
(7.3)(7.3)

O O
(7.1)(7.1)

O O

O O

(7.2)(7.2)

O O

7 Discrete Probability

Introduction
In this chapter you will learn how to use Maple to perform computations in discrete probability and
how to use Maple's capabilities to explore concepts of discrete probability. We will continue to
make use of the combinat package described in the previous chapter. We will also introduce the
Statistics package. While the Statistics package has the support for descriptive statistics
and visualization of data that you would expect, it also provides functionality that will help us
explore probability distributions and random variables. This includes the ability to create a random
variable with a defined distribution and then perform computations with that variable.

In this chapter, we will make use of simulations to help explore concepts in discrete probability. In
this context, a simulation refers to a computer program, that models a real physical system. For
example, instead of flipping an actual coin one hundred times and recording whether each flip
resulted in "heads" or "tails," we could write a program that uses random numbers to generate a
sequence of one hundred "heads" or "tails."

Simulations are useful in discrete probability from two different perspectives. First, they can help
analyze and/or confirm probabilities for systems that are difficult to compute deductively. For
example, Computations and Explorations 7 from the text asks you to simulate the odd-person-out
procedure in order to confirm your deductive calculations. Second, simulations can be very helpful
as a way to better understand a problem and how to arrive at a solution. For example, in the
Computer Projects 10 exercise from the text, you are asked to build a simulation of the famous
Monty Hall Three-Door problem. Building the simulation and analyzing the results can help
improve your understanding of the reasons why the strategy described in the text is the best
possible.

7.1 An Introduction to Discrete Probability
To find the probability of an event in a finite sample space, one calculates the number of times the
event occurs and divides by the total number of possible outcomes (the size of the sample space).

As in Example 4, section 7.1, we calculate the probability of winning a lottery, where we need to
choose 6 numbers correctly out of 40 possible numbers. The total number of ways to choose 6
numbers is:

with(combinat):
numbcomb(40,6);

3838380
Since there is one winning combination, the probability is

1/(7.1);
1

3838380
We can find a real number approximation by using the evalf function — evaluation as a floating
point number.

evalf((7.2));
2.605265763 10-7

O O

(7.6)(7.6)

O O
(7.4)(7.4)

(7.5)(7.5)

O O

O O

O O

We could also force a decimal approximation of the result by using 1.0 or simply 1., to show that
we wish to work with decimals instead of the exact rational representation. For example, if we
needed to choose from 50 numbers, the probability is

1.0/numbcomb(50,6);
6.292988981 10-8

Continuing with this type of example, we define a functional operator that computes the probability
of winning a lottery where 6 numbers must be matched out of n possible numbers.

Lottery := n -> 1.0/numbcomb(n,6):
Then the probabilities above can be computed with the function.

Lottery(40), Lottery(50);
2.605265763 10-7, 6.292988981 10-8

Now we can use the sequence function seq to look at a list of probabilities for a range of values of
n and graph these values to visualize how the number of possible values in the lottery affects the
probability of choosing the correct values.

LotteryVals := [seq(Lottery(n),n=40..50)];
LotteryVals := 2.605265763 10-7, 2.224007359 10-7, 1.906292022 10-7,

1.640297786 10-7, 1.416620815 10-7, 1.227738040 10-7, 1.067598296 10-7,

9.313091515 10-8, 8.148955076 10-8, 7.151123842 10-8, 6.292988981 10-8

plot([$40..50],LotteryVals,style=point,symbol=solidcircle,
symbolsize=15);

41 43 45 47 49

8.#10 - 8
1.#10 - 7

1.2 #10 - 7
1.4 #10 - 7
1.6 #10 - 7
1.8 #10 - 7

2.#10 - 7
2.2 #10 - 7
2.4 #10 - 7
2.6 #10 - 7

Recall that the dollar operator with no left operand and a range as the right operand, as in $40..50,
produces the sequence described by the range. Refer to Section 2.3 of this manual for information
on the use of plot.

7.2 Probability Theory
We can use Maple to perform a variety of calculations of probabilities.

O O

O O

(7.8)(7.8)

O O

O O

O O

(7.7)(7.7)

For example, Example 9 in section 7.2 asks us to calculate the probability that eight of the bits in a
string of ten bits are 0s if the probability of a 0 bit is 0.9, the probability of a 1 bit is 0.1, and the bits
are generated independently. To perform this calculation, we can input the formula directly:

numbcomb(10,8) * 0.9^8 * 0.1^2;
0.1937102445

Random Variables
We can think of this same question in terms of a random variable. Specifically, consider a random
variable X that assigns to each string of ten bits the number of the bits that are 0s. Then the
probability that eight of the ten bits were 0 is P X = 8 .

To define a random variable in Maple, we use the RandomVariable command in the
Statistics package. The RandomVariable command takes one parameter: a probability
distribution which serves to specify the probabilities of the possible values of the random variable.
The distribution can be one of Maple's built-in distributions or it can be a distribution you define.
First we load the package.

with(Statistics):

Discrete distributions
Maple provides many different probability distributions, including several discrete distributions.
All of the commands described here are inert, that is, they do nothing on their own. Instead, they
are used as the argument to the RandomVariable command, which is able to interpret them to
create a random variable with the desired distribution.

