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12 Boolean Algebra

Introduction
In this chapter we will use Maple to model Boolean algebra.  In the first section, we demonstrate the
basic commands of the Logic package, which will be used extensively in this chapter.  In the 
second section, we will focus on the disjunctive normal form of a logical expression.  We will see 
how to use Maple's command for finding a disjunctive normal form expression for a Boolean 
function, and we will develop a procedure for finding such a representation for a function defined 
by a table of values.  In Section 3, we will see how Maple can be used to model logical circuits, 
including how to go about transforming a circuit diagram into a Maple expression.  We also provide
a procedure that will transform a logical expression into a model of a circuit.  In the final section of 
the chapter, we consider simplification of logical expressions, and we develop an implementation of 
the Quine-McCluskey method.

In this chapter we will be using the Maple package Logic.  This package includes several 
commands related to Boolean algebra that will be useful.  We load this package now.

with(Logic):

12.1 Boolean Functions
In this section we will introduce Maple's Logic package, which can be used to explore Boolean 
algebra.  In particular, we will see how Maple represents Boolean operators, how to work with 
Boolean expressions, and how to create Boolean functions.  We will also use Maple to verify 
identities in Boolean algebra and to compute the dual of an expression.

Preliminaries
In Chapter 1 of this manual, we discussed Maple's logical expressions.  The boolean values true 
and false are represented by the literal constants true and false.  To Maple, these are constant 
values, like numbers 2 or Pi.  

We also saw in Chapter 1 the logical operators, and, or, and not.  These are similar to arithmetic 
operators like + and *.  Combining boolean values with the logical operators causes Maple to 
evaluate the resulting expression.  

true or (not(false) and false);
true

These "ordinary" operators are a vital part of any programming language, as they are needed for 
controlling execution of procedures.  Moreover, Maple recognizes a third value, FAIL, which is 
useful from the perspective of programming procedures.  (The help page for boolean expressions 
provides tables showing how the operations are defined on true, false, and FAIL.)

The Logic package provides a second set of boolean operators.  The basic operators are &and,
&or, and &not.  These are supplemented by &nand (not and), &nor (not or), &xor (exclusive 
or), &implies (implication), and &iff (biconditional).  

These operators are different from the ordinary operators in three ways.  First, they are inert, as 
opposed to active.  This means that when you enter an expression in Maple using the Logic 
package operators, they are not immediately evaluated.
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true &or &not(false) &and false;
true &or &not false  &and false

This makes it easier to explore and analyze Boolean expressions symbolically since Maple won't 
perform simplification until you explicitly tell it to do so.  

The second difference is that the operators in the Logic package do not recognize FAIL as a 
logical value.

The third difference is that the the Logic operators all have equal precedence, so you should fully 
parenthesize statements.  

More on precedence
Precedence and parentheses require a bit of explanation.  Recall that the usual order of operations 
for logical operators is not, then and, then or, and finally implication.  When you enter an 
expression with the Logic operators, this order of precedence is not respected. 

For example, if you enter p or q and r, using the Logic operators, Maple will consider the 
operations from left to right.

p &or q &and r;
p &or q  &and r

Note that in the output for that expression, Maple has put p or q in parentheses.  This is consistent 
with the fact that the operators have equal precedence, meaning that the &or is applied first.  That is,

p or q  and r is the interpretation of what was input.

Using the inert Logic operators, you must enforce the order of precedence yourself.  To input 
p or q and r and have Maple interpret it in the correct order, you must use parentheses.

p &or (q &and r);
p &or q &and r

You may be surprised that Maple removed the parentheses when it echoed the expression.  

There is, of course, a reason that Maple added the parentheses in the first example and removed 
them in the second.  When Maple "reads" your input, it sees two neutral operators, &or and &and. 
(Recall that a neutral operator is the means by which users are able to create infix operators.  We 
created neutral operators for modular arithmetic in Section 4.1 of this manual.)  

To Maple, neutral operators (except for &*) have equal precedence, and thus it applies them left to 
right, unless parentheses direct it otherwise.  To Maple,

p &or q &and r;
p &or q  &and r

is the same as
&or(p,q) &and r;

p &or q  &and r
which is the same as

&and(&or(p,q),r);
p &or q  &and r

In essence, that is how Maple approaches the statement p &or q &and r.  When it encounters 
the &or operator, all it knows is that it is a neutral operator applied to p and q.  Then it encounters
&and which is applied to the result of &or(p,q) and to r.  
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But the operators themselves "know" that they have different precedence.  Once Maple has 
processed (parsed) the entire statement, then it can use the precedence to determine whether or not 
parentheses are needed in displaying the result.  

The upshot of all this is that Maple reads what you enter without respecting precedence, but its 
output does.  You must always fully parenthesize your input with the Logic package or you may 
obtain erroneous results.

The 0-1 form of Boolean algebra  
We conclude this subsection with a warning.  

The textbook uses the objects 0 and 1 with operations C , , , and ¯ instead of true, false, or, and, 
and not as we have done.  Maple does, in fact, have commands available for using the 0-1 form.  
The Logic package contains commands, Import and Export, that can be used to change 
between expressions involving the Logic inert operators and either the active boolean operators or 
a 0, 1  form, called MOD2.  

However, the MOD2 form is in opposition to the conventions used in the textbook.  Specifically, 
Maple has + correspond to &xor, rather than &or.

To avoid the confusion that this difference could create, we will always use the logical form in this 
manual.

Boolean Expressions and Boolean Functions
We saw above how to create Boolean expressions using the inert Logic operators.  Now we will 
look at how to evaluate boolean expressions and how to create boolean functions.

Evaluating Boolean Expressions
Because the operators in Logic are inert, you must explicitly tell Maple to evaluate expressions 
involving them by applying the BooleanSimplify command.

Consider Example 1 from the text, which asks that we compute the value of 1$0C 0C 1 .  To 
perform this computation in Maple, we must first translate it into a logical statement.  We do this by 
changing 1 into true, 0 into false, the multiplication into and, the addition into or, and the bar into 
not.  

This results in the Boolean expression (true and false  or not false or true .  Note that we added 
parentheses since the Logic arguments have equal precedence.  

Using Maple's active logical operators, as in Chapter 1, we would just enter the statement to 
evaluate it.

(true and false) or not(false or true);
false

Using the inert operators, we apply the BooleanSimplify command.  This command accepts 
only one argument, the logical expression that it is to simplify.  In this example, it will simplify the 
expression down to a single truth value.

BooleanSimplify((true &and false) &or &not(false &or true));
false

As you might guess from the name, BooleanSimplify does more than evaluate an expression 



(12.13)(12.13)

(12.14)(12.14)

(12.11)(12.11)

(12.15)(12.15)

(12.2)(12.2)

(12.12)(12.12)

O O 

(12.10)(12.10)
O O 

O O 

O O 

O O 

O O 

O O 

O O 

to a truth value.  It will also simplify more general expressions involving unassigned names.  For 
example, consider the Boolean expression xC y xC z .  In logical terms, this is 

x or y  and x or z .
BooleanSimplify( (x &or y) &and (x &or z) );

x &or y &and z
Note that Maple has simplified this in accordance with the distributive law.  Also remember to 
interpret the output with precedence in mind.  Since and has precedence over or, the output above is
equivalent to x or y and z .

Representing Boolean functions
Defining a Boolean function is identical to defining any other function in Maple.

Consider, for example, the boolean function shown below (written in the 0, 1  notation).
F x, y, z  = xyC yz C zx.

This can be modeled in Maple by the procedure Fp (p for procedure).
Fp := proc(x,y,z)
  return (x &and y) &or (y &and z) &or (z &and x);
end proc:

It is often more natural, however, to model such functions as functional operators.
F := (x,y,z) -> (x &and y) &or (y &and z) &or (z &and x);

F := x, y, z /Logic:-&or Logic:-&or Logic:-&and x, y , Logic:-&and y, z ,
Logic:-&and z, x

The output of the functional operator definition may be somewhat unexpected.  The symbols
Logic:-&and and Logic:-&or indicate that the commands &and and &or are part of the Logic 
package.  

The output of the definition of F has revealed the way that Maple processed the Boolean expression.
 Even though we entered the expression using &and and &or as infix operators, Maple has 
internally translated our expression into prefix format with the procedure name followed by 
arguments in parentheses.

You can work with F (or Fp) in the usual way.  The following applies F to p, q, and r.
F(p,q,r);

p &and q &or q &and r  &or r &and p

Observe what happens when F is applied to truth values.
F(true,false,true);

true &and false &or false &and true  &or true &and true
Because the operators &and and &or are inert, Maple does not automatically simplify to a truth 
value.  We have to explicitly call BooleanSimplify.

BooleanSimplify(F(true,false,true));
true

It can be easier to embed the call to BooleanSimplify in the function definition itself.  We 
redefine F to include BooleanSimplify.

F := (x,y,z) -> BooleanSimplify((x &and y) &or (y &and z) &or
(z &and x));
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F := x, y, z /Logic:-BooleanSimplify Logic:-&or Logic:-&or Logic:-&and x, y ,
Logic:-&and y, z , Logic:-&and z, x

Now applying F to p, q, and r produces the same result as before, since the expression cannot be 
simplified any further.

F(p,q,r);
p &and q &or p &and r  &or q &and r

But applying F to truth values will return a single truth value.
F(true,false,true);

true

You can also mix truth values and symbols.  In this case, the inclusion of BooleanSimplify in 
the definition of F causes Maple to simplify the expression as much as possible, given the partial 
information.

F(true,q,r);
q &or r

The output indicates that if p is known to be true, then p and q  or q and r  or r and p  is 
equivalent to q or r.

Values of Boolean functions
Examples 4 and 5 of Section 12.1 illustrate how the values of a Boolean function, in the 0, 1  
format, can be displayed in a table.  In the logical form, this is equivalent to a truth table for the 
Boolean function.  In Chapter 1 of this manual, we created truth tables by looping through all the 
possible values.  The Logic package has a command to create truth tables for us.

The TruthTable command requires two arguments.  The first argument is a Boolean expression. 
The second is a list of the variable names that appear in the expression.

For example, we will display the table of values for the Boolean function F defined above.  The first
argument to the TruthTable command will be the Boolean expression obtained by F(p,q,r).  
The second argument will be the list [p,q,r].

Ftable := TruthTable(F(p,q,r),[p,q,r]);
Ftable := table false, true, false = false, false, true, true = true, true, false, false

= false, false, false, false = false, true, true, false = true, false, false, true
= false, true, false, true = true, true, true, true = true

Note that the result of TruthTable is a Maple table object.  We can make it more readable by 
printing one entry at a time.  Recall that indices produces a sequence of lists.  In order to use the 
indices with the selection operation, we must apply op to remove the list structure.

for i in indices(Ftable) do
  print(i,Ftable[op(i)]);
end do;

false, true, true , true
true, true, true , true

true, false, false , false
true, false, true , true
false, false, false , false
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true, true, false , true
false, false, true , false
false, true, false , false

Operations on Boolean functions
As with functions on real numbers, Boolean functions can be combined using basic operations.  
The complement of a Boolean function and the Boolean sum and product of functions are defined in
the text.

To compute complements, sums, and products of Boolean functions, you must define a new 
function in terms of the original.  For example, consider the function G x, y = x$y.  In logical 
notation, this is G x, y = x and y.

G := (x,y) -> BooleanSimplify(x &and y);
G := x, y /Logic:-BooleanSimplify Logic:-&and x, y

The complement of G, which we'll call notG, is created as follows.  The arguments of notG are the
same as G.  The formula that defines notG is &not G(x,y).  That is, &not is applied to the 
result of evaluating G on the arguments.  And once again, BooleanSimplify is called.

notG := (x,y) -> BooleanSimplify(&not G(x,y));
notG := x, y /Logic:-BooleanSimplify Logic:-&not G x, y

Observe that if we evaluate notG at a pair of variables, the presence of BooleanSimplify 
ensures that De Morgan's law is applied.

notG(x,y);
&not x  &or &not y

Let us define another function, H x, y = x$y .  
H := (x,y) -> BooleanSimplify(x &and (&not y));

H := x, y /Logic:-BooleanSimplify Logic:-&and x, Logic:-&not y

To compute the Boolean sum G CH, we combine the functions with the &or operator.  More 
precisely, we define a functional operator GpH with the formula G(x,y) &or H(x,y).

GpH := (x,y) -> BooleanSimplify(G(x,y) &or H(x,y));
GpH := x, y /Logic:-BooleanSimplify Logic:-&or G x, y , H x, y

Applying this to a pair of variables, we obtain the following formula for G CH.
GpH(x,y);

x
This result indicates that x$yC x$y = x.  This can also be verified using the identities in Table 5 of 
Section 12.1.

Identities of Boolean Algebra
In Chapter 1, we created a procedure, AreEquivalent, for checking whether two logical 
expressions are logically equivalent.  The Logic package's Equivalent command makes 
checking identities and equivalence of Boolean expressions fairly straightforward.  This command 
can also be used to check equality of Boolean functions.

