
O O 
O O 

(11.1)(11.1)
O O 

11 Trees

Introduction
This chapter is devoted to exploring the computational aspects of the study of trees.  Recall from the
textbook that a tree is a connected simple graph with no simple circuits.

First, we will discuss how to represent, display, and work with trees using Maple.  Specifically, we 
will see how to represent rooted trees and ordered rooted trees in addition to simple trees.  We then 
use these representations to explore many of the topics discussed in the textbook.  In particular, we 
will see how to use binary trees to store data in such a way as to make searching more efficient and 
we will see an implementation of Huffman codes.  We will see how to use Maple to carry out the 
different tree traversal methods described in the text.  We will see how to construct spanning trees 
using both depth-first and breadth-first search and how to use backtracking to solve a variety of 
interesting problems.  Finally, we will implement Prim's algorithm and Kruskal's algorithm for 
finding spanning trees of minimum weight for a weighted graph.

11.1 Introduction to Trees
In this section we will focus on how to construct trees in Maple and how to check basic properties, 
such as determining if a tree is balanced.  To begin, we will consider the simplest case, unrooted 
trees, before moving on to rooted and ordered trees.

Unrooted Trees
Recall that a tree is defined to be a graph that is undirected, connected, and has no simple circuits (or
cycles).  To create a tree, we just create a graph as we did in the previous chapter.  We begin by 
loading the graph theory package and then creating a simple tree with the Graph command.

with(GraphTheory):
firstTree:= Graph({{"a","b"},{"a","c"},{"b","d"},{"b","e"}});
firstTree := Graph 1: an undirected unweighted graph with 5 vertices and 4 edge(s)
DrawGraph(firstTree);
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The first thing you may notice is that Maple has automatically drawn this in the traditional way, 
which tells us that Maple recognized the graph as a tree.  The IsTree command can be used to 
check if an undirected graph is a tree.  

IsTree(firstTree);
true

Recall from Section 10.1 of this manual that the DrawGraph command can take the optional
style=tree argument in order to make sure Maple draws the graph as a tree.  The DrawGraph 
command, when used on trees, can also take an optional argument of the form root=r to specify 
which vertex should be drawn as the root.

DrawGraph(firstTree,style=tree,root="b");
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We make three comments about the root=r argument.  First, it can only be used when the
style=tree option is explicitly given.  Second, as of Maple 14, this is irreversible and 
unchangeable — issuing the command with a different vertex will not give the expected result.  
Third, while this option makes the tree appear to have the specified root, it does not make it a rooted 
tree, in the sense used by the textbook.  That is to say, other than the positions of the vertices, there 
is no information stored in the data of firstTree to indicate that vertex b is the root or even that 
vertex c is a child rather than a parent of a. 

Maple also provides commands for creating certain kinds of trees.  Recall that a rooted tree is called 
k-ary if every vertex has no more than k children.  When k = 2, we say that it is a binary tree.  Also 
recall that the height of a rooted tree is the maximum number of levels in the tree, i.e., the height is 
the length of the largest path from the root to any other vertex.  (Maple uses the term depth, which is
synonymous with height.)  The command CompleteKaryTree in the SpecialGraphs 
subpackage produces the unrooted version of the complete k-ary directed tree of height h, where k 
and h are given as the two arguments to the command.  

DrawGraph(SpecialGraphs[CompleteKaryTree](4,2));
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The CompleteBinaryTree command can be used in the case k = 2.

Before moving on to rooted trees, note that Maple also provides a command IsForest for 
checking whether a graph is a forest (i.e., a collection of trees).  The only argument is the graph.

Rooted Trees
Next we consider rooted trees.  Recall that a rooted tree is a directed graph whose underlying 
undirected graph is a tree and in which one vertex is designated as the root and all edges are directed
away from the root.  For example, the following graph is a rooted tree.  

firstRooted := Graph({["a","b"],["a","c"],["a","d"],["b",
"e"],["b","f"],["c","g"]});
firstRooted := Graph 2: a directed unweighted graph with 7 vertices and 6 arc(s)

If we ask Maple to draw this graph with DrawGraph, however, it will not draw it in the form of a 
tree like it did with firstTree.  This is because Maple does not recognize this graph as a tree.

DrawGraph(firstRooted);
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IsTree(firstRooted);
Error, (in GraphTheory:-IsTree) graph must be undirected

While Maple provides some support for unrooted trees, its existing packages are not equipped to 
recognize and do computations with rooted trees.  Much of the remainder of this section will be 
devoted to filling this gap in Maple's functionality.  This will provide you with the tools you need to
better explore trees in the remainder of the chapter.  

A tree type
In Chapter 9 we discussed Maple types.  It will once again be useful to declare types for our trees.  
This will enable automatic type checking for our procedures, which will help prevent attempts to use
procedures on objects that are not trees.  Moreover, the declaration of types for trees will formalize 
what it means to be a tree object in Maple.  

A rooted tree, by definition, has a root.  It will be convenient to store that information with the tree 
by setting a graph attribute that indicates which vertex is the root.  This will be useful, in that it will 
free us from having to list the root as an argument to every procedure we create.  It is also good 
programming practice — the root of a rooted tree is information that the tree should "know about 
itself," that is to say, the tree should include the root as part of its data.

We begin by creating a type for unrooted trees before returning to the rooted situation.  We define 
the type by creating a procedure which takes one argument, the potential tree, and returns true or 
false depending on whether it is or is not actually a tree.  For unrooted trees, we will be calling the
IsTree command to do the bulk of the work for us.  

We will also use the try statement in this type definition.  A try statement is the primary method 
for catching and handling errors.  We saw above that applying the IsTree command to a directed 
graph produces an error.  In the type procedure below, we use the try statement as follows.  First 
is the try keyword followed by the code that could potentially raise an error.  In this case, it is the
IsTree command that could raise an error.  After the error-prone code, we use the catch: line.  
If anything in the code in the try block raises an error, the code following the catch: keyword is
executed to "handle" the error.  In this type definition, we handle any errors by setting the return 
value to false.  (Note: the try statement structure is very flexible.  Refer to the Maple help pages 
for more detail.)

`type/Tree` := proc(obj)
  local result;
  try
    result := GraphTheory[IsTree](obj);
  catch:
    result := false;
  end try;
  return result;
end proc:

We can explicitly check to see if an object is of a specified type by using the type command with 
the object and the name of the type as arguments.

type(firstTree,Tree);
true

type(firstRooted,Tree);
false

Now we'll create the type RTree for rooted trees.  As discussed earlier, we insist that an object of 
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this type stores its root as a graph attribute.  To set an attribute, we use the
SetGraphAttribute command with two arguments: the graph, and the attribute and its value in
tag=value format.  We use the tag "root" and the value will be the name of the root.

SetGraphAttribute(firstRooted,"root"="a");

The GetGraphAttribute command with the name of the graph and the tag, in this case "root", 
will return the value of the tag.

GetGraphAttribute(firstRooted,"root");
"a"

As with the Tree type, we will define the type by creating a procedure that returns true for rooted 
trees and false for all other objects.  We will need to check three things: first, that the "root" graph 
attribute has been set; second, that the underlying undirected graph is a tree; and third, that all edges 
point away from the root.  For the first part, we'll just check that GetGraphAttribute returns a 
name of a vertex for the tag "root".  Note that if a tag is not set, GetGraphAttribute will return
FAIL.  

For the second part, we can simply combine IsTree with the UnderlyingGraph command, 
which takes a directed graph and returns the underlying undirected graph.  For example, we apply 
this to our example above.

IsTree(UnderlyingGraph(firstRooted));
true

The third part of the test is that every edge is directed away from the root.  Before we implement the 
test, consider the following example, which is identical to firstRooted except the edge a, e  
has been reversed.

notRooted := Graph({["a","b"],["a","c"],["a","d"],["b","e"],
["f","b"],["c","g"]});

notRooted := Graph 3: a directed unweighted graph with 7 vertices and 6 arc(s)
HighlightEdges(notRooted,{["f","b"]},red);
DrawGraph(notRooted);
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IsTree(UnderlyingGraph(notRooted));

true

It is easy to see that the edge e, a  violates the requirement that all edges are directed away from the
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root.  Checking this computationally, however, can be a bit tricky to do directly.  Instead, we will 
take an indirect route.  Instead of checking that all edges are directed away from the root, we'll check
that all the vertices are accessible from the root.  Since the underlying graph is a tree, we know that 
there are no circuits.  Thus the only way for there to be a path from the root to a vertex is for all the 
edges   to be directed away from root.  Therefore, if all the vertices are reachable from the root, then 
all the edges are in the proper direction.  

To implement this, we will build a list of vertices accessible from the root.  This list will be 
initialized to contain the purported root.  Then we add to the list all of the vertices which are terminal
vertices of edges with the purported root as the initial vertex.  (The Departures command, 
discussed in Section 10.3, is useful here.)  Once that's done, the list of accessible vertices consists 
of the root and all of the children of the root.  For the second element in the list, we add all of its 
children, i.e., all the vertices accessible from it.  Continuing in this fashion, for each element in the 
list of accessible vertices, we add its children to the list.  When we reach the end of the list, it 
contains all of the vertices that can be reached from the root.  If it has the same members as the list 
of all vertices in the graph, then the graph satisfies the second condition of having all edges directed 
away from the root.  

We now put these three elements together to create the type.
`type/RTree` := proc(obj)
  local R, Alist, v, i;
  uses GraphTheory;
  if not type(obj,Graph) then 
     return false
  end if;
  if not IsTree(UnderlyingGraph(obj)) then
    return false;
  end if;
  R := GetGraphAttribute(obj,"root");
  if not R in Vertices(obj) then
    return false;
  end if;
  Alist := [R];
  i := 1;
  while i <= nops(Alist) do
    Alist := [op(Alist),op(Departures(obj,Alist[i]))];
    i := i + 1;
  end do;
  if {op(Alist)} = {op(Vertices(obj))} then
    return true;
  else
    return false;
  end if;
end proc:
type(firstRooted,RTree);

true
type(notRooted,RTree);

false

Drawing rooted trees
Now that we can test to see that a graph is in fact a rooted tree, let's get Maple to draw rooted trees 
so that they look like trees.  Since the underlying graph of a rooted tree is itself a tree, we can 
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determine the best locations for drawing the vertices from the way Maple draws the underlying 
graph.  To do this, we first apply DrawGraph to the underlying graph with the style and root 
options set but with the output suppressed.  This is a necessary step since it is the DrawGraph 
command that causes Maple to calculate vertex positions.  We then use the command
GetVertexPositions on the underlying graph.  And finally we use
SetVertexPositions on the rooted tree and with the positions garnered from the underlying 
graph.  (These commands were initially discussed in Section 10.2.)

DrawRTree := proc(G::RTree)
  local R, U, P;
  uses GraphTheory;
  R := GetGraphAttribute(G,"root");
  U := UnderlyingGraph(G);
  DrawGraph(U,style=tree,root=R):
  P := GetVertexPositions(U,style=tree,root=R);
  SetVertexPositions(G,P);
  DrawGraph(G);
end proc:
DrawRTree(firstRooted);
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Parents, Children, Leaves, and Internal Vertices of Rooted Trees
We now consider commands related to identifying particular vertices in a rooted tree and relations 
between them.  

We begin with the question of whether one vertex is the parent of another.  Given the two vertices, 
checking this requires determining whether the directed edge from the parent to the child is actually 
in the tree.  

IsParentOf := proc(T::RTree, p, c)
  return GraphTheory[HasArc](T,[p,c]);
end proc:
IsParentOf(firstRooted,"b","f");

true
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IsParentOf(firstRooted,"b","d");
false

Next, we consider the question of finding the parent of a given vertex.  This can be done as an 
application of the Arrivals command, which returns the list of vertices that are initial vertices for 
the edges with the given vertex at the terminal end.  Assuming the graph is in fact a rooted tree, 
there can be at most one such vertex.  If the vertex is the root, there will be no parent and the 
procedure will return FAIL.

FindParent := proc(T::RTree, v)
  local A;
  A := GraphTheory[Arrivals](T,v);
  if nops(A) = 1 then
    return op(A);
  elif nops(A) = 0 then
    return FAIL;
  else 
    error "The given graph is not a tree.";
  end if;
end proc:
FindParent(firstRooted,"d");

"a"
FindParent(firstRooted,"root");

FAIL

For the related question of determining all children of the given tree, we use the Departures 
command, which returns the list of vertices that are terminal vertices for the edges with the given 
vertex at the initial end. 

FindChildren := proc(T::RTree, v)
  return GraphTheory[Departures](T,v);
end proc:
FindChildren(firstRooted,"a");

"b", "c", "d"
FindChildren(firstRooted,"f");

The FindChildren procedure also indicates how we can test a vertex to determine if it is an 
internal vertex or a leaf.  

IsInternal := proc(T::RTree, v)
  if GraphTheory[Departures](T,v) <> [] then
    return true;
  else
    return false;
  end if;
end proc:
IsLeaf := proc(T::RTree, v)
  if GraphTheory[Departures](T,v) = [] then
    return true;
  else
    return false;
  end if;
end proc:



(11.13)(11.13)
O O 

O O 

O O 

(11.19)(11.19)

O O 

(11.22)(11.22)

O O 

O O 

O O 

(11.20)(11.20)

O O 

(11.21)(11.21)

(11.18)(11.18)
O O IsInternal(firstRooted,"a");

true
IsLeaf(firstRooted,"a");

false
IsLeaf(firstRooted,"f");

true

We can determine all the leaves of a given tree by testing each vertex with IsLeaf.
FindLeaves := proc(T::RTree)
  local Leaves, v;
  uses GraphTheory;
  Leaves := {};
  for v in Vertices(T) do
    if IsLeaf(T,v) then
      Leaves := Leaves union {v};
    end if;
  end do;
  return Leaves;
end proc:
FindLeaves(firstRooted);

"d", "e", "f", "g"

Ordered Rooted Trees
Recall that an ordered rooted tree is a rooted tree in which the children of each internal vertex are 
ordered.  

Representing ordered rooted trees
To represent an ordered rooted tree in Maple, we'll need to store the order of children.  There are 
many ways to accomplish this, but perhaps the most straightforward is to mark each vertex with its 
order among its siblings.  By way of illustration, we'll duplicate firstRooted from above and 
make the duplicate ordered.

firstOrdered := CopyGraph(firstRooted);
firstOrdered := Graph 4: a directed unweighted graph with 7 vertices and 6 arc(s)
DrawRTree(firstOrdered);
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Maple automatically draws the vertices in alphabetical order.  But suppose instead we wanted the 
children of a to be in the order c, b, d, and the children of b to be in the order f then e.  Internally, 
we'll represent this by assigning, for each vertex, an "order" attribute.  We set the "order" of the root
to be 0, and for all other vertices, the "order" attribute will represent the position of that vertex 
among its siblings.  In our example, c will have "order"=1, b will have "order"=2, and d will have 
"order"=3.  Rather than manually using the SetVertexAttribute command for each vertex, 
we'll define a procedure.

The first argument to this procedure will be the name of a rooted tree.  The second argument will be 
a list of values representing the "order" value to be assigned to each vertex.  The procedure will loop
through the vertices of the tree and set the "order" vertex attributes. 

SetChildOrder := proc(T::RTree, orderL::list(nonnegint))
  local V, i;
  uses GraphTheory;
  V := Vertices(T);
  if nops(V) <> nops(orderL) then
    error "List must have one entry per vertex.";
  end if;
  for i from 1 to nops(V) do
    SetVertexAttribute(T,V[i],"order"=orderL[i]);
  end do;
end proc:

Since the "order" values in the list given to the procedure must match the order of the vertices that is
returned from Vertices(T), it is a good idea to double-check the result of the Vertices 
command before using this procedure.  

Vertices(firstOrdered);
"a", "b", "c", "d", "e", "f", "g"

SetChildOrder(firstOrdered,[0,2,1,3,2,1,1]);

A type for ordered rooted trees
Now that we've ordered the children in Maple's representation of this tree, firstOrdered now 
represents an ordered rooted tree.  We will create an ORTree type.  The requirement for being an 
ordered rooted tree are: the object must be a rooted tree, every vertex must have an "order" attribute 
set, and the root's "order" must be 0.

`type/ORTree` := proc(obj)
  local v;
  uses GraphTheory;
  if not type(obj,RTree) then
    return false;
  end if;
  for v in Vertices(obj) do
    if GetVertexAttribute(obj,v,"order") = FAIL then
      return false;
    end if;
  end do;
  v := GetGraphAttribute(obj,"root");
  if GetVertexAttribute(obj,v,"order") <> 0 then
    return false;
  end if;
  return true;
end proc:
type(firstOrdered,ORTree);
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Drawing ordered rooted trees
While firstOrdered is now officially an ordered rooted tree and is storing the order of children,
if we draw it, it will not appear with children in the proper order.  To accomplish this, we need to 
create a DrawORTree procedure.  Recall that when creating the DrawRTree procedure, our basic 
approach was to have Maple determine the correct positions of vertices for us by turning the rooted 
tree into a graph that it would draw in the manner we wished.  We do the same thing in this case.  

