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2 Basic Structures: Sets, Functions, Sequences, Sums, and 
Matrices

Introduction
Chapter 2 of the textbook covers mathematical objects that are fundamental to the study of discrete 
mathematics.  We will see how Maple represents these objects and how they correspond to the 
fundamental data structures used in Maple.

In Sections 1 and 2 we will see that Maple's implementation of a set corresponds naturally to the 
mathematical concept.  We will also see how to extend Maple's capabilities to include fuzzy sets.  In 
Section 3 we will consider three distinct ways in which the concept of function can be represented 
in Maple and how these three approaches can be used in different circumstances.  Section 4 will 
look at the idea of sequence as it is used in Maple, which is somewhat different from the 
mathematical meaning of sequence, and how Maple can be used to compute both finite and 
symbolic summations.  In Section 5, we will use Maple to list positive rational numbers in a way 
that demonstrates the fact that the rationals are enumerable.  And in Section 6, we will see how 
Maple can be used to study matrices.

2.1 Sets
Sets are fundamental to the description of almost all of the discrete objects that we will study.  They 
are also fundamental to Maple.  As such, Maple provides extensive support for both their 
representation and manipulation.

Set Basics
As is standard in mathematics, you can create a set in Maple using the roster method by listing the 
elements of the set separated by commas and enclosed in braces.  The elements of the set can be any
of the objects known to Maple.  Typical examples are shown here.

{1,2,3};
1, 2, 3

{"a","b","c"};
"a", "b", "c"

{{1,2},{1,3},{2,3}};
1, 2 , 1, 3 , 2, 3

{};

{[1,2],[2,5],[3,11]};
1, 2 , 2, 5 , 3, 11

In the first two examples above, the sets contain the numbers 1, 2, and 3, and the characters a, b, 
and c, respectively.  In the third example, the elements of the set are themselves sets.  The fourth 
example is the empty set.  And in the final example, the elements of the set are 2-element lists.  

Note that Maple's idea of a set corresponds to the mathematical notion.  In particular, there is no 
notion of "multiplicity" for set members, nor is the order of elements relevant.  For example, 
consider the sets defined below.

set1 := {1,2,3,1,2};
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set1 := 1, 2, 3
Observe that the duplicates in the input above are only included once in the set.

set2 := {2,3,1};
set2 := 1, 2, 3

The second example illustrates that order is irrelevant for sets.  Maple sorted the input into 
numerical order in order to improve efficiency in computations (e.g., if we have a large set that we 
want to search to see if a particular element is in the set or not, having the elements of the set in a 
particular order can make that search run much more quickly).  Maple puts the elements of a set into
a canonical order, but it understands that the order is irrelevant from a mathematical perspective.  If 
order is important in a particular context or if repeated elements are allowed, you should use a list 
instead of a set. 

To confirm that two sets A and B are equal, we use the evalb (evaluate boolean) command on the 
proposition A = B.

evalb(set1 = set2);
true

Selection
A useful consequence of the fact that Maple stores sets in an order is that you can use the selection 
operator to access individual elements.  To select an individual element from a set, you enclose the 
index of the element in brackets, as below.

set3 := {"a","b","c","d","e","f"};
set3 := "a", "b", "c", "d", "e", "f"

set3[2];
"b"

Negative values count from the right, so the second to last entry (according to Maple's imposed 
order) is accessed as follows.

set3[-2];
"e"

Multiple entries can be accessed by using a range instead of a single value.
set3[3..5];

"c", "d", "e"
By putting a list within the selection brackets, it's possible to obtain any subset you wish.  Note that 
the double brackets are required as the outer set is representing the selection operator and the inner 
set is enclosing the list of indices being accessed.

set3[[1,3,5]];
"a", "c", "e"

The seq command
One of the most useful commands for constructing sets or lists is the seq (for sequence) command.
 For example, consider the set consisting of the squares of integers.  The seq command requires 
two arguments.  The first argument in this case will be the expression i^2, which indicates that the 
elements of the sequence will be the square of the value of the index variable i.  The second 
argument will be i=-10..10 which indicates that the index variable i will range from -10 to 10.  

seq1 := seq(i^2, i=-10..10);
seq1 := 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
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Note that the seq command has produced a sequence of values and that the values are listed in the 
order in which they were generated and with repetition.  We make a set from these values by 
enclosing it in braces.  

set4 := {seq1};
set4 := 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

set5 := {seq(i^4, i=-10..10)};
set5 := 0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000

Membership, subset, and size
Perhaps the most basic question one can ask about a set is whether or not a particular object is or is 
not a member of a set.  In Maple, you do this with the in operator.  To check that 4 2 set4 but 
5 ; set4 we enter the following commands.

evalb(4 in set4);
true

evalb(5 in set4);
false

Note that we need to use evalb so that Maple will compute the truth value.  Without it, Maple will 
just restate the proposition, as below.

6 in set4;
6 2 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

Maple provides the subset operator to check whether or not one set is a subset of another.  For 
example,

{1,2} subset {1,2,3};
true

{} subset {1,2,3};
true

{1,2,5} subset {1,2,3};
false

In the previous chapter, we made use of the nops command to determine the number of elements in
a list.  This command also calculates the size of a finite set.

nops(set5);
11

Power Sets
Maple has a built-in command to compute the power set of a finite set.  The powerset command 
is part of the combinat combinatorics package and accepts a set as an argument and returns the 
power set of the given set.

Commands that are part of Maple packages can be used in one of two ways.  The long form 
consists of the name of the package followed by the name of the command in brackets and then the 
arguments in parentheses: package[command](arguments).  

combinat[powerset]({1,2,3});
, 1 , 2 , 3 , 1, 2 , 1, 3 , 2, 3 , 1, 2, 3

In order to use the short form of the calling sequence, that is, to be able to omit the name of the 
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package, you must first use the with command to load the package.
with(combinat);

Chi, bell, binomial, cartprod, character, choose, composition, conjpart, decodepart,
encodepart, eulerian1, eulerian2, fibonacci, firstpart, graycode, inttovec, lastpart,
multinomial, nextpart, numbcomb, numbcomp, numbpart, numbperm, partition,
permute, powerset, prevpart, randcomb, randpart, randperm, setpartition, stirling1,
stirling2, subsets, vectoint

The result of this command is to list the commands that have been made available.  Typically, you'll 
end with statements with colons to suppress this output.  Note that you can choose to load only 
those commands from a package that you will actually be using by following the name of the 
package with the names of the commands separated by commas.

with(combinat,powerset,subsets,cartprod);
powerset, subsets, cartprod

However you choose to load the command, this makes it possible to call the command without the 
name of the package.

powerset({"a","b"});
, "a" , "b" , "a", "b"

The subsets command
The textbook mentions that the size of the power set of a set is 2n where n is the size of the original 
set.  For even reasonably sized sets, their power set can be very large and can easily tax your 
computer's memory.  For this reason, Maple provides a second command for computing with 
power sets called subsets, which is also in the combinat package.  The result of applying
subsets is not a list of sets.  Instead, the subsets command returns a table.  Tables will be 
discussed in detail in Section 3 of this chapter; for now, it is enough to see how to use the
subsets command.  

Consider the set consisting of the first ten positive integers.
firstTen := {seq(1..10)};

firstTen := 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
(Note the alternate form of the seq command.)

Apply the subsets command and store the result as subsetTen.
subsetTen := subsets(firstTen):

It is typical to suppress the output as we have done here.  Those readers who are curious can issue 
the command with the output displayed, but do not expect to see any subsets listed in the output 
from subsets.

As we mentioned, the result of the subsets command is a table containing two objects.  One of 
these objects is a procedure, which is executed with the syntax subsetTen[nextvalue](); .  
The first time this procedure is called, it will return the empty set.

subsetTen[nextvalue]();

Each subsequent time it is called, it returns the "next" subset of the given set.
subsetTen[nextvalue]();

1
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subsetTen[nextvalue]();
2

subsetTen[nextvalue]();
3

subsetTen[nextvalue]();
4

The other object in the subsetTen table is a boolean value finished.  This value is accessed by
subsetTen[finished];

false
Once the subsetTen[nextvalue] procedure has returned the "last" subset, which will always 
be the original set itself, this boolean is set to false.  This provides a way to control a while loop.  
By setting the condition in the while loop to not subsetTen[finished], the loop continues 
until all of the subsets have been considered.  

Example using the subsets command
As an example of a practical use of this command, let's search for the subsets of the first five 
positive integers which have their own cardinality as a member, i.e., those sets S such that S 2 S.  
We'll do this by considering each subset in turn and checking whether its size, obtained using the
nops command, is in the set.  

Here's the procedure that will list all subsets of the first five positive integers whose cardinalities are
members of themselves..

selfSize := proc()
  local onetofive, pSet, S, n;
  onetofive := {seq(1..5)};
  pSet := combinat[subsets](onetofive);
  while not pSet[finished] do
    S := pSet[nextvalue]();
    if nops(S) in S then
      print(S);
    end if;
  end do;
end proc:

After declaring local variables, we form the set of the integers from 1 to 5.  Then we apply the
subsets command to form pSet.  Remember that this is not actually the power set, it is the table 
described above.  Then we begin a while loop, which continues until pSet[finished] is true.  
Remember that pSet[finished] is false until the pSet[nextvalue] procedure produces the
final subset.  Inside the while loop, we print those sets which have their own size as a member.

Now let's execute the procedure.
selfSize();

1
1, 2
2, 3
2, 4
2, 5

1, 2, 3
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1, 3, 4
1, 3, 5
2, 3, 4
2, 3, 5
3, 4, 5

1, 2, 3, 4
1, 2, 4, 5
1, 3, 4, 5
2, 3, 4, 5

1, 2, 3, 4, 5

It's worth reiterating the purpose of the subsets command in contrast with the powerset 
command.  For sets of any significant size, calculating the power set can be very taxing both on a 
computer's memory and with regards to time.  In an example like selfSize, the subsets 
command avoids the need to store the entire powerset by generating and testing one subset at a time.
Additionally, suppose that instead of listing all of the subsets with a given property, we only wanted
to find an example of a set with that property, for instance, to find a counterexample.  In those 
circumstances, we could return the example as soon as it was found and save the time it would have
taken powerset to have calculated all of the subsets.  

Cartesian Product
The combinat package also has a command for calculating the Cartesian product of sets called
cartprod.  This command is very similar to the subsets command except that the
nextvalue procedure returns a list representing the "next" element in the Cartesian product of the 
given sets.  

As a first example, recall that Example 17 from Section 2.1 of the text computes the Cartesian 
product of 1, 2  and a, b, c  to be 1, a , 1, b , 1, c , 2, a , 2, b , 2, c .  To compute 
this product in Maple, we use the cartprod function.  It accepts only one argument: a list whose 
members are the sets whose product is desired.  We'll store the result as Ex17 and, as before, we 
suppress the output for the result.

Ex17 := cartprod([{1,2},{"a","b","c"}]):

We can now display the elements one at a time using the same kind of loop as we used in the
selfSize procedure.  We create a while loop that continues as long as Ex17[finished] is 
false and prints the result of Ex17[nextvalue]().

while not Ex17[finished] do
  print(Ex17[nextvalue]());
end do;

1, "a"
1, "b"
1, "c"
2, "a"
2, "b"
2, "c"
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Maple displays the entries in the Cartesian product as two-element lists.

The argument to cartprod can be a list of any number of sets.  To compute the members of the 
Cartesian product of three sets, we include three sets in the list.  Also note that this command 
accepts both sets and lists as the objects to be multiplied.  Below, we expand our previous example 
and compute 1, 2 # a, b, c # p,e .  We give the last set as a list instead of a set.  (Note that 
we obtain p with the Maple constant Pi, and e is obtained by applying the exponential function
exp with exponent 1.)

cartesian3 := cartprod([{1,2},{"a","b","c"},[Pi,exp(1)]]):
while not cartesian3[finished] do
  print(cartesian3[nextvalue]());
end do;

1, "a", p
1, "a",e

1, "b", p
1, "b",e

1, "c", p
1, "c",e

2, "a", p
2, "a",e

2, "b", p
2, "b",e

2, "c", p
2, "c",e

Maple does not include a command analogous to powerset for computing the Cartesian product 
all at once as a single set of elements.  The task of creating such a command is left to the reader.