Identities and equivalence of Boolean expressions
We will use the distributive law x yC z = xyC xz as an example.  First we must translate the 
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statement in the 0, 1  form into a statement of logic: x and y or z h x and y  or x and z .

Now we will assign the expressions on either side of the equivalence to names.  This is not 
necessary, but it will make later statements easier to read.

distributiveL := x &and (y &or z);
distributiveL := x &and y &or z

distributiveR := (x &and y) &or (x &and z);
distributiveR := x &and y &or x &and z

To confirm the equivalence of the two Boolean expressions, we use the Equivalent command.  
This command requires two arguments, the two Boolean expressions that are to be tested for 
equivalence.  The command returns true if the expressions are equivalent and false if not.

Equivalent(distributiveL, distributiveR);
true

This verifies the given distributive law.

The Equivalent command also accepts an optional third argument.  In the case that the two 
expressions are not equivalent, if you provide an unevaluated name (a name in single right quotes), 
then that name will be assigned to a set of assignments of truth values to the variables in the 
expression that demonstrate that the expressions are not equivalent.

Consider the non-equivalence: xC xy s y.  In logical form, this is x or x and y u y.  Apply the
Equivalent command with third argument 'P'.

Equivalent(x &or (x &and y),y,'P');
false

The name P now stores a set indicating assignments for x and y.
P;

x = true, y = false
This output means that setting x equal to true and y equal to false provides a demonstration, by 
counterexample, that x or x and y u y.  Indeed, substituting x = true and y = false on the left 
hand side produces true or true and false h true or false h true.  That is not the same as the 
right hand side, y, which is assigned false.

Note that the single right quotes around the name in the third argument of Equivalent ensure 
that, should P have already stored a value, that value would be overwritten.  If you omit the single 
quotes and P has a value already stored in it, an error will result.

Equality of Boolean functions
Equality of Boolean functions can also be checked with the Equivalent command.  You do this 
by applying the command to the two functions evaluated on the same variables.

Consider the following Boolean functions.  
f1 x, y = xy
f2 x, y  = x C y .
Define the corresponding functional operators:

f1 := (x,y) -> BooleanSimplify(&not(x &and y));
f1 := x, y /Logic:-BooleanSimplify Logic:-&not Logic:-&and x, y

f2 := (x,y) -> BooleanSimplify(&not(x) &or &not(y));
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f2 := x, y /Logic:-BooleanSimplify Logic:-&or Logic:-&not x , Logic:-&not y

We can test the assertion that f1 x, y = f2 x, y  by applying the Equivalent command with 
arguments f1(x,y) and f2(x,y).

Equivalent(f1(x,y),f2(x,y));
true

Duality
We conclude this section by introducing the Dual command.  This command accepts only one 
argument, a Boolean expression, and produces the dual of that expression.

For example, consider the expression x$y C y$z C x $z.  As a logical expression, this can be 
written as x and not y  or y and not z  or not x and z .  We calculate the dual by applying 
the Dual command.

Dual((x &and &not(y)) &or (y &and &not(z)) &or (&not(x) &and 
z));

x &or &not y  &and y &or &not z  &and &not x  &or z

Similarly, the dual of x $yC y $z C x$z  can be computed by
Dual((&not(x) &and y) &or (&not(y) &and z) &or (x &and &not
(z)));

&not x  &or y  &and &not y  &or z  &and x &or &not z

Note that Exercise 13 of Section 12.1 asks you to prove that the expressions x$y C y$z C x $z and 
x $yC y $z C x$z  are equivalent.  The duality principle implies that the duals calculated above are 
also equivalent.  This can be verified by the Equivalent command.

Equivalent((12.35),(12.36));
true

12.2 Representing Boolean Functions
In this section we will see how to use Maple to express Boolean functions in the disjunctive normal 
form (also called sum-of-products expansion).  We will first look at the Maple command for turning
an expression in Boolean algebra into the disjunctive normal form.  Then we will see how to write a
procedure for finding an expression based on a table of values.

Disjunctive Normal Form from an Expression
Given an expression written in terms of the Logic operators, the Canonicalize command can 
be used to transform the expression into disjunctive normal form.  

As an example, consider Example 3: xC y z .  In logical form, this is x or y  and not z.  We 
assign this logical expression to a name.

Example3 := (x &or y) &and &not(z);
Example3 := x &or y  &and &not z

The Canonicalize command has several forms.  To transform an expression into disjunctive 
normal form, two arguments are required.  The first argument is the expression to be transformed.  
Second, you must provide a set or list containing the variables appearing in the expression.

Canonicalize(Example3,{x,y,z});
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&not z  &and x  &and y &or &not z  &and x  &and &not y  &or &not z
 &and y  &and &not x

Note that this agrees with the solution to Example 3.

The Canonicalize command also accepts a third argument used to specify the type of canonical 
form desired.  The default behavior is to produce disjunctive normal form, but this can be 
emphasized by including the option form=DNF.

Canonicalize(Example3,{x,y,z},form=DNF);
&not z  &and x  &and y &or &not z  &and x  &and &not y  &or &not z

 &and y  &and &not x

To produce conjunctive normal form instead, you use the form=CNF option.
Canonicalize(Example3,{x,y,z},form=CNF);

x &or y  &or z  &and x &or y  &or &not z  &and x &or &not y
 &or &not z  &and y &or &not x  &or &not z
 &and &not x  &or &not y  &or &not z

There is a third option, form=MOD2, which results in the 0, 1  canonical form.  However, as we 
mentioned earlier, Maple interprets C  as the exclusive or, and thus the result of this option will be 
different from what is described in the textbook.  

The Normalize command can also be used to produce a disjunctive normal form expression.  
Note that the second argument is not accepted by Normalize.  Like Canonicalize, the default 
is disjunctive normal form, but form=DNF and form=CNF are both accepted by Normalize.

Here is the result of Normalize applied to Example 3.
Normalize(Example3);

&not z  &and x &or &not z  &and y
Note that the result is not the same as before.  In fact, if you compare this result to the solution of 
Example 3, you will see that this expression is equivalent to the second line in the step-by-step 
expansion in the solution.  In particular, it is the result of applying the distributive law to the original
expression.  

Normalize produces an expression in disjunctive normal form.  That is, the result is a disjunction 
of terms with each term consisting of a conjunction of variables and their negations.  Normalize 
does not, however, produce canonical disjunctive normal form, like Canonicalize does.  

The benefit of Normalize is that, as you can see, it is typically simpler than canonical disjunctive 
normal form.  The benefit of Canonicalize is that the canonical disjunctive normal form is 
unique.  That is, two equivalent expressions necessarily have the same canonical disjunctive normal 
form, while Normalize may express them differently.  While the textbook does not emphasize 
this, the examples and techniques it describes are for producing the canonical sum-of-products 
expansion.

Disjunctive Normal Form from a Table
Example 1 of Section 12.2 describes how to find an expression for a Boolean function represented 
by a table of values.  Here, we will show how to write a procedure to accomplish this task.

First we must decide how we will represent the table of values in Maple.  Rather than creating a 
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Maple table object, we'll represent the table as the set of those assignments of truth values to 
variables for which the function returns true.

For example, consider the function defined by the following table. 

x y z F x, y, z

true true true false

true true false true

true false true false

true false false true

false true true false

false true false true

false false true true

false false false false

There are four rows in the table for which the function returns true.  We represent this table by 
forming the set consisting of the four lists of values for x, y, and z corresponding to those rows.

exampleTable := {[true,true,false],[true,false,false],[false,
true,false],[false,false,true]};

exampleTable := false, false, true , false, true, false , true, false, false , true, true,
false

This will be the first argument to the procedure we create.  The procedure will also need names for 
the variables, so we also require a list of names.  This will be the second argument to the procedure.

exampleVariables := [x,y,z];
exampleVariables := x, y, z

To form the Boolean expression that represents this function, we follow Example 1.  For each row 
in the table for which the function returns true, i.e., for each element in exampleTable, we 
produce the corresponding minterm.

To create a minterm associated with an element of exampleTable, we proceed as follows.  
Initialize the minterm to NULL.  Then begin a for loop with loop variable ranging from 1 to the 
number of variables.  Within the loop, test whether or not the entry in the list of truth values is true 
or not.  If the entry is true, then update the minterm by forming the conjunction of it with the name 
of the corresponding variable.  If the entry is false, then update the minterm by forming the 
conjunction with the negation of the variable.

The following procedure accepts a single list of truth values (a single row) and the list of variables, 
and produces the minterm.

FormMinterm:=proc(row::list(truefalse),vars::list(symbol))
  local minterm, i;
  uses Logic;
  if nops(row) <> nops(vars) then
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    error "Incorrect number of variables";
  end if;
  minterm := NULL;
  for i from 1 to nops(row) do
    if row[i] then
      minterm := minterm &and vars[i];
    else
      minterm := minterm &and &not(vars[i]);
    end if;
  end do;
  return minterm;
end proc:

This procedure, applied to a member of the exampleTable, produces the corresponding minterm.
FormMinterm([true,true,false],[x,y,z]);

x &and y  &and &not z

To create the Boolean expression for the function, all that remains is to form the disjunction of the 
minterms produced by FormMinterm.  The procedure below accepts the table representation and 
list of variables as arguments.  It first checks to see if it was passed the empty set, and if so, returns 
the expression false.  It initializes the result to NULL.  For each element of the table 
representation, it calls FormMinterm and adds the output from that procedure to the result with the
&or operator.

BooleanFromTable := proc(T::set(list(truefalse)),
                                            V::list(symbol))
  local B, R, mt;
  if T = {} then
    return false;
  end if;
  B := NULL;
  for R in T do
    mt := FormMinterm(R,V);
    B := B &or mt;
  end do;
  return B;
end proc:

Note that the structured type set(list(truefalse)) ensures that the first argument is a set 
whose members are each a list with members of type truefalse (namely true or false). 

Applying the procedure to our example table produces the desired Boolean expression.
BooleanFromTable(exampleTable,exampleVariables);
&not x  &and &not y  &and z &or &not x  &and y  &and &not z  &or x
 &and &not y  &and &not z  &or x &and y  &and &not z

12.3 Logic Gates
In this section, we will use Maple to work with logic gates, particularly circuit diagrams.  First, we 
will see how to use Maple to translate a circuit diagram into an expression using the Logic 
operators.  Then we will do the reverse and see how to transform a logical expression into a circuit 
diagram (modeled as a tree diagram).

Circuit Diagram to Logical Expression
Consider the circuit diagram shown below.
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Our goal in this subsection is to use Maple to produce a logical expression for the output of this 
diagram.  Each logic gate will be modeled as a procedure.  We begin by creating procedures for the 
inverter, the OR gate, and the AND gate.

Modeling the gates
The inverter will accept only one argument (the other gates will be able to accept multiple 
arguments).  It will return the logical negation of its input.

Inverter := proc(a)
  return &not(a);
end proc:

The AND and OR gates must be able to accept multiple input values, with, of course, a minimum of
two.  We could design the procedures to use a list or a set, but the syntax will be more natural if we 
use the seq modifier to the parameter with type anything.  Refer to Section 6.5 for more 
information about the seq modifier.

For both procedures, we begin by forming a list from the parameter and using nops to ensure that 
there are at least two objects, otherwise an error is generated.  We then initialize result to the first 
two arguments joined together by &and or &or, as appropriate.  Using a for loop with loop 
variable ranging from 3 to the number of arguments, we add subsequent arguments to result.

AndGate := proc(a::seq(anything))
  local result, i;
  if nops([a]) < 2 then
    error "AndGate requires at least two arguments.";
  end if;
  result := a[1] &and a[2];
  for i from 3 to nops([a]) do
    result := result &and a[i];
  end do;
  return result;
end proc: 
OrGate := proc(a::seq(anything))
  local result, i;
  if nops([a]) < 2 then
    error "OrGate requires at least two arguments.";
  end if;
  result := a[1] &or a[2];
  for i from 3 to nops([a]) do
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    result := result &or a[i];
  end do;
  return result;
end proc: 

For example, if a, b, and c are all input to an OR gate, we would enter the following.
OrGate(a,b,c);

a &or b  &or c
And if the result from that OR gate was sent to an inverter

Inverter(%);
&not a &or b  &or c

which is then joined to a with an AND gate, we obtain:
AndGate(%,a);

&not a &or b  &or c  &and a

Applying the procedures to a diagram
Now that we have the procedures in place, we will use them to find a logical expression for the 
output to the circuit diagram above.  

First, give each gate in the diagram a label.  The specific names are not important.  We chose to label
the gates using the capital letter G with subscripts numbered from the right to the left.

Interpret the labels as names for both the gates themselves and for their outputs.  Also G1 is the 
name for both the output of the final gate and also names the output of the circuit.  The input of G1 
is the outputs from gates G2 and G3.  That is to say, G1 = G2 or G3.  We can write that in Maple.

G1 := OrGate(G2,G3);
G1 := G2 &or G3

For each gate, do the same.  Note that the order in which the gates are specified is irrelevant.  The 
output G2 is a and b.

