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E.1 INTRODUCTION TO NUMERICAL ALGORITHMS
Numerical methods for solving differential equations can be applied to both linear and
nonlinear models, although their primary application is to nonlinear models. A nonlinear
ordinary differential equation can be recognized by the fact that the dependent variable
or its derivatives appears raised to a power or in a transcendental function. For example,
the following equations are nonlinear.

y ÿ + 5ẏ + y = 0 ẏ + sin y = 0 ẏ + √
y = 0

The algorithms presented here are simplified versions of the ones used by MATLAB
and Simulink, and so an understanding of these methods will improve your understand-
ing of these two programs. The numerical solution algorithms used by the MATLAB
ODE solvers are very complicated. Therefore, we will limit our coverage to simple
algorithms so that we can highlight the important issues to be considered when using
numerical methods.

Numerical methods require that the derivatives in the model be described by finite-
difference expressions, and that the resulting difference equations be solved in a step-
by-step procedure. The issues related to these methods are

■ What finite-difference expressions provide the best approximations for
derivatives?

■ What are the effects of step size used to obtain the approximations?
■ What are the effects of roundoff error when solving the finite-difference

equations?

1
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We will explore these issues and make you aware of some pitfalls that can be
encountered. Such difficulties are more likely to occur when the solution is rapidly
changing with time, and can happen if the step size is not small compared to the
smallest time constant of the system or the smallest oscillation period.

E.1.1 TEST CASES

We now develop three test cases, whose solution can be found analytically, to use for
checking the results of our numerical methods.

1. The following equation is used to illustrate the effect of step size relative to the
system time constant, which is τ = 1/10.

dy

dt
+ 10y = 0 y(0) = 2

The solution is y(t) = 2e−10t .
2. The following equation is used to illustrate the effect of step size relative to the

solution’s oscillation period.

dy

dt
= sin ωt y(0) = y0

The solution is

y(t) = y0 + 1 − cos ωt

ω

and the period is 2π/ω.
3. A stiff differential equation is one whose response changes rapidly over a time

scale that is short compared to the time scale over which we are interested in the
solution. For this reason, stiff equations present a challenge to solve numerically.
The following equation has such characteristics.

ẏ + y = 0.001e10t y(0) = 10

The solution is

y(t) = 10e−t + 0.001

11

(
e10t − e−t)

That part of the response due to the term e−t is approximately 10 at t = 0 and
decays quickly (it is approximately 0.2 at t = 4). However, the term due to e10t

is 9.09 × 10−5 at t = 0 but grows at a fast rate (it is 2.14 × 1013 at t = 4!). Thus
it would be difficult for a plot to show the solution accurately over the range
0 ≤ t ≤ 4. More importantly, a numerical solver would need a very small step
size to compute the rapid changes due to the e10t term, much smaller than the step
size required to compute the slower response due to the e−t term. The result can
be a large accumulated error because of the small step size combined with the
large number of steps required to obtain the full solution.

E.1.2 THE EULER METHOD

The essence of a numerical method is to convert the differential equation into a differ-
ence equation that can be programmed on a calculator or digital computer. Numerical
algorithms differ partly as a result of the specific procedure used to obtain the difference
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equations. In general, as the accuracy of the approximation is increased, so is the com-
plexity of the programming involved. It is important to understand the concept of “step
size” and its effects on solution accuracy. To provide a simple introduction to these
issues, we begin with the simplest numerical method, the Euler method.

Consider the equation

dy

dt
= f (t, y) (E.1.1)

where f (t, y) is a known function. From the definition of the derivative,

dy

dt
= lim

�t→0

y(t + �t) − y(t)

�t

If the time increment �t is chosen small enough, the derivative can be replaced by the
approximate expression

dy

dt
≈ y(t + �t) − y(t)

�t
(E.1.2)

Assume that the right-hand side of (E.1.1) remains constant over the time interval
(t, t + �t), and replace (E.1.1) by the following approximation:

y(t + �t) − y(t)

�t
= f (t, y)

or

y(t + �t) = y(t) + f (t, y)�t (E.1.3)

The smaller �t is, the more accurate are our two assumptions leading to (E.1.3). This
technique for replacing a differential equation with a difference equation is the Euler
method. The increment �t is called the step size.