2.2 Set Operations
In this section we will examine the commands Maple provides for computing set operations.  Then 
we will use these commands and the concept of membership tables to see how Maple can be used to
prove set identities.  Finally, we see how we can use Maple to represent and manipulate fuzzy sets.

Basic Operations
Maple provides fairly intuitive commands related to the basic set operations of union, intersection, 
and set difference.  The commands are named union, intersection, and minus and, like the 
logical connectives from the previous chapter, are infix operators.  For example, consider the 
following sets.

primes := {2,3,5,7,11,13};
primes := 2, 3, 5, 7, 11, 13

odds := {1,3,5,7,9,11,13};
odds := 1, 3, 5, 7, 9, 11, 13

We compute their union and intersection as follows:
primes union odds;

1, 2, 3, 5, 7, 9, 11, 13
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primes intersect odds;
3, 5, 7, 11, 13

The set difference is obtained by use of the minus operator.  The following examples illustrate the 
fact that, unlike, union and intersection, set difference is not symmetric, i.e., AKB is generally not 
the same as BKA.  

primes minus odds;
2

odds minus primes;
1, 9

Maple does not provide a complement command.  Such a command would be ambiguous with 
regards to the universe that should be applied.  Instead, you must compute complements with the 
minus operator.  For example, the complement of the primes set in the universe consisting of the 
positive integers 1 to 13 is computed as follows.

universe := {seq(1..13)};
universe := 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

universe minus primes;
1, 4, 6, 8, 9, 10, 12

The union operator is often used to build sets within procedures.  As an example, consider the 
following procedure that creates the set of the squares of the first ten positive integers.  

tenSquares := proc()
  local S, i;
  S := {};
  for i from 1 to 10 do
    S := S union {i^2};
  end do;
  return S;
end proc:
squares := tenSquares();

squares := 1, 4, 9, 16, 25, 36, 49, 64, 81, 100
After the declaration of local variables, we initialize S, the set being built, to the empty set.  Inside 
the for loop, we produce the square of the loop index and add it to the set S by setting S equal to its 
union with the singleton containing the square of the index variable.  While this is a very simple 
example, it illustrates a common technique.  (Note: the set of squares could also have been created 
with the seq command.)

Finally, the union and intersect operators can also be used as commands and these commands
can take any number of sets as arguments.  For example, to compute the union of three sets, you can
use either of the two methods below.

primes union odds union squares;
1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 25, 36, 49, 64, 81, 100

`union`(primes,odds,squares);
1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 25, 36, 49, 64, 81, 100

Note that the single left quotes are required in the second option.  Generally, single left quotes are 
used to tell Maple that the string of characters they enclose is a name.  In the first of the statements 
above, the union keyword is used to invoke the operator.  In the second, a procedure whose name 
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is union is executed.  The single left quotes are required in order to use a keyword as a name. 

Set Identities and Membership Tables
The textbook discusses how membership tables can be used to prove set identities.  We'll use the 
idea of membership tables to have Maple prove set identities.  

A membership table is very similar to a truth table.  In a membership table, each row corresponds to
a possible element in the universe.  We use 1 and 0 to indicate that the element corresponding to that
row is or is not in the set.

An Illustration of the approach with an example
Let's look at a specific example in detail in order to get an idea of how we can use Maple to 
automate the construction of membership tables.  Consider the De Morgan's law AWB = AXB.  
We begin the table by considering all possible combinations of 1s and 0s for A and B and add 
columns for the two sides of the identity.  (Ordinarily, when doing this by hand you would add 
columns for the intermediary steps as well.)

row number A B AWB AXB

1 1 1

2 1 0

3 0 1

4 0 0

We can determine the values for the last two columns as follows.  Let the universe be the set 
consisting of the row numbers 1, 2, 3, 4 .  Now form sets A and B as follows: a number in the 
universe of row numbers is in A if there is a 1 in A's column in that row.  Thus A = 1, 2  because 
rows 1 and 2 have 1s in A's column.  Likewise, we form B = 1, 3 .

rows := {1,2,3,4};
rows := 1, 2, 3, 4

setA := {1,2};
setA := 1, 2

setB := {1,3};
setB := 1, 3

Next, compute both sides of the identity AWB = AXB.  Remember that we must use set 
differences to obtain the complements.

rows minus (setA union setB);
4

This indicates that row 4 is the only row with a 1 in the column for AWB.
(rows minus setA) intersect (rows minus setB);

4

This tells us that row 4 is also the only row with a 1 in the column for AXB.  Since the two sets are
equal, the two columns must be identical.
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The above indicates the approach that we will be using.  First, compute the initial entries in the rows
of the membership table; each row corresponds to a different assignment of 1s and 0s.  Second, 
construct sets whose entries are the row numbers corresponding to 1s in the table.  And finally, 
compute both sides of the identity.  If the resulting sets are equal, then we have confirmed the 
identity.

Revising the GetVars procedure
Much of what we do here will be very similar to how we created the AreEquivalent procedure 
in Section 1.3 of this manual.  First, let's create expressions representing the two sides of the 
identity from Example 14 of the text.  We'll use the name U for the universe.

Ex14L := U minus (A union (B intersect C));
Ex14L := Uy A g B h C

Ex14R:=((U minus C) union (U minus B)) intersect (U minus A);
Ex14R := UyA h UyB g UyC

Ex14 := Ex14L = Ex14R;
Ex14 := Uy A g B h C = UyA h UyB g UyC

Now we revive the GetVars procedure from Section 1.3.  
GetVars := proc(exp)
  local L, i, j;
  L := [exp];
  i := 1;
  while i <= nops(L) do
    if type(L[i],name) then
      i := i + 1;
    else
      L := subsop(i=op(L[i]),L);
    end if;
  end do;
  L := {op(L)} minus {U};
  return [op(L)];
end proc:
Ex14Vars := GetVars(Ex14);

Ex14Vars := A, B, C

Note that this is identical to the procedure we created in Section 1.3 with one small change.  In the 
next to last line we convert L into a set and remove the name U from it.  In these procedures, we will
always consider U to be the name of the universe.  The last line turns the set of variables back into a 
list.  This isn't necessary, strictly speaking, but it is more natural to consider the variables stored in a
list, and therefore with order.

Producing the rows of the table
In Section 1.3, we created a procedure called nextTA.  This procedure was responsible for 
producing the truth value assignments for the variables.  In other words, it produced the rows of the
truth table.  Look again at the membership table above.  Observe that the rows correspond to the 
members of the Cartesian product 

0, 1 # 0, 1 = 0, 0 , 0, 1 , 1, 0 , 1, 1 .
In fact, the definition of the Cartesian product is exactly suited to what we need.  The rows of the 
table are all the possible choices of 0s and 1s for the variables.  The Cartesian product of 0, 1  
with itself is the collection of all possible tuples with each entry in the tuple equal to 0 or to 1.
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We can use the following code to produce the Cartesian product with 3 variables.  
CartesianMembership := cartprod([seq({0,1},i=1..3)]):

Note the use of seq to create three copies of the set 0, 1 .
while not CartesianMembership[finished] do
  CartesianMembership[nextvalue]();
end do;

0, 0, 0
0, 0, 1
0, 1, 0
0, 1, 1
1, 0, 0
1, 0, 1
1, 1, 0
1, 1, 1

You can see that the results are identical to the first three columns of Table 2 of Section 2.2 in the 
textbook.

Building sets to correspond to the table rows
We need to build sets whose entries are determined by the rows of the membership table (i.e., by the
elements of a Cartesian product of 0, 1  as above).  The sets, corresponding to what we called
setA and setB in the example at the start of this subsection, will be stored in a list.  That is, we'll 
create a list of sets.  These sets are identified with the variables in the identity to be checked as 
follows: the set in position i in the list of sets corresponds to the variable in position i in the list that 
results from GetVars.

Begin by initializing a list of the right size (the number of variables) whose entries are the empty set.
We use the seq command again to create multiple copies.

MTableSets := [seq({},i=1..3)];
MTableSets := , ,

Note that we can access and modify the lists as usual.  For instance, to add 5 to the second set:
MTableSets[2] := MTableSets[2] union {5};

MTableSets2 := 5

MTableSets;
, 5 ,

Let's re-initialize this so we can use it below.
MTableSets := [seq({},i=1..3)];

MTableSets := , ,

We re-execute the cartprod command from above in order to reset it.  We also need an index 
variable that we initialize to 0.

CartesianMembership := cartprod([seq({0,1},i=1..3)]):
MTrownum := 0;

MTrownum := 0

Now we use the standard Cartesian product while loop, but instead of just calculating and 
displaying the 3-tuple, we will use an inner loop to consider each entry (i.e., variable) in turn.  If the 
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value is 1, we add the current value of MTrownum to the corresponding set.  In this example, we'll 
have the loop print out the index, the tuple from the Cartesian product, and the current state of
MTableSets.

while not CartesianMembership[finished] do
  MTrownum := MTrownum + 1:
  currentTuple := CartesianMembership[nextvalue]():
  for varI from 1 to 3 do
    if currentTuple[varI] = 1 then
      MTableSets[varI] := MTableSets[varI] union {MTrownum}:
    end if:
  end do:
  print(MTrownum,currentTuple,MTableSets);
end do:

1, 0, 0, 0 , , ,
2, 0, 0, 1 , , , 2
3, 0, 1, 0 , , 3 , 2

4, 0, 1, 1 , , 3, 4 , 2, 4
5, 1, 0, 0 , 5 , 3, 4 , 2, 4

6, 1, 0, 1 , 5, 6 , 3, 4 , 2, 4, 6
7, 1, 1, 0 , 5, 6, 7 , 3, 4, 7 , 2, 4, 6

8, 1, 1, 1 , 5, 6, 7, 8 , 3, 4, 7, 8 , 2, 4, 6, 8

We also need the universe represented.  
Ex14U := {seq(i,i=1..MTrownum)};

Ex14U := 1, 2, 3, 4, 5, 6, 7, 8

Evaluating the identity for each row
Once the list of sets is built up, all that remains is to evaluate the identity with these sets in place of 
the names.  We do this with the eval and zip commands (recall that we previously used this 
technique in Section 1.3 of this manual).  

First we use zip to create equations that identify the variables with the corresponding sets.  
Ex14eqns := zip((a,b) -> a=b, Ex14Vars, MTableSets);

Ex14eqns := A = 5, 6, 7, 8 , B = 3, 4, 7, 8 , C = 2, 4, 6, 8

We add the equation U=Ex14U.  
Ex14eqns := [op(Ex14eqns),U=Ex14U];

Ex14eqns := A = 5, 6, 7, 8 , B = 3, 4, 7, 8 , C = 2, 4, 6, 8 , U = 1, 2, 3, 4, 5, 6, 7,
8

And then we apply eval to perform the substitution and apply evalb to obtain a truth value.
eval(Ex14,Ex14eqns);

1, 2, 3 = 1, 2, 3

evalb((2.68));
true

The procedure
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Finally, we combine it all into a single procedure.
MemberTable := proc(identity)
  local vars, numvars, cartesian, setList, rowNum, curTuple, 
vI, Universe, eqns, U;
  vars := GetVars(identity);
  numvars := nops(vars);
  cartesian := combinat[cartprod]([seq({0,1},i=1..numvars)]);
  setList := [seq({},i=1..numvars)];
  rowNum := 0;
  while not cartesian[finished] do
    rowNum := rowNum + 1;
    curTuple := cartesian[nextvalue]();
    for vI from 1 to numvars do
      if curTuple[vI] = 1 then
         setList[vI] := setList[vI] union {rowNum};
      end if;
    end do;
  end do;
  Universe := {seq(i,i=1..rowNum)};
  eqns := zip((a,b) -> a=b, vars, setList);
  eqns := [op(eqns),U=Universe];
  return evalb(eval(identity,eqns));
end proc:

We can now prove: AKB KC = AKC K BKC .
MemberTable((A minus B) minus C = (A minus C) minus (B minus 
C));

true

However, AWB s AWB.
MemberTable(U minus (A union B) = (U minus A) union (U minus 
B));

false

Computer Representation of Fuzzy Sets
The textbook describes a way to represent sets as bit strings in order to efficiently store and 
compute with them.  Here, we will explore this idea further in order to see how we can represent 
fuzzy sets in Maple.  Fuzzy sets are described in the preamble to Exercise 63 in Section 2.2.

Two representations of fuzzy sets
In a fuzzy set, every element has an associated degree of membership, which is a real number 
between 0 and 1.  We'll represent fuzzy sets in two different ways.

