1, R<, 80, B, 3, B, R<, 81, 0, 0, 0, R<,
81, 1, 2, 0, L<, 81, B, 3, B, R<, 82, 1, 3, 0, R<<D

In[153]:= ?ex1

Global`ex1

ex1@0, 0D = 80, 0, R<

ex1@0, 1D = 81, 1, R<

ex1@0, BD = 83, B, R<

ex1@1, 0D = 80, 0, R<

ex1@1, 1D = 82, 0, L<

ex1@1, BD = 83, B, R<

ex1@2, 1D = 83, 0, R<

Note that B, L, and R must all be unassigned symbols, otherwise they will be evaluated within the set
of 5-tuples and will produce unexpected results.
The Turing Machine Function
Our Turing machine function will accept as input an indexed variable representing the partial function,
a list representing the status of the tape before running the machine, and the initial state. It will return
the final tape and the final state.
When the function begins, we initialize the symbol pos  to 1, indicating that the control head is posi-
tioned  at  the  leftmost  element  in  the  tape.  We  set  the  state  of  the  machine  to  the  initial  state  and
copy the tape from the argument as well. We also compute the domain of the partial function using
the  getIndices  function  we  created  in  the  previous  section.  This  will  make  it  easier  to  check
whether we have reached a halt.
The main work of the function will take place within a While loop controlled by the condition that the
domain of the function includes the pair consisting of the current state and the entry on the tape at the
current position.
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The main work of the function will take place within a While loop controlled by the condition that the
domain of the function includes the pair consisting of the current state and the entry on the tape at the
current position.
Within  the  loop,  we  first  obtain  the  values  of  the  new  state,  new  tape  entry,  and  direction  from  the
partial function. We then set the state to the new state, change the entry on the tape, and update the
position  pos.  Note  that  when  changing  the  position  of  the  control  head,  we  must  take  care  not  to
exceed the  bounds  of  the  list  representing the  tape.  If  the  previous  position was  location 1  in  the  list
and the direction is left, then instead of changing the position, we extend the list by adding a blank on
the left with the PrependTo function. On the other hand, if the previous position was the right end of
the  tape  and  the  direction  is  right,  then  we  increase  the  position  and  extend  the  tape  to  the  right  via
AppendTo.
Here is the function.
In[154]:= Turing@f_, t_, init_D :=

Module@8pos = 1, state = init, tape = t, domain, y<,
domain = getIndices@fD;
While@MemberQ@domain, 8state, tape@@posDD<D,
y = f@state, tape@@posDDD;
state = y@@1DD;
tape@@posDD = y@@2DD;
Which@pos ã 1 && y@@3DD === L, PrependTo@tape, BD,
pos ã Length@tapeD && y@@3DD === R,
AppendTo@tape, BD; pos++,
y@@3DD === L, pos--,
y@@3DD === R, pos++D;

D;
8tape, state<

D

We use the function to run the Turing machine from Example 1 on the tape shown in Figure 2a.
In[155]:= Turing@ex1, 80, 1, 0, 1, 1, 0<, 0D

Out[155]= 880, 1, 0, 0, 0, 0<, 3<

Observe that this agrees with Figure 2 from Section 13.5 in the text.
We create a verbose version of this function as well. The operation of the verbose version is identical
to Turing, but it displays the status of the machine at every step.
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In[156]:= verboseTuring@f_, t_, init_D := Module@
8pos = 1, state = init, tape = t, domain, y, displayTape<,
domain = getIndices@fD;
displayTape = t;
displayTape@@posDD = "Ø" <> ToString@tape@@posDDD;
Print@displayTape, stateD;
While@MemberQ@domain, 8state, tape@@posDD<D,
y = f@state, tape@@posDDD;
state = y@@1DD;
tape@@posDD = y@@2DD;
Which@pos ã 1 && y@@3DD === L, PrependTo@tape, BD,
pos ã Length@tapeD && y@@3DD === R,
AppendTo@tape, BD; pos++,
y@@3DD === L, pos--,
y@@3DD === R, pos++D;

displayTape = tape;
displayTape@@posDD = "Ø" <> ToString@tape@@posDDD;
Print@displayTape, stateD;