G2 := AndGate(a,b);
G2 := a &and b

The output of G3 is the conjunction of G4, b, and G5.
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G3 := AndGate(G4,b,G5);
G3 := G4 &and b  &and G5

And G4 and G5 are the results of inversion on a and c, respectively.
G4 := Inverter(a);

G4 := &not a
G5 := Inverter(c);

G5 := &not c

Once all of the gates have been specified, look at the value for the final gate, G1.
G1;

a &and b &or &not a  &and b  &and &not c
This tells us that the circuit's result is a and b  or not a and b and not c .  In 0, 1  form, this 
is abC abc .  

The reason this works is that when we define the output of a gate in terms of unassigned names, 
such as G2, Maple accepts the definition.  When G2 is later assigned its own value and then the 
statement G1; is executed, Maple resolves all assigned names into their definitions so that the 
expression for G1 is in terms of unassigned names (a, b, and c) only.

Logical Expression to Circuit Diagram
We have just seen how to use Maple to transform a circuit diagram into a logical expression for the 
result of the circuit.  Now we consider the reverse.  Given a logical expression, such as that for G1, 
we will use Maple to transform the expression into a circuit diagram.

We will model a circuit diagram as a binary tree.  While circuit diagrams are generally not 
necessarily binary, this will serve for our purposes.  

Recall that a binary tree has a number of vertices and directed edges.  Vertices in the tree will 
correspond to gates in the circuit. One of the vertices is distinguished as the root, which will 
correspond to the output of the circuit.  Each vertex has at most two children vertices.  The edges 
between the vertex and its child correspond to the inputs to the gate.  Each vertex other than the root 
has a parent, and the edge from the vertex to the parent corresponds to the output from the gate.

The assumption that a circuit can be modeled as a binary tree requires that the circuit satisfy the 
following properties.  First, the circuit has only one output.  Second, each gate has only one output. 
Third, each gate has at most two inputs.

Recall that in Chapter 11, we wrote the procedure InfixToTree for converting an algebraic 
expression in terms of inert versions of the binary arithmetic operators into a tree representation.  
We will make use of the procedures from Chapter 11 here, so we load them.

with(Chapter11):
Recall that the procedures written in each chapter of this manual are collected in packages.  Please 
refer to the Introduction if you need instructions on how to use the packages on your system.

Observe what happens if we apply the InfixToTree command to the logical expression 
a and b or c  and then use the DrawBTree command to graph the tree.

InfixToTree(a &and (b &or c));
Graph 1: a directed unweighted graph with 5 vertices and 4 arc(s)

DrawBTree(%);
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&and

a &or

b c

Compare the tree above to the circuit diagram below.

Observe that the diagram and the tree have the same structure.  After reversing the arrows, rotating 
by 90°, and exchanging the symbols with the inert commands, the two are identical.

As you can see, we nearly have a procedure for turning logical expressions into trees that 
correspond to circuit diagrams.  The only problem is that the InfixToTree command does not 
allow for unary operators such as &not.

Recall the definition of InfixToTree.
eval(InfixToTree);

proc e
local lhs, rhs, o, lhsTree, rhsTree, result;
if type e, integer, symbol then

result := Chapter11:-NewBTree Chapter11:-Unique e
else

lhs := op 1, e ;
o := Chapter11:-Unique op 0, e ;
rhs := op 2, e ;
lhsTree := Chapter11:-InfixToTree lhs ;
rhsTree := Chapter11:-InfixToTree rhs ;
result := Chapter11:-JoinTrees o, lhsTree, rhsTree

end if;
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return result
end proc

In order to create a procedure like this that will work with expressions using the Logic operators, 
we need to allow for the possibility that there is only one operand.  

The if-then-else statement will need an elif clause testing the number of operands of the expression, 
using nops.  This will be similar to the else clause from before, except using the left hand side for 
the sole operand.  We also will need to create a new procedure, AddLeftBranch, to take the place
of JoinTrees for unary operators.  Note that the else clause remains nearly identical.

LogicToTree := proc(e)
local lhs, rhs, o, lhsTree, rhsTree, result;
  uses GraphTheory, Chapter11;
  if type(e,{integer,symbol}) then
    result := NewBTree(Unique(e));
  elif nops(e) = 1 then
    lhs := op(1,e);
    o := Unique(op(0,e));
    lhsTree := LogicToTree(lhs);
    result := AddLeftBranch(o,lhsTree);
  else
    lhs := op(1,e);
    o := Unique(op(0,e));
    rhs := op(2,e);
    lhsTree := LogicToTree(lhs);
    rhsTree := LogicToTree(rhs);
    result := JoinTrees(o,lhsTree,rhsTree);
  end if;
  return result;
end proc:

To implement AddLeftBranch, we essentially repeat the definition of JoinTrees with the 
commands related to the right child removed.

AddLeftBranch := proc(newR,A::BTree)
  local newT, newVerts, Aroot, Broot, newEdges, v, e, p, w;
  uses GraphTheory;
  newVerts := [newR,op(Vertices(A))];
  Aroot := GetGraphAttribute(A,"root");
  newEdges := Edges(A) union {[newR,Aroot]};
  newT := Graph(newVerts,newEdges);
  for v in Vertices(A) do
    p := GetVertexAttribute(A,v,"order");
    SetVertexAttribute(newT,v,"order"=p);
  end do;
  SetVertexAttribute(newT,Aroot,"order"=1);
  SetVertexAttribute(newT,newR,"order"=0);
  SetGraphAttribute(newT,"root"=newR);
  return newT;
end proc:

With these in place, let's look at the results for a couple of examples.  First, consider xC y x , the 
subject of Example 1(a) from the text. 

LogicToTree((x &or y) &and &not(x));
Graph 2: a directed unweighted graph with 6 vertices and 5 arc(s)
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We use DrawORTree to display the tree rather than DrawBTree, since DrawBTree was created 
expressly to ensure that "only children" would display on the left or right rather than directly below 
their parent.  That is not needed here.

DrawORTree(%);

&and

&or

x y

&not

x

Compare this diagram to Figure 4(a) in the text.

As a second example, we apply the LogicToTree procedure to G1, the logical expression we 
obtained from the circuit diagram earlier.

LogicToTree(G1);
Graph 3: a directed unweighted graph with 11 vertices and 10 arc(s)

DrawORTree(%);

&or

&and

a b

&and

&and

&not

a

b

&not

c

Observe that this does not produce quite the same diagram as the original circuit.  In particular, 
where the circuit had three inputs to a single AND gate, this diagram uses two binary &and 
vertices.  

That suggests a way in which we could improve our procedure.  In the tree above, the presence of 
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an &and as the child of another &and suggests that they could be combined into a single &and 
with inputs consisting of the two inputs to the lower &and and the right input of the higher &and.  
The result would no longer be a binary tree, as the result would have three children, but it would 
remain an ordered rooted tree.  

It is left as an exercise to write a procedure to turn the tree above into a tree that has one &and with 
three inputs.  The procedure should check each vertex and determine if it is identical to its parent.  If 
so, the two vertices should be merged as described in the previous paragraph.  Be sure to continue 
testing vertices until all such simplifications are complete.

Note that you will not be able to compare vertices directly, as the Unique procedure has guaranteed
that Maple does not recognize two vertices as equal.  You can determine when two vertices have the
same name by converting the name into a string with the syntax convert(name,'string'). 

12.4 Minimization of Circuits
In this section we will discuss the use of the BooleanSimplify command for minimizing 
circuits.  Then we will create a brute force algorithm for handling don't care conditions.  Finally, we 
will provide an implementation of the Quine-McCluskey method.

The BooleanSimplify Command
We described the BooleanSimplify command in the first section of this chapter.  The command
accepts only one argument, a boolean expression. 

For example, we apply BooleanSimplify to G1, the expression we obtained for the output of 
the circuit diagram at the beginning of Section 12.3.  

BooleanSimplify(G1);
a &and b &or b &and &not c

The result indicates that not a can be removed as an input to the second AND gate.

Note that the result of BooleanSimplify is guaranteed to be minimal. That is, it is not possible 
to reduce it further.  It is not, however, guaranteed that the result is a minimum sum of prime 
implicants.  That is, while no simplification of the output from BooleanSimplify is possible, it 
may be the case that there is a simpler expression equivalent to the original input.

The reason for this lies in the final step of the Quine-McCluskey method.  Once the essential prime 
implicants have been identified, you are left with prime implicants that are not essential and you 
must identify the best choice of those prime implicants that will complete the cover.  To find the 
minimum expression, you use a backtracking approach (a depth-first search).  Unfortunately, this 
requires exponential time.  

The alternative is to use a heuristic approach, choosing the prime implicants that cover the most 
minterms.  This is considerably more efficient, but does not guarantee that the resulting expression 
is the minimum.  At the conclusion of this section, we will design an implementation of the Quine-
McCluskey method using such a heuristic approach.  Implementing a backtracking approach is left 
as an exercise.

Don't Care Conditions
Informally, a set of don't care conditions for a boolean function F is a set of points in the domain of 
F whose images do not concern us.  
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If F is a function on n variables, then its domain is true, false n.  Let A be the subset of
true, false n for which the value of F is specified.  If we think of F as fully defined on this subset

A, then we are interested in the family of all extensions of F to all of true, false n.  In other words,
the set of all G defined on true, false n that agree with F on A.  The goal is to choose the particular
G that is "simplest."  That is, the G that has the smallest sum of products expansion.

We should pause to consider the size of this problem.  If there are d don't care points, then there are 
2d possible extensions G.  Considering every possible extension can become rather time 
consuming.

The procedure we write will make use of the BooleanFromTable procedure from Section 12.2.  
Recall that the BooleanFromTable procedure accepted a set consisting of those points for which
the function returns true.  The points are represented by lists of trues and falses.  It also required a 
list of the names of the variables.  BooleanFromTable returns the conjunctive normal form of 
the function that returns true on the specified points and false on all others.

In DontCare, we will loop through every possible extension G of the input function F.  
Specifically, the procedure will accept two sets of points.  One representing those points for which 
the function must return true, and the second set of points representing the don't care conditions.  it 
is understood that the function must return false on all points in neither set.  DontCare will also 
accept a list of variable names.

Each extension G corresponds to a subset of the don't care conditions.  We will use the subsets 
command, described in Section 6.1 of this manual.  Recall that subsets, when applied to a set, 
returns a table with two elements.  The finished element is a boolean value set to true once all of 
the subsets of the given set have been listed.  The nextvalue entry is a procedure that, when 
executed, produces the next subset.

For each subset of the don't care conditions, DontCare will apply BooleanFromTable to the 
union of the subset and the set of points for which F must be true.  It will then apply
BooleanSimplify to the result.  

To determine the minimal expression, we will compare expressions using the length command, 
which returns an integer representing the length of the expression.  (This is a crude comparison, but 
it will suffice.)  We use the standard approach of storing the simplest expression found so far, and 
replacing it each time a shorter expression is located.  Note that the first set produced by subsets 
is always the empty set, so we initialize the temporary minimum to the function in which all don't 
care conditions are taken to be false.

DontCare := proc(T::set(list(truefalse)),
                  DC::set(list(truefalse)),V::list(symbol))
  local minExpr, minLength, S, s, nextExpr;
  S := combinat[subsets](DC);
  s := S[nextvalue]();
  minExpr := BooleanSimplify(BooleanFromTable(T,V));
  minLength := length(minExpr);
  while not S[finished] do
    s := S[nextvalue]();
    nextExpr:=BooleanSimplify(BooleanFromTable(T union s,V));
    if length(nextExpr) < minLength then
      minExpr := nextExpr;
      minLength := length(nextExpr);
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    end if;
  end do;
  return minExpr;
end proc:

Consider the boolean function F defined by the following table of values, in which "d" in the final 
column indicates a don't care condition.

x y z F x, y, z

false false false true

false false true false

false true false d

false true true d

true false false true

true false true false

true true false false

true true true true

The points that must evaluate to true are: 
false, false, false , true, false, false , true, true, true .

And the don't care conditions are:
false, true, false , false, true, true .

We apply the procedure DontCare with these two sets as inputs along with the list of variables.
DontCare({[false,false,false],[true,false,false],[true,true,
true]},{[false,true,false],[false,true,true]},['x','y','z']);

y &and z &or &not y  &and &not z

Before leaving don't care conditions, we should mention that the Quine-McCluskey method, which 
is the subject of the next subsection, provides a much more efficient solution than the procedure
DontCare.  

To take don't care conditions into account with the Quine-McCluskey method, you include them in 
the list of minterms that are used to generate prime implicants, but you do not include them in the list
of minterms that need to be covered by the prime implicants.  In terms of Example 9 of the text, 
don't care conditions appear in the first column of Table 3, but are omitted from the top row of Table
4.

Quine-McCluskey
We conclude with an implementation of the Quine-McCluskey method.  This method is fairly 
involved and it will take considerable effort to implement it correctly.  