Theorem 2 defines the binomial distribution, implemented in Maple has Binomial. The Binomial
distribution takes two parameters: the number of independent Bernoulli trials and the probability of
a success. For the bit string example that began this chapter, there are 10 trials, and we interpret
success to be a 0 bit, so the probability of success is 0.9.

RandomVariable(Binomial(10,0.9));
_R

Note that the output is a symbol consisting of an underscore followed by the letter R. After the first
random variable, a number follows the R. This merely indicates that the result is a random variable
and the number indicates how many random variables have been defined previously in this Maple
session. In the future, we will suppress this output.

Related to the binomial distribution is the probability distribution of a single Bernoulli trial. The
Bernoulli distribution takes only one parameter, the probability of success. The following
creates the random variable associated of a single trial with probability of success 0.9.

RandomVariable(Bernoulli(0.9)):

Definition 1 of Section 7.1 defines the uniform distribution. Maple includes the distribution
DiscreteUniform, which is different from the Uniform distribution (for continuous random
variables). The DiscreteUniform distribution requires two arguments, the lower and upper
bounds of the distribution. For example, the following produces a random variable distributed
uniformly on 1, 2, 3, 4, 5 .

RandomVariable(DiscreteUniform(1,5)):

Definition 2 of Section 7.4 defines the geometric distribution. The Geometric distribution in
Maple requires one argument, the probability of success. The following produces the random

O O

O O

(7.11)(7.11)

O O

O O

(7.12)(7.12)

O O

O O

(7.10)(7.10)

(7.9)(7.9)

O O
variable associated to Example 10 from that section.

RandomVariable(Geometric(0.5)):

Computing probabilities from a random variable
Once a random variable is defined, we use the Probability command to calculate probabilities.
The probability command's required argument is an event, described as a relation involving a
random variable.

Above, we described Example 9 from Section 7.2. The random variable associate to that example is
define by the following command.

Ex9 := RandomVariable(Binomial(10,0.9)):
We compute the probability that there are eight 1 bits, that is P X = 8 by applying the
Probability command to the equation that sets the name of the random variable, Ex9, equal to
8.

Probability(Ex9 = 8);
0.1937102445

And the probability of at least 8 successes is found with an inequality.
Probability(Ex9 >= 8);

0.9298091736

The probability of an intersection of events is found by passing a set of relations to
Probability. For example, the probability that the number of 1s is between 5 and 8 can be
though of as the intersection X R 5 X X % 8 . This is computed in Maple as follows.

Probability({Ex9 >= 5, Ex9 <= 8});
0.2637541683

To find probabilities of unions of events, you must add the results of the Probability command
applied to each event separately. P X % 5 W X R 8 .

Probability(Ex9 <= 5) + Probability(Ex9 >= 8);
0.9314441110

Of course, you must be careful that the events are disjoint in order to add the probabilities.

Graphing probabilities
It is often useful to graph the probabilities associated to the values of a random variable. To do this,
Maple provides the DenisityPlot command.

The required argument is the name of a random variable. You can also specify the range of values
of the random variable to be displayed, as illustrated below. Omitting the range will cause Maple to
determine the size of the plot for itself.

DensityPlot(Ex9, range=0..10);

(7.15)(7.15)

O O

(7.14)(7.14)

O O

O O

O O

(7.13)(7.13)

O O

0 2 4 6 8 10
0

0.1

0.2

0.3

The DensityPlot command also accepts most of the options that are available for the plot
command, though they may not always have the effect you expect.

Defining random variables from your own data
Maple provides two convenient ways for you to define probability distributions, and thereby
random variables, of your own.

First, to define specific probabilities associated to the integers 1 through n, you can use the
ProbabiltyTable command. The argument to ProbabilityTable is a list of real numbers
between 0 and 1 that sum to 1. For example, to create a random variable with probability of 1 as
1 / 2, probability of 2 equal to 1 / 8 and probability of 3 is 3 / 8, you enter the following statement.

ProbT := RandomVariable(ProbabilityTable([1/2,1/8,3/8])):

The resulting random variable can be used as any other.
Probability(ProbT = 2);

1
8

If, instead of a list of probabilities, you have a list representing the results of experiments, you can
use the EmpiricalDistribution. This takes one argument, which must be an array, not a list.
 You can create an array from your list of data by applying Array to the list.

For example, suppose you manually roll a die 20 times and obtain the following results.
dieRolls := [3,2,1,1,5,2,3,6,5,1,2,5,6,4,4,3,1,3,1,1];

dieRolls := 3, 2, 1, 1, 5, 2, 3, 6, 5, 1, 2, 5, 6, 4, 4, 3, 1, 3, 1, 1
To use this data as the basis for a random variable, first apply Array.

dieRolls := Array(dieRolls);

dieRolls :=

 1 .. 20 Array

Data Type: anything

Storage: rectangular

Order: Fortran_order

And then form a random variable by applying EmpiricalDistribution to the array.
dieRV := RandomVariable(EmpiricalDistribution(dieRolls)):

O O

(7.16)(7.16)

O O

O O

(7.17)(7.17)

O O
Now you can compute probabilities.