D;
8tape, state<

D

In[157]:= verboseTuring@ex1, 80, 1, 0, 1, 1, 0<, 0D

8Ø0, 1, 0, 1, 1, 0<0

80, Ø1, 0, 1, 1, 0<0

80, 1, Ø0, 1, 1, 0<1

80, 1, 0, Ø1, 1, 0<0

80, 1, 0, 1, Ø1, 0<1

80, 1, 0, Ø1, 0, 0<2

80, 1, 0, 0, Ø0, 0<3

Out[157]= 880, 1, 0, 0, 0, 0<, 3<

Applications of Turing Machines
We now apply our Turing machine function to two applications: recognizing strings in a language and
computing functions.
Recognizing Sets
We will implement the Turing machine for recognizing 80n 1n n ¥ 1<.
The partial function was given in the solution to Example 3. To be safe, we again clear all the symbols
used.
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In[158]:= Clear@M, B, L, RD;
tuplesToIndexed@ex3,
880, 0, 1, M, R<, 81, 0, 1, 0, R<, 81, 1, 1, 1, R<, 81, M, 2, M, L<,
81, B, 2, B, L<, 82, 1, 3, M, L<, 83, 1, 3, 1, L<, 83, 0, 4, 0, L<,
83, M, 5, M, R<, 84, 0, 4, 0, L<, 84, M, 0, M, R<, 85, M, 6, M, R<<D

In[160]:= ?ex3

Global`ex3

ex3@0, 0D = 81, M, R<

ex3@1, 0D = 81, 0, R<

ex3@1, 1D = 81, 1, R<

ex3@1, BD = 82, B, L<

ex3@1, MD = 82, M, L<

ex3@2, 1D = 83, M, L<

ex3@3, 0D = 84, 0, L<

ex3@3, 1D = 83, 1, L<

ex3@3, MD = 85, M, R<

ex3@4, 0D = 84, 0, L<

ex3@4, MD = 80, M, R<

ex3@5, MD = 86, M, R<

To determine whether or not a string is in the language, we only have to apply the Turing machine to
the string and check the exit state.
In[161]:= Turing@ex3, 80, 0, 0, 0, 1, 1, 1, 1<, 0D

Out[161]= 88M, M, M, M, M, M, M, M, B<, 6<

The fact that the machine halted in state 6, the final state, indicates that it recognizes the string. On the
other hand,
In[162]:= Turing@ex3, 80, 0, 0, 1, 1<, 0D

Out[162]= 88M, M, M, M, M, B<, 2<
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halted in state 2, indicating that the string is not in the language.
Adding Nonnegative Integers
Example 4 describes how to use Turing machines to perform addition.
The machine is described by the following tuples.
In[163]:= tuplesToIndexed@adder, 880, 1, 1, B, R<, 81, "*", 3, B, R<,

81, 1, 2, B, R<, 82, 1, 2, 1, R<, 82, "*", 3, 1, R<<D

We add two numbers a and b by using the unary representation tape consisting of a+ 1 ones followed
by an asterisk and then b+ 1 ones. We create a small function to create the tape given a and b.
In[164]:= unaryTape@a_, b_D := Join@

ConstantArray@1, 8a + 1<D, 8"*"<, ConstantArray@1, 8b + 1<DD

The tape used to add 3 and 4 is shown below.
In[165]:= unaryTape@3, 4D

Out[165]= 81, 1, 1, 1, *, 1, 1, 1, 1, 1<

Performing addition is accomplished by applying Turing to the transition function and the tape.
In[166]:= Turing@adder, unaryTape@3, 4D, 0D

Out[166]= 88B, B, 1, 1, 1, 1, 1, 1, 1, 1<, 3<

You can see that this contains a string of 8 ones, indicating a result of 7.
Using the verbose form of Turing, you can see how the Turing adder operates.
In[167]:= verboseTuring@adder, unaryTape@3, 4D, 0D

8Ø1, 1, 1, 1, *, 1, 1, 1, 1, 1<0

8B, Ø1, 1, 1, *, 1, 1, 1, 1, 1<1

8B, B, Ø1, 1, *, 1, 1, 1, 1, 1<2

8B, B, 1, Ø1, *, 1, 1, 1, 1, 1<2

8B, B, 1, 1, Ø*, 1, 1, 1, 1, 1<2

8B, B, 1, 1, 1, Ø1, 1, 1, 1, 1<3

Out[167]= 88B, B, 1, 1, 1, 1, 1, 1, 1, 1<, 3<

Solutions to Computer Projects and Computations and 
Explorations

Computer Projects 8

Given the state table of a nondeterministic finite-state automaton and a string, decide 
whether this string is recognized by the automaton.