The key fact that we'll use is that, in fact, Maple draws trees with the vertices in a fixed order.  For 
example,  

orderEx1 := Graph({{1,2},{1,5},{1,3},{2,"bannana"},{2,
"apple"}});

orderEx1 := Graph 5: an undirected unweighted graph with 6 vertices and 5 edge(s)
DrawGraph(orderEx1);

1

2 3 5

apple bannana

Despite the order in which we listed the edges, Maple sorted the vertices with numeric names in 
numeric order and it sorted the vertices with string names in lexicographic order.  This is because 
we provided only the edges and made Maple determine the graph's vertices for itself.  Notice that 
when we use the Vertices command, the vertices are listed in the same order as they appear in 
the graph.

Vertices(orderEx1);
1, 2, 3, 5, "apple", "bannana"

But if we give the Graph command the list of vertices explicitly and in the order we want them, we
can change the graph.

orderEx2 := Graph([1,5,2,3,"bannana","apple"],{{1,2},{1,5},
{1,3},{2,"bannana"},{2,"apple"}});

orderEx2 := Graph 6: an undirected unweighted graph with 6 vertices and 5 edge(s)
DrawGraph(orderEx2);
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We will use this feature in order to properly draw ordered rooted graphs.  Given an ORTree, we'll 
use the UnderlyingGraph to access the undirected version of the graph, in particular, the 
undirected edges.  We then determine an order for the vertices that is compatible with the ordering 
of children.  And then we create a new graph using the order of the vertices and the edges from the 
underlying graph.  Finally, as with DrawRTree, we use the vertex positions of that tree to draw 
our ORTree. 

The key is to create the ordered list of vertices, which we'll call OVerts.  We will use an approach 
similar to how we determined that all edges were in the correct direction in the RTree type 
definition.  We initialize OVerts to the list containing only the root and we initialize a counter i to 
1.  We then use the Departures command to find all of the children of the root.  (We could also 
use the FindChildren command we defined earlier, but using Departures directly is a bit 
more efficient.)  We then sort the children in order of their "order" attribute.  Once sorted, we add 
the children to the OVerts list.  Then, increment the counter i and repeat.  At each step, the counter
i is used as an index into OVerts to determine which vertex is being processed.  If that vertex has 
any children, they are sorted according to their "order" attribute and added to the list.  

Before writing the main procedure, we'll create a helper procedure to aid in the sorting of children.  
Recall that passing the sort command a procedure as its optional second argument allows us to 
specify the order in which it arranges values.  This procedure must be boolean-valued and should 
return true if the first argument precedes the second argument.  In our case, we need a procedure 
that compares two vertices by comparing their "order" attribute.  But note that we can't access the 
vertex attribute without also having the name of the graph, since GetVertexAttribute requires
the name of the graph.  In other words, the procedure for comparing vertices depends on the graph, 
but we are only allowed to have two arguments in the procedure.  So we'll create a function that 
takes a graph and returns a comparison procedure for that graph.

VOrderComp := G -> proc(u,v)
  local uOrder, vOrder;
  uOrder := GraphTheory[GetVertexAttribute](G,u,"order");
  vOrder := GraphTheory[GetVertexAttribute](G,v,"order");



(11.13)(11.13)
O O 

(11.28)(11.28)

O O 

O O 

(11.24)(11.24)

O O 

(11.18)(11.18)

O O 

O O 

O O 

  if uOrder < vOrder then
    return true;
  else
    return false;
  end if;
end proc:

Observe that VOrderComp applied to our firstOrdered example returns a procedure that we 
can use as the optional argument to sort.

sort(["b","c","d"],VOrderComp(firstOrdered));
"c", "b", "d"

Here, now, is the procedure DrawORTree.
DrawORTree := proc(T::ORTree)
  local E, sorter, R, OVerts, i, numverts, children, G, VP, 
v, p;
  uses GraphTheory;
  E := Edges(UnderlyingGraph(T));
  sorter := VOrderComp(T);
  R := GetGraphAttribute(T,"root");
  OVerts := [R];
  i := 1;
  while i <= nops(OVerts) do
    children := Departures(T,OVerts[i]);
    children := sort(children,sorter);
    OVerts := [op(OVerts),op(children)];
    i := i + 1;
  end do;
  G := Graph(OVerts,E);
  DrawGraph(G,style=tree,root=R);
  VP := GetVertexPositions(G);
  for i from 1 to nops(Vertices(T)) do
    v := OVerts[i];
    p := VP[i];
    SetVertexAttribute(T,v,"draw-pos-user"=p);
  end do;
  DrawGraph(T);
end proc:

Finally, we can draw our ordered tree correctly.
DrawORTree(firstOrdered);
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Properties of Trees
We conclude this section with procedures for calculating the level of a vertex, the height of a tree, 
and for determining if a tree is balanced or not.

The level of a vertex in a rooted tree is the length of the path from the root to the vertex.  We 
compute the level in reverse.  We first initialize a counter to 0.  If the given vertex is the root, then 
the level is 0.  Otherwise, increment the counter and look at the parent of the original vertex.  If this 
vertex is a root, then the counter holds the level.  Otherwise, increment the counter and back up to 
the parent of the current vertex.  When we reach the root, then the value of the counter is the level of
the vertex.

FindLevel := proc(T::RTree, targetV)
  local v, level, root;
  uses GraphTheory;
  level := 0;
  v := targetV;
  root := GetGraphAttribute(T,"root");
  while v <> root do
    level := level + 1;
    v := FindParent(T,v);
  end do;
  return level;
end proc:

We can compute the levels of g and d in the firstOrdered tree.
FindLevel(firstOrdered,"g");

2
FindLevel(firstOrdered,"d");

1

The height of a tree is the maximum of the levels of the vertices.  We can compute the height by 
checking each vertex's level.  We use a variable to hold the largest level and each time we find a 
vertex with a level larger than the current maximum, we update the variable.

FindHeight := proc(T::RTree)
  local height, v, level;
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  uses GraphTheory;
  height := 0;
  for v in Vertices(T) do
    level := FindLevel(T,v);
    if level > height then
      height := level;
    end if;
  end do;
  return height;
end proc:
FindHeight(firstOrdered);

2

Recall that a rooted tree of height h is balanced if all leaves are at level h or hK 1.  To determine if a
given tree is balanced, we need to: (1) calculate the height of the tree, (2) find all the leaves of the 
tree with the FindLeaves procedure we wrote earlier, (3) test each leaf's level and return false if it
is higher than level hK 1.

IsBalanced := proc(T::RTree)
  local height, leaves, v;
  uses GraphTheory;
  height := FindHeight(T);
  leaves := FindLeaves(T);
  for v in leaves do
    if FindLevel(T,v) < height - 1 then
      return false;
    end if;
  end do;
  return true;
end proc:

We see that our firstOrdered tree is balanced.
IsBalanced(firstOrdered);

true

11.2 Applications of Trees
This section is concerned with applications of trees, particularly binary trees.  Specifically, we 
consider the use of trees in binary search algorithms as well as in Huffman codes.  The reason we 
use binary trees is that we can use the binary structure of the tree to make binary decisions (e.g., less
than/greater than) regarding search paths or insertion of elements.  Additionally, the binary tree 
structure corresponds well with the way computers store information as binary data.

Recall that a tree is called a binary tree if all vertices in the tree have at most two children.  In this 
section, we will be using ordered binary trees.  The fact that the vertices are ordered means that the 
children of a vertex can be considered to be either a left child or a right child.  By convention, we 
consider the left child to be the first child and the right child to be second.  

Representation in Maple
Before we get to the applications, we will discuss how we can represent binary trees in Maple and 
develop some procedures to help us manipulate them.  Since a binary tree is a particular kind of 
ordered rooted tree, our work here should be consistent with what we did above.
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A binary tree type
We will construct a type, BTree, for binary trees.  We will impose three conditions for an object to 
be considered a BTree.  First, it must be an ordered rooted tree, i.e., a ORTree.  Second, it must be
binary, that is, each vertex must have at most two children.  And third, each vertex other than the 
root must have "order" attribute 1 or 2, with 1 indicating that the vertex is a left child and 2 for right.
The root will have its "order" attribute set to 0.  

First, let's construct an example of a binary tree.  The tree we construct is the binary search tree for 
the letters D, B, F, A, C, E.  

firstBTree := Graph(["D","B","F","A","C","E"],{["D","B"],
["D","F"],["B","A"],["B","C"],["F","E"]});
firstBTree := Graph 7: a directed unweighted graph with 6 vertices and 5 arc(s)
SetGraphAttribute(firstBTree,"root"="D");
SetVertexAttribute(firstBTree,"D","order"=0);
SetVertexAttribute(firstBTree,"B","order"=1);
SetVertexAttribute(firstBTree,"F","order"=2);
SetVertexAttribute(firstBTree,"A","order"=1);
SetVertexAttribute(firstBTree,"C","order"=2);
SetVertexAttribute(firstBTree,"E","order"=1);

Now that we have an example, let's create the type.  To check that the tree is in fact binary, we can 
use the Departures command and count the number of children of each vertex.  If any vertex has
more than two children, then it is not binary.  And we'll make sure that each vertex is marked with 
an order of 1 or 2, or 0 in the case of the vertex.

`type/BTree` := proc(obj)
  local R, v, vpos;
  uses GraphTheory;
  if not type(obj,ORTree) then
    return false;
  end if;
  R := GetGraphAttribute(obj,"root");
  for v in Vertices(obj) do
    if nops(Departures(obj,v)) > 2 then
      return false;
    end if;
    vpos := GetVertexAttribute(obj,v,"order");
    if (vpos = 0 and v <> R) or
       ((vpos <> 0) and (vpos <> 1 ) and (vpos <> 2)) then
     return false;
    end if;
  end do;
  return true;
end proc:
type(firstBTree,BTree);

true

Drawing binary trees
Next we'll write a procedure for drawing binary trees.  Note that, while DrawORTree will draw a 
binary tree, that procedure will display vertices that are "only children" directly below their parent 
rather than to the left or right.  We will explicitly calculate the position of each vertex.

Think about the tree as being drawn in a 1 by 1 box with 0, 0  at the bottom left corner.  The y-
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coordinate of each vertex will depend on the height of the tree and the level of the vertex.  
Specifically, the y coordinate of any vertex is 1K l / h, where l is the level of the vertex and h is the 
height of the tree.  This way, the root, which is at level 0, has y-coordinate 1 and the vertices in the 
last level have y-coordinate 0.  

For the x-coordinates, the position of the vertex depends on the position of its parent and its level.  
We start by setting the x-position of the root to 1 / 2.  The left child of the root will be drawn at x-
coordinate 1 / 4 and the right child at 3 / 4.  We can think about the children of the root as being 
drawn 1 / 4 to the left of the root and 1 / 4 to the right of the root, respectively.  That is, the x-

coordinate of the root's left child is 
1
2
K

1
4

. and the x-coordinate of the right child is 
1
2
C

1
4

.  

Generally, for a vertex in level l, we can calculate its x-coordinate as the x-coordinate of its parent 

plus (for left children) or minus (for right) 
1

2l C 1 .  

The DrawBTree procedure is below.  It begins by calculating the height of the tree with the
FindHeight procedure we created earlier.  It then processes the root of the tree by setting its 
position to 1 / 2, 1 .  (Note that we set the position of the vertex by setting the "draw-pos-user" 
attribute of the vertex.  This is in some ways more convenient than assembling all of the vertex 
positions and then using SetVertexPositions.)  We also create a list, Verts, and populate it 
with the root's children.  We then begin a loop with the same structure as the while loop in the
RTree type definition.  We have a counter i initialized to 1.  This counter serves as an index into 
the Verts list.  At each step in the while loop, we do several things.  First, we use the
FindLevel procedure we created earlier to determine the level of the vertex.  Second, the y-
coordinate is calculated by the formula 1K l / h.  Third, the x-coordinate is calculated by accessing 

the x-coordinate of the parent and adding or subtracting 
1

2l C 1 .  Fourth, we set the "draw-pos-

user" attribute for the vertex.  And finally, the children of the current vertex are added to the
Verts list and the counter is incremented.

DrawBTree := proc(T::BTree)
  local height, v, i, level, Verts, x, y, parent, side;
  uses GraphTheory;
  height := FindHeight(T);
  v := GetGraphAttribute(T,"root");
  SetVertexAttribute(T,v,"draw-pos-user"=[1/2,1]);
  Verts := FindChildren(T,v);
  i := 1;
  while i <= nops(Verts) do
    v := Verts[i];
    level := FindLevel(T,v);
    y := 1 - level/height;
    parent := FindParent(T,v);
    x := GetVertexAttribute(T,parent,"draw-pos-user")[1];
    if GetVertexAttribute(T,v,"order") = 1 then
      side := -1;
    else
      side := 1;
    end if;
    x := x + side * 1/(2^(level+1));
    SetVertexAttribute(T,v,"draw-pos-user"=[x,y]);
    Verts := [op(Verts),op(FindChildren(T,v))];
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    i := i + 1;
  end do;
  DrawGraph(T);
end proc:
DrawBTree(firstBTree);

D

B F

A C E

Parents and children
In the previous section, we created the procedure FindParent, which returns the parent of a 
given vertex in the given tree.  This procedure works on BTrees as well.

FindParent(firstBTree,"C");
"B"

We had also created the FindChildren procedure, which we could also use with binary trees.  
But for binary trees, we'll want to be more specific and be able to determine the left and right 
children of a given vertex.  Finding the left (respectively, right) child of a given vertex can be done 
by looking at each child of the vertex and checking the "order" attribute.  The child with "order" 1 is
the left child and is returned by the procedure (respectively, 2 and right child).  If there is no left 
(respectively, right), child, the procedure will return FAIL.  

FindLeftChild := proc(T::BTree, v)
  local children, w, pos;
  uses GraphTheory;
  children := FindChildren(T,v);
  for w in children do
    pos := GetVertexAttribute(T,w,"order");
    if pos = 1 then
      return w;
    end if;
  end do;
  return FAIL;
end proc:
FindRightChild := proc(T::BTree, v)
  local children, w, pos;
  uses GraphTheory;
  children := FindChildren(T,v);
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  for w in children do
    pos := GetVertexAttribute(T,w,"order");
    if pos = 2 then
      return w;
    end if;
  end do;
  return FAIL;
end proc:
FindLeftChild(firstBTree,"F");

"E"
FindRightChild(firstBTree,"F");

FAIL

Building binary trees
We will also want procedures to create and build up a binary tree.  Specifically, we'll create a 
procedure that, given the label for the root of a binary tree, creates the tree with that vertex as its 
root. We will then write procedures that, given a binary tree, a vertex in the tree, and a label for a 
new vertex, adds the new vertex as the left or right child of the given vertex.

The NewBTree procedure creates the binary tree consisting of a single vertex, the root of the tree.
NewBTree := proc(R)
  local T;
  uses GraphTheory;
  T := Digraph([R]);
  SetGraphAttribute(T,"root"=R);
  SetVertexAttribute(T,R,"order"=0);
  return T;
end proc:

Adding a child to a vertex in a binary tree requires three basic steps.  We must add a vertex to the 
graph with the AddVertex command, add a directed edge from the parent to the new vertex with 
the AddArc command, and then use SetVertexAttribute to identify the new child as left or 
right by setting the "order" attribute to 1 or 2, respectively.  

In Maple 14, however, we must do some additional work.  Recall that the AddVertex command 
does not modify the original graph, but instead creates a new graph whose vertices are the original 
vertices together with the new vertex and whose edge set is identical to the original.  The
AddVertex command, however, does not preserve attributes.  As a result, we will need to 
manually copy the "root" attribute for the graph and the "order" attributes on each vertex.  

AddLeftChild := proc(T::BTree, v, newV)
  local newT, newedge, temp, w;
  uses GraphTheory;
  if FindLeftChild(T,v) <> FAIL then
    error "Vertex already has a left child.";
  end if;
  newT := AddVertex(T,newV);
  AddArc(newT,[v,newV]);
  temp := GetGraphAttribute(T,"root");
  SetGraphAttribute(newT,"root"=temp);
  for w in Vertices(T) do
    temp := GetVertexAttribute(T,w,"order");
    SetVertexAttribute(newT,w,"order"=temp);
  end do;
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  SetVertexAttribute(newT,newV,"order"=1);
  return newT;
end proc:
AddRightChild := proc(T::BTree, v, newV)
  local newT, newedge, temp, w;
  uses GraphTheory;
  if FindRightChild(T,v) <> FAIL then
    error "Vertex already has a left child.";
  end if;
  newT := AddVertex(T,newV);
  AddArc(newT,[v,newV]);
  temp := GetGraphAttribute(T,"root");
  SetGraphAttribute(newT,"root"=temp);
  for w in Vertices(T) do
    temp := GetVertexAttribute(T,w,"order");
    SetVertexAttribute(newT,w,"order"=temp);
  end do;
  SetVertexAttribute(newT,newV,"order"=2);
  return newT;
end proc:

With NewBTree, AddLeftChild, and AddRightChild, we can now construct binary trees 
one vertex at a time.  We will illustrate this by creating the binary search tree described in Example 1
of the text by following the steps illustrated in Figure 1.  We abbreviate the words in order to make 
the image more readable.