Probability(dieRV >= 4);
7
20

And you can graph the distribution.
DensityPlot(dieRV);

1 2 3 4 5 6
0

0.1

0.2

0.3

Sampling
Once you've defined a random variable, you may wish to use it to conduct experiments or
simulations. To do this, you use the Sample command.

Sample requires two arguments: a random variable or a distribution as the first argument, and a
positive integer indicating the sample size as the second argument. It produces a row vector
containing results obtained by randomly choosing values in accordance with the random variable.

For example, the following simulates rolling a die with probabilities given by dieRV 1000 times.
dieSample := Sample(dieRV,1000);

dieSample :=

 1 .. 1000 Vectorrow

Data Type: float8
Storage: rectangular

Order: Fortran_order

We can use the Histogram command to draw a histogram of the data. You see that the data
produced has approximately the same distribution as the original data.

Histogram(dieSample);

O O

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Monte Carlo Methods
We can also implement Monte Carlo algorithms using Maple. Miller's test for base b is described in
the prelude to Exercise 44 of Section 4.4 of the textbook. In that description, it is mentioned that a
composite integer n passes Miller's test for base b for fewer than n / 4 bases less than n, and
Exercise 44 asked you to show that primes pass Miller's test for all bases that they do not divide. In
other words, Miller's test is a probabilistic primality test that fails less than one-fourth of the time.
In this subsection we'll use Miller's test to create a Monte Carlo primality testing algorithm.

Miller's test
First we must implement Miller's test for base b. Recall the description preceding Exercise 44 in
Section 4.4. Let n and b be positive integers. Assume s is a nonnegative integer and t is an odd
positive integer such that nK 1 = 2st. If bt h 1 mod n or if there is a j with 0 % j % s K 1 such

that b2 jt hK1 mod n , then n is said to pass Miller's test for base b.

To implement Miller's test, we first must calculate s and t. Initialize s to 0 and set t equal to nK 1.
If t is even, we add 1 to s and divide t by 2. When t is no longer even, then s and t are the correct
values.

Once s and t have been calculated, we check the congruence bt h 1 mod n . If that congruence is
satisfied, then n passes Miller's test and we return true. Otherwise, we begin testing the

congruences b2 jt hK1 mod n . A for loop assigns j to each integer from 0 to s K 1 and inside
the for loop, the congruence is tested. If any congruence holds, the procedure returns true. (Recall
from Section 4.1 of this manual that modp returns the smallest positive integer congruent to its first
argument modulo its second argument. Thus we test for congruence to -1 modulo n by comparing
the result to nK 1.) If the procedure completes without having returned true, then it returns false.

Miller := proc(n::posint,b::posint)
 local s,t,j;
 s:=0;
 t := n-1;
 while modp(t,2) = 0 do

(7.18)(7.18)

O O

O O

(7.19)(7.19)

O O

O O

 t := t/2;
 s := s + 1;
 end do;
 if modp(b^t,n) = 1 then
 return true;
 end if;
 for j from 0 to s-1 do
 if modp(b^(2^j*t),n) = n-1 then
 return true;
 end if;
 end do;
 return false;
end proc:

Monte Carlo primality test
Now we use Miller's test to implement a Monte Carlo primality testing algorithm, as described in
Example 16 in section 7.2 of the text. The question the Monte Carlo algorithm is going to answer is
"Is n composite?" for an integer n. For each iteration, the algorithm will select a random base b with
1 ! b ! n and check to see if n passes Miller's test for base b. If Miller's test returns false, then
we know that n is composite and the Monte Carlo algorithm will return true, indicating that yes, n is
composite. If Miller's test returns true, then the iteration results in "unknown" and the next iteration
is started. After 30 iterations, if Miller's test has only resulted in true, then the algorithm will return
false, indicating that it is very likely that the number is prime. Since Miller's test falsely identifies a
composite as prime less than one-fourth of the time, the probability that the Monte Carlo algorithm
will incorrectly identify a composite number as prime is

(1./4)^30;
8.673617380 10-19

Here is the Miller Monte Carlo test:
MillerMC := proc(n::integer)::string;
 local i,gen,b;
 gen := rand(2..n-1);
 for i from 1 by 1 to 30 do
 b := gen();
 if (not Miller(n,b)) then return "composite" end if;
 end do;
 return "prime";
end proc:

Note the use of the rand command. This command, when passed a range like 2..n-1, does not
produce a random number between 2 and nK 1. Rather, when used this way, the rand command
returns a procedure that generates a random number in the specified range. In our algorithm, we
assign the variable gen to the random number generator created by rand(2..n-1), and the
assignment b := gen() produces a random number between 2 and nK 1 and stores that value in
b.

