

P R E F A C E

The first edition of this book was conceived as a result of my experience in writing
and maintaining large Fortran programs in both the defense and geophysical fields.
During my time in industry, it became obvious that the strategies and techniques
 required to write large, maintainable Fortran programs were quite different from what
new engineers were learning in their Fortran programming classes at school. The
 incredible cost of maintaining and modifying large programs once they are placed into
service absolutely demands that they be written to be easily understood and modified
by people other than their original programmers. My goal for this book is to teach
 simultaneously both the fundamentals of the Fortran language and a programming
style that results in good, maintainable programs. In addition, it is intended to serve as
a reference for graduates working in industry.

It is quite difficult to teach undergraduates the importance of taking extra effort
during the early stages of the program design process in order to make their programs
more maintainable. Class programming assignments must by their very nature be sim-
ple enough for one person to complete in a short period of time, and they do not have
to be maintained for years. Because the projects are simple, a student can often “wing
it” and still produce working code. A student can take a course, perform all of the pro-
gramming assignments, pass all of the tests, and still not learn the habits that are really
needed when working on large projects in industry.

From the very beginning, this book teaches Fortran in a style suitable for use on
large projects. It emphasizes the importance of going through a detailed design pro-
cess before any code is written, using a top-down design technique to break the pro-
gram up into logical portions that can be implemented separately. It stresses the use of
procedures to implement those individual portions, and the importance of unit testing
before the procedures are combined into a finished product. Finally, it emphasizes the
importance of exhaustively testing the finished program with many different input data
sets before it is released for use.

In addition, this book teaches Fortran as it is actually encountered by engineers and
scientists working in industry and in laboratories. One fact of life is common in all pro-
gramming environments: Large amounts of old legacy code that have to be maintained.
The legacy code at a particular site may have been originally written in Fortran IV (or
an even earlier version!), and it may use programming constructs that are no longer
common today. For example, such code may use arithmetic IF statements, or computed
or assigned GO TO statements. Chapter 18 is devoted to those older features of the lan-
guage that are no longer commonly used, but that are encountered in legacy code.

xx PrefaCe

The chapter emphasizes that these features should never be used in a new program, but
also prepares the student to handle them when he or she encounters them.

CHANGES IN THIS EDITION

This edition builds directly on the success of Fortran 95/2003 for Scientists and Engi-
neers, 3/e. It preserves the structure of the previous edition, while weaving the new Fortran
2008 material (and limited material from the proposed Fortran 2015 standard) throughout
the text. It is amazing, but Fortran started life around 1954, and it is still evolving.

Most of the additions in Fortran 2008 are logical extensions of existing capabili-
ties of Fortran 2003, and they are integrated into the text in the proper chapters. How-
ever, the use of parallel processing and Coarray Fortran is completely new, and Chapter
17 has been added to cover that material.

The vast majority of Fortran courses are limited to one-quarter or one semester,
and the student is expected to pick up both the basics of the Fortran language and the
concept of how to program. Such a course would cover Chapters 1 through 7 of this
text, plus selected topics in Chapters 8 and 9 if there is time. This provides a good
foundation for students to build on in their own time as they use the language in
 practical projects.

Advanced students and practicing scientists and engineers will need the material on
COMPLEX numbers, derived data types, and pointers found in Chapters 11 through 15.
Practicing scientists and engineers will almost certainly need the material on obsolete,
redundant, and deleted Fortran features found in Chapter 18. These materials are rarely
taught in the classroom, but they are included here to make the book a useful reference
text when the language is actually used to solve real-world problems.

FEATURES OF THIS BOOK

Many features of this book are designed to emphasize the proper way to write reliable
Fortran programs. These features should serve a student well as he or she is first learn-
ing Fortran, and should also be useful to the practitioner on the job. They include:

1. Emphasis on Modern Fortran.
 The book consistently teaches the best current practice in all of its examples.

Many modern Fortran 2008 features duplicate and supersede older features of
the Fortran language. In those cases, the proper usage of the modern language
is presented. Examples of older usage are largely relegated to Chapter 18,
where their old/undesirable nature is emphasized. Examples of modern Fortran
features that supersede older features are the use of modules to share data
 instead of COMMON blocks, the use of DO . . . END DO loops instead of DO . . .
 CONTINUE loops, the use of internal procedures instead of statement functions,
and the use of CASE constructs instead of computed GOTOs.

PrefaCe xxi

2. Emphasis on Strong Typing.
 The IMPLICIT NONE statement is used consistently throughout the book to

force the explicit typing of every variable used in every program, and to catch
common typographical errors at compilation time. In conjunction with the ex-
plicit declaration of every variable in a program, the book emphasizes the im-
portance of creating a data dictionary that describes the purpose of each
variable in a program unit.

3. Emphasis on Top-Down Design Methodology.
 The book introduces a top-down design methodology in Chapter 3, and then

uses it consistently throughout the rest of the book. This methodology encour-
ages a student to think about the proper design of a program before beginning
to code. It emphasizes the importance of clearly defining the problem to be
solved and the required inputs and outputs before any other work is begun.
Once the problem is properly defined, it teaches the student to employ stepwise
refinement to break the task down into successively smaller subtasks, and to
implement the subtasks as separate subroutines or functions. Finally, it teaches
the importance of testing at all stages of the process, both unit testing of the
component routines and exhaustive testing of the final product. Several exam-
ples are given of programs that work properly for some data sets, and then fail
for others.