The first way we can represent a fuzzy set in Maple is to combine the element with the degree of 
membership as a two-element list.  For example, if the elements of our fuzzy set are the letters "a", 
"b", and "e", where "a" has degree of membership 0.3, "b" has degree 0.7, and "e" has degree 0.1, 
then we would represent the set as:

fuzzyR := {["a",0.3],["b",0.7],["e",0.1]};
fuzzyR := "a", 0.3 , "b", 0.7 , "e", 0.1

We'll refer to this as the "roster representation."

The second approach is to use a "fuzzy-bit string" in essentially the same way as described in the 
text.  First we need to specify the universe and impose an order on it.  Let's say the universe 
consists of the letters "a" through "g" ordered alphabetically.  We represent the universe in Maple as
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a list so that the order we impose is preserved.

fuzzyU := ["a","b","c","d","e","f","g"];
fuzzyU := "a", "b", "c", "d", "e", "f", "g"

Then the fuzzy-bit string for the set fuzzyR will be the list of the degrees of membership of each 
element of the universe with 0 indicating non-membership.  

fuzzyBitS := [0.3,0.7,0,0,0.1,0,0];
fuzzyBitS := 0.3, 0.7, 0, 0, 0.1, 0, 0

Converting from bit string to roster representation
Converting from a fuzzy-bit string to the roster representation is fairly straightforward.  Use a for 
loop with index running from 1 to the number of elements in the universe.  For each index, if the 
entry in the fuzzy-bit string is non-zero, then we add to the roster the pair consisting of the element 
from the universe and the degree of membership.

BitToRoster := proc(bitstring,universe)
  local S, i;
  S := {};
  for i from 1 to nops(universe) do
    if bitstring[i] <> 0 then
       S := S union {[universe[i],bitstring[i]]};
    end if;
  end do;
  return S;
end proc:
BitToRoster(fuzzyBitS,fuzzyU);

"a", 0.3 , "b", 0.7 , "e", 0.1

Converting from roster to bit string representation
In the other direction, we'll initialize a bit string to the 0-string.  Then we consider each member of 
the roster representation in turn, using the for object in Set do form of a for loop.  For 
every member of the set, we will need to determine the position of the set member in the universe in 
order to change the correct bit in the fuzzy-bit string.

To do this, we'll make use of the member command.  Like the in operator, member will return 
true or false depending on whether or not the first argument is a member of the list (or set) given as 
the second argument.  For example, 

member(3,{1,2,3,4,5});
true

member(7,{1,2,3,4,5});
false

member also accepts a third, optional, argument which must be an unevaluated name.  If the object 
is in fact a member of the set or list, then the position of the object is assigned to the name.  (If the 
object is repeated, the location of the first occurrence is stored in the name.)  We surround the name 
with right single quotes to prevent evaluation.  Without the single quotes, the name could evaluate to
a value that was previously assigned and Maple would not be able to assign to the name.

member("d",["a","f","s","g","d","q"],'pos');
true

pos;
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Now we can write the RosterToBit procedure. 
RosterToBit := proc(roster,universe)
  local B, i, e, pos;
  B := [seq(0,i=1..nops(universe))];
  for e in roster do
    if member(e[1],universe,'pos') then
      B[pos] := e[2];
    else
      error "Roster contained a member not in the universe.";
    end if;
  end do;
  return B;
end proc:
RosterToBit(fuzzyR,fuzzyU);

0.3, 0.7, 0, 0, 0.1, 0, 0
Observe that we surrounded the modification of B in an if statement to ensure that the roster does 
not contain any members not in the given universe.

2.3 Functions
In this section we we will see three different ways to represent functions in Maple and explore a 
variety of the concepts described in the text relative to these different representations.  

Procedures
In this manual we have already seen several examples of procedures.  In some ways, a procedure, 
or more broadly any computer program, is the ultimate generalization of a mathematical function.  
As an example, consider the GetVars procedure.  This procedure assigns to each valid input (a 
Maple expression) a unique output (a list of the names appearing in the expression).  Setting A equal
to the set consisting of all possible Maple expressions and B equal to all possible lists of valid 
names, SetVars satisfies the definition of being a function from A to B.  

We discussed procedures in some depth in the introductory chapter.  Here, we will discuss the 
concepts of domain and codomain as they relate to programs via the computer programming concept
of type.

In Example 5 of Section 2.3, the text gives examples from Java and C++ showing how domain and 
codomain are specified in those programming languages.  The procedure below illustrates how this 
is done in Maple.

Floor1 := proc(x::float)::int;
  return floor(x);
end proc:

The body of our Floor1 procedure is merely a call to Maple's internal floor command.  But the 
example illustrates how you can specify the domain (i.e., the type of a parameter) of a procedure and
the codomain (i.e., the return type).  Note that in Maple, unlike some languages such as Java and C+
+, such declarations are entirely optional.  

Declaring the return type of a procedure is done by following the right parenthesis that ends the list 
of parameters with two colons and a valid Maple type and then a semicolon.  Typically, this has no 
effect on the actual operation of the procedure and is more informational.  It is possible to have 
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Maple enforce the return type by executing the command kernelopts(assertlevel) := 
2;.  More information can be found on the proc help page.  In this manual, we will typically not 
declare return types for procedures.

To declare the type of parameters, you follow the name of the parameter by two colons and a valid 
Maple type.  When the procedure is applied, before any of the code in the body of the procedure is 
executed, Maple checks the input against the declared type.  If the input does not match, then an 
error is raised.

Floor1("hello");
Error, invalid input: Floor1 expects its 1st argument, x, to 
be of type float, but received hello

This is useful because it helps to ensure that the procedure is never applied to invalid input, which 
may have undesirable consequences.  For example, consider the procedure below.

loopy := proc(n::posint)
  local m;
  m := n;
  while m <> 0 do
    m := m - 1;
  end do;
end proc:
loopy(-5);

Error, invalid input: loopy expects its 1st argument, n, to 
be of type posint, but received -5

Without the parameter declared as a positive integer, applying loopy to -5 would have resulted in 
an infinite loop.

Some common types are: float, integer, posint, nonnegint, set, and list.  A complete list can be 
found on the help page for type.  Also, Maple provides a method for easily creating new types via 
the structured type syntax.  For example, our Floor procedure has a slight problem, as the 
following illustrates.

Floor1(5.);
5

Floor1(5);
Error, invalid input: Floor1 expects its 1st argument, x, to 
be of type float, but received 5

Maple distinguishes integers like 5 from floats like 5..  We can make our procedure accept either 
floats or integers as follows.

Floor2 := proc(x::{float,integer})
  return floor(x);
end proc:
Floor2(5.), Floor2(5);

5, 5
Enclosing two or more types in braces indicates that any of the types are acceptable.

It is also useful to be able to specify that a procedure should accept a set or list.  Let's rewrite the
Floor procedure once again so that it accepts a list and applies Maple's floor function to each of 
the members of the list.  

Floor3 := proc(L::list)
  return map(floor,L);
end proc:
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Floor3([12.5,13.9,-2.5]);
12, 13, K3

Note that we've used the map command to apply the floor function to each member of the input 
list L.  The map command has a variety of syntax options, but this is one of the more common.

We can also be more specific and specify that the list must contain floats and integers.  We do this 
by following the list keyword with parentheses and indicating the types that are allowed in the list. 

Floor4 := proc(L::list({float,integer}))
  return map(floor,L);
end proc:
Floor4([47.298,3,13.7]);

47, 3, 13
Floor4([5.6,3,22/7,6.8]);

Error, invalid input: Floor4 expects its 1st argument, L, to 
be of type list({float, integer}), but received [5.6, 3, 
22/7, 6.8]

Floor4(3.2);
Error, invalid input: Floor4 expects its 1st argument, L, to 
be of type list({float, integer}), but received 3.2

The last examples failed because 22/7 is neither a float nor an integer and 3.2 is not a list.  Maple 
provides the numeric type as a useful catch-all for numeric objects.  Also, we can make our 
procedure accept either single values or lists as follows.

Floor := proc(v::{numeric,list(numeric)})
  if type(v,numeric) then
    return floor(v);
  else
    return map(floor,v);
  end if;
end proc:
Floor([5.6,3,22/7,6.8]);

5, 3, 3, 6
Floor(3.2);

3

Functional Operators
Next we'll look at functional operators as a way to represent functions in Maple.  This is the most 
natural representation for functions defined by a formula.

To represent the function defined by the formula f x = x2, we enter the following command.
f := x -> x^2;

f := x/x2

There are three basic components to defining a functional operator.  First, the name, which in this 
case is f.  The name is followed by the assignment operator.  Second is the variable or variables.  
(When specifying multiple variables, they must be enclosed in parentheses.)  Following the 
variables, you enter an arrow composed of a hyphen and then a greater-than symbol.  And third is 
the formula that provides the result.  

You apply the functional operator just as you would expect.
f(3);
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Note that it is not possible to specify the type of the arguments to a functional operator.  

Composition of functions
We will now use functional operators to briefly explore composition and graphs of functions.  You 
can combine functions algebraically in the natural way.  Maple will return the formula for a 
functional operator when you apply it to an unassigned name.  

g := x -> x + 1;
g := x/xC 1

(f+g)(x);
x2 C xC 1

(f/g)(t);
t2

tC 1

The parentheses around f+g and f/g are necessary because the application of a procedure is of 
higher precedence than the arithmetic operators.  Contrast the above with f/g(t), which results in 
the name f divided by the formula for g. 

f/g(t);
f

tC 1

For composition, Maple provides the @ operator.  
(f @ g)(x);

xC 1 2

(g @ f)(x);
x2 C 1

Composition can also be applied to procedures, both those defined by you and any built into Maple.
For example, the following defines the function that computes the square of the floor of a number.

squareFloor := f @ floor;
squareFloor := f@floor

squareFloor(3.2);
9

Plotting graphs of functions
You can have Maple draw the graph of a function by using the plot command.  The most basic 
syntax requires only two arguments: the function to be graphed in terms of an independent variable 
and the variable.  The first argument can be given as an expression as follows.

plot(x^2,x);
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The first argument can also be given as a functional operator or even a procedure as the following 
two examples illustrate.  The essential requirement is that the first argument must evaluate to a 
numeric value whenever the independent variable is assigned a value.

plot(f(x),x);

x
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40

60

80

100

plot(floor(x),x);
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In the last example above, the vertical lines are artifacts of how Maple draws graphs.  Basically, 
Maple is computing the value of the function at a large number of x-values between -10 and 10.  It 
then "connects the dots."  The vertical lines appear when Maple connects the points from either side 
of the jumps.  We can eliminate them with the discont=true option to tell Maple that the graph 
has discontinuities.  We can also specify the range of x-values we want to display by entering the 
equation x=min..max as the second argument.  In the next graph, we use those two options to 
display a graph of the square of the floor function.

plot(squareFloor(x),x=-5..5,discont=true);

x
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25

Tables
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For finite domains, a table can be used to represent a function.  To define a table, use the table 
command.  For example, suppose f is the function whose domain is the set of students in a class and
that maps each student to their grade on an exam.  Let f be defined by f Ann = 83, f Bob = 79, 
f Carla = 91, and f Dave = 72.  We model f as a table named exams by applying the table 
command to the list whose entries are equations of the form a=b to represent f a = b.

exams := table(["Ann"=83,"Bob"=79,"Carla"=91,"Dave"=72]);
exams := table "Dave" = 72, "Carla" = 91, "Bob" = 79, "Ann" = 83

Once the table is defined, you can obtain the value f Carla  with the bracket selection operation.
exams["Carla"];

91
You can also use selection together with assignment to modify values or to add entries to the table.

exams["Ann"] := 84;
exams"Ann" := 84

exams["Ernie"] := 86;
exams"Ernie" := 86

To see the table definition, you apply the op command.  You can obtain the list of equations by 
applying op twice.  

exams;
exams

op(exams);
table "Ernie" = 86, "Dave" = 72, "Carla" = 91, "Bob" = 79, "Ann" = 84

op(op(exams));
"Ernie" = 86, "Dave" = 72, "Carla" = 91, "Bob" = 79, "Ann" = 84

Domain and range
Since tables are finite, we can write procedures to check various properties.  First, we'll find the 
domain (technically, the domain of definition) and range of a function defined as a table.  For these 
procedures, we use the commands indices and entries.  In the exams table, the students' 
names (Ann, Bob, etc.) are the indices or keys of the table and the scores (84, 79, etc.) are the
entries or values of the table.  