Now we use MillerMC to test a random integer to see if it is prime. We can use Maple's
ithprime function to find the 40000th prime and then check that our algorithm confirms that it is
prime.

ithprime(40000);
479909

Now run the algorithm on the number:

O O

O O
(7.20)(7.20)

MillerMC(479909);
"prime"

7.3 Bayes' Theorem
Section 7.3 focuses on applications of Bayes' Theorem, which asserts that for events E and F from a
sample space S with p E s 0 and p F s 0, one has

p F E =
p E F p F

p E F p F C p E F p F
.

The text describes how to use this theorem to create a Bayesian spam filter. We will use Maple to
implement such a filter.

Recall the notation from the text. A message is received containing the word w. The event S will be
the event that the message is spam and the event E is the event that the message contains the word
w. If we assume that a message is as likely to be spam as not, so that p S = p S = 1 / 2, then
Bayes' Theorem tells us that the probability that the incoming message is spam given that it contains
the word w is:

p S E =
p E S

p E S C p E S
.

By estimating the conditional probabilities with empirical data, we can compute an estimate that the
given message is spam.

Before building the spam filter, we will first need messages to serve as spam and non-spam. For
the spam messages, we will use the sonnets of William Shakespeare, and for the non-spam
messages, we will use sonnets written by Shakespeare's contemporaries, Michael Drayton,
Bartholomew Griffin, and William Smith, published in the book Elizabethan Sonnet Cycles.

It may seem strange to consider Shakespeare's sonnets to be spam, but consider the goals and
methods of a Bayesian spam filter. The goal of a spam filter is to filter out the "junk mail." But in
the case of the Bayesian filter described by the text, these filters work by comparing the specific
words used by authors of spam in contrast to authors of non-spam messages. Think about email
messages you receive from your classmates versus messages your professors may send you.
Chances are good that you and your peers use more slang and generally less formal English when
writing to each other than you and your professor use when communicating. This applies to kinds
of message writers like peers versus professors, but it also can apply to individual message writers,
like a mathematics professor versus a literature professor. A literature professor, for example, is not
likely to use words like "Bayes' Theorem" in an email to you. A Bayesian spam filter can pick up
on these differences in word choice and effectively filters messages based on the assumption that
different authors generally use different words. We will see, by comparing Shakespeare with other
Elizabethan sonnet writers, that a Bayesian filter can even distinguish one author from others
writing at the same time, for the same audience, and in a very similar style.

Obtaining data
On the website for this manual, you will find these three files: "ShakespeareData.txt",
"ElizabethanData.txt" and "testMessages.txt". The first two contain the sonnets of Shakespeare and
the other authors, respectively. Five of Shakespeare's poems and five of the other authors' poems
were randomly selected and moved to the "testMessages.txt" file. We will use our "spam" filter on
the poems in this file to determine which of them were written by Shakespeare and which were not.

O O

O O

O O

O O

O O
O O

(7.22)(7.22)

(7.21)(7.21)

O O

O O

O O

O O
(7.20)(7.20)

Begin by downloading the three files and storing them in the same directory as this Maple
Worksheet. Then load the three files and store the text in variables using the ReadFile command:

shakespeare := FileTools[Text][ReadFile]("ShakespeareData.
txt"):
elizabethan := FileTools[Text][ReadFile]("ElizabethanData.
txt"):
test := FileTools[Text][ReadFile]("testMessages.txt"):

If you inspect these files in a text editor, you will see that the sonnets are separated by three
ampersands ("&&&"). The three commands above store each of the files as a single string. It
would be more useful to store them as lists of strings, with each sonnet being one element of a list.
To separate the files into lists, we use RegSplit from the StringTools package.

SPoems := [StringTools[RegSplit]("&&&",shakespeare)]:
EPoems := [StringTools[RegSplit]("&&&",elizabethan)]:
testPoems := [StringTools[RegSplit]("&&&",test)]:

The RegSplit command splits the string in the second argument based on the pattern given in the
first argument. In this case, the pattern is the string "&&&" so the RegSplit command uses that
pattern as a delimiter in the shakespeare, elizabethan, and test strings to separate them
into lists. The pattern can be a string, as we use it here, or it can be a regular expression, hence the
name RegSplit. Now that the "messages" are prepared, we begin building the filter.

Estimating the probabilities
The spam filter relies on two computations: first, the probability that a message contains a word
given that it is spam, and second, the probability that a message contains the word given that it is not
spam. That is, we will need empirical estimates for p E S and p E S .

Following the notation of the textbook, for a word w, let p w be the estimate of p E S , the
probability that a message contains w given that it is spam. So p w is the number of spam
messages containing the word w divided by the number of spam messages. Likewise, let q w be
the estimate for p E S , the probability that a message contains w given that it is not spam. This is
computed as the number of non-spam messages containing w divided by the number of non-spam
messages.

Counting the number of messages (i.e., poems) in each list can be done with nops.
nops(SPoems);

149
(This is five less than the 154 sonnets that Shakespeare published, because five of them were
moved to the "testMessages.txt" file as "unknown" messages.)