A more concise representation is obtained by using the following notation:

yk = y(tk) yk+1 = y(tk+1) = y(tk + �t)

where tk+1 = tk + �t . In this notation, the Euler algorithm (E.1.3) is expressed as

yk+1 = yk + f (tk, yk)�t (E.1.4)

The Euler Method and a Decaying Solution EXAMPLE E.1.1

■ Problem
Use the Euler method to solve our first test case,

dy

dt
+ 10y = 0 y(0) = 2

which has the exact solution y(t) = 2e−10t . Use a step size of �t = 0.02, which is one-fifth of
the time constant.

■ Solution
Here f (t, y) = −10y. Thus the Euler algorithm (E.1.4) in this case becomes

yk+1 = yk − (10yk)�t

or

yk+1 = yk − (10yk)0.02 = 0.8yk
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We show the computations for the first few steps, using four significant figures. The exact value,
obtained from y(t) = 2e−10t , and the percent error are shown in the following table.

Step Numerical solution Exact solution Percent error

k = 0 y1 = 0.8y0 = 1.6 1.637 2.3%
k = 1 y2 = 0.8y1 = 1.28 1.341 4.5%
k = 2 y3 = 0.8y2 = 1.024 1.098 6.7%
k = 3 y4 = 0.8y3 = 0.8192 0.8987 8.8%
k = 4 y5 = 0.8y4 = 0.6554 0.7358 10.9%
k = 5 y6 = 0.8y5 = 0.5243 0.6024 13%

Notice how the percent error grows with each step. This is because the calculated result
from the previous step is not exact. The numerical and exact solutions are shown in Figure E.1.1,
where the numerical solution is shown by the small circles and the exact solution is shown by
the solid curve.

Another observation here is that the step size should be much smaller than the time con-
stant τ . A commonly used rule of thumb is that �t ≤ τ/20.

Figure E.1.1 Euler and exact
solutions of ẏ + 10y = 0,
y (0) = 2.
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Roundoff Error There is another reason why the error increases with the number of
steps. If we had retained six significant figures instead of four, we would have obtained
y5 = 0.65536 and y6 = 0.524288. Even though computers can retain many more
than four significant figures, nevertheless, they cannot represent numbers with infinite
accuracy. Thus, the calculated solution obtained by computer at each step is in effect
rounded off to a finite number of significant figures. This rounded number is then used
in the calculations for the next step, and so on, just as we rounded the value of y5 to
0.6554 before using it to compute y6. Therefore, the error in the numerical solution will
increase with the number of steps required to obtain the solution.

Thus, because roundoff error increases with each step, there is a trade-off between
using a step size small enough to obtain an accurate solution yet not so small that many
steps are required to obtain the solution.



palm-3930292 pal98063˙appE˙1-17 February 6, 2013 10:35

APPENDIX E Numerical Methods 5

Numerical methods have their greatest errors when trying to obtain solutions that
are rapidly changing. The difficulties caused by an oscillating solution are illustrated
in the following example.

The Euler Method and an Oscillating Solution EXAMPLE E.1.2

■ Problem
Consider the following equation, which is our second test case.

ẏ = sin t

for y(0) = 0 and 0 ≤ t ≤ 4π . The exact solution is y(t) = 1 − cos t and its period is 2π . Solve
this equation with Euler’s method.