It will be helpful to have an example that we can use to illustrate the method as we build the 
procedure.  The expression we use for the example is

wxyz Cwx yz Cwx yz Cwxyz Cwxyz Cwxy z Cwxyz Cwxyz Cwxyz Cwxyz.
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We assign this to the name F.

F := (w &and x &and &not(y) &and &not(z)) &or
      (w &and &not(x) &and y &and z) &or
      (w &and &not(x) &and y &and &not(z)) &or
      (w &and &not(x) &and &not(y) &and &not(z)) &or      
      (&not(w) &and x &and y &and z) &or
      (&not(w) &and x &and &not(y) &and z) &or
      (&not(w) &and x &and &not(y) &and &not(z)) &or
      (&not(w) &and &not(x) &and y &and z) &or
      (&not(w) &and &not(x) &and &not(y) &and z) &or
      (&not(w) &and &not(x) &and &not(y) &and &not(z)):

Let us begin by (very) briefly outlining the approach.  More details will be given as we proceed.
Transform the minterms into bit strings.
Group the bit strings by the number of 1s.
Combine bit strings that differ in exactly one location.
Repeat steps 2 and 3 until no additional combinations are possible.
Identify the prime implicants (those bit strings not involved in a simplification) and form the 
coverage table.
Identify the essential prime implicants and update the table.
Process the remaining prime implicants using a heuristic approach in order to achieve complete
coverage.

Implementing this will require several different procedures that will come together to achieve the 
goal of minimizing the expression for F.

Modifying arguments
Before we begin implementing the method, we take a moment to reiterate the use of evaln as a 
parameter modifier, which we first described in Section 11.2.  This will be used later in the 
implementation to avoid the need to copy data structures that must be modified by a procedure.

Modifying a parameter with evaln means that, instead of sending a copy of the object to be 
worked on by the procedure, you send the name of the object.  This allows the argument to be 
modified directly within the procedure.  However, every time you want to access the value of the 
object, rather than the name, you must apply eval to the parameter.  

The procedure below adds 3 to its argument, changing the value stored in the name it is passed.
add3 := proc(x::evaln(integer))
  x := eval(x) + 3;
end proc:

Applying add3 to a name that stores an integer will now alter the value stored in the name.
two := 2;

two := 2
add3(two);

5
two;

5

Transforming minterms into bit strings
The first task is to process the input.  That is, F must be transformed into a list of bit strings.  This is
not strictly necessary, but it makes working with the minterms more convenient.  We represent bit 
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strings as lists of 0s and 1s.

We begin by creating a procedure to transform a single minterm into a bit string.  We assume that 
the input to this procedure will be a properly formed minterm, that is, a conjunction of variables and 
negations of variables.  We require that a list of variables be provided to the procedure, so that the 
bit string can be formed in the proper order.  

Consider the following minterm, which is the fourth minterm in our example F.
minterm := w &and &not(x) &and y &and &not(z);

minterm := w &and &not x  &and y  &and &not z
In order to transform this into the bit string 1, 0, 1, 0 , we must first determine the variables and 
negations of variables that are conjoined.  Our first goal, therefore, is to transform the minterm into 
the list w,not x, y,not z .

For this, recall that the op command can be used to extract the operands of an expression.  In this 
case, op will return the two operands of the final &and.

[op(minterm)];
w &and &not x  &and y, &not z

In order to obtain a list of the conjoined variables and negations, we will repeatedly apply op.  

We begin by initializing a list consisting of minterm as the only object and we set an index 
variable equal to 1.

MTList := [minterm]; i := 1;
MTList := w &and &not x  &and y  &and &not z

i := 1

We create a while loop that will continue as long as the index variable is not greater than the length 
of MTList.  Within the loop, we consider MTList[i].  Comparing  op(0,MTList[i]) to the
operator `&and` will tell us whether or not the ith member of the list is a conjunction.  If so, we 
apply op to it, using subsop to replace the i location in the list with op(MTList[i]).  On the 
other hand, if op(0,MTList[i]) is not `&and`, then we increment i.  

while i <= nops(MTList) do
  if op(0,MTList[i]) = `&and` then
    MTList := subsop(i=op(MTList[i]),MTList);
  else
    i := i + 1;
  end if;
end do;

This has transformed MTList into a list of the conjoined variables and negations of variables.
MTList;

w, &not x , y, &not z

To complete the transformation into a bit string, we only need to check, for each variable, whether 
the variable or its negation is in the list.  Recall that we will insist that the procedure be given the list 
of variables as an argument to maintain the proper order of the variables.  

We first assign the list of variables to a name.
variableList := [w,x,y,z];

variableList := w, x, y, z



O O 

(12.33)(12.33)

O O 

(12.15)(12.15)

(12.2)(12.2)

(12.70)(12.70)

O O 

O O 

(12.71)(12.71)

O O 

(12.39)(12.39)

(12.52)(12.52)

(12.20)(12.20)

O O 

O O 

O O 

O O 

O O 

(12.57)(12.57)

(12.72)(12.72)

Now create a list, initialized to the proper length, for the bit string.
Bitstring := [0 $ nops(variableList)];

Bitstring := 0, 0, 0, 0
Finally, we use a for loop to check, for each variable, whether the variable is in MTList.  If the 
variable is a member of MTList, then we change the bit to 1.  Otherwise, we assume that the 
negation is in the minterm and we leave the value in the bit string as 0.

for i from 1 to nops(variableList) do
  if variableList[i] in MTList then
    Bitstring[i] := 1;
  end if;
end do;

This has created the bit string associated to minterm.
Bitstring;

1, 0, 1, 0

We condense this process into a single procedure.
MTtoBitString := proc(minterm,variableList::list(symbol))
  local MTList, i, Bitstring;
  MTList := [minterm];
  i := 1;
  while i <= nops(MTList) do
    if op(0,MTList[i]) = `&and` then
      MTList := subsop(i=op(MTList[i]),MTList);
    else
      i := i + 1;
    end if;
  end do;
  Bitstring := [0 $ nops(variableList)];
  for i from 1 to nops(variableList) do
    if variableList[i] in MTList then
      Bitstring[i] := 1;
    elif `&not`(variableList[i]) in MTList then
      Bitstring[i] := 0;
    else
      error "Unrecognized object in MTList.";
    end if;
  end do;
  return Bitstring;
end proc:
MTtoBitString(minterm,[w,x,y,z]);

1, 0, 1, 0

Transforming the original expression into bit strings
Now that we have the means for transforming a single minterm into a bit string, we are ready to 
transform an expression in disjunctive normal form into a list of bit strings.

This works in nearly the same way as MTtoBitString did.  Given an expression in disjunctive 
normal form, we break it into a list, DNFList, but this time, instead of looking for the operator to 
be `&and`, it must be `&or`.  Once the list is formed, we apply MTtoBitString on each 
element of the list.

Here is the procedure.  Notice that the first while loop is very similar to MTtoBitString, but 
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after the while loop, we complete the procedure with an application of map.  We use
variableList as a third argument to map.  When map is given more than two arguments, 
subsequent arguments are treated as additional arguments to the procedure.  That is, map(P,L,a) 
applies the procedure P to (l,a) for each l in the list L.  In this case, MTtoBitString requires 
that the list of variables be passed to it each time it is called.

DNFtoBitList := proc(dnfExpr,variableList::list(symbol))
  local DNFList, i;
  DNFList := [dnfExpr];
  i := 1;
  while i <= nops(DNFList) do
    if op(0,DNFList[i]) = `&or` then
      DNFList := subsop(i=op(DNFList[i]),DNFList);
    else
      i := i + 1;
    end if;
  end do;
  return map(MTtoBitString,DNFList,variableList);
end proc:

Apply this procedure to the example expression.
Fbits := DNFtoBitList(F,[w,x,y,z]);

Fbits := 1, 1, 0, 0 , 1, 0, 1, 1 , 1, 0, 1, 0 , 1, 0, 0, 0 , 0, 1, 1, 1 , 0, 1, 0, 1 , 0,
1, 0, 0 , 0, 0, 1, 1 , 0, 0, 0, 1 , 0, 0, 0, 0

Transforming bit strings into minterms
At the conclusion of the Quine-McCluskey process, we will want to display the result in disjunctive
normal form.  This will require that we turn bit strings back into minterms.

Note that since this procedure will be applied at the end of the process, it may be that some of the 
variables have been removed.  We will be using the string "-" in a bit string to indicate the 
elimination of a variable.  

This procedure will require the bit string and a list of variable names as its input.  It operates in two 
stages.  First, it processes the variable list based on the content of the bit string.  We make a copy of 
the variable list and then modify it by applying &not when the entry in the bit string is 0 and by 
replacing the variable with "-" when that is the entry in the bit string.

varList := [w,x,y,z];
varList := w, x, y, z

bitstr := [0,1,"-",0];
bitstr := 0, 1, "-", 0

for i from 1 to nops(varList) do
  if bitstr[i] = 0 then
    varList[i] := &not(varList[i]);
  elif bitstr[i] = "-" then
    varList[i] := "-";
  end if;
end do;
varList;

&not w , x, "-", &not z

Once this processing has been done, we remove any occurrences of "-" by replacing them with
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NULL.  The subs command accepts as its arguments a sequence of equations and a final 
expression.  For example subs(x=a,expr).  The result of this statement is that every occurrence
of x in expr is replaced by a.  With the equation "-"=NULL and the processed variable list as the 
arguments, subs will return the list with each "-" removed.

varList := subs("-"=NULL,varList);
varList := &not w , x, &not z

To form the conjunction, we recreate the AndGate procedure from earlier, but modify the behavior
when the input has fewer than two elements.

AndList := proc(L::list)
  local result, i;
  if nops(L) = 0 then
    return NULL;
  elif nops(L) = 1 then
    return op(L);
  else
    result := L[1] &and L[2];
    for i from 3 to nops(L) do
      result := result &and L[i];
    end do;
    return result;
  end if;
end proc: 

Applying this to the modified varList produces the minterm.
AndList(varList);

&not w  &and x  &and &not z

We combine this into a procedure.
BitStringtoMT := proc(bitstring,variableList::list(symbol))
  local varList, i;
  varList := variableList;
  for i from 1 to nops(varList) do
    if bitstring[i] = 0 then
      varList[i] := &not(varList[i]);
    elif bitstring[i] = "-" then
      varList[i] := "-";
    end if;
  end do;
  varList := subs("-"=NULL,varList);
  return AndList(varList);
end proc:

Applied to 0, 1, 0, 1  and x, y, z, w , we see that BitStringtoMT reproduces the original 
minterm.

BitStringtoMT([0,1,0,1],[w,x,y,z]);
&not w  &and x  &and &not y  &and z

And applied to 0, 1, "-", 1 , it removes the y.
BitStringtoMT([0,1,"-",1],[w,x,y,z]);

&not w  &and x  &and z

The final result of our Quine-McCluskey process will be a list of bit strings.  To produce the 
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associated disjunctive normal form expression, we only need to join the individual minterms 
produced by BitStringtoMT with &ors.  We define the needed OrList.

OrList := proc(L::list)
  local result, i;
  if nops(L) = 0 then
    return NULL;
  elif nops(L) = 1 then
    return op(L);
  else
    result := L[1] &or L[2];
    for i from 3 to nops(L) do
      result := result &or L[i];
    end do;
    return result;
  end if;
end proc: 

This is identical to AndList, except with &or replacing &and.

Initializing the source table
In order to form the coverage table in the second part of the method, we need to know which of the 
original minterms are covered by which of the prime implicants.  Refer to Tables 3 and 6 in the text. 
Notice that each bit string in those tables is associated with either a single number, in the case of the 
original minterms, or lists of numbers, for the derived products.

We will store this information in a table whose indices are the bit strings and whose entries are sets 
of integers.  Given the Fbits list, we initialize this table with the elements of Fbits as the indices.
 The corresponding entries will be the set consisting of the bit string's position in Fbits.

We will refer to this as the "coverage dictionary," since it allows us to look up any bit string and 
determine all of the original minterms covered by it.  The following procedure accepts the Fbits 
list as an argument and returns the coverage dictionary.

initCoverDict := proc(L::list)
  local coverDict, i;
  coverDict := table();
  for i from 1 to nops(L) do
    coverDict[L[i]] := {i};
  end do;
  return coverDict;
end proc:

Applying this procedure to Fbits produces the initial coverage dictionary.  In order to inspect the 
entries, we must apply eval to the name of the table.

coverageDict := initCoverDict(Fbits);
coverageDict := coverDict

eval(coverageDict);
table 0, 1, 0, 0 = 7 , 0, 0, 0, 0 = 10 , 1, 0, 1, 1 = 2 , 0, 0, 1, 1 = 8 , 0,

1, 1, 1 = 5 , 1, 0, 1, 0 = 3 , 0, 0, 0, 1 = 9 , 0, 1, 0, 1 = 6 , 1, 1, 0, 0
= 1 , 1, 0, 0, 0 = 4

Grouping by the number of 1s
Step 2 in our outline is to group the bit strings by the number of 1s.  
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The reason for this step is to improve the efficiency of finding simplifications to make.  Since two 
bit strings can be combined only when they are identical except for one location, the only possible 
combinations are when one bit string has n 1s and the other has nK 1.  