You would probably expect indices(exams); to return the list or set of students' names and
entries(exams) to return the list of scores.  Observe what actually is returned.

indices(exams);
"Ernie" , "Dave" , "Carla" , "Bob" , "Ann"

entries(exams);
86 , 72 , 91 , 79 , 84

The indices command returns a sequence of lists where each list contains an index of the table.  
The reason for this is to allow for very complicated indices which may even be sequences of values.
For example, we can define the following table.

M := table():
M[1,1] := 1:
M[1,2] := 0:
M[2,1] := 0:
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M[2,2] := 1:
op(M);

table 1, 2 = 0, 2, 2 = 1, 2, 1 = 0, 1, 1 = 1
indices(M);

1, 2 , 2, 2 , 2, 1 , 1, 1

If the indices command had returned a sequence of the indices, it would have appeared that the 
indices were 1 and 2 repeated several times:

(2,1),(1,1),(2,2),(1,2);
2, 1, 1, 1, 2, 2, 1, 2

(Note that we defined M to be the empty table and then added entries to it.  This is a very common 
way to define a table.  Also, readers with some experience with matrices will note that M is a 
representation of the identity matrix of dimension 2.)

In cases where you are sure that there is no need for indices to return the indices in lists, you can
use the 'nolist' symbol.  The same is true for the entries command.

indices(exams,'nolist');
"Ernie", "Dave", "Carla", "Bob", "Ann"

entries(exams,'nolist');
86, 72, 91, 79, 84

Note that while Maple chooses the order in which to report the indices and entries and the user has 
no control over that order, the order is consistent between the two results.  That is, the entry that is 
listed first is the entry corresponding to the index that is listed first, the second entry corresponds to 
the second index, and so on.

The discussion above allows us to easily write procedures to compute the domain and range of a 
function represented by a table.

FindDomain := proc(T::table)
  return {indices(T,'nolist')};
end proc:
FindRange := proc(T::table)
  return {entries(T,'nolist')};
end proc:
FindDomain(exams);

"Ann", "Bob", "Carla", "Dave", "Ernie"
FindRange(exams);

72, 79, 84, 86, 91

Injective and surjective
Let's create a few more examples.  Then we will write procedures to check for injectivity and 
surjectivity.  The examples below correspond to the functions f1 x  = x2, f2 x = x3, and 
f3 x = x  on the domain D = K5,K4,..., 5 .

f1 := table([seq(x=x^2,x=-5..5)]);
f1 := table 0 = 0, 1 = 1, 2 = 4, 3 = 9, 4 = 16, 5 = 25, K5 = 25, K4 = 16, K3 = 9, K2 = 4,

K1 = 1
f2 := table([seq(x=x^3,x=-5..5)]);

f2 := table 0 = 0, 1 = 1, 2 = 8, 3 = 27, 4 = 64, 5 = 125, K5 = K125, K4 = K64, K3 =
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O O 

O O 

O O 

(2.119)(2.119)

K27, K2 = K8, K1 = K1
f3 := table([seq(x=abs(x),x=-5..5)]);

f3 := table 0 = 0, 1 = 1, 2 = 2, 3 = 3, 4 = 4, 5 = 5, K5 = 5, K4 = 4, K3 = 3, K2 = 2, K1
= 1

We can check to see if a table is surjective for a specified codomain by comparing the codomain to 
the range.

IsOnto := proc(T::table,codomain::set)
  return evalb(FindRange(T) = codomain);
end proc:
IsOnto(f1,{0,1,2,3,4,5});

false
IsOnto(f3,{0,1,2,3,4,5});

true

We can check for injectivity by making sure that no entry value is repeated.  The easiest way to do 
this is to check that the number of values in the result of FindRange is the same as the number in 
the domain returned by FindDomain.  

IsOnetoOne := proc(T::table)
  return evalb(nops(FindDomain(T))=nops(FindRange(T)));
end proc:
IsOnetoOne(f1);

false
IsOnetoOne(f2);

true

Graphing a function from a table
Finally, let's see how we can graph a function defined by a table.  We'll use an alternate form of the
plot command which accepts two arguments.  The first argument will be the list of x-values and 
the second will the list list of y-values.  For example,

plot([1,2,3],[2,0,1]);

1 1.5 2 2.5 3
0

0.5

1

1.5

2
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O O 
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Note that Maple connected the points 1, 2 , 2, 0 , and 3, 1  to draw the graph.  We can use the
style=point option to have Maple draw points instead of connecting the dots.  Also, the options
symbol=solidcircle and symbolsize=15 will cause the points to be drawn as solid circles
15 points in diameter.  Finally, view=[0..4,-1..3] will make the bounds of the graph 0 to 4 
on the x axis and -1 to 3 on the y.

plot([1,2,3],[2,0,1],style=point,symbol=solidcircle,
symbolsize=15,view=[0..4,-1..3]);

1 2 3 4

K1

0

1

2

3

Graphing a function defined by a table can be done in the same way, using the indices and
entries commands to create lists of the x and y coordinates of the desired points.  Remember that 
Maple orders the indices and entries so that they are consistent, i.e., the x and y values will 
correspond.

plot([indices(f1,'nolist')],[entries(f1,'nolist')],style=
point,symbol=solidcircle,symbolsize=15,view=[-5..5,0..25]);

K4 K2 0 2 4

5

10

15

20

25

plot([indices(f2,'nolist')],[entries(f2,'nolist')],style=
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point,symbol=solidcircle,symbolsize=15,view=[-5..5,-125..125]
);

K4 K2 0 2 4

K100

K50

50

100

plot([indices(f3,'nolist')],[entries(f3,'nolist')],style=
point,symbol=solidcircle,symbolsize=15,view=[-5..5,0..5]);

K4 K2 0 2 4

1

2

3

4

5

Some Important Functions
We've already seen that Maple has a built-in floor function, floor.  It also includes ceil for 
computing the ceiling of a real number.

floor(2.7);
2

ceil(2.7);
3

Maple contains some additional related functions.  The round command rounds a number to the 
nearest integer.  The trunc command truncates the number, removing any fractional part, 
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(2.79)(2.79)
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O O 

O O 

O O 

(2.127)(2.127)

producing the next nearest integer towards 0.  And the frac command returns the fractional part of
the number.

round(2.7);
3

trunc(2.7);
2

trunc(-2.7);
K2

frac(2.7);
0.7

The text also discusses the factorial function.  In Maple, you compute the factorial of a number by 
entering the number followed by the exclamation point.  You can also use the factorial 
command.

6!;
720

factorial(6);
720

2.4 Sequences and Summations
In this section we will see how Maple can be used to create and manipulate sequences, and in 
particular, we will see a way to use Maple to generate the terms of a recurrence sequence.  We will 
also look at summations and see how Maple's symbolic computation abilities can be used to explore
both finite and infinite series.

Sequences are fundamental to Maple.  In Maple, an expression sequence is any ordered collection 
of valid expressions separated by commas.  For example,

aSequence := 1,"a",x,Pi,3*x^2+5,{"a","b","c"};
aSequence := 1, "a", x, p, 3 x2 C 5, "a", "b", "c"

is an expression sequence (or just sequence).  Note that both sets and lists are formed by wrapping 
an expression sequence in the appropriate symbols and procedures are called on particular values by
passing the procedure a sequence of arguments in parentheses.

Elements of a sequence can be accessed in the same was as lists and sets, with the selection 
operation, as follows.

aSequence[3];
x

The nops command cannot be used on a sequence in order to determine its length.  To find the 
number of elements in a sequence, you must first convert the sequence to a list and then apply
nops.  Likewise, op does not work correctly for sequences.

nops(aSequence);
Error, invalid input: nops expects 1 argument, but received 6

nops([aSequence]);
6

op(aSequence);
Error, invalid input: op expects 1 or 2 arguments, but 
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received 6
Many commands commonly used with lists and sets will produce errors or incorrect results when 
applied to a sequence.  

The "empty sequence" is represented by the name NULL.  Often in procedures, you will initialize a 
variable to NULL in order to build up a sequence of values.  You may also have a procedure return
NULL in order to cause the procedure to exit without output.

There are three main tools for creating a sequence in Maple: the comma operator, the seq 
command, and the $ operator.

Building Sequences: Comma Operator
The comma operator is used to join two expressions or expression sequences into a sequence.  The 
comma operator is used when forming a sequence by listing the elements, as in the following.

sequence2 := 1,2,3,4;
sequence2 := 1, 2, 3, 4

It is also used to combine two existing sequences or a sequence and a single expression.  Note that 
the original sequences are not modified unless you reassign the name to the result.

aSequence, sequence2;
1, "a", x, p, 3 x2 C 5, "a", "b", "c" , 1, 2, 3, 4

sequence2 := sequence2,15;
sequence2 := 1, 2, 3, 4, 15

This application of the comma operator is often used in procedures to build a sequence one term at a
time.  For example, the following procedure builds the sequence consisting of the first nC 1 terms 
of the geometric progression a, ar, ar2, ar3, …, arn.

GeometricSeq := proc(a,r,n)
  local S, i;
  S := NULL;
  for i from 0 to n do
    S := S,a*r^i;
  end do;
  return S;
end proc:
GeometricSeq(3,4,10);

3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728
The output sequence is initialized to the NULL value.  At each step in the for loop, the next term in 
the sequence is added to the existing sequence S with the comma operator.

Building Sequences: seq Command
We've already seen several examples of the seq command.  We'll briefly summarize some of the 
ways it can be called.  

The most common way to call seq is demonstrated in the following example, which recreates the 
geometric sequence produced above.

seq(3*4^i,i=0..10);
3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728

The first argument is an expression which may involve an index variable, in this case i.  The 
second argument is of the form i=m..n.  This indicates that the index variable should range from
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m to n.

A third argument can be added to control the step, i.e., the amount by which the index variable is 
incremented.  For example, the command below will produce every other term of the geometric 
sequence from above.

seq(3*4^i,i=0..10,2);
3, 48, 768, 12288, 196608, 3145728

The bounds of the range for the index and the step do not necessarily need to be integers.  For 
example, 

seq(i,i=2.3..5.6,.25);
2.3, 2.55, 2.80, 3.05, 3.30, 3.55, 3.80, 4.05, 4.30, 4.55, 4.80, 5.05, 5.30, 5.55

There is also an abbreviated form allowing you to omit the first argument and the index variable.  
For example, to obtain the first ten positive even integers, you can issue the following command.

seq(2..20,2);
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

The other main use of seq is to apply the expression to each element of a set or list.  This is 
illustrated in the command below which finds the squares of the first six prime numbers.

seq(i^2,i={2,3,5,7,11,13});
4, 9, 25, 49, 121, 169

Note that for sets, the order of the elements in the sequence is determined by the order that Maple 
imposes on the set.  For example, if we rearrange the primes in the example above, the output will 
be the same.

seq(i^2,i={2,5,7,13,11,3});
4, 9, 25, 49, 121, 169

To impose a particular order, use a list instead.
seq(i^2,i=[2,5,7,13,11,3]);

4, 25, 49, 169, 121, 9
As an alternative to i=, you may use the word in in place of the equals sign.

seq(i^2,i in [2,5,7,13,11,3]);
4, 25, 49, 169, 121, 9

While seq is most commonly used in conjunction with lists and sets, any expression can be used in
place of the list.  For example, the following computes the sequence consisting of the squares of the 
terms in the given algebraic expression.

seq(i^2,i=3*x^5+2*x^4-x^3+7*x^2-8*x+9);
9 x10, 4 x8, x6, 49 x4, 64 x2, 81

In fact, seq can be used with any expression to which op can be applied.

Building Sequences: $ Operator
The $ operator is an alternative to the seq command, though it is somewhat more limited.  The $ 
operator is a binary operator, like + or *.  Its left operand is the expression in terms of an index 
variable and the right operand is the equation that specifies the range for the variable.  We can 
produce the geometric sequence from above as follows.  

3*4^i $ i=0..10;
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(2.144)(2.144)

(2.146)(2.146)

O O 

(2.147)(2.147)

3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728
Note that this is the same as seq(3*4^i,i=0..10).