Fig1Tree := NewBTree("Math");
Fig1Tree := Graph 8: a graph with 1 vertex and no edges

Fig1Tree := AddRightChild(Fig1Tree,"Math","Phys");
Fig1Tree := Graph 9: a directed unweighted graph with 2 vertices and 1 arc(s)
Fig1Tree := AddLeftChild(Fig1Tree,"Math","Geog");
Fig1Tree := Graph 10: a directed unweighted graph with 3 vertices and 2 arc(s)
Fig1Tree := AddRightChild(Fig1Tree,"Phys","Zoo");
Fig1Tree := Graph 11: a directed unweighted graph with 4 vertices and 3 arc(s)
Fig1Tree := AddLeftChild(Fig1Tree,"Phys","Meteo");
Fig1Tree := Graph 12: a directed unweighted graph with 5 vertices and 4 arc(s)
Fig1Tree := AddRightChild(Fig1Tree,"Geog","Geol");
Fig1Tree := Graph 13: a directed unweighted graph with 6 vertices and 5 arc(s)
Fig1Tree := AddLeftChild(Fig1Tree,"Zoo","Psy");
Fig1Tree := Graph 14: a directed unweighted graph with 7 vertices and 6 arc(s)
Fig1Tree := AddLeftChild(Fig1Tree,"Geog","Chem");
Fig1Tree := Graph 15: a directed unweighted graph with 8 vertices and 7 arc(s)
DrawBTree(Fig1Tree);
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Binary Insertion
A key benefit of binary search trees is that the search time required to find a specific element of the 
tree is logarithmic in the number of vertices of the tree.  The drawback is that the initial insertion of a
vertex is more expensive.

The procedure for constructing a binary search tree by insertion is described in Algorithm 1 in 
Section 11.2 of the textbook.  We will implement this algorithm as the procedure BInsertion.

The BInsertion procedure will accept two input values: a binary search tree and a vertex to be 
found or added.  The procedure returns true if the vertex is found to already be in the tree, and if 
not, it will add the vertex to the tree and return false.  

We begin by locating the root of the tree by checking the tree's "root" attribute and setting the local 
variable v to the root.  Then we begin a while loop.  This while loop continues provided two 
conditions are met.  First, that v <> NULL.  If we discover that the value we're searching for is not
in the tree, then we will add it to the tree and set v to NULL, to indicate that we had to add a vertex, 
and this terminates the while loop.  The second condition is that v <> x, where x is the value we 
are searching for.  If v = x, then we have found the vertex and thus the loop should terminate.  
(Note that Maple identifies a vertex with its label, so, unlike the text, we do not distinguish between 
v and label v .)  

Within the while loop, there are two possibilities.  Either the sought-after value is less than v or it is 
greater than v.  They cannot be equal because that is one of the terminating conditions for the while 
loop.  If the target value is less than v, then we consider the left child of v.  If there is no left child, 
then we know that the value is not in the tree and so we add the value as the left child of v and then 
set v to NULL to indicate that the desired value was not already in the tree.  If there is a left child, 
then we set v equal to it and continue the loop.  If the target value is greater than v, we proceed in 
exactly the same way, substituting right for left.

Once the loop terminates, we check the value of v.  If v is NULL, then we know that the desired 
value was not found and the algorithm returns false.  If v is not NULL, then we return true.
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The evaln parameter modifier
Before providing the definition of the insertion procedure, we also mention the evaln parameter 
modifier.  We want the BInsertion procedure to be able to modify the tree it was given.  
Normally when you provide a parameter to a procedure, the procedure cannot assign to the 
parameter.  Consider the following simple procedure.

five := 5;
five := 5

AddOne := proc(n)
  n := n + 1;
end proc:
AddOne(five);

Error, (in AddOne) illegal use of a formal parameter

This procedure produces an error when we attempt to assign a value to the parameter n.  This is a 
feature of programming in Maple that is designed to encourage good programming practices.  In 
particular, for a procedure to modify one of its arguments, we need to be very explicit that we really 
want to do so.  This helps prevent unintended consequences — accidentally modifying a parameter 
can cause serious bugs in your programs.  

You can think about what's going on in the AddOne procedure this way: when you call the 
procedure with the syntax AddOne(five), all of the occurrences of the name n are resolved to 
the object 5, which is the value stored in five.  So the command n := n + 1; resolves to 5 
:= 5 + 1;.  Clearly that's not a legal command.  

The evaln modifier provides a way around this.  For example, if we declare the parameter to be
n::evaln in the AddOne procedure, we are telling Maple to not evaluate the parameter n into the 
object that it refers to, but to evaluate the parameter into a name.  Instead of evaluating the variable
five to get the object 5 and replacing the parameter n with 5, the variable five is evaluated into 
the name five and the parameter n is replaced with the name five.  This means that the command
becomes five := five + 1;.  This still doesn't quite work, because the five on the right 
hand side of the assignment is now a name, and we can't add integers to names.  We need to force 
the name five to be evaluated to the object 5 with the eval command.

AddOne2 := proc(n::evaln)
  n := eval(n) + 1;
end proc:

Now we can see that this procedure modifies the variable it is given.
seven := 7;

seven := 7
AddOne2(seven);

8
seven;

8

To summarize: we can create procedures that modify a variable that is passed to them by marking 
the parameter with the modifier evaln.  This allows the parameter to appear on the right side of an 
assignment, but the trade-off is that all other occurrences of the parameter must have an explicit
eval.  
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Implementation of binary insertion
Here, now, is the binary insertion algorithm.

BInsertion := proc(BST::evaln,x)
  local v;
  uses GraphTheory;
  if not type(eval(BST),BTree) then
    BST := NewBTree(x);
    return false;
  end if;
  v := GetGraphAttribute(eval(BST),"root");
  while v <> NULL and v <> x do
    if x < v then
      if FindLeftChild(eval(BST),v) = FAIL then
        BST := AddLeftChild(eval(BST),v,x);
        v := NULL;
      else
        v := FindLeftChild(eval(BST),v);
      end if;
    else
      if FindRightChild(eval(BST),v) = FAIL then
        BST := AddRightChild(eval(BST),v,x);
        v := NULL;
      else
        v := FindRightChild(eval(BST),v);
      end if;
    end if;
  end do;
  if v = NULL then
    return false;
  else
    return true;
  end if;
end proc:

Note that we begin the procedure by testing to see if the object stored in the parameter BST is in fact
a binary tree.  If it is not, we use the NewBTree command to create a tree and store it in the name 
given by the parameter.  This way we can use BInsertion to create a new tree in addition to 
inserting elements in an existing tree.

Now, let's see if oceanography is in the Fig1Tree of academic subjects.
BInsertion(Fig1Tree,"Oc");

false
The procedure returned false indicating that "Oc" was not found in the tree.  Graphing Fig1Tree, 
we see that it was added as a child of meteorology.

DrawBTree(Fig1Tree);
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On the other hand, zoology is already in the tree and so the tree is not modified.

BInsertion(Fig1Tree,"Zoo");
true

DrawBTree(Fig1Tree);

Math

PhysGeog

ZooMeteoGeol
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Chem

Oc

Constructing a binary search tree from a list
To conclude our discussion of binary search trees, we will create a procedure that takes a list of 
values and successively uses the BInsertion procedure to create a binary search tree for the 
given list.

MakeBST := proc(L::list)
  local T, v;
  for v in L do
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    BInsertion(T,v);
  end do;
  return T;
end proc:

We use this to complete Exercise 1 from Section 11.2.
Exercise1 := MakeBST(["banana", "peach", "apple", "pear", 
"coconut", "mango", "papaya"]);
Exercise1 := Graph 16: a directed unweighted graph with 7 vertices and 6 arc(s)
DrawBTree(Exercise1);

banana

peachapple

pearcoconut

mango

papaya

Huffman Coding
Huffman coding is a method for constructing an efficient prefix code for a set of characters.  It is 
based on a greedy algorithm, where at each step the vertices with the least weight are combined.  It 
can be shown that Huffman coding produces optimal prefix codes.  The algorithm that we will 
implement is described in Algorithm 2 of Section 11.2.

Creating the initial forest
We begin with a list of symbols and their weights, or frequencies.  The first step is to create the 
initial forest, which we will implement as a list of trees.  For each symbol, we will create the binary 
tree consisting of a single vertex corresponding to the symbol.  

We will create a procedure, similar to NewBTree, which, in addition to creating the binary tree, 
also assigns a "weight" attribute to the graph to store the weight of the symbol.

NewHTree := proc(s,w)
  local T;
  uses GraphTheory;
  T := Digraph([s]);
  SetGraphAttribute(T,"root"=s);
  SetGraphAttribute(T,"weight"=w);
  SetVertexAttribute(T,s,"order"=0);
  return T;
end proc:
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Now we will write an algorithm to create the initial forest.  We assume that the data is provided as a 
list of pairs consisting of the symbol and the weight.  

CreateForest := proc(L::list(list))
  local forest, M, v, w, G;
  uses GraphTheory;
  forest := [];
  for M in L do
    v := M[1];
    w := M[2];
    forest := [op(forest),NewHTree(v,w)];
  end do;
  return forest;
end proc:

Using this procedure, we form the initial forest for Exercise 23 from Section 11.2.
Ex23Forest := CreateForest([["a",0.20],["b",0.10],["c",0.15],
["d",0.25],["e",0.30]]);

Ex23Forest := Graph 17: a graph with 1 vertex and no edges,
Graph 18: a graph with 1 vertex and no edges,
Graph 19: a graph with 1 vertex and no edges,
Graph 20: a graph with 1 vertex and no edges,
Graph 21: a graph with 1 vertex and no edges

The main work of the Huffman coding algorithm is to determine the two members of the forest with
the smallest weights.  These two trees are then assembled into a single tree whose root is a new 
vertex and with the lowest weight and second lowest weight trees as the right and left subtrees of 
the root.  The new tree's weight is the sum of the weights of the two original trees.

Sorting the forest
Recall that the sort command accepts an optional second argument, specifically, a procedure on 
two arguments that returns true if the first argument precedes the second in the desired order.  The 
following procedure will be of this kind, accepting two binary trees as input and comparing their 
weights.

CompareTrees := proc(A::BTree,B::BTree)
  local a, b;
  uses GraphTheory;
  a := GetGraphAttribute(A,"weight");
  b := GetGraphAttribute(B,"weight");
  return evalb(a < b);
end proc:
Ex23Forest := sort(Ex23Forest,CompareTrees);

Ex23Forest := Graph 18: a graph with 1 vertex and no edges,
Graph 19: a graph with 1 vertex and no edges,
Graph 17: a graph with 1 vertex and no edges,
Graph 20: a graph with 1 vertex and no edges,
Graph 21: a graph with 1 vertex and no edges

Combining two trees
Next, we need to take two binary trees and create a new binary tree with one tree as the left subtree 
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of the new root and the other as the right subtree.  This procedure will require three arguments: the 
name of the new root, the left subtree, and the right subtree.  

We create the new tree by: (1) combining the vertex lists of the original trees and adding the new 
vertex; (2) merging the two sets of edges of the original tress and adding two new edges linking the 
new root to the previous roots; (3) copying the "position" attribute from the original trees and then 
changing the "position" attributes for the two original roots to reflect their new status as left and 
right children in the new tree; (4) setting the graph attribute "root" and setting the "weight" attribute 
to be the sum of the weights of the two original trees.  Also, (5) we will use edge weights of 0 and 
1 to label the edges, so the edge weights also need to be copied for the original edges and added to 
the new edges.

JoinHTrees := proc(newR,A::BTree,B::BTree)
  local newT, newVerts, Aroot, Broot, newEdges, v, e, p, w;
  uses GraphTheory;
  newVerts := [newR,op(Vertices(A)),op(Vertices(B))];
  Aroot := GetGraphAttribute(A,"root");
  Broot := GetGraphAttribute(B,"root");
  newEdges := Edges(A) union Edges(B) 
                       union {[newR,Aroot],[newR,Broot]};
  newT := Graph(weighted,newVerts,newEdges);
  for v in Vertices(A) do
    p := GetVertexAttribute(A,v,"order");
    SetVertexAttribute(newT,v,"order"=p);
  end do;
  for v in Vertices(B) do
    p := GetVertexAttribute(B,v,"order");
    SetVertexAttribute(newT,v,"order"=p);
  end do;
  for e in Edges(A) do 
    p := GetEdgeWeight(A,e);
    SetEdgeWeight(newT,e,p);
  end do;
  for e in Edges(B) do
    p := GetEdgeWeight(B,e);
    SetEdgeWeight(newT,e,p);
  end do;
  SetVertexAttribute(newT,Aroot,"order"=1);
  SetVertexAttribute(newT,Broot,"order"=2);
  SetVertexAttribute(newT,newR,"order"=0);
  SetEdgeWeight(newT,[newR,Aroot],0);
  SetEdgeWeight(newT,[newR,Broot],1);
  SetGraphAttribute(newT,"root"=newR);
  w := GetGraphAttribute(A,"weight") 
                            + GetGraphAttribute(B,"weight");
  SetGraphAttribute(newT,"weight"=w);
  return newT;
end proc:

For example, we'll join the first two graphs in our sorted Ex23Forest.
exampleJoin:=JoinHTrees("newR",Ex23Forest[1],Ex23Forest[2]);
exampleJoin := Graph 22: a directed weighted graph with 3 vertices and 2 arc(s)
DrawBTree(exampleJoin);
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Implementing the main procedure
We now have the major pieces of the Huffman algorithm assembled and we can write the
HuffmanCode algorithm.  This algorithm will accept as input the same list of symbol-weight pairs
as the CreateForest procedure did.  The procedure's first step is to create the forest F.  Then we
begin a while loop that continues as long as the list F contains more than one member.  Inside the 
while loop, we first use the CompareTrees procedure to sort the forest in increasing order of 
weight.  Then, we use the JoinTrees procedure to join the first two trees in the forest and we add
that new tree to the list, replacing the original two.  

HuffmanCode := proc(L::list(list))
  local F, i, tempT;
  uses GraphTheory;
  F := CreateForest(L);
  i := 0;
  while nops(F) > 1 do
    F := sort(F,CompareTrees);
    i := i + 1;
    tempT := JoinHTrees(cat("I",i), F[2],F[1]);
    F := [op(F[3..-1]),tempT];
  end do;
  return F[1];
end proc:

Note that we need a name for the new root when we join two trees.  Since these will be the internal 
vertices of the final tree, we'll call them I1, I2, I3, etc.  We keep a counter i and use the string 
concatenation operator cat to create the names of the internal vertices.

Ex23HCode := HuffmanCode([["a",0.20],["b",0.10],["c",0.15],
["d",0.25],["e",0.30]]);
Ex23HCode := Graph 23: a directed weighted graph with 9 vertices and 8 arc(s)
DrawBTree(Ex23HCode);
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Encoding strings using the Huffman code tree
We conclude this section by writing a procedure to encode a string of symbols using a given 
Huffman tree.  Note that you can use the list accessor notation on a string to access its individual 
characters.  For example,

exampleString := "Hello";
exampleString := "Hello"

exampleString[2];
"e"

Since we encode a string by assembling the codes for individual characters, we'll start with a 
procedure for encoding a single character.  We assemble the character's code right to left.  
Beginning with the vertex corresponding to the desired character, we find that vertex's parent.  The 
last digit of the code is the weight of the corresponding edge.  The next rightmost digit is the weight 
of the edge connecting the next parent.  We continue until we reach the root.

EncodeCharacter := proc(H::BTree,c::character)
  local code, vertex, parent, digit;
  uses GraphTheory;
  vertex := c;
  code := "";
  while FindParent(H,vertex) <> FAIL do
    parent := FindParent(H,vertex);
    digit := GetEdgeWeight(H,[parent,vertex]);
    code := cat("",digit,code);
    vertex := parent;
  end do;
  return code;
end proc:
EncodeCharacter(Ex23HCode,"c");

"100"
(Note: in updating code, we begin the concatenation with the empty string, "".  This is because
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cat returns an object of the same type as its first argument.  If we did not begin with the empty 
string, the result would not be a string.