To count the number of messages that contain a particular word, we'll make use of two functions.
First, we use the Words command in the StringTools package to separate a string into its
component words and remove punctuation. For example:

exampleWords := StringTools[Words]("To count the number of
messages that contain a particular word, we'll make use of
two functions.");

exampleWords := "To", "count", "the", "number", "of", "messages", "that", "contain",
"a", "particular", "word", "we'll", "make", "use", "of", "two", "functions"

Second, we use the ListTools Search function to determine if a message contains a particular

O O

O O

O O

(7.23)(7.23)
O O

(7.28)(7.28)

O O

(7.27)(7.27)

(7.24)(7.24)

(7.26)(7.26)

O O

(7.25)(7.25)
O O

O O

O O
(7.20)(7.20)

O O

word. Search(element, L) returns the index of the first occurrence of element in the list L.
 If the element is not in the list, then it returns 0. For example:

ListTools[Search]("of",exampleWords);
5

ListTools[Search]("elephant",exampleWords);
0

Putting these together, we can create a procedure for counting the number of times a word appears
in a list of messages as follows. For each message in the list, we use the Words function to
separate the message into words. Then we use the Search function to see if the word we're
looking for is in the sonnet. If the Search function returns a value greater than 0, then we know
the word is in the message and we increment a counter. Here's the procedure:

countMessages := proc(w::string,L::list)::integer;
 local count,m,P;
 count := 0;
 for m in L do
 P := StringTools[Words](m);
 if (ListTools[Search](w,P) > 0) then
 count := count + 1
 end if;
 end do;
 return count;
end proc:

For instance, we can see how many times Shakespeare uses the word "fairest":
countMessages("fairest",SPoems);

4
So the empirical probability that a sonnet contains the word "fairest" given that it was written by
Shakespeare is:

countMessages("fairest",SPoems)/nops(SPoems);
4

149

And the probability that a sonnet contains the word "fairest" given that it was written by one of our
other authors is:

countMessages("fairest",EPoems)/nops(EPoems);
10
173

Applying Bayes' Theorem, we can compute the probability that a sonnet was written by
Shakespeare given that it contains the word "fairest":

evalf((7.26)/((7.26)+(7.27)));
0.3171402383

The above computation illustrates how to write a procedure to compute the probability that a sonnet
is spam (i.e., "written by Shakespeare") given that it contains a specific word:

PShakespeareGivenWord := proc(w::string)
 local SCount,ECount,PWordGivenS,PWordGivenNotS;
 global SPoems, EPoems;

O O

(7.30)(7.30)

O O

(7.31)(7.31)

(7.29)(7.29)
O O

O O

O O
O O

O O

O O
(7.20)(7.20)

O O

 SCount := nops(SPoems);
 ECount := nops(EPoems);
 PWordGivenS := countMessages(w,SPoems)/SCount;
 PWordGivenNotS := countMessages(w,EPoems)/ECount;
 return evalf(PWordGivenS/(PWordGivenS + PWordGivenNotS));
end proc:

For example, the probability that a sonnet is Shakespearean given that it contains the word "beauty"
is:

PShakespeareGivenWord("beauty");
0.5601371298

Using multiple words
We can improve the filter by using multiple words, rather than just one. Using the notation of the
text, let p wi and q wi be the probability that a message contains word wi given that it is spam
and that it is not spam, respectively. Then the probability that a message is spam given that it
contains all of the words w1, w2, ..., wk is:

r w1, w2, ..., wk =
?
i = 1

k

p wi

?
i = 1

k

p wi C?
i = 1

k

q wi

.

The mul command is useful here. Recall that we compute ?
i 2 S

i2 for S = 1, 3, 5, 7, 9 , with:

S := [1,3,5,7,9]:
mul(i^2,i in S);

893025

For instance, to compute the probability that a message contains the words "from", "fairest", and
"creatures",

S := ["from","fairest","creatures"]:
mul(countMessages(w,SPoems)/nops(SPoems),w in S);

416
3307949

We can modify our PShakespeareGivenWord procedure to work on lists of words instead of
single words by putting the probability computations inside of mul commands. It's also a good
idea to protect against division by zero errors, so we'll put the division inside of an if statement.
This is needed in case one or more of the selected words appears in none of the sonnets by either
author. In this case, we default to a probability of 0.5.

PShakespeareGivenList := proc(L::list)
 local SCount,ECount,PGivenS,PGivenNotS;
 global SPoems, EPoems;
 SCount := nops(SPoems);
 ECount := nops(EPoems);
 PGivenS := mul(countMessages(w,SPoems)/SCount,w in L);
 PGivenNotS := mul(countMessages(w,EPoems)/ECount,w in L);
 if (PGivenS + PGivenNotS <> 0) then

(7.33)(7.33)

O O

O O

O O

(7.34)(7.34)

O O

(7.32)(7.32)
O O

O O
(7.20)(7.20)

O O

 return evalf(PGivenS/(PGivenS + PGivenNotS))
 else
 return 0.5
 end if;
end proc:

So the probability that a sonnet is by Shakespeare given that it contains the words "from", "fairest",
and "creatures" is:

PShakespeareGivenList(["from","fairest","creatures"]);
0.5559873068

Selecting test words randomly
Finally, we can use the randcomb command to randomly select words from a test message, and
then use those randomly selected words to compute the probability that the message was written by
Shakespeare. Here's the first test message in "testMessages.txt":

testPoems[1];
"When to the sessions of sweet silent thought

I summon up remembrance of things past,
I sigh the lack of many a thing I sought,

And with old woes new wail my dear time's waste:
Then can I drown an eye, unused to flow,

For precious friends hid in death's dateless night,
And weep afresh love's long since cancell'd woe,
And moan the expense of many a vanish'd sight:

Then can I grieve at grievances foregone,
And heavily from woe to woe tell o'er

The sad account of fore-bemoaned moan,
Which I new pay as if not paid before.