After step 1 is concluded, we have a list of bit strings.  That will be the starting point for the 
procedure we create for this step.  The result of this step will be to turn the list of bit strings into a 
list of sets of bit strings, which we'll call groups.  In location i of groups will be the set of all bit 
strings with iK 1 1s.

We know that the number of 1s in any bit string must be between 0 and the length of the bit string.  
We initialize groups to be the list of empty sets.  The maximum number of 1s in equal to the 
length of a bit string, which we can obtain from the size of the first element of Fbits.

groups := [ {} $ nops(Fbits[1])+1 ];
groups := , , , ,

Since the bit strings had four entries, groups now consists of five copies of the empty set.

For each member of Fbits, we need to count the number of 1s.  We will create a small procedure 
to do this.

count1s := proc(L::list)
  local c, i;
  c := 0;
  for i from 1 to nops(L) do
    if L[i] = 1 then
      c := c + 1;
    end if;
  end do;
  return c;
end proc:
count1s([1,0,1,1,0,0,1]);

4
It is tempting to use the add command to add the bits in the list.  We cannot do this, however, 
because after the first simplification, our bit strings will contain symbols that are not 1s or 0s.

We use count1s to sort the members of Fbits into groups.  Using a for loop to step through 
the Fbits list, we apply count1s and add 1 to the result (since the bit strings with no 1s are in 
the first position).  We then update that set in groups using union.

Here is the procedure implementing this.
sortGroups := proc(bitstringList)
  local groups, i, c;
  groups := [ {} $ nops(bitstringList[1])+1 ];
  for i from 1 to nops(bitstringList) do
    c := count1s(bitstringList[i]);
    groups[c+1] := groups[c+1] union {bitstringList[i]};
  end do;
  return groups;
end proc:

Here is the result of sorting Fbits.
groups := sortGroups(Fbits);

groups := 0, 0, 0, 0 , 0, 0, 0, 1 , 0, 1, 0, 0 , 1, 0, 0, 0 , 0, 0, 1, 1 , 0, 1, 0,
1 , 1, 0, 1, 0 , 1, 1, 0, 0 , 0, 1, 1, 1 , 1, 0, 1, 1 ,
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Combining bit strings
Step 3 is to combine all of the bit strings that differ in exactly one location.  We first write a 
procedure that takes as input two bit strings and either combines them if, in fact, they do differ in 
exactly one location, or returns false if they do not.

This procedure need to do two tasks.  First, it has to check to see whether or not the two bit strings 
differ in more than one location.  Second, it needs to combine them if they are allowed to be 
combined.

Combining two bit strings is easy, provided we know the one location in which they differ.  For 
example,

bit1 := [1,"-",0,1,1];
bit1 := 1, "-", 0, 1, 1

bit2 := [1,"-",0,0,1];
bit2 := 1, "-", 0, 0, 1

You can see that these are identical except in position 4. 

To merge them, we take either one and replace position 4 with "-".
subsop(4="-",bit1);

1, "-", 0, "-", 1

We determine that they differ only in position 4 as follows.  Begin by initializing a name pos, for 
position, to 0.  This will hold the position at which the difference occurs.  Setting it to 0 indicates 
that we have not found a difference.

Now use a for loop to compare each pair of entries in bit1 and bit2.  If we find a difference, 
check the value of pos.  If pos is 0, then we know that this is the first time a difference was found 
and we set pos to the position of the difference.  If pos is not 0, however, then we know that this 
is the second time a difference was found.  In this case, the bit strings cannot be merged and we 
return false.  If the loop completes without having returned false, then the two bit strings can be 
merged at position pos.

Here is the procedure.
MergeBitstrings := proc(bit1::list,bit2::list)
  local i, pos;
  pos := 0;
  for i from 1 to nops(bit1) do
    if bit1[i] <> bit2[i] then
      if pos = 0 then
        pos := i;
      else
        return false;
      end if;
    end if;
  end do;
  return subsop(pos="-",bit1);
end proc:

We see that it works correctly on our two example bit strings.
MergeBitstrings(bit1,bit2);

1, "-", 0, "-", 1
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Searching for combinations to make
The MergeBitstrings procedure will do the work of checking to see if bit strings can be 
merged and returning the result if they can.  However, we need to give MergeBitstrings the 
bit strings to test.

Recall that, in our example, we have successfully grouped the minterms by the number of 1s they 
contain.

groups;
0, 0, 0, 0 , 0, 0, 0, 1 , 0, 1, 0, 0 , 1, 0, 0, 0 , 0, 0, 1, 1 , 0, 1, 0, 1 , 1, 0,
1, 0 , 1, 1, 0, 0 , 0, 1, 1, 1 , 1, 0, 1, 1 ,

Here, we will produce a list containing all the bit strings formed by merging two members of
groups.  Since there may be multiple ways to obtain the same bit string, we store these as a set.  
We initialize to the empty set.

Fbits1 := {};
Fbits1 :=

Also recall that it is only possible to merge bit strings that are in successive locations in groups.  
In other words, we only need to check bit strings when one has n 1s and one has nK 1 1s.  This 
suggests a for loop with n ranging from 1 to one less than the number of sets in groups.  Within 
the body of the for loop, we will consider the sets with nK 1 1s (index n) and the set with n 1s 
(index n+1).  (Remember that groups[1] is the set of bit strings with 0 1s.)

The loop is structured as follows.
for n from 1 to nops(groups)-1 do
  A := groups[n];
  B := groups[n+1];
  #  look for bit strings from A and B to merge
end do:

After A and B have been defined, we need to compare every possible pair.  We use two more for 
loops, one for each member of A and one for each member of B.  Within the inner for loop, we use
MergeBitstrings and store the result.  If it is not false, we add it to the new list of bit strings,
Fbits1.

for n from 1 to nops(groups)-1 do
  A := groups[n];
  B := groups[n+1];
  for a in A do
    for b in B do
      m := MergeBitstrings(a,b);
      if m <> false then
        Fbits1 := Fbits1 union {m};
      end if;
    end do;
  end do;
end do:
Fbits1 := [op(Fbits1)];

Fbits1 := 0, 0, 0, "-" , 0, 0, "-", 1 , 0, 1, 0, "-" , 0, 1, "-", 1 , 0, "-", 0, 0 , 0, "-",
0, 1 , 0, "-", 1, 1 , 1, 0, 1, "-" , 1, 0, "-", 0 , 1, "-", 0, 0 , "-", 0, 0, 0 , "-", 0,
1, 1 , "-", 1, 0, 0
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This is close to the procedure we want, but we need to think ahead a bit.  Recall from the description
of the Quine-McCluskey process in the text that, in order to proceed with the second half of the 
method, we need to know which of the bit strings are prime implicants.  That is, which bit strings 
are never used in a simplification.  

We will track which bit strings are used as follows.  Before the first loop, we create a set consisting 
of all of the bit strings in groups.  We can do this using the functional `union` applied to the 
operands of groups.

`union`(op(groups));
0, 0, 0, 0 , 0, 0, 0, 1 , 0, 0, 1, 1 , 0, 1, 0, 0 , 0, 1, 0, 1 , 0, 1, 1, 1 , 1, 0, 0, 0 ,

1, 0, 1, 0 , 1, 0, 1, 1 , 1, 1, 0, 0
Then each time MergeBitstrings returns true, we remove the pair of bit strings from this set, 
using the minus set operator.

The procedure will return the sequence consisting of the next level of bit strings and the prime 
implicants from this stage.  Here is our second attempt at the procedure.

NextBitList := proc(lastgroups)
  local nextL, primeImps, n, A, B, a, b, m;
  nextL := {};
  primeImps := `union`(op(lastgroups));
  for n from 1 to nops(lastgroups)-1 do
    A := lastgroups[n];
    B := lastgroups[n+1];
    for a in A do
      for b in B do
        m := MergeBitstrings(a,b);
        if m <> false then
          nextL := nextL union {m};
          primeImps := primeImps minus {a,b};
        end if;
      end do;
    end do;
  end do;
  nextL := [op(nextL)];
  return nextL,primeImps;
end proc:

This still isn't sufficient, however, because we also need to update the coverage dictionary as we 
create new bit strings.  Recall that "coverage dictionary" is the name we gave to the table that 
records, for each bit string, which of the original minterms are covered by that bit string.  The 
coverage dictionary was initialized with the bit strings formed from the minterms.

eval(coverageDict);
table 0, 1, 0, 0 = 7 , 0, 0, 0, 0 = 10 , 1, 0, 1, 1 = 2 , 0, 0, 1, 1 = 8 , 0,

1, 1, 1 = 5 , 1, 0, 1, 0 = 3 , 0, 0, 0, 1 = 9 , 0, 1, 0, 1 = 6 , 1, 1, 0, 0
= 1 , 1, 0, 0, 0 = 4

Within the NextBitList procedure, we need to update the coverage dictionary.  We will make 
the dictionary a parameter.  Note that it will not be necessary to return the updated dictionary, nor is 
it necessary to make a copy of the parameter.  This is because, as we mentioned in Section 2.6 of 
this manual, tables are "reference types," so unlike most arguments, they are altered by the 
procedure.
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We update the dictionary within the m <> false if statement.  When we form a new bit string m, 
we obtain the set of minterms it covers by taking the union of the sets of minterms covered by the 
two bit strings that were merged.  That is, 

coverDict[m] := coverDict[a] union coverDict[b];.
Note that bit strings formed beyond the first step are typically generated multiple times.  However, 
each time they are generated they always cover the same set of original minterms.

Here is the final version of NextBitList.
NextBitList := proc(lastgroups,coverDict)
  local nextL, primeImps, n, A, B, a, b, m;
  nextL := {};
  primeImps := `union`(op(lastgroups));
  for n from 1 to nops(lastgroups)-1 do
    A := lastgroups[n];
    B := lastgroups[n+1];
    for a in A do
      for b in B do
        m := MergeBitstrings(a,b);
        if m <> false then
          nextL := nextL union {m};
          primeImps := primeImps minus {a,b};
          coverDict[m]:=coverDict[a] union coverDict[b];
        end if;
      end do;
    end do;
  end do;
  nextL := [op(nextL)];
  return nextL,primeImps;
end proc:

We apply it to groups to obtain Fbits1 and primes1.
Fbits1,primes1 := NextBitList(groups,coverageDict);

Fbits1, primes1 := 0, 0, 0, "-" , 0, 0, "-", 1 , 0, 1, 0, "-" , 0, 1, "-", 1 , 0, "-", 0,
0 , 0, "-", 0, 1 , 0, "-", 1, 1 , 1, 0, 1, "-" , 1, 0, "-", 0 , 1, "-", 0, 0 , "-", 0, 0,
0 , "-", 0, 1, 1 , "-", 1, 0, 0 ,

We see that there are
nops(Fbits1);

13
bit strings in the second level, but no prime implicants coming from the first pass.

nops(primes1);
0

Also, almost as a side effect, the procedure has updated coverageDict.
eval(coverageDict);

table 0, 1, 0, 0 = 7 , "-", 0, 1, 1 = 2, 8 , 0, 0, 0, 0 = 10 , 1, 0, 1, 1 = 2 ,
0, 0, 1, 1 = 8 , 1, 0, "-", 0 = 3, 4 , "-", 0, 0, 0 = 4, 10 , 0, 1, 1, 1
= 5 , 0, 1, "-", 1 = 5, 6 , 1, 0, 1, 0 = 3 , 0, 0, 0, 1 = 9 , 0, "-", 0, 0
= 7, 10 , 1, "-", 0, 0 = 1, 4 , 0, 1, 0, 1 = 6 , 0, "-", 0, 1 = 6, 9 , 0, 1,
0, "-" = 6, 7 , 1, 1, 0, 0 = 1 , 1, 0, 0, 0 = 4 , 0, 0, 0, "-" = 9, 10 , 0,
0, "-", 1 = 8, 9 , 1, 0, 1, "-" = 2, 3 , "-", 1, 0, 0 = 1, 7 , 0, "-", 1, 1 = 5,
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O O 

8

Repeating
Step 4 is to repeat steps 2 and 3.  

The Fbits1 list takes the place of Fbits.  We apply sortGroups to produce groups1.
groups1 := sortGroups(Fbits1);

groups1 := 0, 0, 0, "-" , 0, "-", 0, 0 , "-", 0, 0, 0 , 0, 0, "-", 1 , 0, 1, 0, "-" ,
0, "-", 0, 1 , 1, 0, "-", 0 , 1, "-", 0, 0 , "-", 1, 0, 0 , 0, 1, "-", 1 , 0, "-", 1,

1 , 1, 0, 1, "-" , "-", 0, 1, 1 , ,
Then applying NextBitList to groups1 produces Fbits2 and primes2.