To encode a string, we encode each character and assemble the results.  We also make use of the
length command in this procedure.  Applied to a string, length returns the number of 
characters in the string.

EncodeString := proc(H::BTree,S::string)
  local code, charcode, i;
  code := "";
  for i from 1 to length(S) do
    charcode := EncodeCharacter(H,S[i]);
    code := cat(code,charcode);
  end do;
  return code;
end proc:

We use this to encode the word "ace".
EncodeString(Ex23HCode,"ace");

"1110000"

11.3 Tree Traversal
In this section we show how to use Maple to carry out tree traversals.  Recall that a tree traversal 
algorithm is a procedure for systematically visiting every vertex of an ordered rooted tree.  We will 
provide procedures for three important tree traversal algorithms: preorder traversal, inorder 
traversal, and postorder traversal.  We will then show how to use these traversal methods to 
produce the prefix, infix, and postfix notations for arithmetic expressions.

These tree traversal algorithms all require that the tree be rooted and ordered.  Recall how we 
implemented ordered rooted trees in Section 1.  An ORTree is an RTree with the additional 
restriction that each vertex has an "order" attribute.  

Also recall that we created the function VOrderComp, which takes an ordered rooted tree and 
returns a procedure that compares vertices based on their "order" attribute.  The procedure returned 
by VOrderComp can be used as an optional argument to sort to sort lists of vertices based on the
"order" attribute.

To begin, we will create an ordered tree to use as an example as we explore the three traversal 
algorithms.  This example is a reproduction of Figure 3 from Section 11.3.

Fig3ORTree := Graph({["a","b"],["a","c"],["a","d"],["b","e"],
["b","f"],["d","g"],["d","h"],["d","i"],["e","j"],["e","k"],
["g","l"],["g","m"],["k","n"],["k","o"],["k","p"]});

Fig3ORTree := Graph 24: a directed unweighted graph with 16 vertices and 15 arc(s)
SetGraphAttribute(Fig3ORTree,"root"="a");
Vertices(Fig3ORTree);

"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p"
SetChildOrder(Fig3ORTree,[0,1,2,3,1,2,1,2,3,1,2,1,2,1,2,3]);
DrawORTree(Fig3ORTree);



(11.13)(11.13)
O O 

O O 

O O 

(11.63)(11.63)

(11.24)(11.24)

O O 

O O 

O O 

O O 

O O 

O O 

(11.18)(11.18)
O O 

O O 

a

b c d

e f g h i

j k l m

n o p

Subtrees
Before implementing the traversal algorithms, we need a procedure that determines a subtree of a 
tree.  In particular, we want an algorithm that, given a tree and a vertex, will return the subtree with 
the given vertex as the root and that includes all of its descendants.  

To produce the subtree, we will use the InducedSubgraph command on the list of vertices in 
the desired subtree.  (Note that, unlike the AddVertex command, InducedSubgraph preserves
the vertex attributes of the vertices in the subgraph.)  The vertices that we want included in the 
subgraph are the given vertex together with all of its descendents.  We begin by creating a procedure
that finds all of the descendants of the given vertex.  This procedure can apply to any rooted tree.

The approach is the same as we've used before.  We begin with the given vertex and create a list 
consisting of its children, which we obtain with the Departures command.  We then begin a loop
over the list of descendants.  At each step, we add all of the children of the current vertex to the list, 
and then move on to the next vertex in the list.  This continues until we reach the end of the list and 
there are no more children to add.  (Note: this is referred to as a level-order traversal.)

Descendants := proc(T::RTree, parent)
  local Dlist, v, i;
  uses GraphTheory;
  Dlist := Departures(T,parent);
  i := 1;
  while i <= nops(Dlist) do
    v := Dlist[i];
    Dlist := [op(Dlist),op(Departures(T,v))];
    i := i + 1;
  end do;
  return Dlist;
end proc:

Compute the descendants of e in the example tree above.
Descendants(Fig3ORTree,"e");
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To construct the subtree of an ordered rooted tree with a given vertex as its root, we need to: find 
the descendants of the given vertex; use the InducedSubgraph command on the given vertex 
and all its descendants; set the "root" attribute of the subgraph; and set the "order" attribute of the 
root to 0.

SubTree := proc(T::ORTree, newRoot)
  local Vlist, subT;
  uses GraphTheory;
  Vlist := Descendants(T,newRoot);
  Vlist := [newRoot,op(Vlist)];
  subT := InducedSubgraph(T,Vlist);
  SetGraphAttribute(subT,"root"=newRoot);
  SetVertexAttribute(subT,newRoot,"order"=0);
  return subT;
end proc:

Let's check this procedure by finding the subtree with root e and make sure it really is an ORTree.
subEx := SubTree(Fig3ORTree,"e");

subEx := Graph 25: a directed unweighted graph with 6 vertices and 5 arc(s)
type(subEx,ORTree);

true
DrawORTree(subEx);

e

j k

n o p

Traversal Algorithms
We now implement the three traversal algorithms described in Section 11.3 of the text.  We begin 
with the preorder traversal algorithm, which is given as Algorithm 1 in the text.

Preorder
Given an ordered rooted tree, the preorder algorithm acts as follows.  First, it prints the name of the 
root.  Then it calculates the children of the root and stores them in order.  For each child, in order, 
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the procedure recursively applies itself to the subtree with the given child as root.
Preorder := proc(T::ORTree)
  local root, children, sorter, i, tempSubT;
  uses GraphTheory;
  root := GetGraphAttribute(T,"root");
  printf("%a ",root);
  children := Departures(T,root);
  sorter := VOrderComp(T);
  children := sort(children,sorter);
  for i from 1 to nops(children) do
    tempSubT := SubTree(T,children[i]);
    Preorder(tempSubT);
  end do;
end proc:
Preorder(Fig3ORTree);

"a" "b" "e" "j" "k" "n" "o" "p" "f" "c" "d" "g" "l" "m" "h"
"i" 

You can confirm that this output is consistent with the preorder traversal demonstrated in Figure 4 
of Section 11.3 of the textbook.

Postorder
Postorder traversal, described in Algorithm 3 of the text, is very similar to preorder traversal.  The 
only change needed in the code is that, instead of printing the root at the start of the algorithm, the 
vertex is printed after the loop is completed. 

Postorder := proc(T::ORTree)
  local root, children, sorter, i, tempSubT;
  uses GraphTheory;
  root := GetGraphAttribute(T,"root");
  children := Departures(T,root);
  sorter := VOrderComp(T);
  children := sort(children,sorter);
  for i from 1 to nops(children) do
    tempSubT := SubTree(T,children[i]);
    Postorder(tempSubT);
  end do;
  printf("%a ",root);
end proc:
Postorder(Fig3ORTree);

"j" "n" "o" "p" "k" "e" "f" "b" "c" "l" "m" "g" "h" "i" "d"
"a" 

Inorder
In inorder traversal, the algorithm first applies applies itself recursively to the first child of the 
vertex, then it prints the vertex, and then it applies itself to the remainder of the children, in order.  

Inorder := proc(T::ORTree)
  local root, children, sorter, i, tempSubT;
  uses GraphTheory;
  root := GetGraphAttribute(T,"root");
  children := Departures(T,root);
  sorter := VOrderComp(T);
  children := sort(children,sorter);
  if nops(children) <> 0 then
    tempSubT := SubTree(T,children[1]);
    Inorder(tempSubT);
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  end if;
  printf("%a ",root);
  for i from 2 to nops(children) do
    tempSubT := SubTree(T,children[i]);
    Inorder(tempSubT);
  end do;
end proc:
Inorder(Fig3ORTree);

"j" "e" "n" "k" "o" "p" "b" "f" "a" "c" "l" "g" "m" "d" "h"
"i" 

Infix Notation
In the remainder of this section,we discuss how to use Maple to work with the infix, prefix, and 
postfix forms of arithmetic expressions, as described in Section 11.3 of the text.  In this subsection, 
we will show how to create a tree representation of an infix expression.  In the next subsection, we 
will explore how to evaluate expressions from their postfix and prefix forms.  

Recall that infix notation is the usual notation for basic arithmetic and algebraic expressions.  We 
will construct a Maple procedure that takes an infix expression and converts it into a tree 
representation.  This tree representation can then be traversed using the traversals of the previous 
sections to form various arithmetic representation formats.

The algorithm we use to turn an arithmetic expression in infix notation into a tree is recursive.  The 
basis case occurs when the expression consists of a single number or variable.  In this case, the tree 
consists of a single vertex.

Otherwise, the expression consists of a left operand, an operator, and a right operand.  In this case, 
we (1) apply the algorithm to the left and right operands, and (2) combine the resulting trees with 
the operator as the common root.  Implementing this will require some preliminary work.  In 
particular, we must address a few issues.  

First, we need to represent arithmetic expressions in Maple in such a way that we can work with 
them and ensure that Maple won't evaluate them.  

Second, we need to be able to distinguish the basis case from the recursive case.  

Third, the leaves in the tree will be numbers and variables and the internal vertices will be 
operations.  In an expression like 3$4C 7$ 3C x , we have repetition among the operators and the
operands (two 3's, two additions, and two multiplications).  We need a way to get Maple to consider
each of these to be a distinct object, since Maple insists that the vertices in a graph be distinct.

Fourth, in the recursive step, we need to be able to identify the operator and separate the left and 
right operands.

And fifth, we will need to implement a procedure to perform the combination of subtrees described 
in part (2) of the recursive step.

Representing expressions
We cannot use the usual operations of arithmetic to represent an expression that will be turned into a
tree, as Maple will automatically perform arithmetic operations.  In order to prevent evaluation, we 
will use different operators, namely, &+, &-, &*, &/, and &^.  

Recall that the ampersand indicates to Maple that the symbol is a neutral operator.  Ordinarily, you 
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use neutral operators to define new infix operators.  In this case, we only need to be able to write 
expressions in terms of infix operators and have the expression not evaluated.  As long as we don't 
define &+, &-, &*, &/, or &^, Maple will understand that they are operators but will not evaluate 
them.

Note that the typical order of operations, or precedence, is not respected by these neutral operators.  
So to enter expressions with these operators, we must fully parenthesize the expression.  For 
example, to enter 2$3C 4, type the following.

(2 &* 3) &+ 4;
2 &* 3  &C 4

We will impose some additional restrictions on expressions, in order to avoid unnecessary 
complications.  Specifically, we insist that the only symbols allowed are integers, variables, the 
binary neutral operators &+, &-, &*, &/, &^, and parentheses ( ).  

Distinguishing the basis and recursive cases
Any arithmetic expression is either a single integer or variable, or it is two expressions joined by an 
arithmetic operator.

We can determine which kind it is by testing the object against the types integer and symbol.  
Remember that braces in a structured type mean that either type can be matched.

type(5,{integer,symbol});
true

type(a,{integer,symbol});
true

type((2 &* 3) &+ 4,{integer,symbol});
false

The above statements demonstrate that the type command can be used to distinguish between a 
single integer or variable and a complex expression.

Ensuring that each occurrence of an object is considered distinct
The tree associated to the expression 3$4C 7$ 3C x  will have 9 vertices.  The internal vertices, 
the operations, consist of two additions and two multiplications.  The leaves, the numbers and 
variables, consist of 4, 7, x, and two 3s.  

In Maple graphs, each vertex must be unique and distinct from all other vertices.  In order to make 
Maple consider two 3s or two &+'s to be different, we define the following procedure.

Unique := proc(a)
  convert(a,`local`);
end proc:

The command convert(a,`local`) has the effect of turning the expression a into a local 
name.  This means that the object returned is, as far as Maple is concerned, different from another 
copy of itself.  For example, we can make 2 not equal to 2.

evalb(Unique(2)=2);
false

Identifying the operator and the operands
In the recursive case, we must separate a complex expression into its operator and the left and right 
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operands.  Consider the following example.
exampExpr := (3 &* 4) &+ (7 &* (3 &+ x));

exampExpr := 3 &* 4  &C 7 &* 3 &C x

This expression, 3$4C 7$ 3C x  consists of the sum of 3$4 and 7$ 3C x .  In Maple, we will 
use the op command to separate the expression into its parts.

Recall that op has several forms.  Typically we've used the form that accepts only one argument, 
typically a list or a set, and returns the sequence underlying the argument.  Observe what happens if 
we apply op to our expression.

op(exampExpr);
3 &* 4, 7 &* 3 &C x

It has removed the central addition and produced the sequence consisting of the two operands.

A different form of op will allow us to access the two operands directly.  Given a positive integer 
as a first argument, op returns the specified operand.  

op(1,exampExpr);
3 &* 4

op(2,exampExpr);
7 &* 3 &C x

Giving 0 as the first argument to op has slightly different meanings in different contexts.  In this 
case, giving 0 as the first argument will return the operator.

op(0,exampExpr);
&C

Combining subtrees
Recall that, as part of Huffman coding in Section 2, we wrote a procedure, joinHTrees, for 
joining two existing trees at a new root.  We recreate that procedure here, with the weights removed.

JoinTrees := proc(newR,A::BTree,B::BTree)
  local newT, newVerts, Aroot, Broot, newEdges, v, e, p, w;
  uses GraphTheory;
  newVerts := [newR,op(Vertices(A)),op(Vertices(B))];
  Aroot := GetGraphAttribute(A,"root");
  Broot := GetGraphAttribute(B,"root");
  newEdges := Edges(A) union Edges(B) 
                       union {[newR,Aroot],[newR,Broot]};
  newT := Graph(newVerts,newEdges);
  for v in Vertices(A) do
    p := GetVertexAttribute(A,v,"order");
    SetVertexAttribute(newT,v,"order"=p);
  end do;
  for v in Vertices(B) do
    p := GetVertexAttribute(B,v,"order");
    SetVertexAttribute(newT,v,"order"=p);
  end do;
  SetVertexAttribute(newT,Aroot,"order"=1);
  SetVertexAttribute(newT,Broot,"order"=2);
  SetVertexAttribute(newT,newR,"order"=0);
  SetGraphAttribute(newT,"root"=newR);
  return newT;



O O 

O O 

O O 

(11.63)(11.63)

(11.24)(11.24)

O O 

O O 

O O 

O O 

O O 

O O 

(11.13)(11.13)

O O 

O O 

(11.76)(11.76)

O O 

O O 

O O 

(11.18)(11.18)
O O 

(11.77)(11.77)

end proc:

The procedure
With the JoinTrees procedure above and the NewBTree from Section 2, we are ready to write 
the procedure for turning infix expressions into binary trees.

The procedure accepts a single argument, e, the expression.  We first test the type of e.  If it is an 
integer or a symbol, then we use NewBTree to create a new binary tree with e as the only vertex.  
Note that we apply Unique to e before passing it to NewBTree to ensure that all vertices in the 
final tree are distinct.

Otherwise, we're in the recursive case.  We use op to determine the left and right operands and the 
operator.  Again, we apply Unique to the operator, as it will be a vertex in the tree.  After recursive
calls to the procedure to create the trees for the two operands, the subtrees are joined at the operator 
into the result tree.

Here is the procedure.
InfixToTree := proc(e)
  local lhs, rhs, o, lhsTree, rhsTree, result;
  uses GraphTheory;
  if type(e,{integer,symbol}) then
    result := NewBTree(Unique(e));
  else
    lhs := op(1,e);
    o := Unique(op(0,e));
    rhs := op(2,e);
    lhsTree := InfixToTree(lhs);
    rhsTree := InfixToTree(rhs);
    result := JoinTrees(o,lhsTree,rhsTree);
  end if;
  return result;
end proc:

We test the procedure on the example expression.
exampExpr;

3 &* 4  &C 7 &* 3 &C x
exampTree := InfixToTree(exampExpr);
exampTree := Graph 26: a directed unweighted graph with 9 vertices and 8 arc(s)
DrawBTree(exampTree);
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Prefix and Postfix Notation
Suppose we are given a binary tree representation of an arithmetic expression.  We can express 
these trees in postfix, infix, or prefix form by applying the respective traversal algorithm we 
designed above.  For example, applying Inorder to the tree we created in the last example yields 
the correct sequence of symbols, with the exception of omitted parentheses.

Inorder(exampTree);
`3` `&*` `4` `&+` `7` `&*` `3` `&+` x 

It is left to the reader to make the needed modifications to produce procedures that return accurate 
infix, prefix, and postfix expressions.

As a final example in this section, we demonstrate how to evaluate a given postfix expression.  We 
will represent the postfix expression as a list of symbols, each of which is either a number or one of
the arithmetic operations' symbols as a string.  

Since we're considering postfix expressions, we read the list of symbols from left to right.  Each 
time we encounter an operation, that operation is applied to the previous two numbers and we 
update the list by replacing the two numbers and the operation symbol by the result of the operation.