 But if the while I think on thee, dear friend,
 All losses are restor'd and sorrows end.

"

We use the Words command to separate the poem into individual words:
exampleTestWords := StringTools[Words](testPoems[1]);

exampleTestWords := "When", "to", "the", "sessions", "of", "sweet", "silent", "thought",
"I", "summon", "up", "remembrance", "of", "things", "past", "I", "sigh", "the", "lack",
"of", "many", "a", "thing", "I", "sought", "And", "with", "old", "woes", "new",
"wail", "my", "dear", "time's", "waste", "Then", "can", "I", "drown", "an", "eye",
"unused", "to", "flow", "For", "precious", "friends", "hid", "in", "death's", "dateless",
"night", "And", "weep", "afresh", "love's", "long", "since", "cancell'd", "woe", "And",
"moan", "the", "expense", "of", "many", "a", "vanish'd", "sight", "Then", "can", "I",
"grieve", "at", "grievances", "foregone", "And", "heavily", "from", "woe", "to",
"woe", "tell", "o'er", "The", "sad", "account", "of", "fore", "bemoaned", "moan",

O O

O O

O O

O O
(7.38)(7.38)

O O

O O

(7.34)(7.34)

(7.39)(7.39)

(7.37)(7.37)

(7.35)(7.35)

(7.36)(7.36)

O O

O O

(7.40)(7.40)

O O

O O
(7.20)(7.20)

O O

"Which", "I", "new", "pay", "as", "if", "not", "paid", "before", "But", "if", "the",
"while", "I", "think", "on", "thee", "dear", "friend", "All", "losses", "are", "restor'd",
"and", "sorrows", "end"

Then randomly select four of those words:
exampleTestList := combinat[randcomb](exampleTestWords,4);

exampleTestList := "of", "dear", "a", "And"
And then use our procedure to find the probability that a message with these four words was
written by Shakespeare:

PShakespeareGivenList(exampleTestList);
0.6962870739

Putting this all together:
PShakespeare := proc(testMessage::string,testSize::integer)
 local testWordList;
 testWordList := combinat[randcomb](StringTools[Words]
(testMessage),testSize);
 return PShakespeareGivenList(testWordList);
end proc:

As an example, we'll run the filter on the second test message with a test size of 3.
PShakespeare(testPoems[2],3);

0.5835229477

7.4 Expected Value and Variance
In Section 7.2 of this manual, we introduced Maple's commands for using random variables. In this
section we will explore Maples's Statistics package more closely and use random variables to
explore the concepts of expected value and variance.

As mentioned earlier, the Statistics package provides the distribution Geometric, which
takes one parameter, the probability of a "success".

X := RandomVariable(Geometric(1/4));
X := _R6

We can now use the Probability command to compute probabilities of events. For example,
the probability p X = 5 is computed by:

Probability(X=5);
243
4096

Note that the Maple's definition of a geometric random variable differs slightly from the textbook's.
The textbook defines the value of the geometric random variable, in terms of coin flips, to be the
number of flips it takes to get a tails, where the parameter is the probability of tails. Maple's
definition is that the value of the random variable is the number of heads that appear before tails
comes up. So the probability p X = k is

Probability(X=k);
0 k ! 0

1
4

3
4

k
otherwise

(7.47)(7.47)

O O

(7.44)(7.44)

O O

(7.42)(7.42)

O O

O O

O O

O O

(7.43)(7.43)

O O

(7.34)(7.34)

(7.41)(7.41)

(7.46)(7.46)

O O

O O

O O

(7.45)(7.45)

O O

O O
(7.20)(7.20)

O O

Contrast this with the formula given in the text.

The Statistics package also includes commands for computing the expected value, variance,
and standard deviation of a random variable:

ExpectedValue(X);
3

Variance(X);
12

Maple can also compute these symbolically, if we use an unassigned name for the argument to
Geometric.

Y := RandomVariable(Geometric(p)):
ExpectedValue(Y);

1K p
p

Variance(Y);
1K p

p2

StandardDeviation(Y);
1K p

p

Notice that the expected value differs from the expected value of a geometric distribution given in
the text. This is because of the difference in definitions mentioned previously. Since the difference
between Maple's definition and the textbook's definition is that Maple's geometric random variables
have values one less than the textbooks, we can create a random variable Z that has the geometric
distribution defined by the textbook by adding one to a random variable created by Maple:

Z := RandomVariable(Geometric(p)) + 1:

We check that Z agrees with the formula given by the text, namely p Z = k = 1K p k K 1 for
k = 1, 2, 3,...