■ Solution
We choose a step size equal to one-thirteenth of the period, or �t = 2π/13, so that we can
compare the answer with that obtained by a method to be introduced later. The Euler algorithm
(E.1.4) becomes

yk+1 = yk + (sin tk)
2π

13
For successive values of k = 0, 1, 2, . . . , we have tk = 0, 2π/13, 4π/13, . . . . Retaining four
significant figures, we have

y1 = y0 + (sin t0)
2π

13
= 0 + (sin 0)

2π

13
= 0

y2 = y1 + (sin t1)
2π

13
= 0 +

(
sin

2π

13

)
2π

13
= 0.2246

y3 = y2 + (sin t2)
2π

13
= 0.2246 +

(
sin

4π

13

)
2π

13
= 0.6224

and so on. The numerical and exact solutions are shown in Figure E.1.2, where the numerical
solution is shown by the small circles and the exact solution is shown by the solid curve. There
is noticeable error, especially near the peaks and valleys, where the solution is rapidly changing.
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Figure E.1.2 Euler and exact
solutions of ẏ = sin t ,
y (0) = 0.
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The accuracy of the Euler method can be improved by using a smaller step size.
However, very small step sizes require longer run times and can result in a large ac-
cumulated error due to roundoff effects. So we seek better algorithms to use for more
challenging applications.

E.1.3 PREDICTOR-CORRECTOR METHODS

We now consider predictor-corrector methods, which serve as the basis for many
powerful algorithms. The Euler method can have a serious deficiency in problems
where the variables are rapidly changing, because the method assumes the variables
are constant over the time interval �t . One way of improving the method is to use a
better approximation to the right-hand side of the equation

dy

dt
= f (t, y) (E.1.5)

The Euler approximation is

y(tk+1) = y(tk) + �t f [tk, y(tk)] (E.1.6)

Suppose instead we use the average of the right-hand side of (E.1.5) on the interval
(tk, tk+1). This gives

y(tk+1) = y(tk) + �t

2
( fk + fk+1) (E.1.7)

where

fk = f [tk, y(tk)] (E.1.8)

with a similar definition for fk+1. Equation (E.1.7) is equivalent to integrating (E.1.5)
with the trapezoidal rule, whereas the Euler method is equivalent to integrating with
the rectangular rule (see Figure E.1.3).

The difficulty with (E.1.7) is that fk+1 cannot be evaluated until y(tk+1) is known,
but this is precisely the quantity being sought. A way out of this difficulty is to use
the Euler formula (E.1.6) to obtain a preliminary estimate of y(tk+1). This estimate
is then used to compute fk+1 for the use in (E.1.7) to obtain the required value of
y(tk+1).

Figure E.1.3
Illustration of numerical
integration by (a) the
rectangular rule and (b) the
trapezoidal rule.
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The notation can be changed to clarify the method. Let h = �t and yk = y(tk), and
let xk+1 be the estimate of y(tk+1) obtained from the Euler formula (E.1.6). Then, by
omitting the tk notation from the other equations, we obtain the following description
of the predictor-corrector process:

Euler predictor: xk+1 = yk + h f (tk, yk) (E.1.9)

Trapezoidal corrector: yk+1 = yk + h

2
[ f (tk, yk) + f (tk+1, xk+1)] (E.1.10)

This version of a predictor-corrector algorithm is sometimes called the modified-Euler
method. However, note that any algorithm can be tried as a predictor or a corrector.
Thus many other methods can also be classified as predictor-corrector.

The Modified-Euler Method and a Decaying Solution EXAMPLE E.1.3

■ Problem
Use the modified-Euler method to solve our first test case:

ẏ = −10y y(0) = 2

for 0 ≤ t ≤ 0.5. The exact solution is y(t) = 2e−10t .

■ Solution
To illustrate the effect of the step size on the solution’s accuracy, we use a step size h = 0.02,
the same size used with the Euler method. The modified-Euler algorithm for this case has the
following form.

xk+1 = yk + h(−10yk) = (1 − 10h)yk = 0.8yk

yk+1 = yk + h

2
(−10yk − 10xk+1) = 0.9yk − 0.1xk+1
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Figure E.1.4 Modified-Euler
and exact solutions of
ẏ + 10y = 0, y (0) = 2.
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The following table shows the numerical and exact solutions, rounded to four significant figures,
and the percent error, for a few steps.

