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10 Graphs

Introduction
In this chapter we consider ways in which Maple can help you explore and understand graph 
theory. In particular, we describe how to do computations on graphs using Maple and how Maple 
can be used to visualize graphs.

Throughout the first half of this chapter, pseudographs are a recurring theme.  Recall that 
pseudographs are graphs that may contain loops and may contain multiple edges between vertices.  
Maple includes numerous and powerful commands for representing, manipulating, and calculating 
with simple graphs, both undirected and directed.  Each section in what follows will introduce you 
to these useful tools so that you can more easily explore the concepts described in the textbook.  But
Maple does not support pseudographs (or their directed counterparts).  So parts of several sections 
in this chapter are devoted to extending Maple's existing functionality to pseudographs.  This will 
serve to give you tools that you can use to explore these kinds of graphs.  More than that, seeing 
how to create the procedures for pseudographs will also help you to better understand how the 
procedures work in the slightly "simpler" case of simple graphs.

10.1 Graphs and Graph Models
Recall that a simple graph, as defined in Section 10.1 of the text, is a set V of vertices and a set E of 
unordered pairs of elements of V, called the edges of the graph, and where each edge connects two 
different vertices and no two edges connect the same pair of vertices.  That is, the edges are 
undirected, there are no loops, and there are no multiple edges.

Maple has a large collection of commands related to graph theory contained in the GraphTheory 
package.  In order to access the short forms of these commands, we use the with command.

with(GraphTheory):

The GraphTheory package includes commands that allow us to create new graphs and then add 
or delete edges and vertices or even contract edges.  Subsets of the vertices can be used to induce 
subgraphs.  Some of the commands are used to create special kinds of graphs such as complete 
graphs, hyper-cubes, the Petersen graph, and random graphs.  Other commands compute some of 
the important characteristics of a given graph, such as its maximum degree, its diameter, or its 
planarity.

To create a new graph, we use the Graph command.  There are a variety of forms of the Graph 
command, but the most natural uses two arguments: a list of vertices and a set of edges.  The edges 
are given as either sets or lists (e.g., {1,2} or [1,2]) depending on whether the graph is 
undirected or directed.  We demonstrate the creation of a graph by constructing the graph in 
Exercise 3 in Section 10.1.  

Exercise3 := Graph(["a","b","c","d"],
                  {{"a","b"},{"a","c"},{"b","c"},{"b","d"}});

Exercise3 := Graph 41: an undirected unweighted graph with 4 vertices and 4 edge(s)
Note that Maple always expects the vertices to be given in a list and the edges in a set.  This is how 
Maple differentiates between them in alternate forms of the command.

The Vertices and Edges commands can be used to recover the vertices and edges of a graph.
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Vertices(Exercise3);
"a", "b", "c", "d"

Edges(Exercise3);
"a", "b" , "a", "c" , "b", "c" , "b", "d"

Note that explicitly specifying the vertices when defining a graph is often unnecessary, as Maple 
can determine the vertices from the definition of the edges.  The easiest way to define a graph is to 
call Graph with only one argument, the set of edges.

Ex3again := Graph({{"a","b"},{"a","c"},{"b","c"},{"b","d"}});
Ex3again := Graph 42: an undirected unweighted graph with 4 vertices and 4 edge(s)
Vertices(Ex3again);  Edges(Ex3again);

"a", "b", "c", "d"
"a", "b" , "a", "c" , "b", "c" , "b", "d"

We can modify existing graphs by adding and deleting edges and vertices using the commands
AddEdge, AddArc, AddVertex, DeleteEdge, DeleteArc, and DeleteVertex.  (Note: 
Maple refers to a directed edge as an arc, so the edge commands are used in the case of an 
undirected graph, and the arc commands are used for directed graphs.)

First we add two vertices to Ex3again.
Ex3plus := AddVertex(Ex3again,["y","z"]);
Ex3plus := Graph 43: an undirected unweighted graph with 6 vertices and 4 edge(s)
Vertices(Ex3again); Vertices(Ex3plus);

"a", "b", "c", "d"
"a", "b", "c", "d", "y", "z"

Now we add edges to connect the new vertices with the rest of the graph.
AddEdge(Ex3plus,{{"a","z"},{"a","y"},{"y","z"}});

Graph 43: an undirected unweighted graph with 6 vertices and 7 edge(s)
And we delete one of the old edges before once again listing the vertices and edges.

DeleteEdge(Ex3plus,{{"b","c"}});
Graph 43: an undirected unweighted graph with 6 vertices and 6 edge(s)

Vertices(Ex3plus); Edges(Ex3plus);
"a", "b", "c", "d", "y", "z"

"a", "b" , "a", "c" , "a", "y" , "a", "z" , "b", "d" , "y", "z"

It is important to be aware of a slight inconsistency in the operation of these commands.  The
AddVertex and DeleteVertex commands do not modify the original graph, while the edge 
and arc commands, by default, do modify the original.  The edge commands can be made to not 
modify the original by giving the equation inplace=false as an argument.  The vertex 
commands cannot be made to replace the original except through the usual method of reassignment.

Finally, note that deleting a vertex also deletes all the edges incident with that vertex.
Ex3plus := DeleteVertex(Ex3plus,["y"]);

Ex3plus := Graph 44: an undirected unweighted graph with 5 vertices and 4 edge(s)
Vertices(Ex3plus); Edges(Ex3plus);

"a", "b", "c", "d", "z"
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"a", "b" , "a", "c" , "a", "z" , "b", "d"

Visualizing Graphs in Maple
The usefulness of graphs is realized partly through our ability to draw diagrams representing them.  
Visual representations of graphs sometimes lead to a clearer understanding of the underlying 
relationships represented by the graphs.  The beauty of some of the resulting diagrams is also one of
the things that helps to make this such a popular subject.

In Maple, we present a graph visually using the DrawGraph command.  In its simplest form, this 
command takes only one argument: the graph to be displayed.

DrawGraph(Exercise3);

a

b

c

d

DrawGraph(Ex3plus);

a

b c

d

z

Without any other arguments, Maple does its best to arrange the vertices in reasonable positions.  
The style option allows you to explicitly select one of the types of arrangements.  There are five 
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possible styles: circle, tree, bipartite, spring, and planar.  The circle style places 
the vertices on a circle, equally spaced.

DrawGraph(Ex3plus,style=circle);

a

b

cd

z

The tree style is available only when the graph is, in fact, a tree — connected and with no circuits 
(refer to Chapter 11 of the text for more information on trees).  Ex3plus is a tree.  The
DrawGraph command with no style argument determined that it is a tree and drew it in the tree 
style automatically.  Below, we specify that style explicitly.

DrawGraph(Ex3plus,style=tree);

a

b c

d

z

The bipartite style can be used when the graph is bipartite, i.e., the vertices can be separated 
into two sets such that every edge has one end in one set and the other end in the other (see Section 



(10.12)(10.12)

O O 
(10.2)(10.2)

O O 

O O 
10.2).  Maple places the vertices of a bipartite set in two rows indicating the two sets.

DrawGraph(Ex3plus,style=bipartite);

a

b c

d

z

The spring style simulates a model where the vertices are taken to be particles repelling each other
and the edges are springs pulling vertices together.  

DrawGraph(Ex3plus,style=spring);

a

b

c

d

z

Finally, the planar style attempts to draw the graph as a planar graph, i.e., with no edges crossing
each other (see Section 10.7 for more on planar graphs).  If the graph is nonplanar, then the 
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command will result in an error.
DrawGraph(Ex3plus,style=planar);

a

b

c

d

z

Pseudographs: Loops and Multiple Edges
As mentioned above, Maple's GraphTheory package does not support graphs that have loops or 
multiple edges.  For example, if we try to add a loop to our Ex3plus graph, we get an error.  

AddEdge(Ex3plus,{{"c","c"}});
Error, (in GraphTheory:-AddEdge) invalid edge {"c"}

We also get an error if we try to create a directed graph with a loop.
Graph({["a","b"],["a","a"]});

Error, (in GraphTheory:-Graph) invalid edge/arc: ["a", "a"]
On the other hand, multiple edges are merely ignored.

Ex3plus := AddEdge(Ex3plus,{{"a","c"},{"c","a"}});
Ex3plus := Graph 44: an undirected unweighted graph with 5 vertices and 4 edge(s)
Edges(Ex3plus);

"a", "b" , "a", "c" , "a", "z" , "b", "d"
DrawGraph(Ex3plus);

a

b c

d

z
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There are ways to, at least partially, get around these two limitations.  By way of illustration, we will
attempt to create Exercise 5 from Section 10.1.  We begin with the simple version of the graph, that 
is, the graph with the loops and multiple edges omitted.  

Exercise5:= Graph({{"a","b"},{"a","c"},{"b","d"},{"c","d"}});
Exercise5 := Graph 45: an undirected unweighted graph with 4 vertices and 4 edge(s)
DrawGraph(Exercise5,style=planar);

a

bc

d

Loops
With regards to loops, we can mark vertices as having a loop by setting an attribute.  An attribute 
can be used to store arbitrary information about a vertex (or an edge, or for the graph as a whole) in 
the form tag=value.  The tag and value can be nearly anything at all.  In this case, we'll use the 
tag "loop" and the value will be true or false.  

The SetVertexAttribute command takes three arguments: the name of the graph, the name of
the vertex, and the attribute in the tag=value format.

SetVertexAttribute(Exercise5,"a","loop"=true);
SetVertexAttribute(Exercise5,"b","loop"=true);
SetVertexAttribute(Exercise5,"d","loop"=true);

We check the value of an attribute with the GetVertexAttribute command, which accepts a 
graph, a vertex, and the tag whose value is desired.  Note that if the attribute has not been set, this 
returns FAIL.  You can also list all the tags set for a given vertex using the
ListVertexAttributes command.  Note that this does not display the values, only the tags.

GetVertexAttribute(Exercise5,"a","loop");
true

GetVertexAttribute(Exercise5,"c","loop");
FAIL

ListVertexAttributes(Exercise5,"b");
"draw-pos-planar", "loop"
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We will use attributes to write a program that marks the vertices that have loops by changing their 
color to red.  The color change will be done with the HighlightVertex command.  The
HighlightVertex command requires two arguments: the name of the graph and a vertex or list 
or set of vertices to be highlighted.  It optionally accepts a color to use as the highlight.

Here is the procedure to highlight loops.
DrawLoops := proc(G::Graph)
  local v;
  uses GraphTheory;
  for v in Vertices(G) do
    if GetVertexAttribute(G,v,"loop") then
      HighlightVertex(G,v,red);
    end if;
  end do;
  DrawGraph(G);
end proc:
DrawLoops(Exercise5);

a

b c

d

Note that the color changes remain in effect until they are changed again.  So, if we draw the graph 
in the planar style, the vertices with loops remain red.

DrawGraph(Exercise5,style=planar);
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a

bc

d

You might not be surprised to discover that, in fact, HighlightVertex sets a vertex attribute.  
ListVertexAttributes(Exercise5,"a");

"draw-pos-planar", "loop", "draw-vertex-color", "draw-pos-default"
GetVertexAttribute(Exercise5,"a","draw-vertex-color");

COLOUR RGB, 1.00000000, 0., 0.

Multiple edges
We now turn our attention to the representation of multiple edges, which we will do with edge 
weights.  

Graph({[{"a","b"},2]});
Graph 46: an undirected weighted graph with 2 vertices and 1 edge(s)

DrawGraph((10.21));

a

b

2

Note that the edge above is specified as the list [{"a","b"},2].  This list consists of two 
elements: first is the set consisting of the endpoints of the edge, and second is the weight of the 
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edge.  DrawGraph displays the edge weight next to the edge.  

For an existing graph, we can assign weights to edges with the SetEdgeWeight command, 
which takes as arguments the name of the graph, the edge to be weighted, and the weight.  It returns
the previous weight of the edge.  The SetEdgeWeight command can only be used with a graph 
that Maple considers to be weighted.  To add weights to an unweighted graph, we first must use the
MakeWeighted command.  (Note, MakeWeighted does not change the original graph, it 
creates a weighted copy of the graph.)

Exercise5 := MakeWeighted(Exercise5);
Exercise5 := Graph 47: an undirected weighted graph with 4 vertices and 4 edge(s)
SetEdgeWeight(Exercise5,{"a","b"},2);

1
SetEdgeWeight(Exercise5,{"b","d"},2);

1
SetEdgeWeight(Exercise5,{"c","d"},2);

1
DrawGraph(Exercise5,style=planar);

a

bc

d

2
1

2
2

The "draw-edge-thickness" edge attribute increases the thickness of the line representing an edge.  
Let's expand on our DrawLoops procedure above to not only set the color of vertices with loops 
but to also give a visual representation of multiple edges by thickening them.  We set the thickness 
of edges to 3nK 2 where n is the weight of the edge (i.e., the number of edges) so that a single 
edge has thickness 1, and each additional edge increases the thickness by 3. 