Solution: One solution to this problem, the solution used earlier in this chapter, is to find the determinis-
tic automaton that recognizes the same language and use it to decide whether the string is recognized
or  not.  This  is  what  we  have  been  doing  when  we  apply  findLanguage  to  the  result  of
makeDeterministic.
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Solution: One solution to this problem, the solution used earlier in this chapter, is to find the determinis-
tic automaton that recognizes the same language and use it to decide whether the string is recognized
or  not.  This  is  what  we  have  been  doing  when  we  apply  findLanguage  to  the  result  of
makeDeterministic.
Here  we  will  take  a  direct  approach.  For  deterministic  machines,  we  created  two  functions:
extendedTransition  and  recognizedQ.  The  recognizedQ  function  merely  called
extendedTransition  and  checked  whether  the  result  was  a  final  state  or  not.  The
extendedTransition function took a state, an input string, and a transition table, and determined
the state of the machine following the processing of the input.
Our  approach  for  nondeterministic  machines  will  be  similar.  We  will  create  two  functions:
extendedTransitionND  and recognizedNDQ.  The main difference between the deterministic
machines and nondeterministic machines is that with nondeterministic machines, given the initial state
and an input, we do not know the next state. Instead, there is a set of possible states.
extendedTransitionND will therefore take a set of possible states, an input, and a transition table
as its arguments.  For each member of the input string, it  will  apply the transition table to each of the
possible  states,  producing  a  new  set  of  possible  states.  It  will  return  the  set  of  possible  states  after
processing each element in the input string.
In[168]:= extendedTransitionND@states_, input_, transFunc_D :=

Module@8curStates, i, s, newStates<,
curStates = states;
For@i = 1, i § Length@inputD, i++,
newStates = 8<;
Do@newStates = Union@newStates, transFunc@s, input@@iDDDD
, 8s, curStates<D;

curStates = newStates
D;
curStates

D

A nondeterministic machine recognizes a string if  the result  of running the machine from the starting
state with the input string results in a set of possible ending states that includes at least one final state.
We write recognizedNDQ to call extendedTransitionND and check to see if the result inter-
sects the set of final states.
In[169]:= recognizedNDQ@x_, transFunc_, init_, final_D :=

Module@8endStates<,
endStates = extendedTransitionND@8init<, x, transFuncD;
Intersection@endStates, finalD ¹≠ 8<

D

With  recognizedNDQ  in  hand,  we  can  create  findLanguageND.  This  is  effectively  identical  to
findLanguage.
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In[170]:= findLanguageND@transFunc_, init_, final_, A_, n_D :=
Module@8An, x, L<,
An = kleene@A, nD;
L = 8<;
Do@If@

recognizedNDQ@x, transFunc, init, finalD, L = Union@L, 8x<DD
, 8x, An<D;

L
D

Applying  this  function  to  the  machine  defined  by  transition  function  ctable,  starting  state  1,  final
state  832<,  and  alphabet  80, 1<,  which  was  produced  by  catAutomata,  we  see  that  the  result  is  the
same as when we applied findLanguage and makeDeterministic in Section 13.4.
In[171]:= findLanguageND@ctable, 1, 832<, 80, 1<, 10D

Out[171]= 881, 0, 1<, 81, 1, 0, 1<, 80, 1, 1, 0, 1<, 81, 1, 1, 0, 1<,
81, 1, 1, 1, 0, 1<, 81, 1, 1, 1, 1, 0, 1<, 81, 1, 1, 1, 1, 1, 0, 1<,
81, 1, 1, 1, 1, 1, 1, 0, 1<, 81, 1, 1, 1, 1, 1, 1, 1, 0, 1<<

Computations and Explorations 1

Solve the busy beaver problem for two states by testing all possible Turing machines with 
two states and alphabet 81, B<.