EvalPostfix := proc(Expr::list)
  local i, L;
  L := Expr;
  while nops(L) > 1 do
    i := 1;
    while not L[i] in {"+","-","*","/","^"} do
      i := i + 1;
    end do;
    if L[i] = "+" then
      L[i] := L[i-2] + L[i-1];
    elif L[i] = "-" then
      L[i] := L[i-2] - L[i-1];
    elif L[i] = "*" then
      L[i] := L[i-2] * L[i-1];
    elif L[i] = "/" then
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      L[i] := L[i-2] / L[i-1];
    elif L[i] = "^" then
      L[i] := L[i-2] ^ L[i-1];
    end if;
    L := subsop(i-1=NULL,i-2=NULL,L);
  end do;
  return L[1];
end proc:
Post1 := [7,2,3,"*","-",4,"^",9,3,"/","+"];

Post1 := 7, 2, 3, "*", "-", 4, "^", 9, 3, "/", "C"
EvalPostfix(Post1);

4
The reader is left to explore evaluation in the prefix case, which requires only a simple modification.

11.4 Spanning Trees
This section explains how to use Maple to construct spanning trees for graphs and how to use 
spanning trees to solve many different types of problems.  Spanning trees have a myriad of 
applications, including coloring graphs, placing n queens on a n# n chessboard so that no two of 
the queens attack each other, and finding a subset of a set of numbers with a specified sum.  All of 
these problems, which are described in detail in the text, will be explored computationally in this 
section.  First we will show how to use Maple to form spanning trees using two algorithms: depth-
first search and breadth-first search.  Then we will show how to use Maple to solve the problems 
just mentioned.  

Maple includes a command, SpanningTree, for finding a spanning tree of an undirected graph.  
To illustrate, we reproduce the graph from Exercise 13 of Section 11.4.

Exercise13 := Graph({{"a","b"},{"a","c"},{"b","c"},{"c","d"},
{"d","e"},{"d","f"},{"e","f"},{"e","h"},{"f","g"},{"g","h"},
{"g","j"},{"h","i"}});

Exercise13 := Graph 27: an undirected unweighted graph with 10 vertices and 12 edge(s)
SetVertexPositions(Exercise13,[[0,1],[0,0],[1,.5],[2,.5],[3,
1],[3,0],[4,0],[4,1],[5,1],[5,0]]);
DrawGraph(Exercise13);
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Now we use the SpanningTree command to find a spanning tree for this graph.  The only 
required argument is the name of the graph whose spanning tree we wish to compute.  

Span1Exercise13 := SpanningTree(Exercise13);
Span1Exercise13 :=

Graph 28: an undirected unweighted graph with 10 vertices and 9 edge(s)
DrawGraph(Span1Exercise13);
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We can also specify one of the vertices of the graph as a second argument in order to specify the 
root of the spanning tree.

Span2Exercise13 := SpanningTree(Exercise13,"i");
Span2Exercise13 :=

Graph 29: an undirected unweighted graph with 10 vertices and 9 edge(s)
DrawGraph(Span2Exercise13);
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Despite Maple's existing SpanningTree command, we will develop two of our own using depth-
first and breadth-first search algorithms as a way to illustrate these important algorithms.
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Depth-First Search
We begin by implementing depth-first search.  As the name of the algorithm suggests, vertices are 
visited in order of increasing depth of the spanning tree.  Our implementation is based on Algorithm
1 of Section 11.4 of the textbook.  

Recall the terminology defined in the textbook.  We say that we are "exploring a vertex" v from the 
time the vertex is first added to the spanning tree until we have backtracked back to v for the last 
time.  Note that at any step in the process, we are generally exploring multiple vertices.  In 
particular, the root of the spanning tree starts being explored at the very beginning of the process 
and continues being explored until the procedure terminates. 

The procedure, which we call DepthSearch, will take two arguments: an undirected graph and a 
vertex in that graph.  The procedure operates as follows:

First, we check that the graph is connected using Maple's IsConnected procedure.  If not, 
there can be no spanning tree and the procedure returns FAIL.
Next, we initialize the following variables.
ToVisit will be the set of vertices of the graph that have not yet been visited.  It is 
initialized to the set of vertices of the graph.
Exploring will be the list of vertices that are currently being explored.  As vertices are 
visited, they are added the the end of the Exploring list.  When a vertex has been fully 
explored, i.e., when it has no neighbors not already in the tree, then we remove it from the
Exploring list.  Exploring is initialized to the vertex that is given as the second 
argument.
T will be the spanning tree that is constructed.  It is initialized to the graph consisting of all 
the vertices of the graph, but with no edges.  Provided that the graph is connected, we know 
that all the vertices will appear in T and this saves us from adding them one at a time.  Note 
that T will be neither rooted nor ordered.

Following initialization, we begin a while loop which terminates when the Exploring list is 
empty.  The variable v is set to the last element of the Exploring list.  We then compute the 
intersection, N, of the set of neighbors of v and the ToVisit set of vertices not already 
contained in the tree.  Either,
N is non-empty, in which case, one of its elements is chosen as w, the next vertex to visit.  
The edge {v,w} is added to the tree T.  Also, w is removed from the ToVisit set and 
added to the end of the Exploring list.  In the next iteration of the while loop, this new 
vertex will be set to be v.
N is empty, in which case the vertex v has been explored completely and so it can be 
removed from the Exploring list.  The next iteration of the while loop will set v to be the 
vertex one step back in the Exploring list.  This is the "backtracking" step. 

Here, now, is the procedure.
DepthSearch := proc(G::Graph, startV)
  local ToVisit, Exploring, T, v, N, w;
  uses GraphTheory;
  if not IsConnected(G) then
    return FAIL;
  end if;
  ToVisit := {op(Vertices(G))};
  Exploring := [startV];
  T := Graph(Vertices(G));
  while Exploring <> [] do
    v := Exploring[-1];
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    N := {op(Neighbors(G,v))} intersect ToVisit;
    if N <> {} then
      w := N[1];
      AddEdge(T,{v,w});
      ToVisit := ToVisit minus {w};
      Exploring := [op(Exploring),w];
    else
      Exploring := subsop(-1=NULL,Exploring);
    end if;
  end do;
  return T;
end proc:

Let's test this with our Exercise 13 example from above.
DepthExercise13 := DepthSearch(Exercise13,"a");

DepthExercise13 :=
Graph 30: an undirected unweighted graph with 10 vertices and 9 edge(s)
DrawGraph(DepthExercise13);
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We can reposition the vertices to match the original graph with SetVertexPositions and
GetVertexPositions.

SetVertexPositions(DepthExercise13,GetVertexPositions
(Exercise13));
DrawGraph(DepthExercise13);
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Breadth-First Search
We now turn to an implementation of a breadth-first search.  Recall that the breadth-first algorithm 
works by examining all vertices at the current depth of the spanning tree before moving on to the 
next level of the graph.  Our implementation will follow Algorithm 2 of Section 11.4 of the text.

The procedure, to be called BreadthSearch, again takes two arguments: an undirected graph and
a vertex to act as the starting point.  It proceeds as follows.

First, we check that the graph is connected using Maple's IsConnected procedure.
Next, we initialize the following variables.
ToVisit, as before, will be the set of vertices of the graph not yet visited.  It is initialized to
the set of vertices of the graph with the initial vertex excluded.
ToProcess will be the list of vertices that have been determined to be incident to a vertex 
in the tree but which have not yet been processed.  ToProcess is initialized to the vertex 
that is given as the second argument to the procedure.
T will be the spanning tree that is constructed.  Once again, it is initialized to the tree 
consisting of all the vertices of the given graph, but with no edges.

Following initialization, we begin a while loop that terminates when the ToProcess list is 
empty.  The variable v is set to the first element of the ToProcess list.  We then compute the 
intersection, N, of the set of neighbors of v and the ToVisit set.  For each element w of N, 
an edge {v,w} is added to T and w is added to the end of the ToProcess list and removed 
from the ToVisit set.  Then v is removed from ToProcess. 

Observe that, since neighbors are added to the end of the ToProcess list and are processed from 
the beginning of the list, we are assured that all vertices on a given level will be processed before 
any vertex at a lower level.  

Here is the implementation.
BreadthSearch := proc(G::Graph, startV)
  local ToVisit, ToProcess, T, v, N, w;
  uses GraphTheory;
  if not IsConnected(G) then
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    return FAIL;
  end if;
  ToVisit := {op(Vertices(G))} minus {startV};
  ToProcess := [startV];
  T := Graph(Vertices(G));
  while ToProcess <> [] do
    v := ToProcess[1];
    N := {op(Neighbors(G,v))} intersect ToVisit;
    for w in N do
      AddEdge(T,{v,w});
      ToProcess := [op(ToProcess),w];
      ToVisit := ToVisit minus {w};
    end do;
    ToProcess := subsop(1=NULL,ToProcess);
  end do;
  return T;
end proc:

Once again, we illustrate using Exercise 13.
BreadthExercise13 := BreadthSearch(Exercise13,"a");

BreadthExercise13 :=
Graph 31: an undirected unweighted graph with 10 vertices and 9 edge(s)
SetVertexPositions(BreadthExercise13,GetVertexPositions
(Exercise13));
DrawGraph(BreadthExercise13);
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Observe that this is the same graph as was produced by Maple's SpanningTree command, 
which suggests that Maple's command uses a breadth-first algorithm.

Before moving on to backtracking, let's take a moment to compare the trees produced by the two 
algorithms.

DrawGraph([DepthExercise13,BreadthExercise13],style=tree,
root="a");
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Notice that the two spanning trees are quite different, even though they are both drawn rooted at 
vertex a.  In particular, the depth-first search has a deep and thin structure, whereas the breadth-first 
search is shorter and wider appearing.

Graph Coloring via Backtracking
Backtracking is a method that can be used to find solutions to problems that might be impractical to 
solve using exhaustive search techniques.  Backtracking is based on the systematic search for a 
solution to a problem using a decision tree.  (See the text for a complete discussion.)  Here we show
how to use backtracking to solve several different problems, including coloring a graph, the n-
queens problem, and the subset sum problem.

The first problem we will attack via a backtracking procedure is the problem of coloring a graph 
using n colors, where n is a positive integer.  Given a graph, we will attempt to color it using n 
colors using the method described in Example 6 of Section 11.4.  

Fix an order on the vertices of the graph, say v1, v2, …, vm and fix an ordering of the colors as 
color 1, color 2, …, color n.  We will use the ordering of the vertices that Maple automatically 
imposes.  For the colors, we will require an ordered list of colors as one of the arguments to 
the procedure.
We store the current state of the coloring in a list we will call coloring.  This ith entry in this
list will correspond to the color of ith vertex.  For example, coloring = [1,2,1], 
corresponds to vertex v1 assigned color 1, vertex v2 assigned color 2, and vertex v3 assigned 
color 1.  This coloring list is similar to the Exploring list from DepthSearch.  In both
cases, you can think of the list as storing the path from the root of the tree to the current vertex.
In this case, the level, which corresponds to the position in the list, carries additional 
information.  Specifically, level k in the decision tree (i.e., position k in the coloring list) 
corresponds to deciding the color of vertex vk.
We initialize coloring to [1] and set a counter variable i to 2.  The variable i will indicate 
the vertex that requires a decision.
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Set N equal to the neighbors of the ith vertex of the graph, and then construct a set, used, 
consisting of the indices of the colors assigned to the neighbors.  The ith vertex will be 
assigned the color with the smallest index not in used, assuming there are any remaining 
colors.
If there are no possible colors for the ith vertex, then we must backtrack.  We decrease i by 
one.  To ensure that we do not repeat a choice already made when we revisit a vertex, we make
the following modification to how colors are chosen.  If the ith position of coloring has 
already been set, then we know we're in the process of backtracking.  We insist that the new 
choice for the color of vertex i is the smallest possible color greater than the current color.
The procedure terminates in one of two cases.  If i is set to a value greater then the number of 
vertices, then we know that coloring contains a valid assignment for all vertices.  On the 
other hand, if i is ever set to 1, then we know that we have backtracked all the way to the root.
Since the color of the first vertex doesn't affect the validity of the coloring, this indicates that 
we have exhausted all possible colorings and that the graph cannot be colored with n colors.

Our procedure will be called BackColor.  It will accept two arguments: the graph to be colored 
and a list of colors.  If it is successful, it will display the graph with the vertices colored using
HighlightVertex.  If it determines that there is no n-coloring of the graph, it will return FAIL.

BackColor := proc(G::Graph, C::list)
  local Verts, numverts, allcolorsL, k, coloring, i, N, j, 
used, available, colorL;
  uses GraphTheory;
  Verts := Vertices(G);
  numverts := nops(Verts);
  allcolorsL := {seq(k,k=1..nops(C))};
  coloring := [1];
  i := 2;
  while i > 1 and i <= numverts do
    N := Neighbors(G,Verts[i]);
    used := {};
    for j from 1 to i-1 do
      if Verts[j] in N then
        used := used union {coloring[j]};
      end if;
    end do;
    if nops(coloring) >= i then 
      used := used union {seq(k,k=1..coloring[i])};
    end if;
    available := allcolorsL minus used;
    if available <> {} then
      coloring := [op(coloring[1..i-1]),available[1]];
      i := i + 1;
    else
      if nops(coloring) >= i then
        coloring := coloring[1..(i-1)];
      end if;
      i := i - 1;
    end if;
  end do;
  if i > numverts then
    print(coloring);
    colorL := [];
    for k from 1 to numverts do
      colorL := [op(colorL),C[coloring[k]]];
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    end do;
    HighlightVertex(G,Verts,colorL);
    DrawGraph(G);
  else
    return FAIL;
  end if;
end proc:

We test our procedure on the example given in Figure 11 of Section 11.4 of the text.
Fig11Graph := Graph({{"a","b"},{"a","e"},{"b","c"},{"b","d"},
{"b","e"},{"c","d"},{"d","e"}});

Fig11Graph := Graph 32: an undirected unweighted graph with 5 vertices and 7 edge(s)
SetVertexPositions(Fig11Graph,[[0,0],[1,0],[2,0],[2,1],[0,1]]
);
DrawGraph(Fig11Graph);
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BackColor(Fig11Graph,[red,blue,green]);
1, 2, 3, 1, 3
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On the other hand, the complete graph on 5 vertices cannot be 3-colored or 4-colored.
K5 := CompleteGraph(5);
K5 := Graph 33: an undirected unweighted graph with 5 vertices and 10 edge(s)
BackColor(K5,[red,blue,green]);

FAIL
BackColor(K5,[red,blue,green,yellow]);

FAIL
BackColor(K5,[red,blue,green,yellow,brown]);

1, 2, 3, 4, 5

1

2

34

5

Before moving on to the n-queens problem, we illustrate how we can modify our backtracking 
procedure to record and display the decision tree.  Instead of displaying the graph, our modified 
algorithm will produce an animation showing how the decision tree is built up.  We do this by 
keeping a list of trees.  Each time a color is assigned, we create a new tree in the list by adding the 
current state of the coloring list (converted to a string) as a vertex.  

BackColorDT := proc(G::Graph, C::list)
  local Verts, numverts, allcolorsL, k, coloring, i, N, j, 
used, available, colorL, DTList, parentV, newV, newT, Vpos, 
plotList;
  uses GraphTheory;
  Verts := Vertices(G);
  numverts := nops(Verts);
  allcolorsL := {seq(k,k=1..nops(C))};
  coloring := [1];
  newV := convert(coloring,`string`);
  DTList := [Graph([newV])];
  i := 2;
  while i > 1 and i <= numverts do
    N := Neighbors(G,Verts[i]);
    used := {};
    for j from 1 to i-1 do
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      if Verts[j] in N then
        used := used union {coloring[j]};
      end if;
    end do;
    if nops(coloring) >= i then 
      used := used union {seq(k,k=1..coloring[i])};
    end if;
    available := allcolorsL minus used;
    if available <> {} then
      parentV := convert(coloring[1..i-1],`string`);
      coloring := [op(coloring[1..i-1]),available[1]];
      newV := convert(coloring,`string`);
      newT := AddVertex(DTList[-1],newV);
      AddEdge(newT,{parentV,newV});
      DTList := [op(DTList),newT];
      i := i + 1;
    else
      if nops(coloring) >= i then
        coloring := coloring[1..(i-1)];
      end if;
      i := i - 1;
    end if;
  end do;
  DrawGraph(DTList):
  Vpos := GetVertexPositions(DTList[-1]);
  for k from 1 to nops(DTList) do
    SetVertexPositions(DTList[k],Vpos[1..k]);
  end do;
  plotList := [seq(DrawGraph(DTList[k]),k=1..nops(DTList))];
  plots[display](plotList,insequence=true);
end proc:
BackColorDT(Fig11Graph,[red,blue,green]);
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BackColorDT(K5,[red,blue,green,yellow]);
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n-Queens Problem via Backtracking
Another problem with an elegant backtracking solution is the problem of placing n queens on an 
n# n chessboard so that no queen can attack another.  This means that no two queens can be placed
on the same horizontal, vertical, or diagonal line.  We will solve this problem with a backtracking 
algorithm.  The solution we present here is based on the solution given in Example 7 in Section 
11.4.  We place queens in a greedy fashion on the chessboard until either all the queens are placed 
or there is no available position for a queen to be placed without coming under attack from a queen 
already on the board.