 The formal design process taught by the book may be summarized as
follows:

∙ Clearly state the problem that you are trying to solve.
∙ Define the inputs required by the program and the outputs to be produced by

the program.
∙ Describe the algorithm that you intend to implement in the program. This

step involves top-down design and stepwise decomposition, using pseudo-
code or flow charts.

∙ Turn the algorithm into Fortran statements.
∙ Test the Fortran program. This step includes unit testing of specific subpro-

grams, and also exhaustive testing of the final program with many different
data sets.

4. Emphasis on Procedures.
 The book emphasizes the use of subroutines and functions to logically decom-

pose tasks into smaller subtasks. It teaches the advantages of procedures for data
hiding. It also emphasizes the importance of unit testing procedures before they
are combined into the final program. In addition, the book teaches about the
common mistakes made with procedures, and how to avoid them (argument type
mismatches, array length mismatches, etc.). It emphasizes the advantages asso-
ciated with explicit interfaces to procedures, which allow the Fortran compiler
to catch most common programming errors at compilation time.

5. Emphasis on Portability and Standard Fortran.
 The book stresses the importance of writing portable Fortran code, so that a

program can easily be moved from one type of computer to another one.

It teaches students to use only standard Fortran statements in their programs, so
that they will be as portable as possible. In addition, it teaches the use of
 features such as the SELECTED_REAL_KIND function to avoid precision and kind
differences when moving from computer to computer.

 The book also teaches students to isolate machine-dependent code (such as
code that calls machine-dependent system libraries) into a few specific proce-
dures, so that only those procedures will have to be rewritten when a program
is ported between computers.

6. Good Programming Practice Boxes.
 These boxes highlight good programming practices when they are introduced

for the convenience of the student. In addition, the good programming practices
introduced in a chapter are summarized at the end of the chapter. An example
Good Programming Practice Box is shown below:

Good Programming Practice
Always indent the body of an IF structure by two or more spaces to improve the
readability of the code.

7. Programming Pitfalls Boxes
 These boxes highlight common errors so that they can be avoided. An exam-

ple Programming Pitfalls Box is shown below:

Programming Pitfalls
Beware of integer arithmetic. Integer division often gives unexpected results.

8. Emphasis on Pointers and Dynamic Data Structures.
 Chapter 15 contains a detailed discussion of Fortran pointers, including pos-

sible problems resulting from the incorrect use of pointers such as memory
leaks and pointers to deallocated memory. Examples of dynamic data struc-
tures in the chapter include linked lists and binary trees.

 Chapter 16 contains a discussion of Fortran objects and object-oriented pro-
gramming, including the use of dynamic pointers to achieve polymorphic behavior.

9. Use of Sidebars.
 A number of sidebars are scattered throughout the book. These sidebars pro-

vide additional information of potential interest to the student. Some sidebars
are historical in nature. For example, one sidebar in Chapter 1 describes the
IBM Model 704, the first computer to ever run Fortran. Other sidebars

xxii PrefaCe

 reinforce lessons from the main text. For example, Chapter 9 contains a side-
bar reviewing and summarizing the many different types of arrays found in
modern Fortran.

10. Completeness.
 Finally, the book endeavors to be a complete reference to the modern Fortran

language, so that a practitioner can locate any required information quickly.
Special attention has been paid to the index to make features easy to find. A
special effort has also been made to cover such obscure and little understood
features as passing procedure names by reference, and defaulting values in
list-directed input statements.

PEDAGOGICAL FEATURES

The book includes several features designed to aid student comprehension. Each
chapter begins with a list of the objectives that should be achieved in that chapter.
A total of 27 quizzes appear scattered throughout the chapters, with answers to all
questions included in Appendix F. These quizzes can serve as a useful self-test of
comprehension. In addition, there are approximately 360 end-of-chapter exercises.
Answers to selected exercises are available at the book’s Web site, and of course an-
swers to all exercises are included in the Instructor’s Manual. Good programming
practices are highlighted in all chapters with special Good Programming Practice
boxes, and common errors are highlighted in Programming Pitfalls boxes. End-of-
chapter materials include Summaries of Good Programming Practice and Summaries
of Fortran Statements and Structures. Finally, a detailed description of every Fortran
intrinsic procedure is included in Appendix C, and an extensive Glossary is included
in Appendix E.

The book is accompanied by an Instructor’s Manual, containing the solutions to
all end-of-chapter exercises. Instructors can also download the solutions in the
 Instructor’s Manual from the book’s Web site. The source code for all examples in
the book, plus other supplemental materials, can be downloaded by anyone from the
book’s Web site.

A NOTE ABOUT FORTRAN COMPILERS

Two Fortran compilers were used during the preparation of this book: the Intel Visual
Fortran Compiler Version 16.0 and the GNU G95 Fortran compiler. Both compilers
provide essentially complete implementations of Fortran 2008, with only a very few
minor items not yet implemented. They are also both looking to the future, implement-
ing features from the proposed Fortran 2015 standard.

I highly recommend both compilers to potential users. The great advantage of
 Intel Fortran is the very nice integrated debugging environment, and the great disad-
vantage is cost. The G95 compiler is free, but it is somewhat harder to debug.

PrefaCe xxiii