Solution: The busy beaver problem, described in the preface to Exercise 31 in Section 13.5, asks: what
is the maximum number of ones that a Turing machine with n  states on the alphabet 81, B<  may print
on an initially  blank tape? This  exercise  asks us  to  solve the busy beaver  problem with a  brute  force
approach for n = 2.
We will construct all possible Turing machines on 2 states with the given alphabet. For each possible
Turing machine, we will allow it to run until either it halts, or until it has reached a predefined limit on
the number of steps it is allowed. This later condition is important, since some of the possible machines
will not halt on their own.
Generating all possible Turing machines on 81, B< with two states is equivalent to finding all possible
transition functions. The domain of a transition function is the set Sµ I = 80, 1<µ 81, B<. The codomain
is  the set  80, 1, 2<µ 81, B<µ 8L, R<,  where we use state  2 as  a  halting state,  that  is,  a  state  which will
cause the machine to halt.
We create the domain and codomain using the Tuples function.
In[172]:= dom = Tuples@880, 1<, 81, B<<D

Out[172]= 880, 1<, 80, B<, 81, 1<, 81, B<<

In[173]:= codom = Tuples@880, 1, 2<, 81, B<, 8L, R<<D

Out[173]= 880, 1, L<, 80, 1, R<, 80, B, L<, 80, B, R<, 81, 1, L<, 81, 1, R<,
81, B, L<, 81, B, R<, 82, 1, L<, 82, 1, R<, 82, B, L<, 82, B, R<<

Now, each possible transition function is an assignment of each member of dom to one of the members
of  codom.  We can think of  this  as  a  member of  codom4,  the Cartesian product  of  codom  with itself
four times.  Each 4-tuple of  codom4  corresponds to the function that  maps the ith member of dom  to
the ith element of the tuple. The function below accepts a member of codom4  and produces the corre-
sponding transition table.

Chapter13.nb  35



Now, each possible transition function is an assignment of each member of dom to one of the members
of  codom.  We can think of  this  as  a  member of  codom4,  the Cartesian product  of  codom  with itself
four times.  Each 4-tuple of  codom4  corresponds to the function that  maps the ith member of dom  to
the ith element of the tuple. The function below accepts a member of codom4  and produces the corre-
sponding transition table.
In[174]:= SetAttributes@makeTable, 8HoldFirst<D;

makeTable@T_, t_D := Module@8j, d<,
For@j = 1, j § 4, j++,
d = dom@@jDD;
T@d@@1DD, d@@2DDD = t@@jDD

D
D

We now apply this function to each member of codom4.
In[176]:= codom4 = Tuples@codom, 4D;

In[177]:= Length@codom4D

Out[177]= 20 736

In[178]:= For@i = 1, i § Length@codom4D, i++,
makeTable@Symbol@"TF" <> ToString@iDD, codom4@@iDDD

D

The Symbol  function is  used to convert  a string into a symbol object.  Here we use it  to create vari-
ables TF1, TF2, ..., for the indexed variables that store the 20, 736 transition tables.
The following function will count the number of ones that appear on a tape.
In[179]:= count1s@L_D := Module@8count = 0, i<,

For@i = 1, i § Length@LD, i++,
If@L@@iDD ã 1, count++D

D;
count

D

We need to place a limit on the number of steps the Turing machine can take to avoid getting stuck in
an  infinite  loop  because  of  a  machine  that  does  not  halt.  For  this,  we  create  a  version  of  Turing
specifically  for  this  problem.  It  includes  an  extra  argument  for  the  limit  on  the  number  of  steps  and
incorporates this limit into the main loop. We remove the argument for the initial tape and initial state,
and  instead  set  these  to  0  and  8B<  in  the  function.  Rather  than  returning  the  tape,  this  function  will
return the number of 1s appearing on the tape, assuming the machine halted. If it did not halt, we return
-1.
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In[180]:= beaverTuring@f_, maxsteps_D :=
Module@8pos = 1, state = 0, tape = 8B<, domain, y, numsteps = 0<,
domain = getIndices@fD;
While@MemberQ@domain, 8state, tape@@posDD<D &&