DrawPseudograph := proc(G::Graph)
  local v, e, w;
  uses GraphTheory;
  for v in Vertices(G) do
    if GetVertexAttribute(G,v,"loop") then
      HighlightVertex(G,v,red);
    end if;
  end do;
  if IsWeighted(G) then
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    for e in Edges(G) do
      if GetEdgeWeight(G,e) > 1 then
        w := 3*GetEdgeWeight(G,e) - 2;
        SetEdgeAttribute(G,e,
             "draw-edge-thickness"=w);
      end if;
    end do;
  end if;
  DrawGraph(G);
end proc:
DrawPseudograph(Exercise5);

a

b c

d

2
1
2 2

DrawGraph(Exercise5,style=planar);

a

bc

d

2
1

2
2

Directed Graphs
Finally, let's consider an example of a directed graph.  Specifically, we will reproduce, as far as 
possible, Exercise 7 from Section 10.1.  We will create this graph with the Digraph command, 



O O 

(10.26)(10.26)

O O 

O O 

O O 

(10.12)(10.12)

O O 

O O 

(10.2)(10.2)

O O 

which works like Graph but emphasizes that the graph is directed.  

We also use the Trail command in this example.  This command is used to specify a sequence of 
edges.  For instance, Trail(1,2,3,1) is a shorter way to specify the edges [1,2], [2,3], 
and [3,1].  The Digraph and Graph commands allow us to include applications of Trail 
alongside a set containing additional edges.

Exercise7 := Digraph(["a","b","c","d","e"],
                     Trail("e","a","b","e","d","c","b"),
                     {["c","d"]});
Exercise7 := Graph 48: a directed unweighted graph with 5 vertices and 7 arc(s)
DrawGraph(Exercise7);

a

b

cd

e

Notice that the edge between c and d has two arrows representing the pair of edges between them.

Now we add the loops.
SetVertexAttribute(Exercise7,"c","loop"=true);
SetVertexAttribute(Exercise7,"e","loop"=true);
DrawLoops(Exercise7);
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a

b

cd

e

While this image displays all of the information contained in the graph, the position of the vertices 
makes it look very different from the drawing in the textbook.  We can override Maple's choice of 
vertex position with the SetVertexPositions command.  This command takes two arguments:
the graph and a list of pairs specifying the x and y coordinates of each vertex.  The first pair 
specifies the location of the first vertex, the second pair the second vertex, etc.

SetVertexPositions(Exercise7,[[0,0],[1,1],[2,1],[2,0],[1,0]])
;
DrawGraph(Exercise7);

a

b c

de

10.2 Graph Terminology and Special Types of Graphs
In this section we will see how to use Maple to perform computations related to some of the basic 
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terminology of graphs, such as calculating degree and checking for isolated vertices.  We will also 
look at some of the special families of graphs that Maple has built-in support for.  And we discuss 
subgraphs and unions of graphs in Maple.

Degree
Maple's GraphTheory package has a Degree function for determining the degree of a vertex.  
Given a graph and one of the graph's vertices, the function returns the number of edges incident to 
that vertex.  For example, we can check the degrees of vertices a and z of Ex3plus from above.

DrawGraph(Ex3plus);

a

b c

d

z

Degree(Ex3plus,"a");
3

Degree(Ex3plus,"z");
1

For a directed graph, the Degree command calculates the number of edges incident to the given 
vertex without regard for their direction.  But Maple also provides InDegree and OutDegree 
commands for calculating the directed values.  As an example, consider vertex d in the
Exercise7 graph from the previous section.

DrawGraph(Exercise7);

a

b c

de
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InDegree(Exercise7,"d");
2

OutDegree(Exercise7,"d");
1

Degree in pseudographs
Note that Maple's built-in commands for degree cannot take into account loops or multiple edges.  
We will write a procedure to rectify this, at least for pseudographs (undirected graphs which may 
have loops and multiple edges).  The procedures for directed graphs are left to the reader.

First, we reproduce Exercise 2 from Section 10.2 to use as an example.  Note that for the multiple 
edges, we use the weighted edge format [{v1,v2},w] which indicates an undirected edge 
between v1 and v2 with weight w.  For the single edges, we use the usual {v1,v2} format. The 
presence of weighted edges tells Maple that the graph is weighted and causes it to assign weight 1 
to edges that are not given a specific weight.

Exercise2 := Graph({[{"a","b"},3],{"a","e"},{"b","c"},{"b",
"d"},{"b","e"},[{"c","d"},3],{"d","e"}});
Exercise2 := Graph 49: an undirected weighted graph with 5 vertices and 7 edge(s)
SetVertexPositions(Exercise2,[[0,1],[1,1],[2,0],[1,0],[0,0]])
;
SetVertexAttribute(Exercise2, "a", "loop"=true);
SetVertexAttribute(Exercise2, "c", "loop"=true);
DrawPseudograph(Exercise2);

a b

cde

3

1
1

11

31

To calculate the degree of a vertex, we first check to see if the graph is weighted or not using the
IsWeighted command.  If it is not weighted (i.e., there are no multiple edges), we just use the 
built-in Degree function.  If it is weighted, then we use the command IncidentEdges to 
determine the edges incident to the given vertex.  The add command adds up the weights for us.  
Then we just have to check to see if there is a loop and, if so, add 2 to the degree.  

PseudoDegree := proc(G::Graph, v)
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  local E, e, d;
  uses GraphTheory;
  if IsWeighted(G) then
    d := add(GetEdgeWeight(G,e),e in IncidentEdges(G,v));
  else
    d := Degree(G,v);
  end if;
  if GetVertexAttribute(G,v,"loop") then
    d := d + 2;
  end if;
  return d;
end proc:
PseudoDegree(Exercise2,"a");

6
PseudoDegree(Exercise2,"d");

5

Some Special Simple Graphs
The textbook discusses several families of graphs, including complete graphs, cycles, wheels, and 
n-cubes.  Maple provides commands for easily creating these and other special simple graphs.

We begin with complete graphs.  Recall that a complete graph is a simple, undirected graph on a 
given number of vertices that has all possible edges between those vertices.  The complete graph on 
n vertices is denoted Kn.  The function CompleteGraph generates complete graphs.  For 
example, we can generate and display K5, the complete graph on 5 vertices.

DrawGraph(CompleteGraph(5));

1

2

34

5

Similarly, we may construct a cycle Cn with the CycleGraph command.  
DrawGraph(CycleGraph(9));
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56

7

8

9

For both the complete graphs and cycle graphs, if you prefer the vertices to be labeled with 
something other than the integers 1 through n, you can call the commands with a list of vertices 
instead.

DrawGraph(CompleteGraph(["a","b","c","d","e","f"]));

a

b

cd

e

f

A wheel Wn is obtained from the cycle graph Cn by adding one additional vertex adjacent to all n of 
the original vertices.  In Maple, the WheelGraph command is part of the SpecialGraphs 
package.

DrawGraph(SpecialGraphs[WheelGraph](5));
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0

1

2

34

5

To construct the n-cube Qn, we use the HypercubeGraph command.  Recall the definition of the 

hypercube graph given in Example 8 of Section 10.2.  There are 2n vertices labeled with the binary 
representations of the numbers 0 through 2n K 1.  Two vertices are adjacent if their binary 
representations differ in only one digit.   

DrawGraph(SpecialGraphs[HypercubeGraph](3));

000 001

010 011

100 101

110 111

The help page for the SpecialGraphs package lists all of the available graphs.  The reader is 
encouraged to spend some time exploring that package.

Bipartite Graphs
Another important class of graphs is the class of bipartite graphs.  A bipartite graph is one whose 
vertex set can be partitioned into two disjoint sets such that every edge has one vertex in each of the 
partitioning sets.  In other words, no two vertices in the same partitioning set are adjacent.  We write
V = A, B  to indicate that the vertex set V is partitioned into the sets A and B.
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The complete bipartite graph Km, n is a bipartite graph with bipartition V = A, B  such that there are
m vertices in A and n in B and such that there is an edge for every pair of vertices a 2 A and b 2 B.
The CompleteGraph command that was discussed earlier can be used to create complete bipartite
graphs by entering the two integers m and n.

DrawGraph(CompleteGraph(3,4));

1 2 3

4 5 6 7
Notice that Maple draws the complete bipartite graph with the two partitioning sets 1, 2, 3  and 

4, 5, 6, 7  along the top and bottom of the graph, respectively, to make the partition visually clear.

Maple can also produce complete multipartite graphs.  A k-partite graph is a graph in which the 
vertices can be partitioned into k disjoint sets so that no two vertices in any one of the partitioning 
sets are adjacent.  

DrawGraph(CompleteGraph(2,3,4));

1

2

3

4

56

7

8

9

Maple has a built in command for determining whether a graph is bipartite: IsBipartite.  This 
command takes two arguments: the name of a graph and an unused name in which the bipartition is 
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stored in the case the graph is bipartite.
IsBipartite(SpecialGraphs[HypercubeGraph](3),'examplePart');

true
examplePart;

"000", "011", "101", "110" , "001", "010", "100", "111"

It is worthwhile, however, recreating a version of IsBipartite from scratch in order to better 
understand the algorithm that determines whether the graph is bipartite and finds a bipartition.  
Instead of just returning true, our procedure will, if the graph is bipartite, display the graph with the 
vertices colored red and green to represent the partitioning.  Of course, if the graph is not bipartite, 
the procedure will return false.

The idea of the procedure is as follows.  (Note that this method is based on forming a spanning tree 
of the graph, a concept discussed in Section 11.4 of the textbook).

Pick a vertex v from the vertex set and place it in the set A.
Place all of v's neighbors in set B.
For each vertex w in the set B that has not already been processed, place all of w's neighbors 
that are not already in either set into the set A.
Repeat step 3, reversing A and B until no more vertices remain to be processed.
Once step 4 is complete, we have formed a disjoint partition of the vertices.  We then 
examine each edge of the graph and ensure that no edge has both ends in A or both ends in 
B.  If some edge fails that test, then the graph is not bipartite.  If all of the edges do pass the 
test, then the graph is bipartite and A, B  is a bipartition.

Here is the implementation of our procedure DrawBipartite.
DrawBipartite := proc(G::Graph)
  local V, E, AB, i, T, w, e;
  uses GraphTheory; 
  V := {op(Vertices(G))};
  E := Edges(G);
  w := V[1];
  AB[0] := {w};
  AB[1] := {};
  i := 0;
  while V <> {} do
    T := V intersect AB[i];
    i := i + 1 mod 2;
    for w in T do
      AB[i] := AB[i] union 
           ({op(Neighbors(G,w))} minus (AB[0] union AB[1]));
    end do;
    V := V minus T;
  end do;
  for e in E do
    if ((e[1] in AB[0]) and (e[2] in AB[0])) or
       ((e[1] in AB[1]) and (e[2] in AB[1])) then
      return false;
    end if;
  end do;  
  HighlightVertex(G,AB[0],red);
  HighlightVertex(G,AB[1],green);
  DrawGraph(G);
end proc:
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DrawBipartite(SpecialGraphs[HypercubeGraph](3));
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DrawBipartite(CompleteGraph(6));
false

DrawBipartite(SpecialGraphs[PrismGraph](6));
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Bipartite Graphs and Matchings
Maple can help us find maximal matchings in a bipartite graph.  We will use Figure 10a from 
Section 10.2 of the text as an example.  To improve readability, we have abbreviated the names to 
their first letter and shortened the descriptions of the jobs.

Figure10a := Graph({{"A","req"},{"A","test"},{"B","arch"},
{"B","imp"},{"B","test"},{"C","req"},{"C","arch"},{"C","imp"}
,{"D","req"}});

Figure10a := Graph 50: an undirected unweighted graph with 8 vertices and 9 edge(s)
DrawGraph(Figure10a);
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To find a maximal matching, we use the command BipartiteMatching.  The only allowed 
argument to this command is the name of the graph.  It returns a sequence with two elements: (1) 
the size of a maximal matching, that is, the largest possible number of edges in a matching; and (2) a
set of edges which forms one maximal matching. 