It is sometimes necessary to enclose the expression on the left and the variable on the right in single 
right quotes to prevent early evaluation.  This is the case when the index has previously been 
assigned a value. 

anIndex := 20;
anIndex := 20

anIndex*2+3 $ anIndex=1..5;
Error, invalid input: `$` expects its 2nd argument, range, to
be of type {numeric, algebraic, name = literal .. literal, 
name = algebraic .. algebraic}, but received 20 = 1 .. 5

The error occurs because Maple evaluates the expressions on both sides of the $ operator before 
applying the operator to them.  Since anIndex stored a value, the right hand side became 20=1.
.5, causing an error.   We fix this by enclosing the name of the index variable on the right in single 
quotes so that it is not evaluated.  We also must enclose the entire expression on the left in single 
quotes so that it is not evaluated to 43.

'anIndex*2+3' $ 'anIndex'=1..5;
5, 7, 9, 11, 13

The single quotes were not necessary for previous examples because i had not been assigned a 
value.  Also note that this issue is not a concern for seq.

seq(anIndex*2+3,anIndex=1..5);
5, 7, 9, 11, 13

The $ operator is particularly useful in the following two situations.  Like seq, the left operand and
the index variable can be omitted to produce the specified range.

$ 5..11;
5, 6, 7, 8, 9, 10, 11

Also, if the right operand is an integer rather than a range, $ will produce that many copies of the 
right operand.  For example, to create a sequence of 11 copies of the string "a", we give "a" as the 
left hand operand and 11 as the right operand to $.

"a"$11;
"a", "a", "a", "a", "a", "a", "a", "a", "a", "a", "a"

Doing this with the seq command requires the following.
seq("a",i=1..11);

"a", "a", "a", "a", "a", "a", "a", "a", "a", "a", "a"

Recurrence Relations
Next, we will see how we can use Maple to explore sequences that arise from recurrence relations.  
We will go into much more depth, especially in regards to Maple's functions related to solving 
recurrence relations, in Chapter 8.  Here, we will only explore how we can have Maple compute 
terms of sequences defined by recurrence relations.

As an example, consider the Fibonacci sequence, which has recurrence relation fn = fn K 1 C fn K 2 
and initial conditions a1 = 0 and a2 = 1.  (Note that the text uses 0 as the first index for a sequence, 
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but Maple uses 1 as the first index for sequences and lists.)  To produce this sequence in Maple, we
can use a functional operator to represent the recurrence relation as follows.

Fib := n -> Fib(n-1) + Fib(n-2);
Fib := n/Fib nK 1 CFib nK 2

Next, we set the initial values as follows. 
Fib(1) := 1;

Fib 1 := 1
Fib(2) := 1;

Fib 2 := 1
Now, Maple will compute values of the sequence.  

Fib(7);
13

To display the sequence, use the seq command.
seq(Fib(n),n=1..20);
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765

While the above approach for calculating recurrence relations is convenient and intuitive, it does not 
make available all of the facilities for improving efficiency that are available using the proc 
command.  We can get Maple to calculate these values more efficiently by using the remember 
option.  This option requires Maple to "remember" any values for the procedure that it has already 
computed by storing them in a table.

Fib2 := proc(n::posint)
  option remember;
  if n <= 2 then
    return 1;
  else
    return Fib2(n-1) + Fib2(n-2);
  end if;
end proc:

This procedure encompasses both the initial conditions (when n % 2) and the recurrence formula.  
The remember option causes Maple to store the results of the procedure when it is called so that if it 
is called again with the same input, the result can be looked up in the "remember table" rather than 
recomputed.

To illustrate the difference in performance, let's see how long it takes to compute the 1000th 
Fibonacci number.  We use the standard approach to timing procedures.

st := time(): Fib2(1000): time() - st;
0.003

The time command returns the total CPU time used in the current Maple session.  So the above 
works by setting st (for start time) equal to the amount of CPU time used before executing the 
procedure being timed, then executing the procedure, and then computing the difference of the 
amount of CPU time used with the start time.

The output above shows the amount of time, in seconds, used to find the thousandth Fibonacci 
number using Fib2.  Note that if we repeat the computation,

st := time():  Fib2(1000): time() - st;
0.



O O 

(2.83)(2.83)

(2.41)(2.41)

(2.160)(2.160)

(2.31)(2.31)

O O 

O O 

(2.163)(2.163)

(2.158)(2.158)

(2.161)(2.161)

O O 

O O 

(2.35)(2.35)

(2.6)(2.6)

O O 

O O 

(2.114)(2.114)

O O 

(2.162)(2.162)

(2.88)(2.88)

(2.79)(2.79)

O O 

O O 

(2.144)(2.144)

(2.159)(2.159)

O O 

the total time take drops to nothing, or at least very close to it.  This is because Maple doesn't need 
to compute the value again.  You can cause Maple to reset the remember table with the forget 
command.

In comparison, consider the Fib functional operator applied to 30.
st := time(): Fib(30): time() - st;

0.735
Note that the purely recursive implementation Fib cannot be used to compute the thousandth 
Fibonacci number.  In fact, to compute the 1000th Fibonacci number, Fib would need to be 
invoked approximately

Fib2(999);
26863810024485359386146727202142923967616609318986952340123175997617981\

70024788168933836965448335656419182785616144335631297667364221035032\
46348504103776803673341511728991697231970827639856157644500784741746\
26

times in order to handle all the recursive sub-calls that are made.  (The reader is encouraged to prove
this fact.)  

Even at a billion calls per second, this would require
(2.159)/1000000000.;

2.686381002 10199

seconds, or
(2.160)/(60*60*24*365);

8.518458276 10191

years to complete.

Summations
Finally, we will see how Maple can be used to compute with summations, both numerically for 
finite sums and symbolically for infinite sums.

To add a finite sequence of values, we use the add command.  This command is very similar to the
seq command, though with somewhat fewer options.  It requires two arguments.  The first 
argument must be an expression in terms of an index variable such as i.  The second argument can 
be either an equation of the form i=m..n, indicating the range of values for the index variable, or it
can be of the form i=x or i in x where x is a list, set, or other such object.  The forms i=x and
i in x are equivalent.

For example, to compute the sum of the squares of the first ten positive integers, >
i = 1

10

i2, we enter the

following.
add(i^2,i=1..10);

385
And to compute the sum of the members of a list:

add(i,i in [1,2,4,6,9,11,14]);
47
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The mul command is used with the same syntax as add to compute products of sequences.

The sum command is used for symbolic summation.  The first argument to the sum command is 
the same as for add, an expression in terms of an index variable.  The second argument is of the 
form i=m..n.  The main difference is that for add, m and n must be numbers, while for sum, they
can be unassigned names or even infinity.

As an example, we have Maple compute the sum of the squares of the first n positive integers, 

>
k = 1

n

k2.

sum(k^2,k=1..n);
1
3

 nC 1 3 K
1
2

 nC 1 2 C
1
6

 nC
1
6

We can also compute the sum of the terms with even index up to 2 n in a geometric series, i.e., 

>
k = 0

n

ar2 k.

sum(a*r^(2*k),k=0..n);

a r2 n C 1

r2 K 1
K

a
r2 K 1

Finally, >
k = 1

N

kxk K 1 is computed by

sum(k*x^(k-1),k=1..infinity);
1

xK 1 2

You can confirm that these results match the formulas given in Table 2 of Section 2.4.

2.5 Cardinality of Sets
In this section we will explore the countability of the positive rational numbers.  In Example 4 of 
Section 2.5 of the text, it is shown that the positive rationals are countable by describing how to list 
them all.  Here, we will use Maple to implement this listing algorithm.  We will also consider the 
following two questions.  First, given a positive rational number, what is its position in the list?  
Second, given a positive integer, what fraction is located at that position within the list?

We'll begin by reviewing the the description in Example 4.  The first element of the list is the 

rational number 
1
1

.  Then we list the positive rationals 
p
q

 such that pC q = 3.  Then come the 

rationals with pC q = 4, excluding 
2
2

 which is already in the list, being equivalent to 
1
1

.  This 

continues for each n: we list the fractions 
p
q

 such that pC q = n, excluding those equivalent to 

fractions already in the list.

In our procedure, we'll refer to n as the stage, so that in stage 5, for example, we're listing the 
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fractions 
p
q

 such that pC q = 5.  The stage n will range from 2 up to some maximum value.  This 

maximum value of n will be the parameter to the procedure.  We'll implement this as a for loop with 
index variable n.

Within each stage, i.e., within the for loop, we need to generate the rational numbers 
p
q

 and add 

them to the list, provided they are not already in it.  We can rewrite pC q = n as p = nK q.  By 
allowing q to range from 1 to nK 1 and calculating p, we will produce all the potential rationals in 
stage n.  The in operator, discussed in Section 2.1 in relation to sets, applies to lists as well.  So, 

for each q from 1 to nK 1, we will form the fraction 
p
q

 (with p = nK q), use in to test whether 

this is already in our list of positive rationals, and, if not, add it to the list.

Here is the complete procedure.
ListRationals := proc(max::posint)
  local L, n, p, q;
  L := [];
  for n from 2 to max do
    for q from 1 to n-1 do
      p := n-q;
      if not(p/q in L) then
        L := [op(L),p/q];
      end if;
    end do;
  end do;
  return L;
end proc:

Applying this procedure to 6, we obtain the list through stage 6.
ListRationals(6);

1, 2,
1
2

, 3,
1
3

, 4,
3
2

,
2
3

,
1
4

, 5,
1
5

Finding the Position Given a Positive Rational
Suppose we want to determine the position of a particular fraction within the list.  Take for example 
29
35

.  Since 29C 35 = 64, we know that this fraction would first appear in stage 64.  So we 

compute the list up to stage 64.
RatsTo64 := ListRationals(64):

We suppress the output because this is a long list:
nops(RatsTo64);

1259

Now we work backwards from the end of the list until we find the desired fraction.  A simple loop 
will help with this.  Recall that the by clause in a for loop allows us to specify how much the index 
variable is changed each time, so by -1 causes the for loop to step backwards by 1 each iteration.  
Once we find the location of the desired fraction, we display the location and break the loop.

for i from 1259 to 1 by -1 do
  if RatsTo64[i] = 29/35 then



(2.83)(2.83)

(2.41)(2.41)

(2.170)(2.170)

O O 

O O 

(2.31)(2.31)

O O 

O O 

O O 

O O 

(2.35)(2.35)

(2.6)(2.6)

(2.173)(2.173)

(2.172)(2.172)

O O 

O O 

(2.114)(2.114)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

O O 

(2.144)(2.144)

(2.171)(2.171)

O O 

O O 

    print(i);
    break;
  end if;
end do:

1245

We can make this process into a procedure.  Given a fraction, the numer and denom commands 
will extract the numerator and denominator, respectively.  

numer(29/35);
29

denom(29/35);
35

So our procedure can accept a rational number (type rational) as input with an additional check 
to make sure the input is positive.  We'll sum the results of numer and denom to determine the 
stage.  Within the for loop, we'll use a return statement instead of print and break. 

LocateRational := proc(r::rational)
  local stage, L, i;
  if r <= 0 then
    error "Input value must be positive.";
  end if;
  stage := numer(r) + denom(r);
  L := ListRationals(stage);
  for i from nops(L) to 1 by -1 do
    if L[i] = r then
      return i;
    end if;
  end do;
end proc:
LocateRational(75/197);

22566

Finding the Rational In a Given Position
On the other hand, suppose we want to know which fraction is at a particular position.  For 
instance, say we want to know which is the hundredth fraction listed.  If we knew which stage of 
the process would yield a list of at least 100 rational numbers, we could just generate the list up to 
that stage.  We can guess and check until we found a stage that produced a long enough list.  

Putting a lower bound on the number of stages
We can guide our guesses a bit, however.  Remember that at stage 2, the process generates 1 
fraction.  At stage 3, it generates 2 fractions.  At stage 4, it generates 3 fractions, although one of 
them is discarded because it is a repeat.  At stage k, the process generates kK 1 rational numbers, 
some of which may be discarded as repeats.  So we know that, after stage n is complete, the number

of rational numbers in our list contains at most >
k = 2

n

kK 1 rational numbers.  We can use the sum 

command discussed in the previous section to find a formula for this summation.
sum(k-1,k=2..n);

1
2

 nC 1 2 K
3
2

 nK
1
2

Applying factor will give us a more convenient formula. 