Probability(Z=k);
0 k ! 1

p 1K p k K 1 otherwise

And then we can confirm that the expected value agrees with the text:
ExpectedValue(Z);

1
p

Solutions to Computer Projects and Computations and Explorations

Computer Projects 7

Given a positive integer m, simulate the collection of cards that come with the purchase of
products to find the number of products that must be purchased to obtain a full set of m

(7.51)(7.51)

O O

O O

O O

O O

O O

(7.34)(7.34)

O O

(7.49)(7.49)
O O

(7.50)(7.50)

(7.48)(7.48)

O O

O O

(7.20)(7.20)

O O

different collector cards. (See Supplementary Exercise 33.)

Solution: We will define a procedure called CardSimulate which will simulate the process
of choosing random collectible cards until all the possible cards have been obtained. This
procedure needs to do three things: (1) keep track of which cards have been obtained; (2) keep
selecting random cards until the complete set is obtained; and (3) keep track of how many cards
have been purchased.

Think of the cards as numbered 1 through m. To keep track of which cards have been obtained
and which have not, we'll use a list that we'll call currCollection, for current collection.
The entries in this list will be 0s and 1s, with a 0 representing the fact that the card
corresponding to that position is not owned and 1 that it is. To initialize currCollection,
we use the seq command, which creates a sequence of values, as follows:

[0$10];
0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Recall that when the dollar operator is given a positive integer as its right operand produces that
number of copies of its left operand.

Second, random selection of cards can be accomplished by the rand command. The optional
argument to rand specifies the range of values that it will return. Since there are m possible
collectible cards, we'll want to use rand(1..m). With no argument, rand() returns a
number, but with an argument, it creates a procedure. So we'll assign a name to the procedure
that the rand command creates and then use that name to make random cards. For example:

exampleRand := rand(1..100);
exampleRand := proc

proc option builtin = RandNumberInterface; end proc 6, 100, 7 C 1
end proc

exampleRand();
66

Our procedure will generate a random card and set the entry in currCollection at that card's
position equal to 1. This needs to keep happening until all the cards are owned. So we need to
know when all of the entries of the list are 1s. We can do this by adding up the entries in the list.
Since the entries are always 0 or 1, when the list is all 1s, the sum will be equal to m and that's
the only way the sum can be m. To add the entries in the list, we can use the add command as
follows:

exampleList := [1,0,0,1,1,1]:
add(i,i in exampleList);

4

Third, we keep track of how many cards have been purchased with a counter that we increment
each time a random card is generated.

Putting all of these pieces together, here is the procedure:
CardSimulate := proc(m::integer)
 local currCollection, count, tempCard, cardGen;
 currCollection := [seq(0,i=1..m)];
 count := 0;
 cardGen := rand(1..m);

O O

(7.52)(7.52)

O O

O O

(7.34)(7.34)

O O

O O

O O

O O

O O
(7.20)(7.20)

O O

 while add(i,i in currCollection) < m do
 tempCard := cardGen();
 count := count + 1;
 currCollection[tempCard] := 1;
 end do;
 return count;
end proc:

Let's run the simulation 10000 times for m = 5 and draw a bar graph of the resulting data:
simulations := [seq(CardSimulate(5),i=1..10000)]:
Statistics[Histogram](simulations,binwidth=1);

10 20 30 40
0

0.02

0.04

0.06

0.08

0.10

Computer Projects 9

Given a positive integer n, find the probability of selecting the six integers from the set
1, 2,..., n that were mechanically selected in a lottery.

Solution: We will follow example 4 from Section 7.1 of the text. The total number of ways of
choosing 6 numbers from n numbers is C n, 6 , which is found with the procedure
numbcomb in the combinat package. This gives us the total number of possibilities, only one
of which will win.

lottery := proc(n::posint)
local total;
 total := combinat[numbcomb](n,6);
 1.0 / total;
end proc:
lottery(49);

7.151123842 10-8

ii) ii)

(7.53)(7.53)

O O

(7.55)(7.55)

O O

O O
(7.54)(7.54)

i) i)

iii) iii)

(7.34)(7.34)

O O

O O

O O

O O

O O

O O

(7.20)(7.20)

O O

If the rules of the lottery change, so that the number of numbers chosen in something other than
6, then we must modify the procedure above. We can easily modify our program to allow us to
specify how many numbers we want to choose, by adding another parameter.

lottery2 := proc(n::posint, k::posint)
local total;
 total := combinat[numbcomb](n,k);
 1.0 / total;
end proc:
lottery2(49,6);

7.151123842 10-8

lottery2(30,3);
0.0002463054187

Computations and Explorations 3

Estimate the probability that two integers selected at random are relatively prime by testing a
large number of randomly selected pairs of integers. Look up the theorem that gives this
probability and compare your results with the correct probability.