Figure10aResult := BipartiteMatching(Figure10a);
Figure10aResult := 4, "A", "test" , "B", "arch" , "C", "imp" , "D", "req"

The above output indicates that one maximal matching has Alvarez assigned to testing, Berkowitz to
architecture, Chen to implementation, and Davis to requirements.  (Note that Maple has produced a 
different matching than the one given in the text.)  

We can visualize this matching by having Maple highlight the edges that form the matching.  The 
edges of the matching are the second element in the output, so we access the set of edges as follows.

Figure10aResult[2];
"A", "test" , "B", "arch" , "C", "imp" , "D", "req"

We use that as the second argument to the HighlightEdges command.  Given a graph and a set 
of edges, HighlightEdges changes the color of the specified edges.  It can also take an optional 
third argument specifying the color to use.

HighlightEdges(Figure10a,Figure10aResult[2]);
DrawGraph(Figure10a);
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arch imp req test
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Subgraphs and Induced Subgraphs
Maple provides two primary methods for creating subgraphs.  The Subgraph command takes two
arguments: a graph and a list of edges.  It returns the graph whose edge set is the given set of edges 
and whose vertex set is the vertices that are an endpoint of one of the given edges.

hyper := SpecialGraphs[HypercubeGraph](3);
hyper := Graph 51: an undirected unweighted graph with 8 vertices and 12 edge(s)
subhyper := Subgraph(hyper,{{"100","101"},{"101","111"},
{"111","110"},{"110","100"}});

subhyper := Graph 52: an undirected unweighted graph with 4 vertices and 4 edge(s)
Vertices(subhyper);

"100", "101", "110", "111"
Edges(subhyper);

"100", "101" , "100", "110" , "101", "111" , "110", "111"

The second method for creating subgraphs is the InducedSubgraph command.  This command 
expects a graph and a set (or list) of vertices of the graph.  It returns the graph induced by the given 
vertices, that is, the graph consisting of the given vertices and all the edges from the original graph 
with endpoints in the set of vertices.

prism := SpecialGraphs[PrismGraph](6);
prism := Graph 53: an undirected unweighted graph with 12 vertices and 18 edge(s)
subprism := InducedSubgraph(prism,{7,8,9,10,11,12});

subprism := Graph 54: an undirected unweighted graph with 6 vertices and 6 edge(s)
Vertices(subprism);

7, 8, 9, 10, 11, 12
Edges(subprism);

7, 8 , 7, 12 , 8, 9 , 9, 10 , 10, 11 , 11, 12

Maple also provides the command HighlightSubgraph to help visualize the structure of a 
subgraph as part of the original graph.  By default, the vertices of the subgraph are set to green and 
the edges to red.  Those color choices can be changed by passing colors to the command.

HighlightSubgraph(hyper,subhyper);
DrawGraph(hyper);
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HighlightSubgraph(prism,subprism,red,pink);
DrawGraph(prism);
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Deleting Vertices and Edges
Subgraphs can also be produced by deleting vertices or edges.  The DeleteVertex and
DeleteEdge commands were described in the previous section, but are worth revisiting. 
DeleteVertex takes two arguments: a graph and a vertex or list of vertices.  The command 
returns a new graph with the vertex or vertices and all incident edges removed.  Here we highlight 
in green the subgraph of the complete graph K4 that is obtained by deleting a vertex.

ExDeleteVStart := CompleteGraph(5);
ExDeleteVStart :=

Graph 55: an undirected unweighted graph with 5 vertices and 10 edge(s)
ExDeletedV := DeleteVertex(CompleteGraph(5),1);

ExDeletedV := Graph 56: an undirected unweighted graph with 4 vertices and 6 edge(s)
HighlightSubgraph(ExDeleteVStart,ExDeletedV,green,green);
DrawGraph(ExDeleteVStart);
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DeleteEdge also takes two arguments, a name of an undirected graph and an edge or a set of 
edges.  The set of edges can also be specified as a Trail.  Recall from above that a Trail is a 
way to specify a set of edges by simply listing all of the vertices, in the order that the sequence of 
edges pass through them.  So, for example, we can specify the outer ring of K5 as follows.

Trail(1,2,3,4,5,1);
Trail 1, 2, 3, 4, 5, 1

Note that the Trail command does not seem to evaluate.  This is because the command is inert and
only operates as a part of another command.  We delete these edges from a complete graph.

ExDeleteE := CompleteGraph(5);
ExDeleteE := Graph 57: an undirected unweighted graph with 5 vertices and 10 edge(s)
DeleteEdge(ExDeleteE,Trail(1,2,3,4,5,1));

Graph 57: an undirected unweighted graph with 5 vertices and 5 edge(s)
DrawGraph(ExDeleteE);
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Observe that the DeleteEdge command modified its argument, as opposed to the
DeleteVertex command which did not.  To prevent modification of the graph, you can give the
inplace=false option to DeleteEdge.

Adding Vertices and Edges
The commands for adding vertices and edges have very similar forms.  AddVertex accepts a 
graph and either a vertex or a list of vertices to add to the graph.  Again, the original is not modified.

ExAddV := AddVertex(CompleteGraph(5),"a");
ExAddV := Graph 58: an undirected unweighted graph with 6 vertices and 10 edge(s)
DrawGraph(ExAddV);
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AddEdge acts on undirected graphs and accepts one edge, a set of edges, or a trail.  Also, without 
the inplace=false option, this command will alter the original graph.

ExAddE := CycleGraph(6);
ExAddE := Graph 59: an undirected unweighted graph with 6 vertices and 6 edge(s)
AddEdge(ExAddE,{{1,3},{2,4},{3,5},{4,6},{5,1},{6,2}});

Graph 59: an undirected unweighted graph with 6 vertices and 12 edge(s)
DrawGraph(ExAddE);
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DeleteEdge and AddEdge apply only for undirected graphs.  For directed graphs, use the 
commands DeleteArc and AddArc.  The syntax and behavior of these commands are exactly the
same as their undirected counterparts.
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Edge Contraction
Recall that an edge contraction for an edge e with endpoints u and v consists of deleting the edge, 
merging u and v into a new vertex w, and preserving all edges (other than e) which had u or v as an 
endpoint by setting w as the new endpoint.  As an illustration, consider the following graph. 

ExContraction := Graph({{1,2},{1,3},{2,3},{3,4},{4,5},{4,7},
{5,6},{6,7}});

ExContraction :=
Graph 60: an undirected unweighted graph with 7 vertices and 8 edge(s)
SetVertexPositions(ExContraction,[[0,1],[0,0],[1,0],[2,0],[3,
0],[3,1],[2,1]]);
HighlightEdges(ExContraction,{3,4});
DrawGraph(ExContraction);
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We will perform an edge contraction on the edge 3, 4 , which is highlighted in the image.  The
Contract command takes as arguments the name of the graph and an edge and performs the edge
contraction.  Note that the merged vertices will be represented by one of the vertices in the original 
pair, in this case vertex 3 will represent the pair.  Also note that this command does not modify the 
original graph.

ExContracted := Contract(ExContraction,{3,4});
ExContracted := Graph 61: an undirected unweighted graph with 6 vertices and 7 edge(s)

SetVertexPositions(ExContracted,[[0,1],[0,0],[1.5,0],[3,0],
[3,1],[2,1]]);
DrawGraph(ExContracted);
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Unions and Complements of Graphs
Recall that the union of two graphs is the graph obtained by taking the union of the sets of vertices 
and the sets of edges from the two graphs.  

As an example, we will "fill in" a prism graph by computing the union of the prism with the 
complete graph on the vertices in the inner ring.

unionA := SpecialGraphs[PrismGraph](6):
unionB := CompleteGraph([7,8,9,10,11,12]):
unionAB := GraphUnion(unionA,unionB):

To get this graph to display in the way we described it, as the prism filled in with the complete 
graph on the inner set of vertices, we need to set the positions of the vertices.  Otherwise, Maple 
will simply draw it in the circular style.  We can access the vertex locations used in the display of 
the prism and impose those locations on this graph.

SetVertexPositions(unionAB,GetVertexPositions(unionA));
DrawGraph(unionAB);
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Finally, we consider graph complements, described in Exercise 59 of Section 10.2.  The 
complement, G, of a graph G is the graph whose vertex set is the same as that of G, but whose edge
set is the set of all pairs of G that have no edge between them.  In other words, if G has n vertices, 
then the edge set of G is the complement of the edge set of G relative to Kn, the complete graph on 
n vertices.  Maple has a command to compute the complement of a graph: GraphComplement.

DrawGraph(SpecialGraphs[WheelGraph](7));
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DrawGraph(GraphComplement(SpecialGraphs[WheelGraph](7)));
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10.3 Representing Graphs and Graph Isomorphism
In this section we will see how to represent graphs in terms of adjacency lists, adjacency matrices, 
and incidence matrices.  We will then use the adjacency matrix representation to help determine 
whether two graphs are isomorphic.

Adjacency Lists
Recall that a representation of a graph as an adjacency list consists of the lists of neighbors of each 
vertex.  

In order to define a graph in Maple using an adjacency list, you apply the Graph command to a list 
of sets.  For example, 

Graph([{2,3},{1,3,4},{1,2},{2,5},{4}]);
Graph 62: an undirected unweighted graph with 5 vertices and 5 edge(s)

indicates that vertex 1 is incident to vertices 2 and 3; vertex 2 is incident to vertices 1, 3, and 4; 
vertex 3 is incident to vertices 1 and 2; and so on.  

Note that graphs constructed this way are undirected or directed depending on the content of the 
adjacency lists.  For example, in the previous example, removing 1 from the second set would make
vertex 1 incident to vertex 2, but not vice versa.  This would cause Maple to consider the graph 
directed.  

Also note that the vertex labels can be specified by providing a list of the labels, but the adjacency 
list always needs to consist of integers corresponding to the index of the vertex.

Graph(["a","b","c","d","e"],[{2,3},{1,3,4},{1,2},{2,5},{4}]);
Graph 63: an undirected unweighted graph with 5 vertices and 5 edge(s)

DrawGraph((10.59));
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In the other direction, we will write a procedure that, given a graph G, will print out the adjacency 
list of each of G's vertices.  In order for the procedure to work with both undirected and directed 
graphs, we will use the Maple command Departures.  For a directed graph, Departures(G,
v) returns a list of all of the terminal vertices for edges whose initial vertex is v.  If G is undirected, 
the same command returns all of v's neighbors.  Our procedure will allow for loops by checking the 
"loop" attribute and listing the vertex as adjacent to itself when the "loop" attribute is true.

AdjacencyLists := proc(G::Graph)
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  local v, AList;
  uses GraphTheory;
  for v in Vertices(G) do
    AList := Departures(G,v);
    if GetVertexAttribute(G,v,"loop") then
      AList := [v, op(AList)];
    end if;
    printf("Vertex %a is adjacent to %a\n",v,AList);
  end do;
end proc:
AdjacencyLists(CycleGraph(5));

Vertex 1 is adjacent to [2, 5]
Vertex 2 is adjacent to [1, 3]
Vertex 3 is adjacent to [2, 4]
Vertex 4 is adjacent to [3, 5]
Vertex 5 is adjacent to [1, 4]

AdjacencyLists(Exercise7);
Vertex "a" is adjacent to ["b"]
Vertex "b" is adjacent to ["e"]
Vertex "c" is adjacent to ["c", "b", "d"]
Vertex "d" is adjacent to ["c"]
Vertex "e" is adjacent to ["e", "a", "d"]

Adjacency Matrices
The adjacency matrix of a graph G with n vertices is the n# n matrix whose i, j  entry is 1 if there
is an edge from vertex i to vertex j and 0 if not.  As with adjacency lists, you can define a graph by 
passing an adjacency matrix to the Graph command.

As an example, we reproduce Example 4 from Section 10.3.
exAdjM := Matrix([[0,1,1,0],[1,0,0,1],[1,0,0,1],[0,1,1,0]]);

exAdjM :=

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

exAdjMGraph := Graph(["a","b","c","d"],exAdjM):
DrawGraph(exAdjMGraph);

a

b c

d
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Notice that this is the same graph as is produced in the textbook, with the exception of the locations 
of the vertices.

Maple also provides a command, AdjacencyMatrix, for computing the adjacency matrix of a 
simple graph.  

AdjacencyMatrix(SpecialGraphs[WheelGraph](7));
0 1 1 1 1 1 1 1

1 0 1 0 0 0 0 1

1 1 0 1 0 0 0 0

1 0 1 0 1 0 0 0

1 0 0 1 0 1 0 0

1 0 0 0 1 0 1 0

1 0 0 0 0 1 0 1

1 1 0 0 0 0 1 0

Incidence Matrices
The third representation of graphs we are considering are incidence matrices.  For a graph G with n 
vertices and m edges, the associated incidence matrix is the n# m matrix whose i, j  entry is 1 if 
vertex i is an endpoint of edge j.  