Fbits2,primes2 := NextBitList(groups1,coverageDict);
Fbits2, primes2 := 0, "-", 0, "-" , 0, "-", "-", 1 , "-", "-", 0, 0 , 1, 0, 1, "-" , 1,

0, "-", 0 , "-", 0, 1, 1
We see that we have found three prime implicants.  The coverage dictionary was further expanded 
to include the new bit strings.

eval(coverageDict);
table 0, 1, 0, 0 = 7 , "-", 0, 1, 1 = 2, 8 , 0, 0, 0, 0 = 10 , 1, 0, 1, 1

= 2 , 0, 0, 1, 1 = 8 , 1, 0, "-", 0 = 3, 4 , "-", 0, 0, 0 = 4, 10 , 0, 1, 1,
1 = 5 , 0, 1, "-", 1 = 5, 6 , 1, 0, 1, 0 = 3 , "-", "-", 0, 0 = 1, 4, 7, 10 ,
0, 0, 0, 1 = 9 , 0, "-", 0, 0 = 7, 10 , 1, "-", 0, 0 = 1, 4 , 0, 1, 0, 1
= 6 , 0, "-", 0, 1 = 6, 9 , 0, 1, 0, "-" = 6, 7 , 1, 1, 0, 0 = 1 , 0, "-", 0,
"-" = 6, 7, 9, 10 , 1, 0, 0, 0 = 4 , 0, 0, 0, "-" = 9, 10 , 0, 0, "-", 1 = 8,
9 , 0, "-", "-", 1 = 5, 6, 8, 9 , 1, 0, 1, "-" = 2, 3 , "-", 1, 0, 0 = 1, 7 , 0,
"-", 1, 1 = 5, 8

Do the same thing again with Fbits2.
groups2 := sortGroups(Fbits2);
groups2 := 0, "-", 0, "-" , "-", "-", 0, 0 , 0, "-", "-", 1 , , ,
Fbits3,primes3 := NextBitList(groups2,coverageDict);

Fbits3, primes3 := , 0, "-", 0, "-" , 0, "-", "-", 1 , "-", "-", 0, 0
This time, Fbits3 was empty, which indicates that no more merging is possible and all prime 
implicants have been found.

This part of the process concludes by forming the list of all the prime implicants.
allprimeImps := [op(primes1 union primes2 union primes3)];

allprimeImps := 0, "-", 0, "-" , 0, "-", "-", 1 , 1, 0, 1, "-" , 1, 0, "-", 0 , "-", 0, 1,
1 , "-", "-", 0, 0

Forming the coverage table
Now that we have identified all of the prime implicants, we will use the coverage dictionary to create
the coverage table.

Take a look at the final state of the coverage dictionary.
eval(coverageDict);



(12.33)(12.33)

(12.15)(12.15)

O O 

O O 

O O 

(12.105)(12.105)

O O 

(12.39)(12.39)

(12.108)(12.108)

(12.106)(12.106)

(12.107)(12.107)

O O 

(12.2)(12.2)

O O 

(12.98)(12.98)

(12.52)(12.52)

(12.20)(12.20)

O O 

O O 

O O 

(12.57)(12.57)

table 0, 1, 0, 0 = 7 , "-", 0, 1, 1 = 2, 8 , 0, 0, 0, 0 = 10 , 1, 0, 1, 1
= 2 , 0, 0, 1, 1 = 8 , 1, 0, "-", 0 = 3, 4 , "-", 0, 0, 0 = 4, 10 , 0, 1, 1,
1 = 5 , 0, 1, "-", 1 = 5, 6 , 1, 0, 1, 0 = 3 , "-", "-", 0, 0 = 1, 4, 7, 10 ,
0, 0, 0, 1 = 9 , 0, "-", 0, 0 = 7, 10 , 1, "-", 0, 0 = 1, 4 , 0, 1, 0, 1
= 6 , 0, "-", 0, 1 = 6, 9 , 0, 1, 0, "-" = 6, 7 , 1, 1, 0, 0 = 1 , 0, "-", 0,
"-" = 6, 7, 9, 10 , 1, 0, 0, 0 = 4 , 0, 0, 0, "-" = 9, 10 , 0, 0, "-", 1 = 8,
9 , 0, "-", "-", 1 = 5, 6, 8, 9 , 1, 0, 1, "-" = 2, 3 , "-", 1, 0, 0 = 1, 7 , 0,
"-", 1, 1 = 5, 8

Each bit string, and in particular each prime implicant, is an index in this table.  The corresponding 
entry is the set of integers which are the indices to the original minterms in Fbits.  Thus, to 
determine which of the original minterms are covered by each prime implicant, we just look it up in 
the table.

We will model the coverage table as a matrix.  Each row corresponds to a prime implicant, so there 
will be 

nops(allprimeImps);
6

rows.  And each column corresponds to a minterm, so there are
nops(Fbits);

10
columns.  The entries in the matrix will be 0s and 1s with 1 in position i, j  indicating that the 
prime implicant at position i in allprimeImps covers the minterm at position j in Fbits.

Recall that if the Matrix command is given two integers as its only arguments, it will create the 
matrix whose size is specified by the integers and has all 0 entries.  

Matrix(nops(allprimeImps),nops(Fbits));
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

To enter 1s in the appropriate positions, we loop over the rows, considering each prime implicant in 
turn.  For each prime implicant, we look up its entry in the coverage dictionary to obtain the set of 
minterms it covers.  For each of those minterms, we place a 1 in the matrix.

The following procedure initializes the coverage table.
initCoverMatrix := proc(minterms,primeImps,coverDict)
  local M, i, C, j;
  M := Matrix(nops(primeImps),nops(minterms));
  for i from 1 to nops(primeImps) do
    C := coverDict[primeImps[i]];
    for j in C do
      M[i,j] := 1;



(12.33)(12.33)

O O 

(12.109)(12.109)

O O 

(12.15)(12.15)

(12.2)(12.2)

O O 

(12.98)(12.98)

(12.105)(12.105)

O O 

(12.39)(12.39)

(12.52)(12.52)

(12.20)(12.20)

O O 

O O 

O O 

(12.57)(12.57)

    end do;
  end do;
  return M;
end proc:

Applied to our example, this produces the following coverage table.
coverageTable := initCoverMatrix(Fbits,allprimeImps,
coverageDict);

coverageTable :=

0 0 0 0 0 1 1 0 1 1

0 0 0 0 1 1 0 1 1 0

0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0

1 0 0 1 0 0 1 0 0 1

Manipulating the matrix
Once the coverage table is set up, we move to steps 6 and 7, determining which prime implicants to 
include in the minimal expression.  In step 6, we identify the essential prime implicants and in step 7
we identify which of the non-essential prime implicants we will include.  We will see how to 
identify the prime implicants to use in a moment.

To aid in performing both steps 6 and 7, we will be manipulating the coverage table.  Once we have 
decided to include a particular prime implicant in the minimal expression, we can take three actions.  

First, record the decision by adding the prime implicant to a new list, say minBits, the list of bit 
strings to be included in the minimal expression.  

Second, delete that prime implicant's row from the coverage table and delete the columns 
corresponding to the minterms it covered.  We know the prime implicant will be in the expression 
and thus the minterms it covers are satisfied.  Hence, there is no longer any need to keep track of 
that information.  

Third, delete the prime implicant and the minterms it covers from the lists storing them (Fbits and
allprimeImps).  This is to ensure that the indices of Fbits and allprimeImps continue to 
match the row and column numbers of the matrix.

We will now write a procedure that implements these actions.  Its input will be the index to the 
prime implicant that has been chosen.  It will also accept the names of the coverage matrix, the list of
minterms, and the list of prime implicants.  All of these will be modified in the procedure (refer to
Modifying arguments above).  The procedure will return the bit string of the prime implicant that 
was chosen.  

Our procedure will be called UpdateCT, for "update coverage table."  The minBits list, the list 
of chosen prime implicants, will be updated via the return value.  This accomplishes the first task for
this procedure.

Second, we must delete the row corresponding to the chosen prime implicant and the columns 
corresponding to the minterms covered by that implicant.  Suppose, in our example, that we have 
decided to include the fourth prime implicant in the final result.  This is



O O 

(12.33)(12.33)

(12.114)(12.114)

(12.15)(12.15)

O O 

(12.105)(12.105)

O O 

(12.39)(12.39)

O O 

(12.110)(12.110)

O O 

(12.111)(12.111)

O O 

O O 

O O 

(12.113)(12.113)

(12.2)(12.2)

O O 

O O 

(12.98)(12.98)

(12.115)(12.115)

(12.116)(12.116)

(12.52)(12.52)

(12.20)(12.20)

O O 

O O 

O O 

(12.112)(12.112)

O O 

(12.57)(12.57)

allprimeImps[4];
1, 0, "-", 0

From coverageTable, we need to remove row 4 (since this corresponds to the prime implicant).
 We also need to remove the columns corresponding to the minterms covered by this prime 
implicant.  To determine which columns are to be removed, we find the locations of the 1s in the 
row of the matrix.

To determine the locations of the 1s, we'll loop over the columns checking each position in row 4 to 
see if it is 1 or not.  We use the ColumnDimension command from the LinearAlgebra 
package to determine the number of columns.  

with(LinearAlgebra):
covered := {};

covered :=
for i from 1 to ColumnDimension(coverageTable) do
  if coverageTable[4,i] = 1 then
    covered := covered union {i};
  end if;
end do:
covered;

3, 4

We now know that we need to remove row 4 and columns 3 and 4.  To do this, we'll use a 
complicated selection.  

We have seen that ranges can be used to select from lists.  The same is true for matrices.  For 
example, we can obtain the first three rows of this matrix as follows.

coverageTable[1..3,1..-1];
0 0 0 0 0 1 1 0 1 1

0 0 0 0 1 1 0 1 1 0

0 1 1 0 0 0 0 0 0 0

The first range indicates rows 1 through 3, the second that we want all the columns, from the first to
the last.

You can also give lists of the rows instead of ranges.
coverageTable[[1,2,3],[1,2,3,4,5,6,7,8,9,10]];

0 0 0 0 0 1 1 0 1 1

0 0 0 0 1 1 0 1 1 0

0 1 1 0 0 0 0 0 0 0

In our example, we want all of the columns except for the fourth, which we can obtain from the pair
of ranges 1..3 and 5..6.  More generally, if newPI is the index of the new prime implicant to be
included in the minimal expression, we would use 1..(newPI-1) and (newPI+1)..-1.

row4 := 4;
row4 := 4

coverageTable[[1..(row4-1),(row4+1)..-1],[1..-1]];



(12.33)(12.33)

O O 

(12.118)(12.118)

(12.15)(12.15)

(12.105)(12.105)

O O 

(12.39)(12.39)

(12.121)(12.121)

O O 

O O 

O O 

O O 

(12.110)(12.110)

O O 

O O 

(12.117)(12.117)

(12.2)(12.2)

O O 

(12.98)(12.98)

O O 

(12.116)(12.116)

(12.52)(12.52)

(12.20)(12.20)

(12.120)(12.120)

O O 

O O 

O O 

(12.119)(12.119)

(12.57)(12.57)

0 0 0 0 0 1 1 0 1 1

0 0 0 0 1 1 0 1 1 0

0 1 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0

1 0 0 1 0 0 1 0 0 1

For the rows we will take a different approach.  Begin with the set of all column indexes.
colList := {$1..ColumnDimension(coverageTable)};

colList := 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Now remove from this set the columns that are to be removed by subtracting the covered set.

colList := colList minus covered;
colList := 1, 2, 5, 6, 7, 8, 9, 10

Then turn it into a list.
colList := [op(colList)];

colList := 1, 2, 5, 6, 7, 8, 9, 10

Using this to select the columns, we obtain the desired matrix.
coverageTable[[1..(row4-1),(row4+1)..-1],colList];

0 0 0 1 1 0 1 1

0 0 1 1 0 1 1 0

0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0

1 0 0 0 1 0 0 1

The reader is encouraged to compare this to the original matrix.  Note that in this example, we have 
not actually modified the table.

The last tasks are to remove the selected prime implicant from the list of prime implicants, and 
remove the covered minterms from Fbits.  We use subsop to remove elements from lists, as 
usual.  For instance, the following removes the fourth prime implicant.

subsop(4=NULL,allprimeImps);
0, "-", 0, "-" , 0, "-", "-", 1 , 1, 0, 1, "-" , "-", 0, 1, 1 , "-", "-", 0, 0

When removing the minterms, we remove them in reverse order.  For instance, to remove the 
minterms in locations 3 and 4, we first remove the minterm in position 4, and then the minterm in 
position 3.  Otherwise, if we remove the minterm in location 3 first, then all the other minterms shift
location by 1.  That is, the minterm previously in location 4 is now in location 3.  By removing them
in reverse order, this is not a concern.

Here is the procedure.  Remember that since we're using the evaln parameter option in order to 
make parameters modifiable, we must use eval when we need the values of those objects.