Step Numerical solution Exact solution Percent error

k = 0 x1 = 0.8y0 = 1.6
y1 = 0.9y0 − 0.1x1 = 1.64 1.637 0.2%

k = 1 x2 = 0.8y1 = 1.312
y2 = 0.9y1 − 0.1x2 = 1.3448 1.341 0.3%

k = 2 x3 = 0.8y2 = 1.07584
y3 = 0.9y2 − 0.1x3 = 1.102736 1.098 0.4%

There is less error than with the Euler method using the same step size. Figure E.1.4 shows
the results, with the numerical solution shown by the small circles and the exact solution by the
solid line.

The modified-Euler method is a special case of the Runge-Kutta family of algo-
rithms, to be discussed next. For purposes of comparison with the Runge-Kutta methods,
we can express the modified-Euler method as follows:

yk+1 = yk + 1

2
(g1 + g2) (E.1.11)

g1 = h f (tk, yk) (E.1.12)

g2 = h f (tk + h, yk + g1) (E.1.13)

E.1.4 RUNGE-KUTTA METHODS

The Taylor series representation forms the basis of several methods for solving differ-
ential equations, including the Runge-Kutta methods. The Taylor series may be used
to represent the solution y(t + h) in terms of y(t) and its derivatives, as follows:

y(t + h) = y(t) + h ẏ(t) + 1

2
h2 ÿ(t) + · · · (E.1.14)

The number of terms kept in the series determines its accuracy. The required derivatives
are calculated from the differential equation. If these derivatives can be found, (E.1.14)
can be used to march forward in time. In practice, the high-order derivatives can be
difficult to calculate, and the series (E.1.14) is truncated at some term. The Runge-Kutta
methods were developed because of the difficulty in computing the derivatives. These
methods use several evaluations of the function f (t, y) in a way that approximates the
Taylor series. The number of terms in the series that is duplicated determines the order
of the Runge-Kutta method. Thus, a fourth-order Runge-Kutta algorithm duplicates the
Taylor series through the term involving h4.

E.1.5 SECOND-ORDER RUNGE-KUTTA METHODS

The second-order Runge-Kutta methods express yk+1 as

yk+1 = yk + w1g1 + w2g2 (E.1.15)

where w1 and w2 are constant weighting factors, and

g1 = h f (tk, yk) (E.1.16)

g2 = h f (tk + αh, yk + βh fk) (E.1.17)
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The family of second-order Runge-Kutta algorithms is categorized by the parameters
α, β, w1, and w2. To duplicate the Taylor series through the h2 term, these coefficients
must satisfy the following:

w1 + w2 = 1 w1α = 1

2
w2β = 1

2
(E.1.18)

Thus one of the parameters can be chosen independently.
The modified-Euler algorithm, (E.1.11) through (E.1.13), is thus seen to be a

second-order Runge-Kutta algorithm with α = β = 1 and w1 = w2 = 1/2.

E.1.6 FOURTH-ORDER RUNGE-KUTTA METHODS

The family of fourth-order Runge-Kutta algorithms expresses yk+1 as

yk+1 = yk + w1g1 + w2g2 + w3g3 + w4g4 (E.1.19)

where g1 = h f (tk, yk)

g2 = h f (tk + α1h, yk + α1g1)

g3 = h f [tk + α2h, yk + β2g2 + (α2 − β2)g1]
g4 = h f [tk + α3h, yk + β3g2 + γ3g3 + (α3 − β3 − γ3)g1]

(E.1.20)