Unlike the other representations, Maple does not provide support for creating a graph from an 
incidence matrix.  We will write a procedure to do so, at least for simple matrices.  

To write this procedure, recall that the columns of the incidence matrix correspond to the edges of 
the graph.  So we will use the columns to produce the list of edges.  For each column, check each 
entry and add the row index to a set representing the edge.  Assuming the incidence matrix is 
properly formed, each column will have only two 1s so each column will produce a two-element set
representing an edge.  The set of all of these forms the set of edges, which we can pass to the
Graph command.   

GraphFromIncidence := proc(M::Matrix)
  local G, r, c, e, E;
  E := {};
  for c from 1 to LinearAlgebra[ColumnDimension](M) do
    e := {};
    for r from 1 to LinearAlgebra[RowDimension](M) do
      if M[r,c] = 1 then
        e := e union {r};
      end if;
    end do;
    E := E union {e};
  end do;
  G := GraphTheory[Graph](E);
end proc:

As an example of our procedure, we reverse Example 6 from Section 10.3 and use the incidence 
matrix given in the solution in order to reproduce the graph.

exIncMatrix := Matrix([[1,1,0,0,0,0],
                       [0,0,1,1,0,1],
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                       [0,0,0,0,1,1],
                       [1,0,1,0,0,0],
                       [0,1,0,1,1,0]]);

exIncMatrix :=

1 1 0 0 0 0

0 0 1 1 0 1

0 0 0 0 1 1

1 0 1 0 0 0

0 1 0 1 1 0

exIncMGraph := GraphFromIncidence(exIncMatrix);
exIncMGraph := Graph 64: an undirected unweighted graph with 5 vertices and 6 edge(s)

SetVertexPositions(exIncMGraph,[[0,1],[1,1],[2,1],[.5,0],
[1.5,0]]);
DrawGraph(exIncMGraph);

1 2 3

4 5

On the other hand, Maple does provide a command for computing the incidence matrix for a graph:
IncidenceMatrix.  

IncidenceMatrix(exIncMGraph);
1 1 0 0 0 0

0 0 1 1 1 0

0 0 1 0 0 1

1 0 0 1 0 0

0 1 0 0 1 1

For a directed graph, the IncidenceMatrix command returns a matrix with a 1 in position 
i, j  indicating that the vertex i is the head of edge j and an entry of K1 indicating that the vertex is 

the tail of the edge. 
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directedIncidence := Digraph(Trail(1,2,3,1),Trail(2,4,1));
directedIncidence := Graph 65: a directed unweighted graph with 4 vertices and 5 arc(s)

SetVertexPositions(directedIncidence,[[0,0],[1,1],[0,1],[1,0]
]);
DrawGraph(directedIncidence);
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4
IncidenceMatrix(directedIncidence);

1 0 0 K1 K1

K1 1 1 0 0

0 K1 0 1 0

0 0 K1 0 1

Isomorphism of Graphs
We conclude this chapter with a brief discussion of isomorphism of graphs and graph invariants.  
Determining whether two graphs are isomorphic is a difficult problem.  The naive approach 
(exhaustively checking each possible mapping) can require exponential time.

Graph invariants are useful tools for confirming that two graphs are not isomorphic.  While there is 
no complete collection of graph invariants that will definitively conclude whether two graphs are or 
are not isomorphic, they can, for many pairs of graphs, quickly demonstrate the impossibility of an 
isomorphism.  We will now create a procedure that will check some of the basic invariants that 
we've seen in this chapter: number of vertices, number of edges, whether the graph is directed, and 
whether it is bipartite.  We also introduce another invariant: the degree sequence.

For a graph G, the degree sequence is the list of the degrees of the vertices of the graph sorted in 
ascending order.  The Maple command DegreeSequence returns a list of the degrees of the 
vertices of a graph, listed in order of the vertices.  Since this depends on the order in which Maple 
stores the vertices, it is not an invariant.  However, applying the sort command to the result of the
DegreeSequence command returns the degree sequence for the graph, as we defined it, which is
an invariant.

The procedure defined below checks, one at a time, the invariants we have described.  If any of the 
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invariants indicate that the graphs are not isomorphic, the procedure prints a statement to that effect.
CheckInvariants := proc(G1::Graph, G2::Graph)
  local notIso;
  uses GraphTheory;
  notIso := false;
  if not (nops(Vertices(G1)) = nops(Vertices(G2))) then
    notIso := true;
    print("Different numbers of vertices");
  end if;
  if not (nops(Edges(G1)) = nops(Edges(G2))) then
    notIso := true;
    print("Different numbers of edges");
  end if;
  if IsDirected(G1) <> IsDirected(G2) then
    notIso := true;
    print("One is directed, one is undirected");
  end if;
  if IsBipartite(G1) <> IsBipartite(G2) then
    notIso := true;
    print("One is bipartite and the other is not");
  end if;
  if sort(DegreeSequence(G1))<>sort(DegreeSequence(G2)) then
    notIso := true;
    print("Degree sequences do not match");
  end if;
  if notIso then
    print("The graphs are not isomorphic");
  else
    print("The graphs MAY be isomorphic");
  end if;
end proc:
CheckInvariants(directedIncidence,exIncMGraph);

"Different numbers of vertices"
"Different numbers of edges"

"One is directed, one is undirected"
"Degree sequences do not match"
"The graphs are not isomorphic"

CheckInvariants(SpecialGraphs[HypercubeGraph](3),
SpecialGraphs[PrismGraph](4));

"The graphs MAY be isomorphic"

Maple provides a command, IsIsomorphic, for definitively determining whether or not two 
graphs are isomorphic.  This command applies only to undirected and unweighted graphs.  So, in 
particular, it can only be used on simple graphs, and not with any of the pseudographs we've created
using edge weights and vertex attributes.  The IsIsomorphic command accepts three arguments.
The first two arguments are the two graphs to be compared.  The third, optional, argument is a 
variable name in which the isomorphism, if it exists, is to be stored.

IsIsomorphic(SpecialGraphs[HypercubeGraph](3),SpecialGraphs
[PrismGraph](4),'hyperprismiso');

true
hyperprismiso;
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"000" = 1, "001" = 2, "010" = 4, "011" = 3, "100" = 5, "101" = 6, "110" = 8, "111" = 7

Isomorphic Pseudographs
The IsIsomorphic command applies only to simple graphs.  We now present a procedure to 
determine if two pseudographs (undirected but allowing loops and multiple edges) are isomorphic.  

PseudoIsomorphic := proc(G1::Graph, G2::Graph)
  local isoFound, V1, V2, P, permindex, i, j, n;
  uses GraphTheory;
  isoFound := false;
  V1 := Vertices(G1);
  n := nops(V1);
  if (n <> nops(Vertices(G2))) then
    print("Graphs have differing numbers of vertices.");
    return false;
  end if;
  P := combinat[permute](Vertices(G2));
  permindex := 1;
  while (not isoFound) and (permindex <= n!) do
    isoFound := true;
    V2 := P[permindex];
    for i from 1 to n do
      if Degree(G1,V1[i]) <> Degree(G2,V2[i]) then
        isoFound := false;
        next;
      end if;
    end do;
    for i from 1 to n do
      if (GetVertexAttribute(G1,V1[i],"loop") and 
            (not GetVertexAttribute(G2,V2[i],"loop")))
            or ((not GetVertexAttribute(G1,V1[i],"loop"))
              and GetVertexAttribute(G2,V2[i],"loop")) then
        isoFound := false;
        next;
      end if;
    end do;
    for i from 1 to n do
      for j from 1 to n do
        if i = j then next; end if;
        if HasEdge(G1,{V1[i],V1[j]}) 
            xor HasEdge(G2,{V2[i],V2[j]}) then
          isoFound := false;
          break;
        elif IsWeighted(G1) 
             and HasEdge(G1,{V1[i],V1[j]}) then
          if GetEdgeWeight(G1,{V1[i],V1[j]}) 
               <> GetEdgeWeight(G2,{V2[i],V2[j]}) then
            isoFound := false;
            break;
          end if;
        end if;
      end do;
      if not isoFound then
        break;
      end if;
    end do;
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    permindex := permindex + 1;
  end do;
  if isoFound then
    printf("Found an isomorphism\n");
    for i from 1 to n do
      printf("%a -> %a\n",V1[i],V2[i]);
    end do;
  else
    printf("There is no isomorphism");
  end if;
end proc:

The basic idea of this procedure is that a mapping from the graph G1 to the graph G2 is represented 
by a permutation of the vertices of G2.  More specifically, the variable V1 is set to the list of the 
vertices of the graph G1, and does not change.  The variable V2 does change: for each iteration of 
the main while loop, V2 is set to a different permutation of the vertices of the graph G2.  This 
represents the map that sends the vertex in the ith position of V1 to the vertex in the ith position in
V2.  The bulk of the procedure is concerned with checking to see if this map is an isomorphism.

Other local variables used in the procedure are n, i, j, permindex, and P.  The variable n is the 
number of vertices in G1, which the procedure confirms is the same as the number in G2.  The 
variables i and j are indices used when checking the edges of the graphs.  P is the list of all 
permutations of the vertices of G2 and permindex is a counter used to reference which 
permutation is under consideration.  

The last variable, isoFound, is a boolean variable used to end the while loop if an isomorphism is 
found.  The isoFound variable is initialized to false — since the while loop includes the not 
isoFound condition, a value of false for the variable allows the while loop to continue.  Inside the 
while loop, isoFound is immediately set to true, indicating the assumption that the current 
permutation represents an isomorphism.  If one of the tests inside the while loop determines that it is
not an isomorphism, it sets isoFound back to false, allowing the while loop to continue.  If none 
of the tests do so, then isoFound remains true, the while loop is exited, and the procedure 
displays the isomorphism.  The other possible reason to exit the while loop is that the permutations 
have been exhausted, in which case the procedure reports that the graphs are not isomorphic.

We also use the next and break commands.  Inside of a loop, a next statement causes Maple to
skip the rest of the statements in the do block and move on to the next iteration of the loop.  If there 
is an index of iteration, as in a for loop, that index is incremented, and the termination conditions are
checked.  The next command is a useful way to avoid unnecessary computation and slightly 
improve performance.  In this case, once we know that the permutation is not an isomorphism, it's 
not necessary to continue with the tests.  The break command is similar, but instead of moving to 
the next iteration of the loop, break causes the loop to immediately terminate.  We use break 
when testing the edges to avoid continuing to test after finding an incompatible pair.

Within the while loop, the PseudoIsomorphic procedure performs three tests.  First, it makes 
sure that the degrees of corresponding vertices are the same.  If any are different, it immediately 
knows that the permutation cannot represent an isomorphism, saving it from more computationally 
expensive tests.

Second, it tests to ensure that corresponding vertices are both looped or both not looped.  If one is 
marked as having a loop and the other is not, then the permutation is not an isomorphism.

Finally, the procedure tests to make sure that the graphs have the same edges.  The variables i and
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j represent indices to vertices, so that the double for loops are looping through every pair of 
vertices.  The xor test checks to see if the result of HasEdge on corresponding vertices returns 
different values.  That is, if one graph has the specified edge and the other does not, then one of the
HasEdge statements will return true and the other false, resulting in their xor to be true.  In this 
case, the graphs do not coincide.  The second part of the test applies only to weighted graphs that 
have the edge in question.  In that case, the procedure checks to see that the weights of the edges are
the same, indicating that the multiple edges coincide.

As a first example, we check that this procedure agrees with IsIsomorphic on a pair of simple 
graphs.

PseudoIsomorphic(SpecialGraphs[HypercubeGraph](3),
SpecialGraphs[PrismGraph](4));

Found an isomorphism
"000" -> 1
"001" -> 2
"010" -> 4
"011" -> 3
"100" -> 5
"101" -> 6
"110" -> 8
"111" -> 7

Here is a pair of pseudographs.  The procedure produces an isomorphism between them.
IsoTest1 := Graph({[{1,2},2],{1,3},[{2,4},2],{3,4}}):
SetVertexAttribute(IsoTest1,1,"loop"=true);
IsoTest2 := Graph({[{"A","C"},2],[{"A","D"},2],{"B","C"},
{"B","D"}}):
SetVertexAttribute(IsoTest2,"D","loop"=true);
SetVertexPositions(IsoTest1,[[0,1],[1,1],[0,0],[1,0]]);
SetVertexPositions(IsoTest2,[[0,1],[1,1],[0,0],[1,0]]);
DrawPseudograph(IsoTest1);

1 2

3 4

2

1 2

1

DrawPseudograph(IsoTest2);
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1 1

PseudoIsomorphic(IsoTest1,IsoTest2);
Found an isomorphism
1 -> "C"
2 -> "A"
3 -> "B"
4 -> "D"

10.4 Connectivity
Maple provides a number of commands related to connectivity of graphs.  

Connectedness in Undirected Graphs
The first such command that we consider is the IsConnected command.  This command takes 
one argument, the name of the graph, and returns true or false.  As an example, consider the 
complete bipartite graph K2, 3 and its complement.