Following the textbook, the ith step in the backtracking algorithm will be to place a queen in the ith 
column (or file, in chess terms).  Like the coloring list and Exploring list, the algorithm will 
build a queens list.  In this case, queens[i] = j will indicate that a queen is placed in the jth 
row (rank) in the ith column (file).  We will build a helper procedure, ValidQueens, that, given 
the dimension of the board and the current queens list, will determine the possible locations for a 
queen in the next column.

To implement ValidQueens, we will need a representation of the status of the board; specifically,
for each square on the board, whether it is safe or under attack.  It is natural to represent the board 
as a matrix with an entry 1 indicating that the corresponding square is safe and 0 that it is under 
attack.  Note that we can create a square matrix with all entries initialized to 1 by issuing the
Matrix command with two arguments: the dimension of the matrix and the formula fill=1. For 
example,

Matrix(5,fill=1);
1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
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initializes the matrix representing the board on which no queens have been placed.  

We now build a BoardStatus procedure that, given the current list of queen locations and the 
dimension of the board will return a matrix representing the board with that configuration.  The 
matrix will contain 1 in positions not under attack, 0 in positions under attack, and will represent the
location of queens by the symbol Q.  

BoardStatus := proc(curQueens, dim)
  local board, i, dif, Qrank, Qfile, vQueens;
  board := Matrix(dim, fill=1);
  for Qfile from 1 to nops(curQueens) do
    Qrank := curQueens[Qfile];
    for i from 1 to dim do
      board[Qrank,i] := 0;
      board[i,Qfile] := 0;
      dif := i - Qfile;
      if Qrank + dif <= dim and Qrank + dif >= 1 then
        board[Qrank+dif,i] := 0;
      end if;
      if Qrank - dif <= dim and Qrank - dif >= 1 then
        board[Qrank-dif,i] := 0;
      end if;
    end do;
  end do;
  for Qfile from 1 to nops(curQueens) do
    Qrank := curQueens[Qfile];
    board[Qrank,Qfile] := `Q`;
  end do;
  return board;
end proc:

For example, on a 10# 10 board, with the first queen in the second row and the second queen in 
the seventh row, the board looks as follows.

BoardStatus([2,7],10);
0 0 1 1 1 1 1 0 1 1

Q 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 1 1 1 1

0 0 0 1 0 1 1 1 1 1

0 0 1 0 1 1 1 1 1 1

0 0 0 1 0 1 1 1 1 1

0 Q 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 1 1 1

0 0 1 0 1 1 1 0 1 1

0 0 1 1 0 1 1 1 0 1

The ValidQueens procedure will take the same arguments, the list of queen locations and 
dimension of the board, pass them to BoardStatus, and use the resulting matrix to determine 
available positions in the next column.  We could omit the BoardStatus procedure and instead 
create the ValidQueens procedure independently, but, as you see above, the BoardStatus 



O O 

O O 

O O 

O O 

O O 

O O 

(11.63)(11.63)

5. 5. 

(11.24)(11.24)

O O 

O O 

O O 

4. 4. 

3. 3. 

O O 

(11.13)(11.13)

1. 1. 

O O 

4. 4. 

O O 

O O 

2. 2. 

O O 

O O 

O O 

O O 

(11.18)(11.18)
O O 

procedure provides a useful visualization.
ValidQueens := proc(curQueens,dim)
  local B, file, i, freeSet;
  B := BoardStatus(curQueens,dim);
  file := nops(curQueens) + 1;
  freeSet := {};
  for i from 1 to dim do
    if B[i,file] = 1 then
      freeSet := freeSet union {i};
    end if;
  end do;
  return freeSet;
end proc: 

With this preliminary work out of the way, we are ready to write the main program, nQueens.  It 
will work in much the same way as our previous examples.  

We keep a queens list, initialized to the empty list, that records the locations of queens.  
We initialize a counter file to 1.  This indicates the column in which we need to place a 
queen.  Notice that, in the BackColor algorithm, we initialized the counter to 2.  The reason 
for the difference is that, in the coloring algorithm, the color of the first vertex was arbitrary 
and changing it from color 1 to a different color could not possibly affect the outcome.  In this 
case, it may be the case that there is no solution with the first queen in file 1, rank 1, but there 
is a solution if the file 1 queen is in a different rank. 
Apply the ValidQueens procedure with the queens list and the board dimension.  Store 
the resulting set as open.
As with the BackColor algorithm, we determine if the current assignment is a new 
assignment or a result of backtracking.  If it is a backtracking step, we remove from open the 
positions equal to or smaller than the previous attempt.
We terminate when file either exceeds the board dimension, in which case we have found a 
solution, or when it is backtracked to 0, in which case we have exhausted all possibilities.
nQueens := proc(boardDim::posint)
  local queens, file, open, i;
  queens := [];
  file := 1;
  while file > 0 and file <= boardDim do
    open := ValidQueens(queens[1..(file-1)],boardDim);
    if nops(queens) >= file then
      open := open minus {seq(i,i=1..queens[file])};
    end if;
    if open <> {} then
      queens := [op(queens[1..(file-1)]),open[1]];
      file := file + 1;
    else
      if nops(queens) >= file then
        queens := queens[1..(file-1)];
      end if;
      file := file - 1;
    end if;
  end do;
  if file > boardDim then
    return BoardStatus(queens,boardDim);
  else
    return FAIL;
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  end if;
end proc:

We can use this to find one solution to the 8-queens problem (8# 8 is the size of the standard 
board).

nQueens(8);
Q 0 0 0 0 0 0 0

0 0 0 0 0 0 Q 0

0 0 0 0 Q 0 0 0

0 0 0 0 0 0 0 Q

0 Q 0 0 0 0 0 0

0 0 0 Q 0 0 0 0

0 0 0 0 0 Q 0 0

0 0 Q 0 0 0 0 0

Subset Sum Problem via Backtracking
Finally, we consider the subset sum problem.  Given a set of integers S and a value M, we want to 
find a subset B of S whose sum is M.  To use backtracking on this problem, we first impose an 
ordering on the set S.  We successively select integers from S to include in B until the sum of the 
elements of B equals or exceeds M, and backtrack when the sum exceeds M.

Before we get to the main algorithm, it is worth reviewing two items of syntax.  First, given a list of
values, we can compute their sum with the add command as follows.

listofvalues := [3,7,11,15,-4];
listofvalues := 3, 7, 11, 15, K4

add(i,i=listofvalues);
32

Second, given a list of values and a second list consisting of indices into the first list, we can obtain 
the sublist of values corresponding to the positions described by the second list as follows. 

listofstuff := ["a","b","c","d","e","f","g"];
listofstuff := "a", "b", "c", "d", "e", "f", "g"

listofindices := [1,3,4,7];
listofindices := 1, 3, 4, 7

listofstuff[listofindices];
"a", "c", "d", "g"

listofstuff[[3,4,6]];
"c", "d", "f"

As the general pattern of backtracking algorithms should be clear by this point, we omit a detailed 
description of the procedure.

SubSum := proc(S::set(integer),M::integer)
  local SList, Bindices, allIndices, i, availIndices, k, 
currSum;
  SList := [op(S)];
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  Bindices := [];
  allIndices := {seq(k,k=1..nops(SList))};
  i := 1;
  currSum := 0;
  while i > 0 and currSum <> M do
    availIndices := allIndices minus {op(Bindices)};
    if nops(Bindices) >= i then
      availIndices := availIndices 
                           minus {seq(k,k=1..Bindices[i])};
    end if;
    for k in availIndices do
       if currSum + SList[k] > M then
         availIndices := availIndices minus {k};
       end if;
    end do;
    if availIndices <> {} then
      Bindices := [op(Bindices[1..(i-1)]),availIndices[1]];
      i := i + 1;
    else
      if nops(Bindices) >= i then
        Bindices := Bindices[1..(i-1)];
      end if;
      i := i - 1;
    end if;
    currSum := add(k,k=SList[Bindices[1..(i-1)]]);
  end do;
  if i = 0 then
    return FAIL;
  else
    return SList[Bindices];
  end if;
end proc:
SubSum({31,27,15,11,7,5},39);

5, 7, 27
SubSum({31,27,15,11,7,5},40);

FAIL

11.5 Minimum Spanning Trees
This section explains how to use Maple to find the minimum spanning tree of a weighted graph.  
Recall that a minimum spanning tree T of a weighted graph G is a spanning tree of G with the 
minimum weight of all spanning trees of G.  The two best known algorithms for constructing 
minimum spanning trees are called Prim's algorithm and Kruskal's algorithm.  While Maple includes
commands, PrimsAlgorithm and KruskalsAlgorithm, that implement these algorithms, 
this is another case in which understanding the implementation can help you better understand the 
algorithms.  We will develop our own procedures that implement these two algorithms rather than 
using Maple's.

First, we we construct a graph to use as an example.  We will recreate Exercise 3 from Section 11.5.
Recall the syntax for defining undirected, weighted edges: the members of the edge set passed to the
Graph command are two-element lists whose first element is the undirected edge and whose 
second element is the weight.  For example [{"a","b"},5] represents an edge between a and b 
with weight 5.
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Exercise3 := Graph({[{"a","b"},5],[{"a","d"},2],[{"b","c"},
4],[{"b","d"},3],[{"b","e"},5],[{"b","f"},6],[{"c","f"},3],[
{"d","e"},7],[{"d","g"},6],[{"d","h"},8],[{"e","f"},1],[{"e",
"h"},3],[{"f","h"},4],[{"f","i"},4],[{"g","h"},4],[{"h","i"},
2]});

Exercise3 := Graph 34: an undirected weighted graph with 9 vertices and 16 edge(s)
SetVertexPositions(Exercise3,[[0,2],[1,2],[2,2],[0,1],[1,1],
[2,1],[0,0],[1,0],[2,0]]);
DrawGraph(Exercise3);
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Before implementing our own versions of Prim's algorithm and Kruskal's algorithm, we'll mention 
how to use Maple's built-in implementations of these algorithms, PrimsAlgorithm and
KruskalsAlgorithm.  There is also a command called MinimalSpanningTree, which uses
Kruskal's algorithm.  The syntax for both commands is the same.  There is one required argument, 
the name of the graph.  The commands both return a graph object that is a minimum spanning tree 
for the input.  We will use PrimsAlgorithm to illustrate, but recall that
KruskalsAlgorithm uses the same syntax.

Exercise3Prim := PrimsAlgorithm(Exercise3);
Exercise3Prim := Graph 35: an undirected weighted graph with 9 vertices and 8 edge(s)

DrawGraph(Exercise3Prim);
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Both commands have two optional arguments.  The first is a variable name, which will be assigned 
the weight of the minimal spanning tree.

PrimsAlgorithm(Exercise3,'i');
Graph 36: an undirected weighted graph with 9 vertices and 8 edge(s)

i;
22

The second optional argument is the keyword animate.  If this argument is given, the procedures 
will return an animation showing how the minimal spanning tree is built.  Note, however, that this 
command will not work if strings are used to name vertices.  Instead, we must use either numbers 
or variable names that have not been assigned values.  

Below we define Exercise3names, which is identical to Exercise3 but using names instead 
of strings.  Note that the name i already stores a value.  Even putting it in left single quotes to delay 
evaluation does not prevent it from appearing as its numerical value in the drawing of the graph. 

Exercise3names := Graph({[{a,b},5],[{a,d},2],[{b,c},4],[{b,d}
,3],[{b,e},5],[{b,f},6],[{c,f},3],[{d,e},7],[{d,g},6],[{d,h},
8],[{e,f},1],[{e,h},3],[{f,h},4],[{f,'i'},4],[{g,h},4],[{h,
'i'},2]});

Exercise3names :=
Graph 37: an undirected weighted graph with 9 vertices and 16 edge(s)
DrawGraph(Exercise3names);
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This is why, elsewhere in this chapter, we always use numbers or strings to name vertices in 
graphs.  Note that it is also not possible to use the animate option after setting vertex positions 
with SetVertexPositions.

But we are now able to apply PrimsAlgorithm with the animate option.
PrimsAlgorithm(Exercise3names,animate);
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Prims algorithm builds a Minimum Cost Spanning Tree
from a given starting vertex by adding to itself a 'fringe'
edge of minimal weight at each iteration.  If the edge
would create a cycle in the tree it is discarded.

Input Graph
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The first frame of the animation shows the graph.  Subsequent frames show the process of building 
the minimal spanning tree one edge at a time.

Prim's Algorithm
We will now build our own versions of both algorithms.  We will also see how to create animations
that illustrate the process of building the spanning trees, but without the restrictions imposed by the 
built-in commands.

Since both algorithms depend on choosing an edge of smallest weight, it will be useful to be able to 
apply sort to a list of edges.  Recall that sort accepts an optional second argument: a procedure 
that takes 2 arguments and returns true if the first argument is "less than" the second.  As we've 
seen before, this procedure needs to also depend on the graph, so we will create a functional 
operator that takes a graph and produces the right kind of procedure that can be used by sort.

edgeCompare := G  -> proc(a,b)
  local Wa, Wb;
  Wa := GetEdgeWeight(G,a);
  Wb := GetEdgeWeight(G,b);
  return evalb(Wa < Wb);
end proc:

We will now consider Prim's algorithm, which is given as Algorithm 1 in Section 11.5 of the 
textbook.  Prim's algorithm constructs a minimum spanning tree by successively selecting an edge 
of smallest weight that extends the tree without creating any loops.

To simplify our implementation of Prim's algorithm, we will create a procedure MinEdge.  Given 
the original graph and the list of vertices already included in the spanning tree, MinEdge 
determines which edge of the graph should be added next.  

MinEdge determines the set of edges that are incident with a vertex currently in the tree using the
IncidentEdges command. IncidentEdges takes two arguments.  The first argument is a 
graph, and the second is either a vertex or a list of vertices.  It returns the set of edges incident to the
given vertex or vertices.  The MinEdge procedure then eliminates any edge with both ends already 
in the spanning tree.  (This is equivalent to the condition that the edge not introduce a simple circuit.)
 Once it has determined the valid candidates, the MinEdge procedure returns the edge with smallest
weight.  We also include the special case that the spanning tree has not yet been started, in which 
case we call the procedure with the empty list as the second argument.

MinEdge := proc(G::Graph, V::list)
  local possibleEdges, e, edgeList;
  uses GraphTheory;
  if V = [] then
    possibleEdges := Edges(G);
  else
    possibleEdges := IncidentEdges(G,V);
  end if;
  for e in possibleEdges do
    if e[1] in V and e[2] in V then
      possibleEdges := possibleEdges minus {e};
    end if;
  end do;
  if possibleEdges = {} then
    return NULL;
  end if;



(11.100)(11.100)

O O 

2. 2. 

O O 

O O 

O O 

O O 

O O 

O O 

1. 1. 

O O 

(11.63)(11.63)

O O 

(11.24)(11.24)

O O 

O O 

O O 

O O 

4. 4. 

4. 4. 

O O 

(11.105)(11.105)

(11.13)(11.13)

O O 

O O 

3. 3. 