Comparison with the Taylor series yields eight equations for the 10 parameters. Thus,
two parameters can be chosen in light of other considerations. A number of different
choices have been used. For example, the classical Runge-Kutta method, which reduces
to Simpson’s rule for integration if f (t, y) is a function of only t , uses the following
set of parameters.

w1 = w4 = 1
6 w2 = w3 = 1

3

α1 = α2 = 1
2 β2 = 1

2

γ3 = α3 = 1 β3 = 0

(E.1.21)

The Runge-Kutta algorithms are very tedious to compute by hand, so we not show
the steps involved in Examples E.1.4 and E.1.5. The algorithms are easily programmed,
however. The MATLAB programs for these examples, using the parameter values for
the classical fourth-order Runge-Kutta algorithm, are given in Section E.2.

Runge-Kutta Method for an Oscillating Solution EXAMPLE E.1.4

■ Problem
Illustrate how the fourth-order Runge-Kutta method works with an oscillating solution by using
the method to solve our second test case:

ẏ = sin t y(0) = 0

for 0 ≤ t ≤ 4π . Use the parameter values given by (E.1.21).

■ Solution
To compare the results with those obtained with the Euler method, we will use the same step
size �t = 2π/13. The results are shown in Figure E.1.5, with the numerical solution shown by
the small circles and the exact solution by the solid line. There is much less error than with the
Euler method using the same step size.
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Figure E.1.5 Fourth-order
Runge-Kutta and exact
solutions of ẏ = sin t ,
y (0) = 0.
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EXAMPLE E.1.5 Runge-Kutta Method for a Stiff Equation

■ Problem
Our third test case is an example of an equation that requires a step size small enough to solve
for the rapid changes in the solution, but for which many steps are needed to obtain the solution
over the longer time interval. Thus an accurate numerical algorithm is needed to prevent large
errors from accumulating. The problem is

ẏ + y = 0.001e10t y(0) = 10

The closed form solution is

y(t) = 10e−t + 0.001

11
(e10t − e−t )

Compare this solution with that obtained with the fourth-order Runge-Kutta using the parameter
values given by (E.1.21).

■ Solution
The following table gives the results for every twentieth step, along with the exact solution, to
11 decimal places. The numerical solution is correct to seven or more significant figures, which
is quite good considering the wide range of values of y.

t Exact solution Numerical solution

0.2 8.18790483308 8.18790483325
0.4 6.70810299036 6.70810299083
0.6 5.52474181384 5.52474181600
0.8 44.76424497372 44.76424498796
1.0 5.68116694947 5.68116705275
1.2 17.80780486683 17.80780562797
1.4 111.79360941831 111.79361504050
1.6 809.84717596280 809.84721750362
1.8 5970.74107724873 5970.74138419445
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Programming these algorithms is a very good way to improve your understanding
of them. Examples of MATLAB programs that generated the data and the plots in this
section are given in Section E.2.

E.2 PROGRAMMING NUMERICAL METHODS
IN MATLAB

In this section, we first show how to program the Euler, modified-Euler, and Runge-
Kutta methods in MATLAB. Although MATLAB has built-in solvers, learning to pro-
gram such algorithms will improve your understanding of these methods.

E.2.1 PROGRAMMING THE EULER METHOD

The Euler algorithm for the equation ẏ = f (t, y) is

yk+1 = yk + f (tk, yk)�t

where tk+1 = tk + �t .
This equation can be applied successively at the times tk , for example, by putting

it in a for loop in a MATLAB program.