UpdateCT := proc(newPI,coverTable::evaln,minterms::evaln,    
                                              
primeImps::evaln)
  local newPIbits, numcols, covered, i, colList;



(12.33)(12.33)

O O 

(12.15)(12.15)

(12.105)(12.105)

O O 

(12.39)(12.39)

O O 

(12.110)(12.110)

O O 

O O 

(12.2)(12.2)

O O 

(12.98)(12.98)

(12.116)(12.116)

(12.52)(12.52)

(12.20)(12.20)

O O 

O O 

O O 

(12.57)(12.57)

  newPIbits := eval(primeImps)[newPI];
  numcols:= LinearAlgebra[ColumnDimension](eval(coverTable));
  covered := {};
  for i from 1 to numcols do
    if eval(coverTable)[newPI,i] = 1 then
      covered := covered union {i};
    end if;
  end do;
  colList := [op({$1..numcols} minus covered)];
  coverTable := 
      eval(coverTable)[[1..(newPI-1),(newPI+1)..-1],colList];
  primeImps := subsop(newPI=NULL,eval(primeImps));
  for i from nops(covered) to 1 by -1 do
    minterms := subsop(covered[i]=NULL,eval(minterms));
  end do;
  return newPIbits;
end proc:

Finding essential prime implicants
Next we write a procedure to identify the essential prime implicants.  Recall that a prime implicant is
essential when it is the only prime implicant to cover some minterm.  In terms of the coverage table, 
this is equivalent to the existence of a column with only one 1.

We will locate the essential prime implicants as follows.  First, we initialize the set of essential prime
implicants to the empty list.

We proceed in a manner similar to the MergeBitstrings procedure.  We use a for loop to step 
through the columns of the coverage table.  Within this loop, we initialize a name, rowhas1, to 0.

We then enter a second for loop to step through the entries in the columns.  When a 1 entry has been
found, we check rowhas1.  If that name is 0, then it is assigned to the current row number.  If it is 
not 0, then we have found a second 1 in the column and we assign rowhas1 to -1 and use break 
to terminate the inner loop.  After the inner loop, we test rowhas1.  If it is positive, then we know 
that only one 1 was located in that column, and hence the row the solitary 1 was found in 
corresponds to an essential prime implicant.  In this case, we add the row number (rowhas1) to
essentials.

The following procedure implements this algorithm and returns the list of essential prime implicants.
FindEssentials := proc(coverTable)
 local essentials, i, j, rowhas1;
 essentials := {};
 for i from 1 to LinearAlgebra[ColumnDimension](coverTable) 
do
   rowhas1 := 0;
   for j from 1 to LinearAlgebra[RowDimension](coverTable) do
     if coverTable[j,i] = 1 then
       if rowhas1 = 0 then
         rowhas1 := j;
       else
         rowhas1 := -1;
         break;
       end if;
     end if;
   end do;



(12.33)(12.33)

O O 

O O 

(12.15)(12.15)

(12.105)(12.105)

O O 

(12.39)(12.39)

O O 

(12.126)(12.126)

O O 

O O 

(12.110)(12.110)

O O 

O O 

O O 

(12.125)(12.125)

O O 

(12.2)(12.2)

(12.124)(12.124)

O O 

O O 

(12.98)(12.98)

(12.116)(12.116)

(12.52)(12.52)

(12.20)(12.20)

(12.123)(12.123)

O O 

O O 

O O 

O O 

(12.57)(12.57)

(12.122)(12.122)

   if rowhas1 > 0 then
     essentials := essentials union {rowhas1};
   end if;
 end do;
 return essentials;
end proc: 

We use this to determine the essential prime implicants of our example.
essentialPIs := FindEssentials(coverageTable);

essentialPIs := 2, 6

Now that we have the essential prime implicants, we can initialize minBits and apply UpdateCT 
to the essential prime implicants.  Once again, we loop through the list backwards.

minBits := [];
minBits :=

for i from nops(essentialPIs) to 1 by -1 do
 minBits := [op(minBits),
 UpdateCT(essentialPIs[i],coverageTable,Fbits,allprimeImps)];
end do:
minBits;

"-", "-", 0, 0 , 0, "-", "-", 1
coverageTable;

0 0

1 1

0 1

1 0

Completing the coverage
Provided that the essential prime implicants did not completely cover the original minterms, we must
complete the coverage with non-essential prime implicants.  First, we ensure that the coverage is not
complete by checking the column dimension.

evalb(LinearAlgebra[ColumnDimension](coverageTable)>0);
true

As we mentioned earlier, we will use a heuristic approach to find a minimal set of prime implicants 
rather than using an exhaustive search to determine the minimum.  The heuristic we use will be to 
choose the prime implicant with the most extensive coverage of the remaining minterms.  

To find such a prime implicant, we will do the following.  First, initialize maxCoverage and
bestImp both to 0.  Then loop over each row of the (modified) coverage table.  For each row, we 
will compute the sum of the entries.  If this sum is greater than maxCoverage, then set
maxCoverage to the sum and set bestImp to the row number.  Once the loop is complete,
bestImp will be the index to a row with maximum coverage and will be the next prime implicant 
added to the minBits list.

Here is the procedure that implements this strategy.
findBestImp := proc(coverTable)
  local maxCoverage, bestImp, i, j, sum;



(12.33)(12.33)

O O 

O O 

O O 

O O 

(12.15)(12.15)

(12.105)(12.105)

O O 

(12.39)(12.39)

O O 

(12.110)(12.110)

O O 

(12.128)(12.128)

O O 

O O 

(12.2)(12.2)

(12.127)(12.127)

O O 

(12.98)(12.98)

(12.116)(12.116)

(12.52)(12.52)

(12.20)(12.20)

O O 

O O 

O O 

(12.57)(12.57)

  maxCoverage := 0;
  bestImp := 0;
  for i from 1 to LinearAlgebra[RowDimension](coverTable) do
   sum := 0;
   for j from 1 to LinearAlgebra[ColumnDimension](coverTable)
  do
   sum := sum + coverTable[i,j];
  end do;
  if sum > maxCoverage then
   maxCoverage := sum;
   bestImp := i;
  end if;
  end do;
  return bestImp;
end proc:

As long as the coverage table is not empty, we apply this procedure to it to obtain the next implicant.
We add the implicant to the list minBits representing the minimal expression and update the 
coverage table using updateCT.

while LinearAlgebra[ColumnDimension](coverageTable) > 0 do
  nextPI := findBestImp(coverageTable);
  minBits := [op(minBits),
    UpdateCT(nextPI,coverageTable,Fbits,allprimeImps)];
end do;

nextPI := 2
minBits := "-", "-", 0, 0 , 0, "-", "-", 1 , 1, 0, 1, "-"

All that's left is to translate minBits back into a logical expression.  This can be done using
BitStringtoMT applied to each element of minBits with the map command and then 
combined into one expression with OrList.

OrList(map(BitStringtoMT,minBits,[w,x,y,z]));
&not y  &and &not z  &or &not w  &and z  &or w &and &not x  &and y

Putting it all together
Finally, we assemble the pieces into a single procedure, which accepts a logical expression in 
disjunctive normal form and a list of its variables.  It returns a minimal equivalent expression.

QuineMcCluskey := proc(F,variables)
  local Fbits, FbitsL, coverageDict, groups, primes, i, 
allprimeImps, j, coverageTable, essentialPIs, minBits, 
nextPI;
  uses LinearAlgebra;
  Fbits := DNFtoBitList(F,variables);
  coverageDict := initCoverDict(Fbits);
  i := 0;
  FbitsL[0] := Fbits;
  while FbitsL[i] <> [] do
    i := i + 1;
    groups[i] := sortGroups(FbitsL[i-1]);
    FbitsL[i],primes[i]:=NextBitList(groups[i],coverageDict);
  end do;
  allprimeImps := {};
  for j from 1 to i do
    allprimeImps := allprimeImps union primes[j];



(12.33)(12.33)

(12.130)(12.130)

(12.129)(12.129)

O O 

O O 

(12.15)(12.15)

(12.105)(12.105)

O O 

(12.39)(12.39)

O O 

(12.110)(12.110)

O O 

O O 

O O 

O O 

(12.2)(12.2)

O O 

(12.98)(12.98)

(12.116)(12.116)

(12.52)(12.52)

O O 

(12.20)(12.20)

O O 

O O 

O O 

(12.57)(12.57)

  end do;
  allprimeImps := [op(allprimeImps)];
  coverageTable := 
            initCoverMatrix(Fbits,allprimeImps,coverageDict);
  essentialPIs := FindEssentials(coverageTable);
  minBits := [];
  for i from nops(essentialPIs) to 1 by -1 do
    minBits := [op(minBits),
    UpdateCT(essentialPIs[i],coverageTable,Fbits,
allprimeImps)];
  end do;
  while ColumnDimension(coverageTable) > 0 do
    nextPI := findBestImp(coverageTable);
    minBits := [op(minBits),
      UpdateCT(nextPI,coverageTable,Fbits,allprimeImps)];
  end do;
  return OrList(map(BitStringtoMT,minBits,variables));
end proc:

Define Ex10 to be the expression in Example 10 from Section 12.4 of the text.
E10 := (w &and x &and y &and &not(z)) &or 
       (w &and &not(x) &and y &and z) &or 
       (w &and &not(x) &and y &and &not(z)) &or
       (&not(w) &and x &and y &and z) &or
       (&not(w) &and x &and &not(y) &and z) &or
       (&not(w) &and &not(x) &and y &and z) &or
       (&not(w) &and &not(x) &and &not(y) &and z);

E10 :=
w &and x  &and y  &and &not z  &or w &and &not x  &and y

 &and z  &or w &and &not x  &and y  &and &not z
 &or &not w  &and x  &and y  &and z
 &or &not w  &and x  &and &not y  &and z
 &or &not w  &and &not x  &and y  &and z
 &or &not w  &and &not x  &and &not y  &and z
QuineMcCluskey(E10,[w,x,y,z]);
w &and y  &and &not z  &or &not w  &and z  &or w &and &not x  &and y

Note that this is the first of the two answers given in the solution to Example 10.

Solutions to Computer Projects and Computations and Explorations
Computer Projects 2

Construct a table listing the set of values of all 256 Boolean functions of degree three.

Solution:  The Boolean functions of degree three are in one-to-one correspondence with the 
subsets of true, false 3.  This is because each subset S of true, false 3 can be identified with 
the unique Boolean function of degree three which returns true on the members of S and false on
all other inputs.

Thus, we begin by constructing the set true, false 3 and its power set.



(12.33)(12.33)

O O 

O O 

(12.15)(12.15)

O O 

(12.105)(12.105)

O O 

(12.39)(12.39)

O O 

O O 

O O 

(12.132)(12.132)

(12.110)(12.110)

O O 

O O 

(12.134)(12.134)

O O 

O O 

O O 

(12.135)(12.135)

(12.2)(12.2)

(12.133)(12.133)

O O 

(12.131)(12.131)

(12.98)(12.98)

O O 

O O 

(12.116)(12.116)
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To construct true, false 3, we will use the cartprod command from the combinat 
package.  (Refer to Section 2.1 of this manual for information on the cartprod command.)  Like 
many of the commands for generating combinatorial objects, cartprod produces a list with 
indices finished and nextvalue.  We use it to form the set TF3.

TF3 := {};
TF3 :=

TF3iterator := combinat[cartprod]([[true,false]$3]):
while not TF3iterator[finished] do
  TF3 := TF3 union {TF3iterator[nextvalue]()};
end do:
TF3;

false, false, false , false, false, true , false, true, false , false, true, true ,
true, false, false , true, false, true , true, true, false , true, true, true

To produce the subset of true, false 3, we use the subsets command from combinat.  
This command also produces a table with indices finished and nextvalue.

TF3subsets := combinat[subsets](TF3):

Now we will create a list of all of the Boolean functions.  The subsets that are produced by
TF3subsets are each valid inputs to the BooleanFromTable procedure we wrote in 
Section 12.2.  We also apply BooleanSimplify, in order to have simpler representations, 
before adding the expression to the list.

allFunctions := [];
allFunctions :=

while not TF3subsets[finished] do
  nextTF3subset := TF3subsets[nextvalue]();
  nextTF3function:=BooleanFromTable(nextTF3subset,[x,y,z]);
  nextTF3function := BooleanSimplify(nextTF3function);
  allFunctions := [op(allFunctions),nextTF3function];
end do:

The allFunctions list is lengthy, so we display only a few members.
nops(allFunctions);

256
allFunctions[1..10];

false, &not x  &and &not y  &and &not z ,
z &and &not x  &and &not y , y &and &not x  &and &not z ,
y &and z  &and &not x , x &and &not y  &and &not z ,
x &and z  &and &not y , x &and y  &and &not z , x &and y  &and z,

&not x  &and &not y

To obtain the values of the functions, we will use the TruthTable command.  Recall from the 
first section that TruthTable requires two arguments, a Boolean expression and a list of 
variables that appear in the expression.  The result is a table with indices lists of truth values and 
the corresponding entries are the value of the expression at the index.