Solution: To solve this problem, three things must be done:
Devise a method for generating pairs of random integers.
Produce a large number of these pairs, test whether they are relatively prime, and note the
probability estimate based on this sample.
Look up the theorem mentioned in the question.

Naturally, we'll leave part (iii) entirely to the reader.

A simple approach is to use the Maple procedure rand to generate a list of random integers.
Then, having generated such a list we can test whether the pairs of its members are coprime
using the Maple procedure igcd in a second loop. We implement these two loops in a new
Maple procedure called RandPairs:

RandPairs := proc(numberPairs::integer)
 local listSize, i, tmp, randnums, count;
 listSize := 2 * numberPairs;
 randnums := [];
 # Generate list of random integers
 for i from 1 to listSize do
 tmp := rand();
 randnums := [op(randnums),tmp];
 end do;
 # Count the number of pairs that are coprime
 count := 0;
 for i from 1 to listSize-1 by 2 do
 if igcd(randnums[i],randnums[i+1]) = 1 then
 count := count + 1;
 end if;
 end do;
 evalf(count / numberPairs);
end proc:

We can now execute this procedure on 100 pairs of integers, as follows:
RandPairs(100);

(7.56)(7.56)
O O

b) b)

O O

a) a)

(7.55)(7.55)

O O

(7.34)(7.34)

c) c)

O O

O O

(7.57)(7.57)

O O
(7.20)(7.20)

O O

O O

0.6500000000

Note that repeating the computation may very well lead to a somewhat different result since the
list of integers we used was generated randomly. You should try this with a much larger sample
size, say 10000 pairs of integers.

Computations and Explorations 4

Determine the number of people needed to ensure that the probability at least two of them have
the same day of the year as their birthday is at least 70%, at least 80%, at least 90%, at least
95%, at least 98%, and at least 99%.

Solution: Given that we know the formula for the probability of two people having the same
birthday, we can use Maple to loop over a range of possible numbers of people until we reach a
probability greater than the desired probability. Example 13 of section 7.2 of the text shows that
the probability that n people in a room have different birthdays is

pn =
365
366

364
366

363
366

/
367K n

366
=

P 366, n
366n .

Our task is to find n such that 1K pn is greater than the values specified in the problem. We can
do this using the Maple procedure below.

Birthdays := proc(percentage::float)
 local numPeople, curProb;
 # Initialize
 curProb := 0;
 numPeople := 0;
 # loop until there are enough people
 while curProb < percentage do
 numPeople := numPeople + 1;
 curProb := 1 -
 (combinat[numbperm](366,numPeople)/366^numPeople);
 end do;
 return numPeople;
end proc:

This procedure returns the number of people required to attain the given probability that two
have the same birthday. We now execute our procedure for probabilities of .70 and .95.

Birthdays(.70);
30

Birthdays(.95);
47

Exercises
Exercise 1. Use Maple to determine the integer k such that the chances of picking six numbers
correctly in a lottery from the first k positive integers is less than

1 in 100 million (10K8),

1 in a billion (10K9),

1 in 10 billion (10K10),

O O

(7.55)(7.55)

O O

(7.34)(7.34)

O O

e) e)

d) d)

O O
(7.20)(7.20)

O O

1 in 100 billion (10K11 , and

1 in a trillion (10K12).

Exercise 2. Implement a Monte Carlo algorithm that determines whether a permutation of the
integers 1 through n has already been sorted or is a random permutation. (See Exercise 40 in
section 7.2 of the textbook.)

Exercise 3. Modify the implementation of the collector card simulator given in the solution to
Computer Projects 7 to model the situation in which the cards do not appear with equal
probabilities. For instance, there could be five possible cards all of which appear with probability
2/9 except for card number 5 which appears with probability 1/9.

Exercise 4. Modify the implementation of the collector card simulator given in the solution to
Computer Projects 7 to model the situation in which cards are purchased in packs. For example,
there could be ten possible cards and they are purchased three to a pack. Assume the cards in a
pack are always different from each other. The procedure should return the number of packs
necessary to collect all of the cards.

Exercise 5. Compute the average of the probabilities returned by running the Bayesian filter
PShakespeare 100 times with the testMessage argument equal to testPoems[10] and a
testSize of 1, i.e., on the tenth of the test poems and using one word. Repeat this with a
testSize of 2, 3, ..., 10. Graph the average probabilities for the different numbers of test words.
Is there a trend in the average probabilities as the number of words increases? Explain why.

Exercise 6. The textbook describes how a Bayesian filter can be improved by considering pairs of
words. Implement a Bayesian spam filter that uses this idea. Using the Shakespearean and
Elizabethan sonnets as messages, compare the performance of your filter with PShakespeare.

Exercise 7. As described in the textbook, spam filters are most effective when the words being
used as the basis of comparison are not chosen randomly, as they are in the implementation of
PShakespeare above, but instead are chosen more carefully. Specifically, choosing words
which have very high or very low probability of appearing in spam messages can improve the
performance of the filter. Implement a Bayesian spam filter that uses this idea. Using the
Shakespearean and Elizabethan sonnets as messages, compare the performance of your filter with
PShakespeare.