(2.83)(2.83)

(2.41)(2.41)

O O 

(2.176)(2.176)

(2.177)(2.177)

(2.31)(2.31)

(2.175)(2.175)

O O 

O O 

O O 
O O 

O O 

O O 

(2.179)(2.179)

O O 

(2.35)(2.35)

(2.6)(2.6)

O O 

O O 

(2.114)(2.114)

(2.174)(2.174)

(2.88)(2.88)

O O 

(2.79)(2.79)

O O 

(2.169)(2.169)

O O 

(2.144)(2.144)

O O 

O O 

O O 

(2.178)(2.178)

factor(%);
1
2

 n nK 1

In other words, the number of rational numbers in the list produced by ListRationals at the 

conclusion of stage n is at most 
n nK 1

2
.  Define F n  to be the number of positive rational 

numbers produced by the ListRationals algorithm at the conclusion of stage n.  Alternately, 

F n  is the number of distinct positive rational numbers 
p
q

 such that pC q % n.  Then we have 

determined that 

F n %
n nK 1

2
.  

Now we return to the question of how many stages we need to compute in order to find the 100th 
rational number.  We can now restate this as follows: find n such that F n P 100.  Combining our

inequalities, we have that 
n nK 1

2
P 100.  Maple's solve command will solve the equation for

us.  (Note that since an approximation is sufficient, we will enter the 100 as 100. so that Maple 
will solve using floating-point arithmetic.)

solve(n*(n-1)/2 = 100.);
14.65097170, K13.65097170

This indicates that a stage of 14 is not enough.  But it gives us a place to start guessing.
RatsTo15 := ListRationals(15):
nops(RatsTo15);

71
RatsTo17 := ListRationals(17):
nops(RatsTo17);

95
RatsTo18 := ListRationals(18):
nops(RatsTo18);

101
RatsTo18[100];

5
13

How tight is the bound?

We just saw how the formula 
n nK 1

2
 is an upper bound for F n , the number of positive 

rationals listed by the end of stage n.  We'll conclude this section by exploring how good of a bound
this is.  In Section 2.3, we saw how to use the plot command to graph points.  Let's use that 
technique to graph the upper bound up to n = 100.

To graph points, we need two lists for the x and y values to be graphed.  The x values will be the 
values of n.  We'll create the list by using the seq command.

xValues := [seq(n,n=2..100)]:

For the y-values, we use the seq command with the formula for the upper bound: 



(2.83)(2.83)

(2.41)(2.41)
O O 

(2.35)(2.35)

(2.6)(2.6)

O O 

O O 

O O 

(2.31)(2.31)
O O 

(2.114)(2.114)

O O 

(2.174)(2.174)

O O 

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

O O 

O O 

(2.144)(2.144)

O O 

O O 

n nK 1
2

.

boundValues := [seq(n*(n-1)/2,n=2..100)]:
Now we can plot the bound using the plot command and the options described in Section 2.3.

plot(xValues,boundValues,style=point,symbol=solidcircle,
symbolsize=15,view=[0..100,0..5000]);
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2000
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5000

To find the actual values of F n , we need the size of the list returned by ListRationals 
applied to n.  In other words, we apply nops to the result of ListRationals(n).  Again, we 
use seq to form the list of these counts.

actualValues := [seq(nops(ListRationals(n)),n=2..100)]:
Again, we plot.

plot(xValues,actualValues,style=point,symbol=solidcircle,
symbolsize=15,view=[0..100,0..5000]);
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5000



(2.83)(2.83)

(2.41)(2.41)

O O 

O O 

(2.31)(2.31)

O O 

O O 

O O 

(2.35)(2.35)

(2.6)(2.6)

O O 

O O 

O O 

(2.114)(2.114)

O O 

(2.174)(2.174)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

O O 

(2.180)(2.180)

(2.144)(2.144)

O O 

Since we used the same view for both graphs, you can immediately see that the value of F n  is 
much smaller than the upper bound.  We can make the comparison easier by overlaying the graphs.  
We do this as follows.  First, we assign the graphs to names.  (We'll also change the color of the 
graph of the F n  data to blue.)

boundPlot:= plot(xValues,boundValues,style=point,symbol=
solidcircle,symbolsize=15,view=[0..100,0..5000],legend=
"bound"):
actualPlot := plot(xValues,actualValues,style=point,symbol=
solidcircle,symbolsize=15,view=[0..100,0..5000],color=blue,
legend="actual"):

Then we have Maple draw the two plots together using the display command in the plots 
package.

plots[display](boundPlot,actualPlot);

bound actual
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You will explore F n  and the upper bound 
n nK 1

2
 further in the exercises.

2.6 Matrices
Maple provides extensive support for calculating with matrices.  We'll begin this section by 
describing a variety of ways to construct matrices in Maple.  Then we'll consider matrix arithmetic 
and operations on zero-one matrices.

Constructing Matrices
Matrices are constructed using the Matrix command.  This command can be used in several 
different forms and with a large variety of options, only some of which we will discuss here.  For 
complete information, refer to the Maple help page.

Specifying entries by listing the rows
The simplest way to construct a matrix in Maple is by representing each row as a list.

m1 := Matrix([[1,2,3],[4,5,6]]);

m1 :=
1 2 3

4 5 6



O O 

(2.83)(2.83)

O O 

(2.41)(2.41)

O O 

O O 

(2.31)(2.31)

O O 

(2.182)(2.182)

O O 

(2.183)(2.183)

O O 

O O 

(2.181)(2.181)

(2.184)(2.184)

O O 

(2.185)(2.185)

(2.35)(2.35)

(2.6)(2.6)

O O 

O O 

(2.114)(2.114)

(2.174)(2.174)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

O O 

(2.144)(2.144)

O O 

In the above example, we passed one argument to the Matrix command: a list of lists where the 
inner lists are the rows of the matrix.  This list of lists is referred to as the matrix initializer.

You can also explicitly set the size of the matrix by giving the number of rows and columns as 
arguments to the Matrix command.

m2 := Matrix(2,3,[[1,2,3],[4,5,6]]);

m2 :=
1 2 3

4 5 6

Note that if the specified dimension is smaller than what is indicated by the initializer list, an error is 
generated.

m3 := Matrix(2,2,[[1,2,3],[4,5,6]]);
Error, (in Matrix) initializer defines more columns (3) than 
column dimension parameter specifies (2)

But if the specified dimension is larger, Maple will create the matrix of the desired size and fill the 
rest of the entries with 0s.

m4 := Matrix(3,4,[[1,2,3],[4,5,6]]);

m4 :=

1 2 3 0

4 5 6 0

0 0 0 0

Also, if only one dimension is given, Maple assumes that a square matrix of that size is desired.
m5 := Matrix(4,[[1,2,3],[4,5,6]]);

m5 :=

1 2 3 0

4 5 6 0

0 0 0 0

0 0 0 0

You can have Maple pad the matrix with a different value by using the optional fill=value 
argument.  Below, we create a square matrix of dimension 3 whose entries are all 5.

m6 := Matrix(3,fill=5);

m6 :=

5 5 5

5 5 5

5 5 5

The initializer does not have to be a list of lists as in the previous examples.  For instance, you can 
use another matrix, as in the example below where we expand the m6 matrix.

m7 := Matrix(3,4,m6,fill=2);

m7 :=

5 5 5 2

5 5 5 2

5 5 5 2



(2.191)(2.191)

(2.83)(2.83)

(2.41)(2.41)

O O 

(2.188)(2.188)

O O 

O O 

(2.31)(2.31)

O O 

O O 

(2.189)(2.189)

(2.187)(2.187)

(2.190)(2.190)

O O 

O O 

(2.35)(2.35)

(2.6)(2.6)

O O 

O O 

O O 

O O 

(2.114)(2.114)

(2.174)(2.174)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

(2.186)(2.186)

O O 

(2.144)(2.144)

O O 

Modifying entries
Once a matrix has been created, its entries can be altered by assigning the new value to the specified 
location, with the square bracket selection notation used to indicate the desired location.

For example, to change the lower left entry of matrix m6 to 6, you would enter the following 
command.

m6[3,1] := 6;
m63, 1 := 6

Note that Maple reports the assignment.  To see that it has happened, we have to explicitly 
command Maple to display the entire matrix.

m6;
5 5 5

5 5 5

6 5 5

Copying matrices
Using a matrix as the initializer for Matrix is commonly used to make a copy of a matrix.  
Consider the following sequence of commands.

m7copy := m7;

m7copy :=

5 5 5 2

5 5 5 2

5 5 5 2

m7[1,2] := 11;
m71, 2 := 11

m7;
5 11 5 2

5 5 5 2

5 5 5 2

m7copy;
5 11 5 2

5 5 5 2

5 5 5 2

Observe that the modification we made to the m7 matrix was also made in the m7copy matrix.  
This is because the assignment m7copy := m7; did not create a new copy of the matrix to store 
in m7copy.  Instead, that assignment made both names refer to the same matrix.  The assignment
m7[1,2] := 11; modified the row 1, column 2 entry of the unique matrix that both names refer 
to.  In computer science, this is called a "reference type," meaning that the name does not store the 
object, it stores a reference to the object.  Assigning one name to another makes a copy of the 
reference, but both references refer to the same underlying object.  Both matrices and tables are 
reference types in Maple.



(2.196)(2.196)

(2.83)(2.83)

O O 

(2.41)(2.41)

O O 

(2.195)(2.195)

(2.31)(2.31)

(2.199)(2.199)

O O 

O O 

O O 

O O 

O O 

O O 

(2.193)(2.193)

(2.35)(2.35)

(2.6)(2.6)

O O 

O O 

O O 

(2.114)(2.114)

(2.174)(2.174)

O O 

(2.194)(2.194)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

O O 

O O 

(2.197)(2.197)

(2.144)(2.144)

(2.198)(2.198)

O O 

(2.192)(2.192)

To make a true copy of a matrix, you use the Matrix command with the matrix you want to copy 
as the initializer.

m7realcopy := Matrix(m7);

m7realcopy :=

5 11 5 2

5 5 5 2

5 5 5 2

m7[2,4] := 23;
m72, 4 := 23

m7, m7copy, m7realcopy;
5 11 5 2

5 5 5 23

5 5 5 2
,

5 11 5 2

5 5 5 23

5 5 5 2
,

5 11 5 2

5 5 5 2

5 5 5 2

While the modification of m7 altered both m7 and m7copy, m7realcopy was unchanged.

Other ways to initialize matrices
Another common way to create a matrix is by specifying the values with a single list rather than a 
list of lists.  In this case, you must provide the dimension of the matrix, whereas it is optional if the 
initializer is a list of lists.

m8 := Matrix(2,3,[1,2,3,4,5,6]);

m8 :=
1 2 3

4 5 6

You can also specify a matrix with a table.  Note the use of parentheses around the table indices.  
Also, in this case, the row and column dimensions are required.

m9table := table([(1,2)=5,(1,3)=6,(2,1)=-2]);
m9table := table 1, 2 = 5, 1, 3 = 6, 2, 1 = K2

m9 := Matrix(2,3,m9table);

m9 :=
0 5 6

K2 0 0

Finally, you can initialize the matrix with a procedure.  The procedure must accept two integers as 
arguments.  The entries of the matrix are obtained by evaluating the procedure at the row and 
column number.  Below we provide an example using a functional operator to make the entries in 
the matrix equal to the sum of the row and column numbers and then construct the 4# 4 matrix 
from it.

m10F := (i,j) -> i + j;
m10F := i, j /iC j

m10 := Matrix(4,m10F);



(2.83)(2.83)

O O 

(2.41)(2.41)

(2.202)(2.202)

O O 

(2.200)(2.200)

(2.201)(2.201)

(2.31)(2.31)

(2.199)(2.199)

O O 

O O 

O O 

(2.203)(2.203)

(2.204)(2.204)

O O 

O O 

(2.35)(2.35)

(2.6)(2.6)

(2.205)(2.205)

(2.206)(2.206)

O O 

O O 

(2.114)(2.114)

(2.174)(2.174)

O O 

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

O O 

O O 

(2.144)(2.144)

O O 

O O 

m10 :=

2 3 4 5

3 4 5 6

4 5 6 7

5 6 7 8

Matrix Arithmetic
The textbook defines addition and multiplication of matrices.  Maple implements these operations on
matrices in a fairly intuitive way.  To add two matrices, you use the + operator, as you would 
expect.

m11 := Matrix([[1,2,3],[4,5,6]]);

m11 :=
1 2 3

4 5 6

m12 := Matrix([[-2,3,-1],[1,5,2]]);

m12 :=
K2 3 K1

1 5 2

m11 + m12;
K1 5 2

5 10 8

Maple's syntax for multiplying a matrix by a scalar is also intuitive. 
3*m12;

K6 9 K3

3 15 6

This produces the matrix whose entries are three times the entries of m12.