O O 

O O 

O O 

O O 

O O 

O O 

(11.18)(11.18)
O O 

  edgeList := [op(possibleEdges)];
  edgeList := sort(edgeList,edgeCompare(G));
  return edgeList[1];
end proc:

With this procedure in place, Prim's algorithm is fairly straightforward to implement.
Begin building the spanning tree by finding the edge of minimum weight with the command
MinEdge(G,[]).
Continue building the spanning tree one edge at a time by adding the edge returned by
MinEdge.  (Note that we must add the new vertex before the edge, since AddEdge expects 
both endpoints of the edge to be added to already be in the graph.)
After nK 2 repetitions of step 2, where n is the number of vertices in the graph, the spanning 
tree is complete.
For the sake of displaying the resulting tree, we conclude the procedure by checking to see if 
the original graph has had its vertex positions explicitly set, and, if so, those positions are 
copied to the tree.  (Note that we cannot conveniently use SetVertexPositions in this 
case, because the vertices in the spanning tree are likely in a different order than they are in the 
graph.  Specifically, the order of the vertices in the spanning tree is the order in which they are 
added to the tree.)
Prim := proc(G::Graph)
  local newEdge, T, n, i, v, pos;
  uses GraphTheory;
  newEdge := MinEdge(G,[]);
  T := Graph(weighted,{newEdge});
  SetEdgeWeight(T,newEdge,GetEdgeWeight(G,newEdge));
  n := nops(Vertices(G));
  for i from 1 to n-2 do
    newEdge := MinEdge(G,Vertices(T));
    if newEdge[1] in Vertices(T) then
      T := AddVertex(T,newEdge[2]);
    else
      T := AddVertex(T,newEdge[1]);
    end if;
    AddEdge(T,newEdge);
    SetEdgeWeight(T,newEdge,GetEdgeWeight(G,newEdge));
  end do;
  for v in Vertices(T) do 
    pos := GetVertexAttribute(G,v,"draw-pos-user");
    if pos <> FAIL then
      SetVertexAttribute(T,v,"draw-pos-user"=pos);
    end if;
  end do;
  return T;
end proc:

We can now use this algorithm to find the minimum spanning tree for Exercise 3.
PrimExercise3 := Prim(Exercise3);

PrimExercise3 := Graph 38: an undirected weighted graph with 9 vertices and 8 edge(s)
DrawGraph(PrimExercise3);
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Before moving on to Kruskal's algorithm, we'll create a procedure to produce an animation 
demonstrating Prim's algorithm in action.  First, we'll modify the Prim procedure to record the list of
edges that form the tree and return this list of edges rather than the tree.

PrimEdges := proc(G::Graph)
  local newEdge, T, edgeList, n, i, v, pos;
  uses GraphTheory;
  newEdge := MinEdge(G,[]);
  T := Graph(weighted,{newEdge});
  SetEdgeWeight(T,newEdge,GetEdgeWeight(G,newEdge));
  edgeList := [newEdge];
  n := nops(Vertices(G));
  for i from 1 to n-2 do
    newEdge := MinEdge(G,Vertices(T));
    if newEdge[1] in Vertices(T) then
      T := AddVertex(T,newEdge[2]);
    else
      T := AddVertex(T,newEdge[1]);
    end if;
    AddEdge(T,newEdge);
    SetEdgeWeight(T,newEdge,GetEdgeWeight(G,newEdge));
    edgeList := [op(edgeList),newEdge];
  end do;
  return edgeList;
end proc:
PrimEdges(Exercise3);

"e", "f" , "e", "h" , "h", "i" , "c", "f" , "g", "h" , "b", "c" , "b", "d" , "a",
"d"

We now write the procedures that will produce the animation.  Since these are nearly identical to the
plotPath and animatePath procedures from Chapter 10, we refer the reader to Section 10.5 
of this manual for a detailed explanation.   

plotTree := proc(G::Graph, T::list, n)
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  local Gcopy, subtree, N, redlist;
  uses GraphTheory;
  Gcopy := CopyGraph(G);
  if n > nops(T) then 
    N := nops(T); 
  else
    N := floor(n);
  end if;
  if N <> 0 then
    subtree := T[1..N];
    redlist := [seq(red,i=1..N)];
    HighlightEdges(Gcopy,subtree,redlist);
  end if;
  DrawGraph(Gcopy);
end proc:
animateTree := proc(G::Graph, T::list)
  local t;
  plots[animate](plotTree, [G,T,t], t=0..(nops(T)),
                   paraminfo=false, frames=50);
end proc:
animateTree(Exercise3,PrimEdges(Exercise3));
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Kruskal's Algorithm
Recall that Kruskal's algorithm, Algorithm 2 in Section 11.5, begins in the same way as Prim's 
algorithm, with the edge of smallest weight.  The difference is that at each step, Kruskal's algorithm 
adds whatever edge is of least weight which does not create a simple circuit, regardless of whether it
is incident to an edge already in the graph.  

We begin with a procedure to test whether or not a given edge will create a simple circuit.  Note that,
during the steps of Kruskal's algorithm, we have a forest of trees.  An edge will create a simple 
circuit if and only if both of its endpoints are in the same tree within the forest.  We use the
ConnectedComponents command to find the trees.  The ConnectedComponents command
returns a list of lists, where each inner list is the vertices within one of the connected components of 



O O 

(11.100)(11.100)

1. 1. 

O O 

O O 

O O 

O O 

5. 5. 

O O 

O O 

O O 

3. 3. 

4. 4. 

(11.63)(11.63)

(11.24)(11.24)

O O 

O O 

O O 

O O 

4. 4. 

O O 

(11.13)(11.13)

O O 

O O 

O O 

O O 

2. 2. 

O O 

O O 

O O 

O O 

O O 

(11.18)(11.18)
O O 

the graph.  We test an edge by looping through each of the connected components and making sure 
that both ends do not appear in the same component.

NotFormsCircuit := proc(G::Graph,edge)
  local components, C;
  uses GraphTheory;
  components := ConnectedComponents(G);
  for C in components do
    if edge[1] in C and edge[2] in C then   
      return false;
    end if;
  end do;
  return true;
end proc:

Now we implement Kruskal's algorithm.  The procedure is as follows.
Initialize edges to the list of edges of the given graph and sort this list using the
edgeCompare procedure created above.
Initialize T to the empty graph.  
Consider the first edge in the edges list.  Use NotFormsCircuit to determine if it is safe 
to add to the tree.  If we can add it to the tree, add one or both of its ends as new vertices to T 
as needed and add the edge.  
Regardless of whether NotFormsCircuit approves the addition of the first edge in
edges to the tree, remove the edge from edges — either the edge is now used in the tree and
so won't be used again, or its addition would create a circuit (a fact which won't change later).
Repeat steps 3 and 4 until nK 1 edges have been added, where n is the number of vertices.
Kruskal := proc(G::Graph)
  local edges, T, n, i, newEdge, v, pos;
  uses GraphTheory;
  edges := [op(Edges(G))];
  edges := sort(edges,edgeCompare(G));
  T := Graph(weighted);
  n := nops(Vertices(G));
  i := 1;
  while i <= n-1 do
    newEdge := edges[1];
    if NotFormsCircuit(T,newEdge) then
      if not newEdge[1] in Vertices(T) then
        T := AddVertex(T,newEdge[1]);
      end if;
      if not newEdge[2] in Vertices(T) then
        T := AddVertex(T,newEdge[2]);
      end if;
      AddEdge(T,newEdge);
      SetEdgeWeight(T,newEdge,GetEdgeWeight(G,newEdge));
      i := i + 1;
    end if;
    edges := subsop(1=NULL,edges);
  end do;
  for v in Vertices(T) do 
    pos := GetVertexAttribute(G,v,"draw-pos-user");
    if pos <> FAIL then
      SetVertexAttribute(T,v,"draw-pos-user"=pos);
    end if;
  end do;
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  return T;
end proc:

Note that Kruskal's algorithm produces the same minimum spanning tree for Exercise 3 as did our 
implementation of Prim's algorithm (in fact, this graph has a unique minimum spanning tree).

KruskalExercise3 := Kruskal(Exercise3);
KruskalExercise3 :=

Graph 39: an undirected weighted graph with 9 vertices and 8 edge(s)
DrawGraph(KruskalExercise3);
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We can produce an animation, like we did for Prim's algorithm, by modifying the procedure to 
produce the list of edges in the order they are added and then using the animateTree command 
once again.

KruskalEdges := proc(G::Graph)
  local edges, edgeList, T, n, i, newEdge;
  uses GraphTheory;
  edges := [op(Edges(G))];
  edges := sort(edges,edgeCompare(G));
  edgeList := [];
  T := Graph(weighted);
  n := nops(Vertices(G));
  i := 1;
  while i <= n-1 do
    newEdge := edges[1];
    if NotFormsCircuit(T,newEdge) then
      if not newEdge[1] in Vertices(T) then
        T := AddVertex(T,newEdge[1]);
      end if;
      if not newEdge[2] in Vertices(T) then
        T := AddVertex(T,newEdge[2]);
      end if;
      AddEdge(T,newEdge);
      SetEdgeWeight(T,newEdge,GetEdgeWeight(G,newEdge));
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      edgeList := [op(edgeList),newEdge];
      i := i + 1;
    end if;
    edges := subsop(1=NULL,edges);
  end do;
  return edgeList;
end proc:
animateTree(Exercise3,KruskalEdges(Exercise3));
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By comparing the two animations, you can see how the two algorithms provide different routes to 
the same end result.

Solutions to Computer Projects and Computations and Explorations
Computer Projects 6

Given the ordered list of edges of an ordered rooted tree, find the universal addresses of its 
vertices.

Solution: Recall that the universal address of a vertex in an ordered rooted tree is defined as 
follows.  The root has address 0 and its children have addresses 1, 2, 3, etc., in order.  The 
address of every other vertex is defined recursively as p.n where p is the address of the vertex's 
parent and n is 1 if the vertex is the first child of its parent, 2 if it is the second child, etc.  

Before solving this problem, we will make the following assumption on the input: the edges are 
sorted according to the lexicographical order of the universal address of their terminal vertex.  
That is to say, the edges are listed in the order of their appearance from left to right and top to 
bottom when the tree is drawn in the usual way.  This makes some of what follows slightly 
easier.  The reader is encouraged to generalize the procedure we create here so as to not depend 
on this restriction.

We build the ORTree determined by the list of edges and add a "univ-address" attribute to each 
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vertex containing the vertex's universal address.  First, here is an ordered list of edges for an 
ordered rooted tree.

CP6Example := [["D","E"],["D","C"],["D","I"],["E","L"],
["E","F"],["I","B"],["I","K"],["I","H"],["F","J"],["F",
"G"],["F","A"]];

CP6Example := "D", "E" , "D", "C" , "D", "I" , "E", "L" , "E", "F" , "I",
"B" , "I", "K" , "I", "H" , "F", "J" , "F", "G" , "F", "A"

We have purposefully chosen vertex names that are out of order with respect to the ordering of 
the edges so that our construction of the ORTree is sure to rely only on the ordering of the 
edges and not the vertex labels.

Note that creating a graph with these edges only requires turning the list of edges into a set and 
passing it to the Graph command.  

CP6ExGraph := Graph({op(CP6Example)});
CP6ExGraph :=

Graph 40: a directed unweighted graph with 12 vertices and 11 arc(s)

Our first task is to turn this into an ordered rooted tree.  Since we provided directed edges, all 
that is required to make the graph rooted is to set the graph attribute "root".  Since the edges 
were ordered, the first edge is the edge from the root to the root's first child.  This means that we 
can get the root by accessing the first element of the first edge.

CP6ExRoot := CP6Example[1][1];
CP6ExRoot := "D"

SetGraphAttribute(CP6ExGraph,"root"=CP6ExRoot);
type(CP6ExGraph,RTree);

true

To make this graph an ordered rooted tree, we need to set the "order" attribute for each vertex.  
For the root, we just set the root's order to 0.

SetVertexAttribute(CP6ExGraph,CP6ExRoot,"order"=0);

For the rest of the vertices, we need to do some more work.  Our approach will be as follows.  
Loop through all of the edges in the original edge list, in order, keeping track of two variables,
curParent, the "current parent", and the childOrder.  The curParent will initially be set
to the root of the tree and childOrder will be initialized to 1.  For the first edge in the list, we 
assign the child vertex (the terminal vertex of the ordered edge) "order" equal to childOrder. 
We then go to the next edge.  If the curParent is the same as the parent vertex in this edge, 
then childOrder is incremented and we assign the child vertex of this edge an "order" equal 
to the new childOrder value.  Otherwise, the parent vertex of this new edge is different from
curParent.  This indicates that we have moved on to a new parent with a new set of children, 
so we set curParent to this new parent and reset childOrder to 1.  Here is the code for 
this step in the process.

curParent := CP6ExRoot:
childOrder := 1:
for thisEdge in CP6Example do
  if thisEdge[1] <> curParent then
    curParent := thisEdge[1];
    childOrder := 1;
  end if;
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  SetVertexAttribute(CP6ExGraph,thisEdge[2],
                           "order"=childOrder);
  childOrder := childOrder + 1;
end do:

Now that the order attributes are set, our graph is an ordered rooted tree.
type(CP6ExGraph,ORTree);

true
DrawORTree(CP6ExGraph);
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Now the preliminaries are done and we can determine the universal addresses of the vertices.  
Again, the root will have universal address 0.

SetVertexAttribute(CP6ExGraph,CP6ExRoot,"univ-address"="0")
;

The universal address of the root's children will be the same as their "order".
for CPRootChild in FindChildren(CP6ExGraph,CP6ExRoot) do
  tempAddress := GetVertexAttribute(CP6ExGraph,CPRootChild,
                                                 "order");
  tempaddress := convert(tempAddress,`string`);
  SetVertexAttribute(CP6ExGraph,CPRootChild,
    "univ-address"=tempaddress);
end do:

After that, we proceed as in a breadth-first search though the tree.  We initialize a list with the 
children of the root.

ToProcessAddress := FindChildren(CP6ExGraph,CP6ExRoot);
ToProcessAddress := "C", "E", "I"

We process a vertex by (1) adding its children to the list; (2) setting the children's universal 
addresses to the result of concatenating the parent's address and the child's order; and (3) 
removing it from the list.

while ToProcessAddress <> [] do
  processV := ToProcessAddress[1];
  Vaddress := GetVertexAttribute(CP6ExGraph,
                                  processV,"univ-address");
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  for CToAddress in FindChildren(CP6ExGraph,processV) do
    ToProcessAddress := [op(ToProcessAddress),CToAddress];
    Caddress := GetVertexAttribute(CP6ExGraph,
                                  CToAddress,"order");
    Caddress := cat(Vaddress,".",Caddress);
    SetVertexAttribute(CP6ExGraph,CToAddress,
                                  "univ-address"=Caddress);
  end do:
  ToProcessAddress := subsop(1=NULL,ToProcessAddress);
end do:

Now, we have set the universal address attribute for all the vertices.  For example,
GetVertexAttribute(CP6ExGraph,"A","univ-address");

"1.2.3"
indicates that A is the root's first child's second child's third child.  Or, A is the third child of the 
second child of the first child of the root.

We now put this together in a procedure.
UniversalAddress := proc(edgeList::list)
  local T, root, curParent, childOrder, thisEdge, V, 
    tempAddress, ToProcessAddress, Vaddress, C, Caddress;
  uses GraphTheory;
  T := Graph({op(edgeList)});
  root := edgeList[1][1];
  SetGraphAttribute(T,"root"=root);
  SetVertexAttribute(T,root,"order"=0);
  curParent := root;
  childOrder := 1;
  for thisEdge in edgeList do
    if thisEdge[1] <> curParent then
      curParent := thisEdge[1];
      childOrder := 1;
    end if;
    SetVertexAttribute(T,thisEdge[2],"order"=childOrder);
    childOrder := childOrder + 1;
  end do;
  SetVertexAttribute(T,root,"univ-address"="0");
  for V in FindChildren(T,root) do
    tempAddress := GetVertexAttribute(T,V,"order");
    tempAddress := convert(tempAddress,`string`);
    SetVertexAttribute(T,V,"univ-address"=tempAddress);
  end do;
  ToProcessAddress := FindChildren(T,root);
  while ToProcessAddress <> [] do
    V := ToProcessAddress[1];
    Vaddress := GetVertexAttribute(T,V,"univ-address");
    for C in FindChildren(T,V) do
      ToProcessAddress := [op(ToProcessAddress),C];
      Caddress := GetVertexAttribute(T,C,"order");
      Caddress := cat(Vaddress,".",Caddress);
      SetVertexAttribute(T,C,"univ-address"=Caddress);
    end do:
    ToProcessAddress := subsop(1=NULL,ToProcessAddress);
  end do:
  return T;
end proc:
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Computations and Explorations 1

Display all trees with six vertices.

Solution:  To solve this problem, we make use of a recursive definition of tress.  The empty 
graph is a tree and the graph with a single vertex is also a tree.  Given any tree, we can form a 
new tree with one additional vertex by adding the new vertex as a leaf connected to any one of 
the original vertices.  (The reader can verify that this indeed creates all trees with one more 
vertex.)

We shall create a procedure, called ExtendTrees, that accepts as input a set of trees on n 
vertices and returns the resulting set of trees on nC 1 vertices.  For each of the original trees, we
consider each vertex of the tree and create a new tree by adding a leaf to it.

ExtendTrees := proc(Trees::set)
  local newTrees, newV, T, v, newT;
  uses GraphTheory;
  newTrees := {};
  newV := nops(Vertices(Trees[1])) + 1;
  for T in Trees do
    for v in Vertices(T) do
      newT := AddVertex(T,newV);
      AddEdge(newT,{v,newV});
      newTrees := newTrees union {newT};
    end do;
  end do;
  return newTrees;
end proc:

We can now use this procedure to determine all trees on four vertices.  Finding all the trees of 
larger sizes is left to the reader.