numsteps < maxsteps,
y = f@state, tape@@posDDD;
state = y@@1DD;
tape@@posDD = y@@2DD;
Which@pos ã 1 && y@@3DD === L, PrependTo@tape, BD,
pos ã Length@tapeD && y@@3DD === R,
AppendTo@tape, BD; pos++,
y@@3DD === L, pos--,
y@@3DD === R, pos++D;

numsteps++
D;
If@numsteps < maxsteps, count1s@tapeD, -1D

D

Now we apply beaverTuring to each of the transition tables with a step limit of 100, keeping track
of the number of 1s along the way. 
In[181]:= onesList = 8<;

For@i = 1, i § Length@codom4D, i++,
AppendTo@onesList,
beaverTuring@Symbol@"TF" <> ToString@iDD, 100DD

D;
Max@onesListD

Out[183]= 4

Using  the  Tally  function,  we  can  see  how many  of  the  Turing  machines  produces  tapes  with  each
number of ones.
In[184]:= Tally@onesListD

Out[184]= 88-1, 10 952<, 82, 704<, 81, 4876<, 80, 4184<, 83, 16<, 84, 4<<

This shows us that 4184 of the machines halted with no ones on the tape, 4 machines halted with four
ones, and 10 952 of the machines failed to halt.
We can see the four machines that produced four ones as follows. The Position function applied to
a list and an expression will return the list of indices to the list at which the expression can be found.
In[185]:= Position@onesList, 4D

Out[185]= 887729<, 87741<, 89314<, 89326<<

These are the transition functions for the four machines.
In[186]:= ?TF7729
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Global`TF7729

TF7729@0, 1D = 81, 1, L<

TF7729@0, BD = 81, 1, R<

TF7729@1, 1D = 82, 1, L<

TF7729@1, BD = 80, 1, L<

In[187]:= ?TF7741

Global`TF7741

TF7741@0, 1D = 81, 1, L<

TF7741@0, BD = 81, 1, R<

TF7741@1, 1D = 82, 1, R<

TF7741@1, BD = 80, 1, L<

In[188]:= ?TF9314

Global`TF9314

TF9314@0, 1D = 81, 1, R<

TF9314@0, BD = 81, 1, L<

TF9314@1, 1D = 82, 1, L<

TF9314@1, BD = 80, 1, R<

In[189]:= ?TF9327
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Global`TF9327

TF9327@0, 1D = 81, 1, R<

TF9327@0, BD = 81, 1, L<

TF9327@1, 1D = 82, 1, R<

TF9327@1, BD = 80, B, L<

The busy beaver problem becomes very time consuming very quickly.  Beyond n = 2, it  is  imperative
to use more efficient approaches than was done here.

Exercises
1. Construct the unit-delay machine described in Example 5 of Section 13.2.
2. Construct a Mathematica function for simulating the action of a Moore machine. (See the 

prelude to Exercise 21 in Section 13.2 for the definition of a Moore machine.)
3. Develop Mathematica functions for computing the union of two nondeterministic finite-state 

automata and for computing the Kleene closure of a nondeterministic finite-state machine, as 
described in the proof of Theorem 1 of Section 13.4 of the text.

4. Develop Mathematica functions for finding all the states of a finite-state machine that are 
reachable from a given state and for finding all transient states and sinks of the machine. (See 
Supplementary Exercise 16 for definitions.)

5. Construct a Mathematica function that computes the star height of a regular expression. (See 
Supplementary Exercise 11 for the definition of star height.)

6. Construct a Turing machine that computes n1 - n2 for n1 ¥ n2. Test that this Turing machine 
produces the desired results for sample input values.

7. Construct a Mathematica function that simulates the action of a Turing machine that may 
move right, left, or not at all at each step.

8. Construct a Mathematica function that simulates the action of a Turing machine that may 
have more than one tape.

9. Construct a Mathematica function that simulates the action of a Turing machine with a two-
dimensional tape. Represent a machine for multiplying integers and test it with your 
procedure.
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