DrawGraph(CompleteGraph(2,3),style=circle);

1

2

34

5

IsConnected(CompleteGraph(2,3));
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true
DrawGraph(GraphComplement(CompleteGraph(2,3)),style=circle);
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34

5

IsConnected(GraphComplement(CompleteGraph(2,3)));
false

Connectivity and Vertices
In addition to testing whether a graph is connected or not, Maple also has commands for 
determining which vertices are cut vertices (which Maple refers to as articulation points) and for 
calculating both the vertex and edge connectivity.

First, let us recreate two of the examples from Figure 4 of Section 10.4, namely G1 and G3.
Figure4G1 := Graph({{"a","b"},{"b","c"},{"b","d"},{"c","d"},
{"c","e"},{"e","f"},{"e","g"},{"e","h"},{"f","g"},{"g","h"}})
;

Figure4G1 := Graph 66: an undirected unweighted graph with 8 vertices and 10 edge(s)
SetVertexPositions(Figure4G1,[[0,1],[0,0],[1,0],[1,1],[2,0],
[2,1],[3,1],[3,0]]);
DrawGraph(Figure4G1);

a

b c

d

e

f g

h
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Figure4G3 := Graph({{"a","b"},{"a","g"},{"b","c"},{"b","g"},
{"c","d"},{"c","f"},{"d","e"},{"e","f"},{"f","g"}});

Figure4G3 := Graph 67: an undirected unweighted graph with 7 vertices and 9 edge(s)
SetVertexPositions(Figure4G3,[[0,0],[1,1],[2,1],[3,1],[3,0],
[2,0],[1,0]]);
DrawGraph(Figure4G3);

a

b c d

efg

To find the cut vertices (or articulation points), we use the command ArticulationPoints.  
This command takes only one argument, the name of a graph, and returns a list of vertices that are 
articulation points, i.e., vertices which, if removed, would disconnect the graph. 

ArticulationPoints(Figure4G1);
"b", "c", "e"

ArticulationPoints(Figure4G3);

These results indicate that G1 has three cut vertices while G3 has none.  

In other words, G3 is nonseparable.  Recall that a nonseparable graph will have vertex connectivity 

k G R 2 and is thus referred to as 2-connected or biconnected, provided it has at least 3 vertices.  
The Maple command IsBiconnected also indicates that Figure4G3 is nonseparable.

IsBiconnected(Figure4G3);
true

Finally, the VertexConnectivity command computes k G , the minimum number of vertices 
that must be deleted in order to disconnect a graph.  The only argument is the name of the graph.

VertexConnectivity(Figure4G1);
1

VertexConnectivity(Figure4G3);
2
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Finding a vertex cut
We conclude our discussion of vertex connectivity by developing a procedure for determining 
which sets of vertices in a graph G form a vertex cut of size k G .  That is, we we want to find a 
minimal set of vertices which separate the graph.  Maple tells us how many vertices are in such a 
set, but does not have a command for finding them.

First, we create a command that will test whether or not a given set of vertices is or is not a vertex 
cut.  We do this by simply removing the vertices from the graph with the DeleteVertex 
command and then testing the resulting graph for connectedness with IsConnected.  

IsVertexCut := proc(G::Graph, V::list) 
  local H, iscut;
  uses GraphTheory;
  H := DeleteVertex(G,V);
  iscut := not IsConnected(H);
  return iscut;
end proc:

We see that, in G3, c, f  separates the graph, while a, d  does not.
IsVertexCut(Figure4G3,["c","f"]);

true
IsVertexCut(Figure4G3,["a","d"]);

false

Now we write the procedure to find all minimal vertex cuts.  We will do this by brute force.  First, 
the Vertices command produces the list of vertices in the graph.  Then the choose command 
from the combinat package takes the list of vertices and the value of k G  and produces a list of 
all sublists of vertices of that size.  Then we check each of those sublists with IsVertexCut to 
see which are vertex cuts. 

FindVertexCuts := proc(G::Graph)
  local k, subLists, testVerts, result;
  uses GraphTheory; 
  k := VertexConnectivity(G);
  subLists := combinat[choose](Vertices(G),k);
  result := [];
  for testVerts in subLists do
    if IsVertexCut(G,testVerts) then
      result := [op(result),testVerts];
    end if;
  end do;
  return result;
end proc:

We apply this to G3 to find the possible minimum vertex cuts and then we redraw the graph with 
one of the choices highlighted red.

Figure4G3VCs := FindVertexCuts(Figure4G3);
Figure4G3VCs := "b", "f" , "b", "g" , "c", "e" , "c", "f" , "c", "g" , "d", "f"
HighlightVertex(Figure4G3,Figure4G3VCs[1],red);
DrawGraph(Figure4G3);
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Connectivity and Edges
Maple offers similar functionality for edges.  Unlike for vertices, however, Maple does not include 
a command like ArticulationPoints that will list all of a graph's bridges (recall that a bridge 
or a cut edge is an edge whose removal will disconnect the graph).  Maple does, however, have a 
command to test whether an particular edge is a bridge.  

The IsCutSet command takes two arguments.  The first is the name of the graph.  The second 
argument can be a single edge, in which case the function determines whether that edge is a bridge 
or not.  Alternately, the second argument may be a set of edges, in which case the function 
determines whether or not that set is an edge cut.  For example, we see that edge c, e  in G1 is a 
bridge.

IsCutSet(Figure4G1,{"c","e"});
true

We can also see that the pair of edges b, c  and g, f  form an edge cut of G3.
IsCutSet(Figure4G3,{{"b","c"},{"g","f"}});

true

We now use this to create a command analogous to ArticulationPoints.  This procedure 
works by checking each edge to see if its removal disconnects the graph.  Remember that, unlike
DeleteVertex, the default behavior of DeleteEdge is to replace the original graph with the 
graph with the given edge removed.  We override this default behavior by using the option
inplace=false.

Bridges := proc(G::Graph)
  local H, edges, E, bridges;
  uses GraphTheory;
  edges := Edges(G);
  bridges := [];
  for E in edges do
    H := DeleteEdge(G,E,inplace=false);
    if not IsConnected(H) then
      bridges := [op(bridges),E];
    end if;
  end do;
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  return bridges;
end proc:

We can use this to see that G1 has two bridges and that G3 has none.
Bridges(Figure4G1);

"a", "b" , "c", "e"
Bridges(Figure4G3);

Finally, Maple will compute l G , the edge connectivity of the graph, with the command
EdgeConnectivity.  Just like VertexConnectivity, the only argument that is accepted is 
the name of the graph, and the command returns the minimum number of edges that must be deleted
in order to disconnect the graph.  

We have already seen that G1 has bridges, and thus has edge connectivity 1.
EdgeConnectivity(Figure4G1);

1
On the other hand, the Bridges command verified that G3 does not have bridges, but it does have 
an edge cut of size 2.

EdgeConnectivity(Figure4G3);
2

Connectedness in Directed Graphs
When used with a directed graph, IsConnected returns true if the underlying undirected graph is
connected.  That is, for directed graphs, IsConnected determines whether or not the graph is 
weakly connected.  To check if a directed graph is strongly connected, Maple has the command
IsStronglyConnected.  

We consider a pair of examples.
strongEx := Digraph(Trail(1,2,3,4,1),{[1,5],[5,2],[3,5],[5,4]
}):
SetVertexPositions(strongEx,[[0,1],[1,1],[1,0],[0,0],[0.5,
0.5]]);
DrawGraph(strongEx);

1 2

34

5

IsConnected(strongEx);
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true
IsStronglyConnected(strongEx);

true
Applying IsConnected and IsStronglyConnected indicates that this graph is strongly 
connected.

IsConnected(strongEx);
true

IsStronglyConnected(strongEx);
true

The second example we create will be seen to be weakly, but not strongly, connected.
weakEx := Digraph(Trail(4,2,1,3,4,5),Trail(6,8,9,7,6,5));
weakEx := Graph 68: a directed unweighted graph with 9 vertices and 10 arc(s)
SetVertexPositions(weakEx,[[0,1],[1,1],[0,0],[1,0],[2,0],[3,
0],[4,0],[3,1],[4,1]]);
DrawGraph(weakEx);

1 2

3 4 5 6 7

8 9

IsConnected(weakEx);
true

IsStronglyConnected(weakEx);
false

Maple also has commands to extract the connected components of a graph that is not connected.  
The ConnectedComponents command takes a graph as input and returns a list of lists of 
vertices.  For directed graphs, ConnectedComponents is used to determine the weakly 
connected components of the graph.  The strongly connected components are obtained with
StronglyConnectedComponents.  

ConnectedComponents(GraphComplement(CompleteGraph(2,3)));
1, 2 , 3, 4, 5
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The above indicates that the complement of K2, 3 has two connected components.  The first 
component consists of the subgraph comprised of vertices 1 and 2, and the second connected 
component consists of the other three vertices.

Coloring the Components
Now we present a procedure that will color code the strongly connected components in a directed 
graph.  (This procedure will color up to 5 components before repeating colors.)

HighlightSCC := proc(G::Graph)
  local colorList, components, c, i, H;
  colorList := [red,green,cyan,brown,gray];
  components := StronglyConnectedComponents(G);
  c := 0;
  for i from 1 to nops(components) do
    c := c + 1;
    if c > 5 then c := 1; end if;
    if nops(components[i]) = 1 then
      HighlightVertex(G,components[i],colorList[c]);
    else
      H := InducedSubgraph(G,components[i]);
      HighlightSubgraph(G,H,colorList[c],colorList[c]);
    end if;
  end do;
  DrawGraph(G);
end proc:
HighlightSCC(weakEx);
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8 9

Counting Paths Between Vertices
The last topic that we will consider in this section is determining the number of paths between two 
vertices of a given length.  As described in the textbook, if A is the adjacency matrix for a graph 
(which may be undirected or directed and may include loops and multiple edges), then the i, j  
entry of the matrix Ar is the number of paths of length r from vertex i to vertex j.  

As an example, consider the strongEx graph from above.   We can obtain its adjacency matrix by 
applying the AdjacencyMatrix command to the name of the graph.

Amatrix := AdjacencyMatrix(strongEx);
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Amatrix :=

0 1 0 0 1

0 0 1 0 0

0 0 0 1 1

1 0 0 0 0

0 1 0 1 0

Next, compute some powers of the adjacency matrix.
Amatrix^2, Amatrix^3, Amatrix^4;

0 1 1 1 0

0 0 0 1 1

1 1 0 1 0

0 1 0 0 1

1 0 1 0 0

,

1 0 1 1 1

1 1 0 1 0

1 1 1 0 1

0 1 1 1 0

0 1 0 1 2

,

1 2 0 2 2

1 1 1 0 1

0 2 1 2 2

1 0 1 1 1

1 2 1 2 0

Amatrix^5, Amatrix^6, Amatrix^7;
2 3 2 2 1

0 2 1 2 2

2 2 2 3 1

1 2 0 2 2

2 1 2 1 2

,

2 3 3 3 4

2 2 2 3 1

3 3 2 3 4

2 3 2 2 1

1 4 1 4 4

,

3 6 3 7 5

3 3 2 3 4

3 7 3 6 5

2 3 3 3 4

4 5 4 5 2

We see that there are 4 paths of length 6 from vertex 3 to vertex 5, since the 3, 5  entry in the 6th 
power of the adjacency matrix is 4.  We also see that there are cycles of length 3 for every vertex 
and there are no cycles of length less than 3.  Finally, we know that the shortest path from vertex 2 
to vertex 1 is of length 3, since the 2, 1  entry is 0 for the first and second powers of the matrix.

10.5 Euler and Hamilton Paths
In this section we will show how to use Maple to solve two problems that seem closely related, but 
which are quite different in computational complexity.  The two problems that will be analyzed are 
the problem of finding a simple circuit that contains every edge exactly once (an Euler circuit) and 
the problem of finding a simple circuit that contains every vertex exactly once (a Hamilton circuit).  
(Note that the textbook uses the term circuit while Maple uses the word cycle in its help pages.  
These two terms are synonymous.)