AllTrees := {Graph([1])};
AllTrees := Graph 41: a graph with 1 vertex and no edges

for i from 2 to 4 do
  AllTrees := ExtendTrees(AllTrees);
end do;

AllTrees :=
Graph 42: an undirected unweighted graph with 2 vertices and 1 edge(s)

AllTrees :=
Graph 43: an undirected unweighted graph with 3 vertices and 2 edge(s),

Graph 44: an undirected unweighted graph with 3 vertices and 2 edge(s)
AllTrees :=

Graph 45: an undirected unweighted graph with 4 vertices and 3 edge(s),
Graph 46: an undirected unweighted graph with 4 vertices and 3 edge(s),
Graph 47: an undirected unweighted graph with 4 vertices and 3 edge(s),
Graph 48: an undirected unweighted graph with 4 vertices and 3 edge(s),
Graph 49: an undirected unweighted graph with 4 vertices and 3 edge(s),
Graph 50: an undirected unweighted graph with 4 vertices and 3 edge(s)
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DrawGraph(AllTrees,style=tree,root=1);
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Computations and Explorations 3

Construct a Huffman code for the symbols with ASCII codes given the frequency of their 
occurrence in representative input.

Solution:  ASCII, which stands for American Standard Code for Information Interchange, 
includes 128 characters, including 33 non-printing characters.  Most of the non-printing 
characters, with the exception of the space and the carriage return or newline character, however,
are rarely used.  We will focus on the standard characters of English and the newline character.

Since we've already created the procedure, HuffmanCode, which creates a Huffman code 
based on a list of character/weight pairs, the main work we need to do is determine the 
frequencies of characters in a sample input.  We use the following input, which contains letters, 
punctuation, and newline characters.  (Note: you enter newline characters in a string in the same 
way as you create new lines when entering a procedure, by pressing the shift and enter/return 
keys simultaneously.)

inputText := "The quick brown fox said,
""How do you do, my friend?""
Then he ran very quickly off into the sunset.";

inputText := "The quick brown fox said,
"How do you do, my friend?"

Then he ran very quickly off into the sunset."

Note that characters in a string can be accessed as if the string were a list.  For instance, the fifth 
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character in the text above is
inputText[5];

"q"

Using printf, Maple will display the newline characters for us explicitly.  Also, Maple 
differentiates between a newline character and a space character.

printf(%a,inputText[26]);
"\n"

printf(%a,inputText[4]);
" "

evalb(inputText[4]=inputText[26]);
false

We will calculate the frequencies of characters in our text by creating a table.  We loop through 
the characters of the string.  Recall that Maple treats strings much like a list of characters, and, in 
particular, we can use a for loop with the string in place of a list.  For each character, we'll first 
check to see if the character is already a key of the table by attempting to access the value 
associated with the character and checking to see if the result is a number.  If the table does have 
an entry, we will increment its value.  If not, we will set the value associated to the character to 1.
 The result of this procedure is a table whose keys are the characters that appear in the string and 
whose associated values are the number of occurrences.

FrequencyTable := proc(s::string)
  local T, c;
  T := table();
  for c in s do
    if type(T[c],posint) then
      T[c] := T[c] + 1;
    else
      T[c] := 1;
    end if;
  end do;
  return T;
end proc:

We will apply this procedure to our example string.  We can see that the input text includes 7 
"e"s, 2 newline characters, and 17 spaces.

inputTable := FrequencyTable(inputText);
inputTable := T

inputTable["e"];
7

inputTable["\n"];
2

inputTable[" "];
17

All that remains is to transform this data into the format expected by the Huffman algorithm: a 
list of pairs of the characters and the relative frequency of their occurrence.  We use the
indices command to obtain the list of all unique characters that appear in the string.  We use 
the length command to find the total number of characters in the string.  

FrequencyList := proc(s::string)
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  local Ftable, len, Flist, c, x;
  Ftable := FrequencyTable(s);
  len := length(s);
  Flist := [];
  for c in indices(Ftable,`nolist`) do
    x := [c,Ftable[c]/len];
    Flist := [op(Flist),x];
  end do;
  return Flist;
end proc:

Finally, we're able to apply the HuffmanCode procedure.
foxList := FrequencyList(inputText);

foxList := "v",
1
99

, "o",
8
99

, "T",
2
99

, "?",
1
99

, "n",
2
33

, "d",

4
99

, " ",
17
99

, "h",
4
99

, ",",
2
99

, "w",
2
99

, "t",
1
33

, "q",
2
99

,

".",
1
99

, "u",
4
99

, "e",
7
99

, "i",
5
99

, "s",
1
33

, "a",
2
99

, "f",

4
99

, "k",
2
99

, "x",
1
99

, "H",
1
99

, "l",
1
99

, "y",
4
99

, "c",
2
99

,

"r",
4
99

, "

",
2
99

, "m",
1
99

, """,
2
99

, "b",
1
99

foxCode := HuffmanCode(foxList);
foxCode := Graph 51: a directed weighted graph with 59 vertices and 58 arc(s)
DrawBTree(foxCode);
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You will need to enlarge the image substantially in order to see the result in a readable format.  
Also note that Maple automatically suppresses the display of the edge weights for a tree this 
large. 

Computations and Explorations 4

Compute the number of different spanning trees of Kn for n = 1, 2, 3, 4, 5, 6.  Conjecture a 
formula for the number of such spanning trees whenever n is a positive integer.

Solution:  Maple provides a command, NumberOfSpanningTrees, which returns the 
number of unique spanning trees of an undirected graph.  So, the number of spanning trees on 
Kn for n from 1 to 6 can be computed as follows.

seq(NumberOfSpanningTrees(CompleteGraph(n)),n=1..6);
1, 1, 3, 16, 125, 1296

We leave it to the reader to make a conjecture for the formula.  
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Computations and Explorations 8

Draw the complete game tree for a game of checkers on a 4# 4 board.

Solution: We will provide a partial solution to this problem; the reader is left to complete the full 
solution.  Specifically, we will create a Maple procedure called MovePiece that will determine 
all possible new checker arrangements given the current state of the board and the player whose 
turn it is.  Once this procedure is created, the reader must determine how to represent these board
positions as vertices and edges, how to determine the next level of the game tree, as well as the 
halting conditions.

Before writing this procedure, however, we must establish a representation of the board.  
Naturally, we will use a matrix whose size is the size of the board.  Empty board spaces will 
contain 0.  Board spaces in which a regular white or black piece is sitting will be represented by 
1 or 2, respectively.  Kings will be represented by negative values, -1 for a white king and -2 for
a black king.  The following represents an initial board before any moves have been made.

CheckersStart := Matrix([[0,2,0,2],[0,0,0,0],[0,0,0,0],[1,
0,1,0]]);

CheckersStart :=

0 2 0 2

0 0 0 0

0 0 0 0

1 0 1 0

Given a matrix representing a board state and an integer representing which side's turn it is, the 
procedure MovePiece will list all of the possible results of the player's move.  It operates as 
follows:

Initialize newBoards, which will be the list of all possible boards that result from the 
current move, to the empty list.
If side is 1, then normal pieces move up the board from bottom to top and we set
direction to -1, since the index of rows in a matrix decrease as we move up the board.  
If the side is 2, then direction is set to +1.
Begin a pair of for loops, with indices r and c.  These for loops allow us to consider each 
possible board location.  In each position, we want to know if that location holds a piece 
belonging to the current player.  If it is 1's turn, then that player's normal pieces are 
represented by a 1 in the position and the player's kings are represented by a -1 in the 
position.  Likewise, 2's pieces are represent by 2 or by -2.  Thus we can determine if a 
position holds a player's piece by comparing the absolute value of the matrix entry with the
side.  If the square does not hold a piece belonging to the current player, we simply move 
on to the next location.
Check to see if the piece is a king and set the variable isKing to 1 if it is a king or 0 if not.
We then begin a for loop from 0 to the value of isKing.  If isKing is 0, the loop 
executes only once.  If isKing is 1, then the loop will execute twice.  The index of this 
loop, King, is used to control rowDir, the current direction being considered.  rowDir is
either the same as direction or, in the case of the second iteration for a king, the reverse
direction.
We now check to see if the possible moves keep the piece on the board.  First, we make 
sure that r+rowDir, that is, the row in which the piece would move to, is still between 1 
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and 4 (the possible rows).
Assuming moving the piece won't take it off the top or bottom of the board, consider the 
left and right moves.  We do this with a for loop which sets the variable colDir to -1 and 
then to +1.  Again, we check to see that c+colDir, the current column plus the proposed 
change to the column position, is still on the board.
At this point we know that the board position (r+rowDir,c+colDir) is actually a 
board position.  There are now three possibilities: the position is empty, there is an enemy 
piece in the square, there is a friendly piece in the square.
In the first case, the position is empty, we want to move the piece to that location.  We make
a copy of the Board matrix with LinearAlgebra[Copy] (so we don't modify the 
original board).  Then we make the move and add the new board to the list. Note that we 
also check to see if the piece becomes a king by moving into this position.
In the second case, there is an enemy in the square, then we test to see if it is possible to 
jump.  That is, we must make sure that the landing location after the jump is both on the 
board and empty.  If so, we make the jump, i.e., we copy the Board and make the 
necessary modifications.  If not, then the move is not possible.
In the third case, the move is not possible and we do nothing.

Here is the procedure:
MovePiece := proc(Board::Matrix,side::integer)
  local newBoards, direction, r, c, isKing, King, rowDir, 
        colDir, newB;
  newBoards := [];
  if side = 1 then
    direction := -1;
  else
    direction := 1;
  end if;
  for r from 1 to 4 do
  for c from 1 to 4 do
  if abs(Board[r,c]) = side then
    if Board[r,c] < 0 then
      isKing := 1;
    else
      isKing := 0;
    end if;
    for King from 0 to isKing do
      if King = 0 then
        rowDir := direction;
      else
        rowDir := -1 * direction;
      end if;
      if r+rowDir >= 1 and r+rowDir <= 4 then
      for colDir from -1 to 1 by 2 do
      if c+colDir >= 1 and c+colDir <= 4 then
        if Board[r+rowDir,c+colDir] = 0 then
          newB := LinearAlgebra[Copy](Board);
          if ((r+rowDir=1 and side=1) or 
              (r+rowDir=4 and side=2))
                and Board[r,c] > 0 then
            newB[r+rowDir,c+colDir] := -1*Board[r,c];
          else
            newB[r+rowDir,c+colDir] := Board[r,c];
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          end if;
          newB[r,c] := 0;
          newBoards := [op(newBoards),newB];
        elif abs(Board[r+rowDir,c+colDir]) <> side then
          if r+2*rowDir >= 1 and r+2*rowDir <= 4 and
             c+2*colDir >= 1 and c+2*colDir <= 4 then
          if Board[r+2*rowDir,c+2*colDir] = 0 then
            newB := LinearAlgebra[Copy](Board);
            if ((r+2*rowDir=1 and side=1) or 
                (r+2*rowDir=4 and side=2))
                  and Board[r,c] > 0 then
              newB[r+2*rowDir,c+2*colDir] := -1*Board[r,c];
            else
              newB[r+2*rowDir,c+2*colDir] := Board[r,c];
            end if;
            newB[r,c] := 0;
            newB[r+rowDir,c+colDir] := 0;
            newBoards := [op(newBoards),newB];
          end if;
          end if;
        end if;
      end if;
      end do;
      end if;
    end do;
  end if;
  end do;
  end do;
  return newBoards;
end proc:

We now demonstrate a few steps using the procedure.
Move1 := MovePiece(CheckersStart,1);

Move1 :=

0 2 0 2

0 0 0 0

0 1 0 0

0 0 1 0

,

0 2 0 2

0 0 0 0

0 1 0 0

1 0 0 0

,

0 2 0 2

0 0 0 0

0 0 0 1

1 0 0 0

Move2 := MovePiece(Move1[1],2);

Move2 :=

0 0 0 2

2 0 0 0

0 1 0 0

0 0 1 0

,

0 0 0 2

0 0 2 0

0 1 0 0

0 0 1 0

,

0 2 0 0

0 0 2 0

0 1 0 0

0 0 1 0

Move3 := MovePiece(Move2[3],1);

Move3 :=

0 2 0 0

1 0 2 0

0 0 0 0

0 0 1 0

,

0 2 0 K1

0 0 0 0

0 0 0 0

0 0 1 0

,

0 2 0 0

0 0 2 0

0 1 0 1

0 0 0 0
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Move4 := MovePiece(Move3[2],2);

Move4 :=

0 0 0 K1

2 0 0 0

0 0 0 0

0 0 1 0

,

0 0 0 K1

0 0 2 0

0 0 0 0

0 0 1 0

Exercises
Exercise 1.  Write Maple procedures for finding the eccentricity of a vertex in an unrooted tree and 
for finding the center of an unrooted tree.  (Eccentricity and center are defined in prelude to Exercise
39 of Section 11.1 of the text.)

Exercise 2.  Develop a Maple procedure for constructing rooted Fibonacci trees.  (See the prelude 
to Exercise 45 of Section 11.1 for a definition of a Fibonacci tree.)  

Exercise 3.  Develop a Maple procedure for listing the vertices of an ordered rooted tree in level 
order.

Exercise 4.  Compare the performance of binary search trees to linear search as follows:
Write a procedure, LinearSearch, that takes two inputs, a list of integers and an integer 
to find, and checks each element of the list in order until the input is found, at which time it 
returns true.  If the desired integer is not found, it is added the end of the list.
Use the command combinat[randperm](n) for a positive integer n to create a list of 
the first n integers in random order, with an appropriately large n.  Apply the MakeBST 
command to the list to create a binary search tree for the data.
Randomly select some positive integers to search for.  The randcomb command could be 
useful here.
Use both LinearSearch and BInsertion to find the integers from part c in the list and
tree, respectively.  Time them using the typical st := time(): procedure: time
() - st; structure.  Repeat this for 100 different permutations and compare the resulting 
times.  Compare these data (representing average-case complexity) with the theoretical 
worst-case results of n comparisons for LinearSeach and log nC 1  for
BInsertion.

Exercise 5.  Construct a Maple procedure for decoding a message which was encoded with a 
Huffman code.  That is, given a Huffman coding tree produced by the HuffmanCode procedure 
and a message encoded by the EncodeString procedure, the algorithm should return the original 
string.

Exercise 6.  Use the Shakespearean sonnets to estimate the frequency of characters used by 
Shakespeare.  (See Section 7.3 of this manual to see how to read the data into Maple and make use 
of the procedures given in the solution to Computations and Explorations 3 above to compute the 
frequencies of characters used in the poems.)  Then create a Huffman code based on the sonnets and
encode the ShakespeareData.txt with the Huffman code.  Compare the storage space required by the
Huffman encoded version of the file as opposed to the space that would be used to encode the file in
ASCII format, assuming each ASCII character requires 7 bits.

Exercise 7.  Construct an undirected weighted graph which has at least two different minimum 
spanning trees and for which the Prim and Kruskal algorithms will return different results.
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Exercise 8.  Write a Maple procedure implementing the reverse-delete algorithm for constructing 
minimal spanning trees.  (The reverse-delete algorithm is described in the prelude to Exercise 34 in 
Section 11.5.)  

Exercise 9.  Explore the relative complexity of Prim, Kruskal, and the reverse-delete procedure 
you created in the previous exercise.  Use the the RandomGraph command (available in the
RandomGraphs subpackage of GraphTheory) to experiment with their performance.  The 
command RandomGraph(v,e,connected,weights=x..y) will produce a random 
weighted connected graph with v vertices, e edges, and edge weights chosen randomly between x 
and y (with x < y).  For each algorithm, can you find properties that you can impose on the graphs 
that will ensure that the algorithm will outperform the others?  

Exercise 10.  Develop a Maple procedure for producing degree-constrained spanning trees, which 
are defined in the Supplementary Exercises for Chapter 11.  Use this procedure on a set of 
randomly generated graphs to attempt to construct degree-constrained spanning trees in which each 
vertex has degree no larger than 3.

Exercise 11.  Use Maple to analyze the game of Nim with different starting conditions via the 
technique of game trees.  (See Example 6 in Section 11.2 for a description of the game of Nim.)

Exercise 12.  Use Maple to analyze the game of checkers on square boards of different sizes via the
technique of game trees.  (See the solution to Computations and Explorations 8 for the beginnings 
of a solution.)

Exercise 13.  Develop Maple procedures for finding a path through a maze using the technique of 
backtracking.

Exercise 14.  Develop Maple procedures for solving Sudoku puzzles using the technique of 
backtracking.  

Exercise 15.  Use Maple to generate as many graceful trees as possible.  (See the Supplementary 
Exercises of Chapter 11 for a definition of graceful.)  Based on the examples you find, make 
conjectures about graceful trees.

Exercise 16.  Alter the postfix expression evaluator, EvalPostfix, to handle prefix expressions.