The Euler Method for ẏ = −10y EXAMPLE E.2.1

■ Problem
Use the Euler method to solve our first test case:

ẏ = −10y y(0) = 2

■ Solution
The following script file solves the problem and plots the solution over the range 0 ≤ t ≤ 0.5.
The exact solution is y(t) = 2e−10t . For comparison purposes, we use the same step size as in
Example E.1.1, which is �t = 0.02.

delta = 0.02; y(1) = 2;

k = 0;

for time = [delta:delta:0.5]

k = k + 1;

y(k+1) = y(k) - 10*y(k)*delta;

end

t = [0:delta: 0.5];

y exact = 2*exp(-10*t);

plot(t,y,'o',t,y exact),xlabel('t'),ylabel('y')

Figure E.1.1 in Section E.1 shows the results. The numerical solution is shown by the small
circles. The exact solution is shown by the solid line. There is some noticeable error. If we had
used a step size equal to 0.005, for example, the error would not be noticeable on the plot.

E.2.2 PROGRAMMING THE MODIFIED-EULER METHOD

The modified-Euler algorithm for the equation ẏ = f (t, y) is

Euler predictor: xk+1 = yk + h f (tk, yk)

Trapezoidal corrector: yk+1 = yk + h

2
[ f (tk, yk) + f (tk+1, xk+1)]
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EXAMPLE E.2.2 The Modified-Euler Method for ẏ = −10y

■ Problem
Use the modified-Euler method to solve our first test case:

ẏ = −10y y(0) = 2

■ Solution
The following script file solves the problem and plots the solution over the range 0 ≤ t ≤ 0.5.
The exact solution is y(t) = 2e−10t . We use a step size �t = 0.02 to compare the results with
those of the Euler method.

delta = 0.02; y(1) = 2;

k = 0;

for time = [delta:delta: 0.5]

k = k + 1;

x(k+1) = y(k) - 10*delta*y(k);

y(k+1) = y(k) - 10*(delta/2)*(y(k) + x(k+1));

end

t = [0:delta:0.5];

y exact = 2*exp(-10*t);

plot(t,y,'o',t,y exact),xlabel('t'),ylabel('y')

Figure E.1.4 in Section E.1 shows the results, with the numerical solution shown by the small
circles and the exact solution by the solid line. There is less error than with the Euler method
using the same step size.

E.2.3 PROGRAMMING THE RUNGE-KUTTA METHOD

The fourth-order Runge-Kutta algorithm is

yk+1 = yk + w1g1 + w2g2 + w3g3 + w4g4

where

g1 = h f (tk, yk)

g2 = h f (tk + α1h, yk + α1g1)

g3 = h f [tk + α2h, yk + β2g2 + (α2 − β2)g1]

g4 = h f [tk + α3h, yk + β3g2 + γ3g3 + (α3 − β3 − γ3)g1]

We will use the parameters for the classical Runge-Kutta method, which are

w1 = w4 = 1
6 w2 = w3 = 1

3

α1 = α2 = 1
2 β2 = 1

2

γ3 = α3 = 1 β3 = 0
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The Runge-Kutta Method for an Oscillating Solution EXAMPLE E.2.3

■ Problem
Use the fourth-order Runge-Kutta method to solve our second test case:

ẏ = sin t y(0) = 0

0 ≤ t ≤ 4π . The exact solution is y(t) = 1 − cos t .

■ Solution
Here f (t, y) = sin t and thus is not a function of y. Therefore, the β and γ parameters are not
needed for this problem and the gi functions are

g1 = h sin(tk)

g2 = h sin(tk + α1h)

g3 = h sin(tk + α2h)

g4 = h sin(tk + α3h)

We use a step size equal to one-thirteenth of the period, or �t = 2π/13, so that we can
compare the results with those obtained from the modified-Euler method. The following script
file implements the method:

h = 2*pi/13;

w1 = 1/6; w2 = 1/3; w3 = 1/3; w4 = 1/6;

a1 = 1/2; a2 = 1/2; a3 = 1;

tk = 0;

% Set the initial condition.

y(1) = 0;

% Set the upper limit on the number of steps.

tf = 4*pi;

klimit = round(tf/h)-1;

for k = 0:klimit

tk = k*h;

g1 = h*sin(tk);

g2 = h*sin(tk+a1*h);

g3 = h*sin(tk+a2*h);

g4 = h*sin(tk+a3*h);

m = k+1;

y(m+1) = y(m)+w1*g1+w2*g2+w3*g3+w4*g4;

end

t = [0:h:(klimit+1)*h];