Euler Circuits in Simple Graphs
Maple comes equipped with a command to determine if a given simple graph has n Euler circuit or 
not.  This command, IsEulerian, takes one or two arguments.  The required argument is the 
graph.  The second argument is an optional name in which Maple will store the Eulerian circuit it 
finds.  As an example, we'll have Maple find an Euler circuit on K5.

IsEulerian(CompleteGraph(5), 'K5EulerCircuit');
true

K5EulerCircuit;
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Trail 1, 2, 3, 1, 4, 2, 5, 3, 4, 5, 1

Now we'll have Maple help us visualize this path by creating an animation that successively 
highlights the edges in the path.  To do this we will use the animate command.  The animate 
command takes at least three arguments.  The first is a Maple procedure that generates a plot.  
Typically, one uses one of the built-in commands, such as plot or plot3d as the first argument.  
In this case, however, we will create our own procedure, plotPath, for the first argument.  We 
will return to plotPath in a moment.  The second argument to the animate command is a list 
containing the arguments to the command given in the first argument.  The third argument will be a 
parameter with a range specification of the form t=a..b which specifies the parameter used in the 
construction of the individual plots that make up the animation and their bounds.  We will also be 
using two options.  The paraminfo=false option turns off the display of the value of the 
parameter, while frames=50 tells Maple to create 50 frames instead of the default 25, which in 
this case has the effect of slowing down the animation.  (Note: there is no way to change the frame 
rate of the animation with the command line, but you can increase and decrease the frames per 
second (FPS) in the context menu of an animation.  You can also step through the animation one 
frame at a time to better see the progress of the path.)

We now return to the plotPath procedure, which will be the first argument to the animate 
command.  The plotPath procedure will take as arguments a graph, a list of vertices representing
a path, and a number representing the progress along the path (e.g., 1 indicates one edge traversed, 2
indicates two edges traverse, etc.).  

It first makes a copy of the graph so that the modifications to the edge colors do not affect the 
original graph.  The procedure uses the local variable N to ensure that it does not exceed the length 
of the list given in the second parameter and to ensure that the value representing the progress along 
the path is an integer.  Assuming the requested path length is not 0, then the procedure takes a slice 
out of the list of vertices to represent a path of that length and highlights that "trail."  In the case that 
the third argument is 0, it skips the highlighting steps and just draws the graph.

plotPath := proc(G::Graph, P::list, n)
  local Gcopy, path, N;
  uses GraphTheory;
  Gcopy := CopyGraph(G);
  if n > nops(P) - 1 then 
    N := nops(P) - 1; 
  else
    N := floor(n);
  end if;
  if N <> 0 then
    path := P[1..(N+1)];
    HighlightTrail(Gcopy,path);
  end if;
  DrawGraph(Gcopy);
end proc:

Now we use the plotPath procedure as the basis for the following animatePath procedure.  
This procedure will take as input a graph and a path and create the animation using the animate 
command.  

animatePath := proc(G::Graph, P::list)
  local t;
  plots[animate](plotPath, [G,P,t], t=0..(nops(P)-1),
                   paraminfo=false, frames=50);
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end proc:

To use this procedure, we just need to turn the "trail" that IsEulerian found above into a list of 
vertices.

K5CircuitList := [op(K5EulerCircuit)];
K5CircuitList := 1, 2, 3, 1, 4, 2, 5, 3, 4, 5, 1

animatePath(CompleteGraph(5),K5CircuitList);
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2

34
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You can see the Euler circuit traced out by clicking on the image of the graph and then clicking on 
the play button at the top of the window.

Euler Circuits in Multigraphs
As usual, Maple's built-in function only applies to simple graphs, i.e., graphs with no loops or 
multiple edges.  We will examine the problem of finding Euler circuits in multigraphs.  We know, 
from Theorem 1 of Section 10.5, that a connected multigraph with at least two vertices has an Euler 
circuit if and only if the degree of every vertex is even.  It is easy to see that Theorem 1 extends to 
pseudographs as well.  Using this fact, we can write a simple procedure for determining whether or 
not a pseudograph has an Euler circuit.

IsPseudoEulerian := proc(G::Graph)
  local v;
  uses GraphTheory;
  if IsDirected(G) then
    return FAIL;
  end if;
  if (not IsConnected(G)) or (nops(Vertices(G)) < 2) then
    return false;
  end if;
  for v in Vertices(G) do
    if type(PseudoDegree(G,v),odd) then
      return false;
    end if;
  end do;
  return true;
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end proc:

We can use this procedure to solve the Bridges of Königsberg problem.  First we create a 
representation of the town and its bridges as a graph (this replicates Figure 2 in Section 10.5).  Then
we apply the test.

Konigsberg := Graph({[{"A","B"},2], [{"A","C"},2],
                      {"A","D"}, {"B","D"}, {"C","D"}});

Konigsberg := Graph 69: an undirected weighted graph with 4 vertices and 5 edge(s)
SetVertexPositions(Konigsberg,[[0,1],[0,0],[0,2],[1,1]]);
DrawPseudograph(Konigsberg);
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IsPseudoEulerian(Konigsberg);
false

Now that we have a test that tells us if a circuit exists, we will implement Algorithm 1 from Section 
10.5 in order to find an Euler circuit, if it exists.  The following algorithm will find an Euler circuit 
in a multigraph.  It could also be applied to a pseudograph without generating an error, but it will 
not include loops in the circuit.

FindMultiEuler := proc(G::Graph)
  local H, circuit, subC, i, v, insertPoint, e, w, 
         buildingSub, oldC;
  uses GraphTheory;
  if not IsPseudoEulerian(G) then
    return false;
  end if;
  H := CopyGraph(G);
  circuit := [];
  while Edges(H) <> {} do
    # find a starting point
    if circuit = [] then
      subC := [Vertices(H)[1]];
    else
      for i from 1 to nops(circuit) do
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        if Neighbors(H,circuit[i]) <> [] then
          subC := [circuit[i]];
          insertPoint := i;
          break;
        end if;
      end do;
    end if;
    # build a subcircuit
    buildingSub := true;
    while buildingSub do
      v := subC[-1];
      w := Neighbors(H,v)[1];
      e := {v,w};
      if IsWeighted(H) then
        if GetEdgeWeight(H,e) > 1 then
          SetEdgeWeight(H,e,GetEdgeWeight(H,e)-1);
        else
          DeleteEdge(H,e);
        end if;
      else
        DeleteEdge(H,e);
      end if;
      subC := [op(subC),w];
      if w = subC[1] then
        buildingSub := false;
      end if;
    end do;
    # splice the subcircuit into the main circuit
    if circuit = [] then
      circuit := subC;
    else
      oldC := circuit;
      circuit := [];
      if insertPoint >= 2 then
        circuit := oldC[1..(insertPoint-1)];
      end if;
      circuit := [op(circuit),op(subC)];
      if insertPoint < nops(oldC) then
        circuit:=[op(circuit),op(oldC[(insertPoint+1)..-1])];
      end if;
    end if;
  end do;
  return circuit;
end proc:

The program begins with a use of IsPseudoEulerian in order to avoid searching for a circuit 
that cannot exist.  It then assigns to the variable H a copy of the graph.  It is this copy that is used 
throughout the rest of the procedure, rather than the graph G that was passed to the algorithm.  The 
benefit of using a copy is that the procedure will be able to manipulate it as the algorithm proceeds,
e.g., by deleting edges of H once they are included in the circuit so that those edges are not reused.

Recall the description of Algorithm 1 in Section 10.5.  There are two key ideas at the heart of this 
algorithm.  The first is that, for a graph whose vertices all have even degree, if you pick any vertex 
to start at and follow edges at random but without repetition, you will definitely return to the original
vertex and create a circuit.  The second key idea is that (for a connected graph), if your circuit does 



O O 

O O 

(10.65)(10.65)

(10.74)(10.74)

O O 

(10.70)(10.70)

O O 

O O 

(10.62)(10.62)

(10.29)(10.29)

O O 

O O 

(10.71)(10.71)

(10.97)(10.97)

(10.105)(10.105)

O O 

(10.101)(10.101)

O O 

(10.89)(10.89)

O O 

O O 

O O 

(10.12)(10.12)

(10.2)(10.2)

O O 

O O 

O O 

O O 

O O 

O O 

not include all of the edges of the graph, then some vertex used in the existing circuit can be made 
the starting point for a new subcircuit.  This subcircuit can then be spliced into the main circuit.  
This will eventually use all the edges and the result will be a Euler circuit.

The variable circuit will hold the main circuit that, at the end of the procedure, is output to the 
user.  The circuit will be stored as a list of the vertices through which the circuit passes and is 
initialized to the empty list.  The main while loop consists of three parts: (1) determining the starting 
point for the subcircuit (named subC); (2) building the subcircuit; and (3) splicing the subcircuit 
into the main circuit.

The first step, finding the starting point for the subcircuit, depends on the state of the main circuit.  
If circuit is the empty list (i.e., it is the first pass through the main loop), then the starting point 
is the first vertex in the graph.  If the main circuit is not empty, then the else clause looks at the 
vertices in the main circuit to find one that has neighbors (since edges are deleted from H as they are 
added to the circuit, only vertices that are an endpoint of an unused edge have neighbors).  The first 
vertex that has a neighbor is used as the starting point for the subcircuit.  The insertPoint 
variable is used to keep track of the index, relative to circuit, of the starting vertex for the 
subcircuit.  This is used when the subcircuit is spliced into the main circuit.

The second step is to build subC.  The buildingSub variable is used to control the while loop.  
It is initialized to true and is set to false once subC has returned to its starting vertex and is thus a 
circuit.  The variable v is set to the last vertex currently included as part of the subcircuit and w 
represents a neighbor of v.  The variable e = {v,w} is therefore an edge in the graph that has not 
already been traversed by the circuit.  The nested if statements that follow the assignment of e effect 
the removal of the edge e from the graph H.  In the case that H is weighted (i.e., is a multigraph), the
weight is either decreased by 1 to represent the removal of one of several edges between the vertices
or is deleted if there is only one such edge.  In the unweighted case, the edge is always deleted from 
the graph.  After the edge has been deleted, the vertex w is added to the subcircuit, representing the 
inclusion of the edge.  Finally, the newest vertex is compared with the starting vertex to determine if
the circuit has been closed.  If the new vertex closes the circuit, then the buildingSub variable is 
set to false, which causes the while loop to terminate.  Otherwise, the while loop continues building 
the subcircuit.

The third step, once the subcircuit has been built, is to splice it into the main circuit.  In the first pass
through the main loop, the main circuit is empty and so subC is just copied into circuit.   In 
subsequent passes of the main loop, the variable oldC is used to store the "old" circuit.  Recall that
insertPoint stores the index of the starting vertex for subC.  The goal is to put the subcircuit in
that location.  The new, more complete, circuit is built in three pieces.  First, the part of the old 
circuit that occurs before the insertion point (assuming the insertion point is not the initial vertex of 
the main circuit).  Second, the subcircuit.  And third, the part of the old circuit that comes after the 
insertion point (assuming the insertion point is not the final vertex).

The main while loop continues until all the edges of the graph have been included in the circuit, 
making circuit an Euler circuit for the graph.  As an example, consider Exercise 5 from Section 
10.5.  

Ex5 := Graph({{"a","b"},[{"a","e"},3],{"b","c"},{"b","d"},
{"b","e"},[{"c","d"},2],{"c","e"},{"d","e"}});

Ex5 := Graph 70: an undirected weighted graph with 5 vertices and 8 edge(s)
SetVertexPositions(Ex5,[[0,2],[1,2],[2,.5],[1,1],[0,1]]);
DrawPseudograph(Ex5);
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Ex5Path := FindMultiEuler(Ex5);
Ex5Path := "a", "e", "c", "d", "e", "a", "b", "c", "d", "b", "e", "a"

Note that the edge between a and e is traversed three times: as the first edge in the circuit, shortly 
before the middle of the circuit, and again as the last edge in the circuit.  This is consistent with there
being three edges between a and e.

The following procedures can be used to create animations to visualize the circuit in an multigraph, 
as animatePath did above for simple graphs.  HighlightMultiTrail replaces
HighlightTrail and serves to transition multi-edges from blue to red in steps.  Note the use of 
edge attributes to track the number of times a multi-edge has been traversed.