We form the list of the truth tables associated to each function in the allFunctions list with 
the map command.  Note that we use the third argument [x,y,z] in map so that this list of 
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variables is passed to TruthTable each time it is applied to an expression from
allFunctions.

allTables := map(TruthTable,allFunctions,[x,y,z]):

Each entry in allTables is a truth table.  To obtain the value of the 136th function on 
true, false, true , you would enter

allTables[136][true,false,true];
true

To display the entire truth table for a particular function, loop through the members of TF3.  We 
must apply op to the member of TF3, since the index to a truth table is a sequence not a list.

for i from 1 to nops(TF3) do
  print(TF3[i],allTables[136][op(TF3[i])]);
end do;

false, false, false , false
false, false, true , true
false, true, false , true
false, true, true , false
true, false, false , false
true, false, true , true
true, true, false , true
true, true, true , false

Computations and Explorations 6

Randomly generate 10 different Boolean expressions in four variables and determine the 
average number of steps required to minimize them using the Quine-McCluskey method.

Solution:  To solve this problem, we need to find a way to generate random boolean 
expressions, and then we must find a method of examining the minimization process so that we 
can count the number of steps.

In the Logic package, the command Random produces a random Boolean expression.  The 
only required argument is a set or list specifying the symbols to be used.  For example, to 
produce a random Boolean expression on the symbols w, x, y, and z, you enter the following.

Random([w,x,y,z]);
w &and x  &and y  &and &not z  &or w &and x  &and z

 &and &not y  &or w &and x  &and &not y  &and &not z
 &or w &and y  &and &not x  &and &not z
 &or w &and z  &and &not x  &and &not y
 &or x &and y  &and z  &and &not w
 &or x &and y  &and &not w  &and &not z
 &or x &and z  &and &not w  &and &not y

The Random command also accepts a second optional argument: form=CNF, form=DNF, or
form=MOD2, specifying the form of the expression produced.  The default form is disjunctive 
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normal form.

Having determined how to generate random expressions, we need to find a way to count the 
number of steps taken during the minimization process.  There are (at least) three approaches we 
could take to this part of the problem.

The first is to measure the time taken to execute the procedure.  We have done this many times 
before.

QMtime := []:
for i from 1 to 10 do
  randExp := Random([w,x,y,z]);
  st := time();
  QuineMcCluskey(randExp,[w,x,y,z]);
  et := time() - st;
  QMtime := [op(QMtime),et];
end do:
Statistics[Mean](QMtime);

0.001200000000

The second approach is to modify the procedure to count the number of times certain operations 
are called.  For example, we may be interested in the number of times that the UpdateCT 
procedure is executed.  In this case, we can alter UpdateCT to include a global variable that is 
incremented at the start of every execution.

UpdateCT := proc(newPI,coverTable::evaln,minterms::evaln,  
                                                
primeImps::evaln)
  local newPIbits, numcols, covered, i, colList;
  global countUpdateCT;
  countUpdateCT := countUpdateCT + 1;
  newPIbits := eval(primeImps)[newPI];
  numcols := LinearAlgebra[ColumnDimension](eval
(coverTable));
  covered := {};
  for i from 1 to numcols do
    if eval(coverTable)[newPI,i] = 1 then
      covered := covered union {i};
    end if;
  end do;
  colList := [op({$1..numcols} minus covered)];
  coverTable := 
      eval(coverTable)[[1..(newPI-1),(newPI+1)..-1],
colList];
  primeImps := subsop(newPI=NULL,eval(primeImps));
  for i from nops(covered) to 1 by -1 do
    minterms := subsop(covered[i]=NULL,eval(minterms));
  end do;
  return newPIbits;
end proc:

We must initialize the variable to 0.
countUpdateCT := 0;

countUpdateCT := 0
Now execute QuineMcCluskey on 10 random expressions.
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for i from 1 to 10 do
  randExp := Random([w,x,y,z]);
  QuineMcCluskey(randExp,[w,x,y,z]);
end do:

The countUpdateCT variable will now store the number of times UpdateCT was called.  
Dividing by 10 gives us the average.

countUpdateCT/10.;
4.500000000

The third approach is to make use of Maple's debugging facilities.  We used trace in earlier 
chapters to get information about the workings of a procedure.  Here, we will use the
showstat command.  

If you apply showstat to the name of a procedure, it will display the definition of the 
procedure with line numbers added on the left hand side.  An integer or a range of integers can 
be given as a second argument to narrow the display to the desired lines.

showstat(QuineMcCluskey,5..8);

QuineMcCluskey := proc(F, variables)
local Fbits, FbitsL, coverageDict, groups, primes, i, 
allprimeImps, j, coverageTable, essentialPIs, minBits, 
nextPI;
       ...
   5   while FbitsL[i] <> [] do
   6     i := i+1;
   7     groups[i] := sortGroups(FbitsL[i-1]);
   8     FbitsL[i], primes[i] := NextBitList(groups[i],
coverageDict)
       end do;
       ...
end proc

You can get more information by telling Maple to track the procedure.  You do this by calling 
the debugopts command with argument traceproc= and then the name of the procedure.

debugopts(traceproc=QuineMcCluskey);

Now we apply QuineMcCluskey to 10 random expressions.  We suppress the output as it is 
not needed here.

for i from 1 to 10 do
  randExp := Random([w,x,y,z]);
  QuineMcCluskey(randExp,[w,x,y,z]);
end do:

If we call the showstat command again, the output gives us more information than it did 
before.

showstat(QuineMcCluskey);

QuineMcCluskey := proc(F, variables)
local Fbits, FbitsL, coverageDict, groups, primes, i, 
allprimeImps, j, coverageTable, essentialPIs, minBits, 
nextPI;
     |Calls Seconds  Words|
PROC |   10   0.012  94598|



(12.33)(12.33)

O O 

O O 

(12.15)(12.15)

(12.105)(12.105)

O O 

(12.39)(12.39)

O O 

(12.110)(12.110)

O O 

O O 

O O 

(12.2)(12.2)

O O 

(12.98)(12.98)

(12.116)(12.116)

(12.52)(12.52)

(12.20)(12.20)

O O 

O O 

O O 

O O 

(12.57)(12.57)

   1 |   10   0.000  18749| Fbits := DNFtoBitList(F,
variables);
   2 |   10   0.000   4018| coverageDict := initCoverDict
(Fbits);
   3 |   10   0.000      0| i := 0;
   4 |   10   0.000   2730| FbitsL[0] := Fbits;
   5 |   10   0.000    215| while FbitsL[i] <> [] do
   6 |   25   0.000      0|   i := i+1;
   7 |   25   0.003  13148|   groups[i] := sortGroups
(FbitsL[i-1]);
   8 |   25   0.003  22728|   FbitsL[i], primes[i] := 
NextBitList(groups[i],coverageDict)
                            end do;
   9 |   10   0.000      0| allprimeImps := {};
  10 |   10   0.000      0| for j to i do
  11 |   25   0.000    400|   allprimeImps := `union`
(allprimeImps,primes[j])
                            end do;
  12 |   10   0.000     40| allprimeImps := [op
(allprimeImps)];
  13 |   10   0.001   5476| coverageTable := 
initCoverMatrix(Fbits,allprimeImps,coverageDict);
  14 |   10   0.001   4120| essentialPIs := FindEssentials
(coverageTable);
  15 |   10   0.000      0| minBits := [];
  16 |   10   0.000      0| for i from nops(essentialPIs) 
by -1 to 1 do
  17 |   29   0.003   8472|   minBits := [op(minBits), 
UpdateCT(essentialPIs[i],coverageTable,Fbits,allprimeImps)]
                            end do;
  18 |   10   0.000    436| while 0 < LinearAlgebra:-
ColumnDimension(coverageTable) do
  19 |   12   0.000   1792|   nextPI := findBestImp
(coverageTable);
  20 |   12   0.000   2969|   minBits := [op(minBits), 
UpdateCT(nextPI,coverageTable,Fbits,allprimeImps)]
                            end do;
  21 |   10   0.001   9305| return OrList(map
(BitStringtoMT,minBits,variables))
end proc

In addition to the line numbers, you see three columns labeled Calls, Seconds, and Words.  Also
note that above line 1 is line PROC.  This refers to information for the procedure as a whole.

The Calls column reports the number of times the line was executed.  That the Calls column 
contains 10 in the PROC row indicates that the procedure was called 10 times.  Note that lines 
17 and 20 are the lines containing the calls to UpdateCT.  The sum of the values in the Count 
column is the number of times UpdateCT was called.

The Seconds column reports the amount of CPU time that was spent executing the line.

The Words column indicates the amount of memory that was allocated as a result of the 
statement. 

Together, the three columns give you a considerable amount of information about the 
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computational complexity, performance, and memory requirements of a procedure.  In
QuineMcCluskey, we see that the most time and memory are used in line 8, the call to
NextBitList.  However, the UpdateCT subprocedure was executed more often.

You can also have Maple store this information in a table for you by calling debugopts with 
argument traceproctable= and the name of the procedure.

traceTable := debugopts(traceproctable=QuineMcCluskey);

traceTable :=

 1..22 x 1..3 Array

Data Type: integer4

Storage: rectangular

Order: C_order

The entries in this table correspond to the information displayed.  The first row stores 
information about the procedure as a whole.

traceTable[1,1..3];
10 12 94598

Information on specific lines is stored in the row one greater than the line number.  For instance, 
the data related to the calls of UpdateCT, in line 17 and 20, are contained in the table at 18 and 
21.

traceTable[[18,21],1..3];
29 3 8472

12 0 2969

Note that the second column, containing the time measurement, has been multiplied by 1000.

Executing
debugopts(traceproc=QuineMcCluskey);

a secont time clears the information that was stored and toggles the option to have Maple record 
the Calls, Seconds, and Words information back off.  

Exercises
Exercise 1.  Use Maple to verify De Morgan's Laws and the commutative and associative laws.  
(See Table 5 of Section 12.1.)

Exercise 2.  Construct truth tables for each of the following pairs of boolean expressions and decide
whether they are logically equivalent.

a / b and b / a
a / b  and b / a
aC bc and aC bC d aC cC d .

Exercise 3.  Write a Maple procedure that constructs a table of values of a boolean expressions in n 
variables that may include the following operators: &and, &or, &xor, &nand, &nor.

Exercise 4.  Write a Maple procedure that, given a boolean function, represents this function using 
only the &nand operator.

Exercise 5.  Use the procedure in the previous exercise to represent the following boolean functions
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using only the &nand operator.
F x, y, z = xyC y z
G x, y, z = xC x yC yz
H x, y, z = xyz C x y z

Exercise 6.  Write a Maple procedure that, given a boolean function, represents this function using 
the &nor operator.

Exercise 7.  Use the procedure in the previous exercise to represent the boolean functions in 
Exercise 5 using only the &nor operator.

Exercise 8.  Write a Maple procedure for determining the output of a threshold gate, given the 
values of n boolean variables as input, and given the threshold value and a set of weights for the 
threshold gate.  (See the Supplementary Exercises of Chapter 12 for information on threshold gates.
)

Exercise 9.  Develop a Maple procedure that, given a boolean function in four variables, determines
whether it is a threshold function, and if so, finds the appropriate threshold gate representing this 
function.  (See the Supplementary Exercises of Chapter 12.)

Exercise 10.  A boolean expression e is called self dual if it is logically equivalent to its dual ed.  
Write a Maple procedure to test whether a given expression is self dual.

Exercise 11.  Determine, for each integer n 2 1, 2, 3, 4, 5, 6 , the total number of boolean 
functions of n variables and the number of those functions that are self dual.

Exercise 12.  Write a Maple procedure that, given a positive integer n, constructs a list of all 
boolean functions of degree n.  Use your procedure to find all boolean functions of degree 4.

Exercise 13.  At the end of Section 12.3 of this manual, it was suggested that the procedure for 
producing tree representations of logical circuits could be improved by combining successive and 
or or gates into gates accepting multiple inputs.  Implement this.

Exercise 14.  Use DontCare to compute a minimal sum of products expansion for the boolean 
functions with don't care conditions specified by the  Karnaugh maps shown in Exercises 30 
through 32 of Section 12.4.

Exercise 15.  How can you change exactly one character in the definition of the procedure
DontCare so that it returns the last expression of minimum length that it encounters that is 
equivalent to the input function?  (As written now, it returns the first.)

Exercise 16.  Use the procedure you wrote in Exercise 10 to write a Maple procedure to generate 
random boolean expressions in 4 variables and stop when it is has found one that is self dual.  Run 
the program several times and time it.  Find the average time.  Repeat for boolean expressions in 5 
and 6 variables.  Can you make any conjectures from this information?

Exercise 17.  Revise the procedure DontCare to return all minimal expressions that it finds, rather
than just the first.

Exercise 18.  Revise the procedure DontCare to use different measures of complexity of boolean 
expressions, such as the number of boolean operations, etc.
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Exercise 19.  Modify QuineMcCluskey to allow for don't care conditions.  See the discussion at 
the end of the Don't Care Conditions subsection in Section 12.4 of this manual.

Exercise 20.  Modify QuineMcCluskey to use backtracking instead of the heuristic approach in 
order to determine the expression with the minimum number of terms.  Use a large number of 
randomly generated expressions to compare the old procedure with the new and determine how 
often the heuristic produces non-optimal output.