% Compute the exact solution.

te = [0:0.01:tf];

ye = 1-cos(te);

plot(te,ye,t,y,'o'),xlabel('t'),ylabel('y'),axis([0 tf 0 2])

Figure E.1.5 in Section E.1 shows the results, with the numerical solution shown by the small
circles and the exact solution by the solid line. There is less error than with the modified-Euler
method using the same step size.
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EXAMPLE E.2.4 The Runge-Kutta Method for a Stiff Equation

■ Problem
Use the fourth-order Runge-Kutta method to solve our third test case:

ẏ + y = 0.001e10t y(0) = 10

for 0 ≤ t ≤ 1.8. The exact solution is

y(t) = 10e−t + 0.001

11

(
e10t − e−t

)
■ Solution
Here f (t, y) = −y + 0.001e10t and it is helpful to write a user-defined function file for f (t, y).
This file is

function ydot = stiff(t,y)

ydot = 0.001*exp(10*t)-y;

We try a step size of h = 0.01. The script file is

h = 0.01; tk = 0;

w1 = 1/6; w2 = 1/3; w3 = 1/3; w4 = 1/6;

a1 = 1/2; a2 = 1/2; a3 = 1;

b2 = 1/2; b3 = 0; gam3 = 1;

% Set the initial condition.

y(1) = 10;

% Set the upper limit on the number of steps.

tf = 1.8;

klimit = round(tf/h)-1;

for k = 0:klimit

tk = k*h;

yk = y(k+1);

g1 = h*stiff(tk,yk);

g2 = h*stiff(tk+a1*h,yk+a1*g1);

g3 = h*stiff(tk+a2*h,yk+b2*g2+(a2-b2)*g1);

g4 = h*stiff(tk+a3*h,yk+b3*g2+gam3*g3+(a3-b3-gam3)*g1);

m = k+1;

y(m+1) = y(m)+w1*g1+w2*g2+w3*g3+w4*g4;

end

% Compute the exact solution.

te = [0:0.01:tf];

ye = 10*exp(-te)+(0.001/11)*(exp(10*te)-exp(-te));

% Plot every 20th point of the numerical solution.

kp = 0;

for k = 1:20:klimit+1

kp = kp+1;

yp(kp) = y(k);

end

% Compute times for numerical solution, every 20th point.

tp = [0:20*h:tf];

plot(te,ye,tp,yp,'o'),xlabel('t'),ylabel('y')



palm-3930292 pal98063˙appE˙1-17 February 6, 2013 10:35

APPENDIX E Numerical Methods 15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

1000

2000

3000

4000

5000

6000

t

y
Figure E.2.1 Fourth-order
Runge-Kutta and exact
solutions of ẏ + y = 0.001e10t ,
y (0) = 10.

Figure E.2.1 shows the results, with the numerical solution shown for every 20 steps by the small
circles and the exact solution by the solid line. Notice the wide range of values for y, and yet
the results are very accurate.

PROBLEMS
Section E.1 Introduction to Numerical Algorithms

E.1 a. Use the Euler method with a step size of �t = 0.02 to solve the following
equation for five steps, using four significant figures.

ẏ + 5y = 0 y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

E.2 a. Use the Euler method with a step size of �t = 0.3 to solve the following
equation for five steps, using four significant figures.

ẏ = cos t y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

E.3 a. Use the Euler method with a step size of �t = 0.1 to solve the following
equation for five steps, using four significant figures.

ẏ = 6 sin 3t y(0) = 10

b. Use the closed-form solution to check the accuracy of the numerical
method.

E.4 a. Use the Euler method with a step size of �t = 0.025 to solve the
following equation for five steps, using four significant figures.