HighlightMultiTrail := proc(G::Graph, T)
  local H, i, e, x, redshade;
  uses GraphTheory;
  if not IsWeighted(G) then
    H:= MakeWeighted(G);
  else 
    H := CopyGraph(G);
  end if;
  for e in Edges(H) do
    SetEdgeAttribute(H,e,"traversed"=0);
  end do;
  for i from 2 to nops(T) do
    e := {T[i-1],T[i]};
    x := GetEdgeAttribute(H,e,"traversed")+1;
    SetEdgeAttribute(H,e,"traversed"=x);
  end do;
  for e in Edges(G) do
    redshade := GetEdgeAttribute(H,e,"traversed")           
                                    /GetEdgeWeight(H,e);
    HighlightEdges(G,{e},COLOR(RGB,redshade,0,1-redshade));
  end do;
  return G;
end proc:
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PlotMultiPath := proc(G::Graph, P::list, n)
  local Gcopy, path, N;
  uses GraphTheory;
  Gcopy := CopyGraph(G);
  if n > nops(P) - 1 then 
    N := nops(P) - 1; 
  else
    N := floor(n);
  end if;
  if N <> 0 then
    path := P[1..(N+1)];
    HighlightMultiTrail(Gcopy,path);
  end if;
  DrawGraph(Gcopy);
end proc:
AnimateMultiPath := proc(G::Graph, P::list)
  local t;
  plots[animate](PlotMultiPath, [G,P,t], t=0..(nops(P)-1),
                   paraminfo=false, frames=50);
end proc:
AnimateMultiPath(Ex5,Ex5Path);
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Hamilton Circuits
Turning our attention to Hamilton circuits, Maple provides the command IsHamiltonian for 
determining whether or not the graph contains a Hamilton circuit.  This command, like
IsEulerian, accepts one required and one optional argument.  The required argument, of course, 
is a graph.  If a variable name is provided as the second argument, then Maple will store the 
Hamilton circuit in the variable, which you can then use as the second argument to
HighlightTrail.  

HCGraph := SpecialGraphs[HypercubeGraph](3);
HCGraph := Graph 71: an undirected unweighted graph with 8 vertices and 12 edge(s)

IsHamiltonian(HCGraph,'HCpath');
true
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HighlightTrail(HCGraph,HCpath);
DrawGraph(HCGraph);

000 001

010 011
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IsHamiltonian(CompleteGraph(3,2));
false

Note that a pseudograph is Hamiltonian if and only if its underlying simple graph is Hamiltonian, so
there is no need for us to extend the IsHamiltonian command to pseudographs.

10.6 Shortest-Path Problems
Among the most common problems in graph theory are the "shortest path problems."  Generally, in 
shortest path problems, we wish to determine a path between two vertices of a weighted graph that 
is minimal in terms of the total weight of the edges in the path.

In the previous sections of this chapter, we used edge weights as a way to get around Maple's 
limitation of being able to represent simple graphs only.  In this section, we will use weighted 
graphs in the way they are actually intended — to represent some sort of cost associated with 
traversing the edge.   Note that pseudographs are rarely, if ever, of use in shortest path problems.  
There is no reason to consider multiple edges between two vertices since the edge of lowest weight 
is always preferred.  And traversing a loop at a vertex would only increase the cost with no benefit.

First, we reproduce Exercise 2 from Section 10.6 of the textbook to use as an example.  Recall that 
when defining an undirected and weighted graph, we use the format [{a,b},w] to indicate that 
the graph has an edge between a and b with weight w.

Ex2 := Graph({[{"a","b"},2],[{"a","c"},3],
                    [{"b","d"},5],[{"b","e"},2],
                    [{"c","e"},5],[{"d","e"},1],
                    [{"d","z"},2],[{"e","z"},4]});

Ex2 := Graph 72: an undirected weighted graph with 6 vertices and 8 edge(s)
SetVertexPositions(Ex2,[[0,.5],[1,1],[1,0],[2,1],[2,0],[3,.5]
]);
DrawGraph(Ex2);
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Now we will make use of Maple's implementation of Dijkstra's algorithm to compute the shortest 
path between a and z.  To do this, we simply call the DijkstrasAlgorithm command with 
three arguments: the graph and the names of the starting and ending vertices.

DijkstrasAlgorithm(Ex2,"a","z");
"a", "b", "e", "d", "z" , 7

The output informs us that the shortest path is a, b, e, d, z and that the length of this path is 7.

There is an alternate form of the command for producing the shortest path from an initial vertex to 
several different vertices at once.

DijkstrasAlgorithm(Ex2,"a",["d","e","z"]);
"a", "b", "e", "d" , 5 , "a", "b", "e" , 4 , "a", "b", "e", "d", "z" , 7

And for producing the shortest paths from the starting vertex to all other vertices.
DijkstrasAlgorithm(Ex2,"a");
"a" , 0 , "a", "b" , 2 , "a", "c" , 3 , "a", "b", "e", "d" , 5 , "a", "b", "e" ,
4 , "a", "b", "e", "d", "z" , 7

To determine the shortest path from every vertex to every other vertex, we use the
AllPairsDistance command.  This is an implementation of the Floyd-Warshall algorithm (also
known as simply the Floyd algorithm), which is described in Algorithm 2 in the Exercises of 
Section 10.6.  

AllPairsDistance(Ex2);
0 2 3 5 4 7

2 0 5 3 2 5

3 5 0 6 5 8

5 3 6 0 1 2

4 2 5 1 0 3

7 5 8 2 3 0
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Note that the command returned a matrix.  The i, j  entry in this matrix is the shortest distance 
from vertex i to vertex j.  

Finally, Maple provides a TravelingSalesman command for solving the traveling salesperson 
problem on a given graph.  Given a graph, the procedure returns two objects: a number representing
the minimum possible length of a Hamilton circuit and the list of vertices representing the minimal 
circuit.

TravelingSalesman(Ex2);
21, "a", "b", "d", "z", "e", "c", "a"

10.7 Planar Graphs
This section explains how Maple can be used to explore the question of whether a graph is planar.  
We begin with a brief description of Maple's built-in functions.  We then discuss how to use Maple 
to manipulate graphs in order to produce homeomorphic graphs and to apply Kuratowski's 
Theorem.

Maple includes the command IsPlanar, which returns true if and only if the given graph is a 
planar graph.  For example, we can check that the graph K3, 2 is planar, but that K3, 3 is not. 

IsPlanar(CompleteGraph(3,2));
true

IsPlanar(CompleteGraph(3,3));
false

Also, as mentioned above, for those graphs that are planar, the DrawGraph command includes the 
option to draw them as such, using the planar style.

DrawGraph(CompleteGraph(3,2),style=planar);
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For graphs that are not planar, the planar style will cause an error to be raised.
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Elementary Subdivisions, Smoothing, and Homeomorphic Graphs
Recall that an elementary subdivision refers to the process of modifying a graph by removing an 
edge u, v  and replacing it with a vertex w and new edges u, w  and w, v .  Effectively, this 
splits the original edge into two by inserting a vertex in the middle of it.  Maple includes a 
command, Subdivide, for achieving this effect.  If we apply this command to a graph and one of 
its edges, it returns a new graph obtained by performing an elementary subdivision on the given 
edge.  

SubdivideEx := CycleGraph(5);
SubdivideEx := Graph 73: an undirected unweighted graph with 5 vertices and 5 edge(s)

DrawGraph(SubdivideEx);
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SubdivideEx2 := Subdivide(SubdivideEx,{1,2});
SubdivideEx2 :=

Graph 74: an undirected unweighted graph with 6 vertices and 6 edge(s)
DrawGraph(SubdivideEx2);
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The inverse operation of elementary subdivision is referred to as smoothing.  To be precise, let v be 
a vertex of degree 2 with neighbors u and w and such that u and w are not adjacent.  We smooth the 
vertex v by deleting v and the edges incident to it and adding the edge u, w .  Below we have 
created a procedure to implement smoothing.  (Note that Maple's Contract command is more 
general than smoothing.  The benefits of creating the Smooth procedure are that it is explicitly the 
inverse of elementary subdivision and that it is more natural, in this context, to think about 
smoothing the vertex rather than contracting one of the incident edges.)

Smooth := proc(G::Graph,v)
  local e, H;
  e := {op(Neighbors(G,v))};
  if (Degree(G,v) <> 2) or (e in Edges(G)) then
    return FAIL;
  else
    H := DeleteVertex(G,v);
    AddEdge(H,e);
  end if;
  return H;
end proc:
SubdivideEx3 := Smooth(SubdivideEx2,6);

SubdivideEx3 :=
Graph 75: an undirected unweighted graph with 5 vertices and 5 edge(s)
DrawGraph(SubdivideEx3);
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The textbook defines graphs to be homeomorphic if they can be obtained from the same graph from 
a sequence of elementary subdivisions.  It is clear that if G1, G2, G3,…, Gn is a sequence of graphs,
each of which can be obtained from the previous by an elementary subdivision, then 
Gn,…, G3, G2, G1 is a sequence of graphs, each of which can be obtained from the previous by a 
smoothing.  So we can say that two graphs are homeomorphic if one can be transformed into the 
other by a sequence of elementary subdivisions and smoothings.
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Applying Kuratowski's Theorem
Recall that Kuratowski's Theorem asserts that a graph is nonplanar if and only if it contains a 
subgraph homeomorphic to either K3, 3 or K5.  Using the commands above and those for creating 
subgraphs, we can use Maple to manipulate a graph and confirm that it is nonplanar using 
Kuratowski's Theorem.  We will illustrate this with the Petersen graph.

petersen := SpecialGraphs[PetersenGraph]();
petersen := Graph 76: an undirected unweighted graph with 10 vertices and 15 edge(s)

DrawGraph(petersen);
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First, we form the subgraph of the Petersen graph obtained by removing vertex 2 and the three 
edges incident to it.

petersen1 := DeleteVertex(petersen,2);
petersen1 := Graph 77: an undirected unweighted graph with 9 vertices and 12 edge(s)

DrawGraph(petersen1);
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Now we notice that there are three vertices that are smoothable: 1, 3, and 9.  That is to say, those 
three vertices have degree 2 and their neighbors are not adjacent.

petersen2 := Smooth(petersen1,1):
petersen3 := Smooth(petersen2,3):
petersen4 := Smooth(petersen3,9):
DrawGraph(petersen4);
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We now observe that this graph has 6 vertices, each of which has degree 3, just like K3, 3.  So there 
is a definite possibility that this graph is K3, 3.  We check that it is bipartite and then have Maple 
draw it in that style.

IsBipartite(petersen4);
true

DrawGraph(petersen4,style=bipartite);
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It is clear from inspection that this is K3, 3 and so we have demonstrated that the Petersen graph has 
a subgraph that is homeomorphic to K3, 3 and hence is nonplanar.
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10.8 Graph Coloring
In this section we consider the problem of how to properly color a graph; that is, how to assign to 
each vertex of a graph a color such that no vertex has the same color as any of its neighbors.

Maple is limited by the computational complexity of coloring.  It is worth noting that, in terms of 
computational complexity, Hamilton circuits and graph coloring are equivalently difficult problems.

Maple's Command
Maple provides a ChromaticNumber command that uses a sophisticated backtracking technique 
for computing the chromatic number of a graph.  

Given a graph, the ChromaticNumber command will report the minimal number of colors 
needed to color that graph.

CNExample := SpecialGraphs[WheelGraph](5);
CNExample :=

Graph 78: an undirected unweighted graph with 6 vertices and 10 edge(s)
ChromaticNumber(CNExample);

4

If you provide a variable name as a second argument to the command, Maple will store a list of lists 
of vertices.  These lists indicate which vertices should be assigned the same color.

ChromaticNumber(CNExample,'CNClasses');
4

CNClasses;
0 , 1, 3 , 2, 4 , 5

This output indicates that vertex 0 should be given one color, vertex 1 and 3 should be assigned a 
second color, vertex 2 and 4 a third color, and vertex 5 should be painted with the final color.

We can write a short procedure to display the graph with the vertices appropriately colored.  Our 
procedure will call the HighlightVertex command with a list of vertices and a single color.  
This form of the command causes all of the vertices in the list to be shaded with the specified color.

CNColor := proc(G::Graph, CNout::list, colors::list)
  local i;
  if nops(CNout) <> nops(colors) then
    print("You must give one color for each vertex class.");
    return FAIL;
  end if;
  for i from 1 to nops(CNout) do
    GraphTheory[HighlightVertex](G,CNout[i],colors[i]);
  end do;
  GraphTheory[DrawGraph](G);
end proc:

This procedure requires three arguments: the graph, the output from ChromaticNumber, and a 
list of color names. 