Matrix multiplication is computed with the . (dot) operator instead of an asterisk.  This is to 
emphasize that matrix multiplication is not commutative.

m13 := Matrix([[3,6,11,1],[-2,5,2,0],[4,8,9,-3]]);

m13 :=

3 6 11 1

K2 5 2 0

4 8 9 K3

m14 := Matrix([[2,5],[1,-2],[3,7],[-1,0]]);

m14 :=

2 5

1 K2

3 7

K1 0

m13 . m14;



(2.83)(2.83)

(2.41)(2.41)

O O 

O O 

(2.31)(2.31)

(2.199)(2.199)

O O 

(2.209)(2.209)

(2.210)(2.210)

O O 

O O 

O O 

O O 

(2.208)(2.208)

(2.207)(2.207)

(2.35)(2.35)

(2.6)(2.6)

O O 

(2.206)(2.206)

O O 

O O 

(2.114)(2.114)

(2.174)(2.174)

O O 

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

(2.213)(2.213)

O O 

(2.211)(2.211)

(2.144)(2.144)

(2.212)(2.212)

O O 

O O 

44 80

7 K6

46 67

Transposes, Powers, and Equality of Matrices
Positive powers of matrices in Maple work exactly as you would expect, with the caret symbol, 
provided, of course, that the matrix is square.

m15 := Matrix([[1,2,3],[4,5,6],[7,8,9]]);

m15 :=

1 2 3

4 5 6

7 8 9

m15^5;
121824 149688 177552

275886 338985 402084

429948 528282 626616

The transpose of a matrix is most easily computed with the ^+ operator, as follows.
m14^+;

2 1 3 K1

5 K2 7 0

Alternately, you can use the Transpose command, but this requires the LinearAlgebra 
package.

LinearAlgebra[Transpose](m14);
2 1 3 K1

5 K2 7 0

Finally, we need to make a note about equality of matrices.  For matrices, = does not test that two 
matrices are equal in the usual sense.  For example, observe that the commands below do not yield 
the expected result.

m16 := Matrix([[1,2],[3,4]]);

m16 :=
1 2

3 4

m17 := Matrix([[1,2],[3,4]]);

m17 :=
1 2

3 4

evalb(m16=m17);
false

In fact, what = tests for in the case of matrices is whether or not two names are referring to the same
matrix object.  This is another case in which being a reference type makes things a bit different.



(2.214)(2.214)

(2.83)(2.83)

(2.215)(2.215)

(2.41)(2.41)

O O 

O O 

O O 

(2.218)(2.218)

(2.31)(2.31)

(2.199)(2.199)

O O 

O O 

(2.216)(2.216)

O O 

O O 

O O 

O O 

(2.35)(2.35)

(2.6)(2.6)

O O 

(2.206)(2.206)

O O 

(2.114)(2.114)

(2.174)(2.174)

(2.217)(2.217)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

O O 

(2.144)(2.144)

(2.219)(2.219)

O O 

O O 

To test for equality of matrices in the mathematical sense, it is necessary to use the Equal 
command in the LinearAlgebra package.

LinearAlgebra[Equal](m16,m17);
true

Zero-One Matrices
With Maple, we can create and manipulate zero-one matrices as well.  In particular, we'll consider 
how to compute the meet, join, and Boolean product of zero-one matrices.  Unlike matrix addition 
and multiplication, Maple does not have built-in commands for these computations, so we'll need to 
create our own procedures.  

Introducing Bits package commands
Calculation of meet, join, and the Boolean product require the use of the and and or bit operations.  
In the previous chapter we created our own AND procedure as a way to explore some fundamental 
programming constructs.  In this section, we'll instead make use of Maple's Bits package.  This 
package provides several commands related to performing operations on bits and bit strings.  We'll 
only make use of two commands: And and Or.  First we load the package.

with(Bits):

The And and Or commands take two arguments and return the bit-wise o  or n , respectively.
And(1,1);

1
And(0,1);

0
Or(0,1);

1
Or(0,0);

0
(Note: the arguments to And and Or are not restricted to 0 and 1.  They can be any integers and 
Maple will perform the operation on the bit strings that represent the integers.  We will not explore 
that further here as it is not necessary for the task at hand.)

A type for zero-one matrices
To create a zero-one matrix, we can use the Matrix command as usual.

zo1 := Matrix([[1,0,1],[1,1,0],[0,1,0]]);

zo1 :=

1 0 1

1 1 0

0 1 0

As has been mentioned before, it is always a good idea to do type-checking in procedures.  This is 
particularly important for the next procedures that we will write.  Since we'll be using the And and
Or commands from Bits, and these commands will not produce errors if their inputs are integers 
other than 0 and 1, it is important for our procedures to make sure that their input are zero-one 
matrices.  Otherwise, the procedures may execute on 'bad' inputs and produce nonsense output.

In Maple, a matrix has type Matrix, but in this case, we'll want to be more specific.  We'll use the 
following variant type: 'Matrix'(type).  This allows us to specify the type of the entries that 



(2.220)(2.220)

(2.83)(2.83)

(2.41)(2.41)

O O 

(2.31)(2.31)

(2.199)(2.199)

(2.221)(2.221)

O O 

O O 

O O 

(2.222)(2.222)

O O 

O O 

(2.35)(2.35)

(2.6)(2.6)

O O 

O O 

(2.206)(2.206)

O O 

(2.114)(2.114)

(2.174)(2.174)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

O O 

(2.144)(2.144)

O O 

are allowed in the matrix.  For example, 'Matrix'(float) indicates that the entries in the matrix
must all be floating point numbers.  Since we want to check for zero-one matrices, we'll use {0,1} 
as the type of entry allowed in the matrix.  Remember that braces in a structured type indicate than 
any of the options inside the braces are acceptable.  (Note: the single right quotes delay evaluation 
so that Maple doesn't consider the word Matrix to be the matrix construction command.)  

Observe that zo1 is a zero-one matrix, but m17 is not.
type(zo1,'Matrix'({0,1}));

true
type(m17,'Matrix'({0,1}));

false

Implementing Join
With those preliminaries completed, we write the join procedure.  This procedure will accept two 
arguments, both of which must be zero-one matrices.  The procedure will also need to check the 
sizes of the matrices.  To do this, we use the RowDimension and ColumnDimension 
commands from the LinearAlgebra package.  These commands accept only one argument, the 
matrix, and return the number of rows or columns, respectively.  If the dimensions do not match, an
error will be generated.

After confirming that the two matrices are the same size, the procedure will create a new matrix that 
is the same size as the input matrices.  By omitting any initialization information, Maple will 
automatically fill this matrix with 0s.  The procedure will then consider each position in the matrix 
using two nested for loops to loop through the rows and the columns.  For each position, it 
computes the bitwise or of the entries in the original matrices and sets the corresponding entry in the
result matrix R.  

Here is the procedure.  Note that we make use of the uses statement.  This indicates what packages
the procedure relies on and ensures that those packages have been loaded, so we can use the short 
forms of commands.

BoolJoin := proc(A::'Matrix'({0,1}),B::'Matrix'({0,1}))
  local numrows, numcols, R, r, c;
  uses LinearAlgebra, Bits;
  numrows := RowDimension(A);
  numcols := ColumnDimension(A);
  if numrows <> RowDimension(B) or
     numcols <> ColumnDimension(B) then
    error "Input matrices must be of the same size.";
  end if;
  R := Matrix(numrows,numcols);
  for r from 1 to numrows do
    for c from 1 to numcols do
      R[r,c] := Or(A[r,c],B[r,c]);
    end do;
  end do;
  return R;
end proc: 

Below we apply this procedure to two example matrices.
zo1;



O O 

(2.83)(2.83)

(2.41)(2.41)

(2.228)(2.228)

O O 

(2.31)(2.31)

(2.199)(2.199)

O O 

(2.224)(2.224)

(2.222)(2.222)

O O 

O O 

O O 

O O 

(2.223)(2.223)

(2.35)(2.35)

(2.6)(2.6)

O O 

O O 

(2.206)(2.206)

O O 

O O 

(2.114)(2.114)

(2.174)(2.174)

(2.225)(2.225)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

O O 

(2.144)(2.144)

(2.227)(2.227)

(2.226)(2.226)

O O 

1 0 1

1 1 0

0 1 0

zo2 := Matrix([[1,0,0],[1,1,1],[0,0,0]]);

zo2 :=

1 0 0

1 1 1

0 0 0

BoolJoin(zo1,zo2);
1 0 1

1 1 1

0 1 0

We leave the creation of BoolMeet to the reader.

Implementing Boolean product
We conclude by implementing the Boolean product.  Recall two key points from Definition 9 in 
Section 2.6.  First, the size of the product of an m # k matrix and an k# n is m # n and the product 
is undefined if the number of columns of the first matrix does not match the number of rows in the 
second.  Second, the i, j  entry of the product is given by the formula 

cij = ai1 o b1 j n ai2 o b2 j n/n aiko bkj .
Our Boolean product procedure, BProduct, needs to begin by using RowDimension and
ColumnDimension to find the values for m, k, and n and to raise an error if the number of 
columns of the first matrix does not match the number of rows of the second.  Like BoolJoin, we
create the result matrix C to be of the appropriate size and allow Maple to fill all the entries with 0.  

The main work of the procedure is to loop over all the entries of the result matrix and calculate the 
appropriate value.  We use two nested for loops with index variables i and j representing the rows 
and columns of the result matrix.  Inside these for loops, we need to implement the formula for cij.  
It will be helpful to consider a specific example:

1o 0 n 0o 0 n 0o 1 n 1o 1 n 0o 1 .
Note that And and Or can accept only two arguments, so we cannot use a single Or applied to a 
sequence of Ands, as you might hope.  Instead, we'll approach this in the following way.  First, 
compute 1o 0, the first and, and store the result as c.

c := And(1,0);
c := 0

Then, update c to be the result of applying or to it and the result of the next and term.
c := Or(c,And(0,0));

c := 0
And then repeat with each successive and.

c := Or(c,And(0,1));
c := 0

c := Or(c,And(1,1));
c := 1



O O 

(2.83)(2.83)

(2.41)(2.41)

O O 

(2.31)(2.31)

(2.199)(2.199)

O O 

O O 

(2.222)(2.222)

O O 

(2.229)(2.229)

(2.230)(2.230)

O O 

(2.35)(2.35)

(2.6)(2.6)

O O 

(2.206)(2.206)

O O 

O O 

(2.114)(2.114)

(2.174)(2.174)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

(2.231)(2.231)

O O 

O O 

(2.144)(2.144)

(2.232)(2.232)

O O 

c := Or(c,And(0,1));
c := 1

In terms of the generic formula, we initialize c = ai1 o b1 j .  Then we begin a loop with index, 
say p, from 2 through k.  At each step in the loop, c = cn aip o bpj .

Here is the implementation of BProduct.
BoolProduct := proc(A::'Matrix'({0,1}),B::'Matrix'({0,1}))
  local m, k, n, C, i, j, c, p;
  uses LinearAlgebra, Bits;
  m := RowDimension(A);
  k := ColumnDimension(A);
  if k <> RowDimension(B) then
    error "Dimension mismatch.";
  end if;
  n := ColumnDimension(B);
  C := Matrix(m,n);
  for i from 1 to m do
    for j from 1 to n do
      c := And(A[i,1],B[1,j]);
      for p from 2 to k do
        c := Or(c,And(A[i,p],B[p,j]));
      end do;
      C[i,j] := c;
    end do;
  end do;
  return C;
end proc:

We test this procedure on the matrices from Example 8 in the textbook.
Ex8A := Matrix([[1,0],[0,1],[1,0]]);

Ex8A :=

1 0

0 1

1 0

Ex8B := Matrix([[1,1,0],[0,1,1]]);

Ex8B :=
1 1 0

0 1 1

BoolProduct(Ex8A,Ex8B);
1 1 0

0 1 1

1 1 0

Solutions to Computer Projects and Computations and Explorations
Computer Projects 3

Given fuzzy sets A and B, find A, AWB, and AhB (see preamble to Exercise 63 of Section 
2.2).