ẏ = 5e−4t y(0) = 2

b. Use the closed-form solution to check the accuracy of the numerical
method.
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E.5 a. Use the Euler method with a step size of �t = 0.01 to solve the following
equation for five steps, using four significant figures.

ẏ + 3y = 5e4t y(0) = 10

b. Use the closed-form solution to check the accuracy of the numerical
method.

E.6 a. Use the modified-Euler method with a step size of �t = 0.02 to solve
the following equation for five steps, using four significant figures.

ẏ + 5y = 0 y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

E.7 a. Use the modified-Euler method with a step size of �t = 0.03 to solve
the following equation for five steps, using four significant figures.

ẏ = cos t y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

E.8 a. Use the modified-Euler method with a step size of �t = 0.1 to solve
the following equation for five steps, using four significant figures.

ẏ = 6 sin 3t y(0) = 10

b. Use the closed-form solution to check the accuracy of the numerical
method.

E.9 a. Use the modified-Euler method with a step size of �t = 0.025 to solve
the following equation for five steps, using four significant figures.

ẏ = 5e−4t y(0) = 2

b. Use the closed-form solution to check the accuracy of the numerical
method.

E.10 a. Use the modified-Euler method with a step size of �t = 0.01 to solve
the following equation for five steps, using four significant figures.

ẏ + 3y = 5e4t y(0) = 10

b. Use the closed-form solution to check the accuracy of the numerical
method.

Section E.2 Programming Numerical Methods in MATLAB

E.11 Consider the system for lifting a mast, discussed in Chapter 3. The 70-ft-long
mast weighs 500 lb. The winch applies a force f = 380 lb to the cable. The
mast is supported initially at an angle of 30◦, and the cable at A is initially
horizontal. The equation of motion of the mast is

25,400 θ̈ = −17,500 cos θ + 626,000

Q
sin(1.33 + θ)

where

Q =
√

2020 + 1650 cos(1.33 + θ)

Use a numerical method to solve for and plot θ(t) for θ(t) ≤ π/2 rad.
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E.12 a. Program the Euler method and use the program to solve the following
equation for 0 ≤ t ≤ 1. Use a step size of �t = 0.02.

ẏ + 5y = 0 y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

E.13 a. Program the Euler method and use the program to solve the following
equation for 0 ≤ t ≤ 12. Use a step size of �t = 0.3.

ẏ = cos t y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

E.14 a. Program the Euler method and use the program to solve the following
equation for 0 ≤ t ≤ 1. Use a step size of �t = 0.025.

ẏ = 5e−4t y(0) = 2

b. Use the closed-form solution check the accuracy of the numerical method.
E.15 a. Program the modified-Euler method and use the program to solve the

following equation for 0 ≤ t ≤ 1. Use a step size of �t = 0.02.

ẏ + 5y = 0 y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

E.16 a. Program the modified-Euler method and use the program to solve the
following equation for 0 ≤ t ≤ 12. Use a step size of �t = 0.3.

ẏ = cos t y(0) = 6

b. Use the closed-form solution to check the accuracy of the numerical
method.

E.17 a. Program the modified-Euler method and use the program to solve
the following equation for 0 ≤ t ≤ 1. Use a step size of �t = 0.025.

ẏ = 5e−4t y(0) = 2

b. Use the closed-form solution check the accuracy of the numerical method.
E.18 a. Program the fourth-order Runge-Kutta method and use the program to

solve the following equation for 0 ≤ t ≤ 12. Use a step size of �t = 0.3.

ẏ = cos t y(0) = 6

b. Use the closed-form solution check the accuracy of the numerical method.
E.19 a. Program the fourth-order Runge-Kutta method and use the program to

solve the following equation for 0 ≤ t ≤ 1. Use a step size of �t = 0.01.

ẏ + 3y = 5e4t y(0) = 10

b. Use the closed-form solution to check the accuracy of the numerical
method.