CNColor(CNExample,CNClasses,[red,green,blue,cyan]);
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A Greedy Coloring Algorithm
In this section we will create a procedure based on the algorithm described in the preface to Exercise
29 in Section 10.8 of the text.  It can be shown that this algorithm will color a graph using at most 
one more color than the maximal degree of the graph.  It is considered a "greedy" algorithm because
it makes optimal choices at each step but never reconsiders its choices.  That is to say, it does the 
best it can at every step but never backtracks to make improvements.  Greedy algorithms often lead 
to good, but non-optimal, solutions.

The algorithm proceeds as follows.  First, the vertices are sorted in order of descending degree.  The
first color is assigned to the first vertex in the list.  Also assign color 1 to the first vertex in the list 
not adjacent to vertex 1, to the next vertex not adjacent to those already colored, etc.  Then move on 
to the second color.  The first uncolored vertex in the list is assigned color 2, as are vertices further 
down the list not adjacent to ones previously assigned the second color.  This continues until all of 
the vertices have been given a color.

Our first step in implementing this algorithm will be to sort the list of vertices in decreasing order of
degree.  For this, we will make use of Maple's very flexible sort command.  With no additional 
instructions, Maple will sort a list of numbers in increasing numerical order and a list of strings in 
lexicographical order.  But the sort command takes an optional argument that allows us to specify 
the way in which the list is sorted.  Specifically, sort takes as an argument a procedure that is 
Boolean-valued on two arguments and returns true if the first argument precedes the second.

For our graph coloring procedure, this is further complicated by the fact that the procedure that we 
pass to the sort command must depend on the graph.  We will create a functional operator that 
returns a boolean-valued procedure associated to the given graph.

MakeSorter := G -> proc(v,w)
  if GraphTheory[Degree](G,v) > GraphTheory[Degree](G,w) then
    return true;
  else
    return false;
  end if;
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end proc:
Applying MakeSorter to a graph returns a procedure that can be used as the optional argument to
sort.

In order for our algorithm to color the vertices of a graph, we need to decide on what colors to use.  
We define a list of colors globally.

ColorList := [red, green, blue, magenta, orange, turquoise, 
violet, cyan, brown, black];

ColorList := red, green, blue, magenta, orange, turquoise, violet, cyan, brown, black

Now we will implement the greedy coloring algorithm.
GColor := proc(G::Graph)
  local Sorter, V, currentColor, excludeSet, i;
  Sorter := MakeSorter(G);
  V := sort(Vertices(G),Sorter);
  for currentColor from 1 to nops(ColorList) do
    HighlightVertex(G,V[1],ColorList[currentColor]);
    excludeSet := {op(Neighbors(G,V[1]))};
    V := subsop(1=NULL,V);
    i := 1;
    while i <= nops(V) do
      if not (V[i] in excludeSet) then
        HighlightVertex(G,V[i],ColorList[currentColor]);
        excludeSet:=excludeSet union {op(Neighbors(G,V[i]))};
        V := subsop(i=NULL,V);
      else
        i := i + 1;
      end if;
    end do;
    if V = [] then
      break;
    end if;
  end do;
  if V <> [] then
    print("Insufficiently many colors");
    return FAIL;
    HighlightVertex(G,Vertices(G),yellow);
  else
    DrawGraph(G);
  end if;
end proc:      

Note that the set V, which is initialized to the list of vertices, sorted in decreasing order of degree, is 
used to track which vertices still need to be assigned a color.  When a vertex has been assigned a 
color, it is deleted from the list V using subsop(i=NULL,V).  The subsop command is used to 
substitute a value in a list at a specified index.  In this case, we're substituting the value NULL in the 
list at index i, which has the effect of removing it from the list.  

The excludeSet variable is used to store all vertices which cannot be assigned the current color.  
Each time a vertex is assigned a color, all of its neighbors are added to the excludeSet.  As the 
procedure looks down the list of vertices that still need to have a color assigned, it checks to see if 
they are in this set.

The index i, which controls the while loop, is incremented in the else clause of the if statement that 
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tests to see if a vertex can be assigned the color.  If the vertex at index i is assigned the color, then it
is removed from the list V, and thus the index i refers to a different vertex (the vertex previously in 
position i+1).  

As an example, we solve Exercise 29 of Section 10.8.
Exercise29 := Graph({{"a","b"},{"a","d"},{"a","e"},{"a","h"},
{"b","c"},{"b","e"},{"b","f"},{"c","e"},{"c","f"},{"c","h"},
{"d","g"},{"e","g"},{"e","h"},{"e","i"},{"f","i"},{"f","j"},
{"h","i"},{"i","j"}});

Exercise29 :=
Graph 79: an undirected unweighted graph with 10 vertices and 18 edge(s)
SetVertexPositions(Exercise29,[[0,2],[1,2],[2,2],[0,1],[1,1],
[2,1],[0,0],[1,0],[2,0],[3,0]]);
GColor(Exercise29);

a b c

d e f

g h i j

Solutions to Computer Projects and Computations and Explorations
Computations and Explorations 1

Display all simple graphs with four vertices.

Solution:  To solve this problem, we will generate all possible edge sets and then construct the 
graphs based on these edge sets.  The possible edge sets are all of the subsets of the set of all 
possible edges, which we obtain from the complete graph on the vertices.  We will generalize the
question and have our procedure create all the simple graphs on n vertices.

AllGraphs := proc(n::posint)
  local A, V, E, powerE, i, G;
  uses GraphTheory;
  A := {};
  V := [seq(i,i=1..n)];
  E := Edges(CompleteGraph(n));
  powerE := combinat[powerset](E);
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  for i from 1 to nops(powerE) do
    G[i] := Graph(V,powerE[i]);
    A := A union {G[i]};
  end do;
  return A;
end proc:

Recall that the complete graph on n vertices has C n, 2  edges, so there are 2C n, 2  graphs on n 
vertices.  So on 4 vertices, there are 64 graphs.  For n = 3, there are only 8 graphs, which is 
more manageable.

AllGraphs3 := AllGraphs(3):
DrawGraph(AllGraphs3,width=4);
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Computations and Explorations 2

Display a full set of nonisomorphic simple graphs with six vertices.

Solution:  The solution to this exercise is very similar to the previous question.  The only 
difference is that, each time a graph is generated, we compare it to the graphs that have already 
been included using IsIsomorphic.

NonIsoGraphs := proc(n::posint)
  local A, V, E, powerE, i, G, j, notisomorphic;
  uses GraphTheory;
  A := {};
  V := [seq(i,i=1..n)];
  E := Edges(CompleteGraph(n));
  powerE := combinat[powerset](E);
  for i from 1 to nops(powerE) do
    G[i] := Graph(V,powerE[i]);
    notisomorphic := true;
    for j from 1 to nops(A) do
      if IsIsomorphic(A[j],G[i]) then
        notisomorphic := false;
        break;
      end if;
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    end do;
    if notisomorphic then
      A := A union {G[i]};
    end if;
  end do;
  return A;
end proc:

We apply this to five vertices, since six takes a bit more time to compute.
NonIso5 := NonIsoGraphs(5):
nops(NonIso5);

34
We see that there are 34 nonisomorphic simple graphs on 5 vertices.  Here are the first eight.

DrawGraph([seq(NonIso5[i],i=1..8)],width=4);
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Computations and Explorations 9

Generate at random simple graphs with 10 vertices.  Stop when you have constructed one with
an Euler circuit.  Display an Euler circuit in this graph.

Solution:  To generate the random graphs, we will use the RandomGraph command in the
RandomGraphs subpackage.  By passing this command a number of vertices and a probability
between 0 and 1, it produces a graph with the given number of vertices and with each possible 
edge present with the given probability.  To display a random graph on 10 vertices with each 
edge as likely to appear as not, we use the following command.

DrawGraph(RandomGraphs[RandomGraph](10,.5));
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Recall the description of the IsEulerian command.  When this command is given two 
arguments, specifically, a graph and an optional variable name, if there is an Euler circuit, then 
the command returns true and stores the circuit in the variable.   

To satisfy the requirements of this problem, we use RandomGraph to generate a random graph
G.  Then we test it for an Euler circuit using IsEulerian.  As long as the randomly generated 
graph does not have an Euler circuit, we continue generating new random graphs.  We display 
the path using the animatePath procedure we created in Section 10.5.

GenEuler := proc(n::posint)
  local G, trail;
  G := GraphTheory[RandomGraphs][RandomGraph](n,.5);
  while not GraphTheory[IsEulerian](G,'trail') do
    G := GraphTheory[RandomGraphs][RandomGraph](n,.5);
  end do;
  animatePath(G,[op(trail)]);
end proc:
GenEuler(10);
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Computations and Explorations 13

Estimate the probability that a randomly generated simple graph with n vertices is connected 
for each possible integer n not exceeding ten by generating a set of random simple graphs and 
determining whether each is connected.

Solution:  To solve this problem we will create a procedure that generates a number of random 
graphs of the specified size and counts the number that are connected.  We use the
RandomGraph command to create the random graphs and the IsConnected command to 
test them for connectivity.

ConnectedProbability := proc(verts::posint, total::posint)
  local G, i, count;
  count := 0;
  for i from 1 to total do
    G := GraphTheory[RandomGraphs][RandomGraph](verts,.5);
    if GraphTheory[IsConnected](G) then
      count := count + 1;
    end if;
  end do;
  return count/total;
end proc:
[seq(ConnectedProbability(i,100),i=1..10)];
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Exercises
Exercise 1.  Write a Maple procedure to find all maximal matchings for a bipartite graph.

Exercise 2.  Write Maple procedures for calculating the adjacency and incidence matrices for a 
pseudograph.

Exercise 3.  Write a Maple procedure for creating a pseudograph from an incidence matrix.

Exercise 4.  Write a Maple procedure to find all of the minimal edge cuts of a given graph.

Exercise 5.  Write a Maple procedure to count the number of Hamilton circuits in a simple graph.

Exercise 6.  Write a Maple procedure to determine whether a mixed graph (with directed edges, 
multiple edges, and loops) has an Euler circuit and, if so, to find such a circuit.

Exercise 7.  Use Maple to construct all regular graphs of degree n, given a positive integer n.  
(Regular is defined in the Exercises for Section 10.2.)

Exercise 8.  For vertices u and v in a simple, undirected and connected graph G, the local vertex 
connectivity k u, v  is defined to be the minimum number of vertices that must be removed so that 
there is no path between vertex u and vertex v.  Write a Maple procedure that calculates the local 
vertex connectivity of a graph and a pair of its vertices.  

Exercise 9.  For vertices u and v in a simple, undirected and connected graph G, the local edge 
connectivity l u, v  is defined to be the minimum number of edges that must be removed so that 
there is no path between vertex u and vertex v.  Write a Maple procedure that calculates the local 
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edge connectivity of a graph and a pair of its vertices.

Exercise 10.  Write a Maple procedure that computes the thickness of a nonplanar simple graph (see
the Exercises in Section 10.7 for a definition of thickness).

Exercise 11.  Write a Maple procedure for finding an orientation of a simple graph.  (An orientation
of a graph is defined in the Supplementary Exercises of Chapter 10.)

Exercise 12.  Write a Maple procedure for finding the bandwidth of a simple graph.  (The 
bandwidth of a graph is defined in the Supplementary Exercises of Chapter 10.)

Exercise 13.  Write a Maple procedure for finding the radius and diameter of a simple graph.  (The 
radius and diameter of a graph are defined in the Supplementary Exercises of Chapter 10.)

Exercise 14.  Use Maple to find the minimum number of queens controlling an n# n chessboard 
for as many values of n as you can.  Make use of the concept of a dominating set, described in the 
Supplementary Exercises of Chapter 10.

Exercise 15.  Write a Maple procedure for finding all self-complementary graphs on n vertices.  (A
self-complementary graph is a graph which is isomorphic to its own complement.)  Use your 
procedure to display the self-complementary graphs for as large a n as possible.

Exercise 16.  Write a Maple procedure that finds a total coloring for a graph.  A total coloring of a 
graph is an assignment of a color to each vertex and each edge such that: (a) no pair of adjacent 
vertices have the same color; (b) no two edges with a common endpoint have the same color; and 
(c) no edge has the same color as either of its endpoints.

Exercise 17.  A sequence of positive integers is called graphic if there is a simple graph that has 
this sequence as its degree sequence.  In this context, the degree sequence of a graph is the 
nondecreasing sequence made up of the degrees of the vertices of the graph.  Develop a Maple 
procedure for determining whether a sequence of positive integers is graphic and, if it is, to 
construct a graph with this degree sequence.