O O 

(2.83)(2.83)

(2.41)(2.41)

O O 

(2.31)(2.31)

(2.199)(2.199)

O O 

4. 4. 

1. 1. 

O O 

(2.222)(2.222)

(2.229)(2.229)

2. 2. 

O O 

3. 3. 

O O 

(2.233)(2.233)

(2.35)(2.35)

(2.6)(2.6)

O O 

O O 

(2.206)(2.206)

O O 

(2.235)(2.235)

O O 

(2.114)(2.114)

(2.174)(2.174)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

O O 

(2.234)(2.234)

(2.144)(2.144)

O O 

Solution: We will compute the union and leave complement and intersection to the reader.  
Recall, from Exercise 64, that the union of fuzzy sets is the fuzzy set in which the degree of 
membership of an element is the maximum of the degrees of membership of that element in the 
given sets.

Recall, from the final subsection of Section 2.2 in this manual, that we developed two possible 
representations of fuzzy sets and the procedures BitToRoster and RosterToBit to convert
between them.  We'll design our procedure to accept the roster representation as input and return 
a roster representation of the union, since this representation is the most natural for humans to 
interact with.  But in implementing the union, it is more natural to work with the fuzzy bit string 
representation of the sets.

Our FuzzyUnion procedure will accept as input two fuzzy sets in the roster representation.  It 
proceeds as follows.

Determine the effective universe for the two sets: (a) initialize U to {}; (b) loop over each 
element of the first set and add the name of that element to U; (c) do the same with the 
second set.  Then U will contain the name of all elements appearing in the two sets.
Use RosterToBit to convert both sets to their fuzzy bit representations.
Use the zip command with the max function on the two fuzzy bit strings obtained from
RosterToBit — zip(max,A,B) produces the list whose elements are the maximums 
of the corresponding entries in A and B.
Use BitToRoster on the result to obtain the roster representation.

Here is the implementation.
FuzzyUnion := proc(A,B)
  local U, e, Abits, Bbits, Cbits, C;
  U := {};
  for e in A do
    U := U union {e[1]};
  end do;
  for e in B do
    U := U union {e[1]};
  end do;
  Abits := RosterToBit(A,U);
  Bbits := RosterToBit(B,U);
  Cbits := zip(max,Abits,Bbits);
  C := BitToRoster(Cbits,U);
  return C;
end proc:

As an example, we will compute the union of the fuzzy sets defined below.
fuzzyA := {["a",0.1],["b",0.3],["c",0.7]};

fuzzyA := "a", 0.1 , "b", 0.3 , "c", 0.7
fuzzyB := {["a",0.5],["b",0.1],["d",0.2]};

fuzzyB := "a", 0.5 , "b", 0.1 , "d", 0.2
FuzzyUnion(fuzzyA,fuzzyB);

"a", 0.5 , "b", 0.3 , "c", 0.7 , "d", 0.2

Procedures for computing intersection and complement are similar and are left as an exercise.

Computer Projects 9



(2.83)(2.83)

O O 

(2.41)(2.41)

O O 

O O 

O O 

(2.31)(2.31)

(2.199)(2.199)

O O 

O O 

(2.222)(2.222)

(2.229)(2.229)

(2.236)(2.236)

(2.239)(2.239)

O O 

O O 

(2.35)(2.35)

(2.6)(2.6)

O O 

(2.206)(2.206)

(2.237)(2.237)

O O 

O O 

(2.114)(2.114)

(2.174)(2.174)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

(2.238)(2.238)

O O 

(2.144)(2.144)

O O 

Given a square matrix, determine whether it is symmetric.

Solution: We will create a procedure, IsSymmetric, that tests a matrix to see if it is 
symmetric.  Recall that a matrix is symmetric when it is equal to its transpose. So we just need to
use the Equal command to compare the matrix with the result of applying the Transpose 
command.  We will use the Matrix type in the argument to have Maple ensure that only 
matrices are allowed as arguments. 

IsSymmetric := proc(M::Matrix)
 LinearAlgebra[Equal](M,LinearAlgebra[Transpose](M));
end proc:
symmetricMatrix := Matrix([[1,2,3],[2,4,5],[3,5,6]]);

symmetricMatrix :=

1 2 3

2 4 5

3 5 6

IsSymmetric(symmetricMatrix);
true

notSymmetricMatrix := Matrix([[1,2,3],[4,5,6],[7,8,9]]);

notSymmetricMatrix :=

1 2 3

4 5 6

7 8 9

IsSymmetric(notSymmetricMatrix);
false

Computations and Explorations 2

Given a finite set, list all elements of its power set.

Solution:  The powerset and subsets commands were described in Section 2.1 above.  
We'll write a procedure independent of these built-in commands in order to see how such 
commands might be created.

Recall, from Section 2.2 of the text, that sets may be represented by bit strings.  In particular, 
given a set, say a, b, c, d, e  for example, a subset may be represented by a string of 0s and 1s 
provided an order has been imposed on the set.  For example, the string 0, 1, 1, 0, 0 corresponds
to the subset b, c .  (Refer to the textbook for a complete explanation.)

In terms of subsets, the bit string representation indicates that, for a given set, there is a one-to-
one correspondence between subsets and bit strings.  This means that we can solve the problem 
of listing all subsets of a given set by producing all corresponding bit strings.  

To create the bit strings, we'll follow the approach used in the procedure NextTA from Section 
1.3 of this manual.  Given any bit string, the next string is obtained by working left to right: if a 
bit is 1, then it gets changed to a 0.  When you encounter a 0 bit, it is changed to a 1 and you 
stop the process.  For example, suppose the current string is

1, 1, 1, 0, 0, 1, 0.
You begin on the left changing the first three 1s to 0s.  Then the fourth bit from the left is 0, so 
this is changed to a 1 and the process stops.  The new bit string is



(2.83)(2.83)

(2.41)(2.41)

O O 

O O 

(2.31)(2.31)

(2.199)(2.199)

O O 

O O 

O O 

O O 

(2.222)(2.222)

(2.229)(2.229)

O O 

O O 

(2.35)(2.35)

(2.6)(2.6)

O O 

(2.206)(2.206)

O O 

O O 

(2.114)(2.114)

(2.174)(2.174)

(2.241)(2.241)

(2.88)(2.88)

(2.79)(2.79)

(2.240)(2.240)

(2.169)(2.169)

O O 

(2.242)(2.242)

(2.144)(2.144)

O O 

O O 

0, 0, 0, 1, 0, 1, 0.

Here is the NextBitS (next bit string) procedure.  It accepts a bit string and implements the 
process described above to produce the next bit string.  Note that we enforce the type of the 
input to this procedure using the structured type list({0,1}) which indicates that the 
argument to BitS must be a list whose elements are 0s and 1s.

NextBitS := proc(BitS::list({0,1}))
  local newBitS, i;
  newBitS := BitS;
  for i from 1 to nops(newBitS) do
    if newBitS[i] = 1 then
      newBitS[i] := 0;
    else
      newBitS[i] := 1;
      return newBitS;
    end if;
  end do;
  return NULL;
end proc:
NextBitS([1,1,1,0,0,1,0]);

0, 0, 0, 1, 0, 1, 0

Next we'll need a way to convert a bit string into a subset of a given set.  We can do this using a 
simplified version of BitToRoster.  Note that this procedure relies on the fact that Maple 
imposes an order on sets and that this order is consistent.

BitToSubset := proc(BitS::list({0,1}),S::set)
  local subS, i;
  subS := {};
  for i from 1 to nops(BitS) do
    if BitS[i] = 1 then
      subS := subS union {S[i]};
    end if;
  end do;
  return subS;
end proc:
BitToSubset([0,1,1,0,0],{"a","b","c","d","e"});

"b", "c"

Finally, we combine these two procedures to produce the subsets of a given set.  
Subsets := proc(S::set)
  local BitS;
  BitS := [0 $ nops(S)];
  while BitS <> NULL do
    print(BitToSubset(BitS,S));
    BitS := NextBitS(BitS);
  end do;
  return NULL;
end proc:

Recall that 0 $ nops(S) produces a sequence of nops(S) 0s.  

We apply our procedure to a, b, c  to confirm that it is functioning properly.
Subsets({"a","b","c"});



(2.83)(2.83)

(2.41)(2.41)

O O 

(2.31)(2.31)

(2.199)(2.199)

O O 

(2.222)(2.222)

(2.229)(2.229)

c) c) 

O O 

b) b) 

(2.35)(2.35)

(2.6)(2.6)

O O 

(2.206)(2.206)

a) a) 

O O 

O O 

(2.114)(2.114)

(2.174)(2.174)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

O O 

(2.242)(2.242)

(2.144)(2.144)

O O 

"a"
"b"

"a", "b"
"c"

"a", "c"
"b", "c"

"a", "b", "c"

Exercises
Exercise 1.  Write a procedure AreDisjoint that accepts two sets as arguments and returns true 
if the sets are disjoint and false otherwise.

Exercise 2.  Write a procedure, Cartesian, to compute the Cartesian product of two sets as a 
single set.

Exercise 3.  Write procedures FuzzyIntersection and FuzzyComplement to complete 
Computer Project 3.

Exercise 4.  Write procedures for computing the complement, union, intersection, difference, and 
sum for multisets.  Represent a multiset as a set of pairs [a,m] where m is the multiplicity of the 
element a.  (Refer to the preamble to Exercise 61 in Section 2.2 for information about multisets.)

Exercise 5.  Write procedures to compute the image of a finite set under a function.  Create one 
procedure for functions defined as a procedure or a functional operator and a second procedure for 
functions defined via tables.

Exercise 6.  Write a procedure to find the inverse of a function defined by a table.

Exercise 7.  Write a procedure to find the composition of functions defined by tables.

Exercise 8.  Use computation to discover what the largest value of n is for which n! has fewer than 
1000 digits.  (Hint: the length command applied to an integer will return the number of digits of 
the integer.)

Exercise 9.  Write a procedure ArithmeticSeq, similar to GeometricSeq from above, that 
produces an arithmetic sequence.

Exercise 10.  Find the first 20 terms of the sequences defined by the recurrence relations below
an = 2 an K 1 C 3 an K 2, with a1 = 1 and a2 = 0.

an = an K 1 C nan K 2 C n2an K 3, with a1 = 1, a2 = 1, and a3 = 3.
an = an K 1 , an K 2 C 1, with a1 = a2 = 1.

Exercise 11.  The Lucas numbers satisfy the recurrence Ln = Ln K 1 CLn K 2 and the initial 
conditions L1 = 2 and L2 = 1.  Use Maple to gain evidence for conjectures about the divisibility of 
Lucas numbers by different integer divisors.

Exercise 12.  Write a procedure to find the first n Ulam numbers and use the procedure to find as 



(2.83)(2.83)

(2.41)(2.41)

O O 

(2.31)(2.31)

(2.199)(2.199)

O O 

(2.222)(2.222)

(2.229)(2.229)

O O 

(2.35)(2.35)

(2.6)(2.6)

O O 

(2.206)(2.206)

O O 

O O 

(2.114)(2.114)

(2.174)(2.174)

(2.88)(2.88)

(2.79)(2.79)

(2.169)(2.169)

O O 

(2.242)(2.242)

(2.144)(2.144)

O O 

many Ulam numbers as you can.  (Ulam numbers are defined in Exercise 28 of the Supplemental 
Exercises for Chapter 2.)

Exercise 13.  Use Maple to find formulae for the sum of the nth powers of the first k positive 
integers for n up to 10.

Exercise 14.  The calculation of actualValues above is very inefficient, because Maple must 
calculate the entire list of rational numbers for each value from 2 to 100.  Create a new procedure,
listActuals, that accepts a maximum stage as input and returns the list whose entries are the 
values of F n .  You can do this by modifying ListRationals so that at the completion of each
stage, the size of L, i.e., the value F n , is recorded in a list.

Exercise 15.  Find a value R so that the graph of R$
n nK 1

2
 is just above the graph of F n .  

Use your listActuals procedure to expand the data and refine the value of R.  

Exercise 16.  Use Maple to find the hundredth positive rational number in the list generated by
ListRationals.  What about the thousandth?  Ten thousandth?  (If you completed it, the result 
of the previous exercise can be helpful.)

Exercise 17.  Write a procedure BoolMeet implementing the Boolean meet operation on zero-one 
matrices.


