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CA P P E N D I X

Developing Models from Data

H ere we develop a systematic way of developing a model from data containing—so
much scatter that it is difficult to draw by eye a straight line that passes near most

of the data points. This method—called the least squares method—is easy to use with
a computer, and we illustrate how to do it with MATLAB. ■

C.1 FITTING MODELS TO SCATTERED DATA
In practice the data often will not lie very close to a straight line, and if we ask two
people to draw a straight line passing as close as possible to all the data points, we will
probably receive two different answers. A systematic and objective way of obtaining a
straight line describing the data is the least-squares method. Suppose we want to find
the coefficients of the straight line y = mx + b that best fits the following data.

x 0 5 10

y 2 6 11

According to the least-squares criterion, the line that gives the best fit is the one that
minimizes J , the sum of the squares of the vertical differences between the line and the
data points (see Figure C.1.1). These differences are called the residuals. Here there
are three data points and J is given by

J =
3∑

i=1

(mxi + b − yi )
2

Substituting the data values (xi , yi ) given in the table, we obtain

J = (0m + b − 2)2 + (5m + b − 6)2 + (10m + b − 11)2

The values of m and b that minimize J can be found from ∂ J/∂m = 0 and ∂ J/∂b = 0.

∂ J

∂m
= 2(5m + b − 6)(5) + 2(10m + b − 11)(10) = 250m + 30b − 280 = 0

∂ J

∂b
= 2(b − 2) + 2(5m + b − 6) + 2(10m + b − 11) = 30m + 6b − 38 = 0
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Figure C.1.1 Illustration of
the least-squares criterion.
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These conditions give the following equations that must be solved for the two unknowns
m and b.

250m + 30b = 280

30m + 6b = 38

The solution is m = 9/10 and b = 11/6. The best straight line in the least-squares
sense is y = (9/10)x + 11/6. This is shown in Figure C.1.2 along with the data.

If we evaluate this equation at the data values x = 0, 5, and 10, we obtain the
values y = 1.8333, 6.3333, and 10.8333. These values are different than the given data
values y = 2, 6, and 11 because the line is not a perfect fit to the data. The value of J is
J = (1.8333 − 2)2 + (6.3333 − 6)2 + (10.8333 − 11)2 = 0.1666. No other straight line
will give a lower value of J for these data.

Figure C.1.2 Example of a
least-squares fit.
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C.1.1 THE GENERAL LINEAR CASE

We can generalize the preceding results to obtain formulas for the coefficients m and b
in the linear equation y = mx + b. Note that for n data points,

J =
n∑

i=1

(mxi + b − yi )
2

The values of m and b that minimize J are found from ∂ J/∂m = 0 and ∂ J/∂b = 0.
These conditions give the following equations that must be solved for m and b:

∂ J

∂m
= 2

n∑
i=1

(mxi + b − yi ) xi = 2
n∑

i=1

mx2
i + 2

n∑
i=1

bxi − 2
n∑

i=1

yi xi = 0

∂ J

∂b
= 2

n∑
i=1

(mxi + b − yi ) = 2
n∑

i=1

mxi + 2
n∑

i=1

b − 2
n∑

i=1

yi = 0

These equations become

m
n∑

i=1

x2
i + b

n∑
i=1

xi =
n∑

i=1

yi xi (C.1.1)

m
n∑

i=1

xi + bn =
n∑

i=1

yi (C.1.2)

These are two linear equations in terms of m and b.
Because the exponential and power functions form straight lines on semilog and

log-log axes respectively, we can use the previous results after computing the logarithms
of the data.

Fitting Data with the Power Function EXAMPLE C.1.1

■ Problem
Find a functional description of the following data:

x 1 2 3 4

y 5.1 19.5 46 78

■ Solution
These data do not lie close to a straight line when plotted on linear or semilog axes. However,
they do when plotted on log-log axes. Thus a power function y = bxm can describe the data.
Using the transformations X = log x and Y = log y, we obtain the new data table:

X = log x 0 0.3010 0.4771 0.6021

Y = log y 0.7076 1.2900 1.6628 1.8921

From this table we obtain
4∑

i=1

Xi = 1.3803
4∑

i=1

Yi = 5.5525

4∑
i=1

Xi Yi = 2.3208
4∑

i=1

X2
i = 0.6807
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Using X , Y , and B = log b instead of x , y, and b in (C.1.1) and (C.1.2) we obtain

0.6807m + 1.3803B = 2.3208

1.3803m + 4B = 5.5525

The solution is m = 1.9802 and B = 0.7048. This gives b = 10B = 5.068. Thus, the desired
function is y = 5.068x1.9802.

C.1.2 CONSTRAINING MODELS TO PASS
THROUGH A GIVEN POINT

Many applications require a model whose form is dictated by physical principles. For
example, the force-extension model of a spring must pass through the origin (0, 0)

because the spring exerts no force when it is not stretched. Thus a linear model y =
mx + b sometimes must have a zero value for b. However, in general the least-squares
method will give a nonzero value for b because of the scatter or measurement error that
is usually present in the data.

To obtain a zero-intercept model of the form y = mx , we must derive the equation
for m from basic principles. The sum of the squared residuals in this case is

J =
n∑

i=1

(mxi − yi )
2

Computing the derivative ∂ J/∂m and setting it equal to zero gives the result

m
n∑

i=1

x2
i =

n∑
i=1

xi yi (C.1.3)

which can be easily solved for m.
If the model is required to pass through a point not at the origin, say the point

(x0, y0), subtract x0 from all the x values, subtract y0 from all the y values, and then
use (C.1.3) to find the coefficient m. The resulting equation will be of the form

y = m(x − x0) + y0 (C.1.4)

EXAMPLE C.1.2 Point Constraint

■ Problem
Consider the data given at the beginning of this section.

x 0 5 10

y 2 6 11

We found that the best-fit line is y = (9/10)x + 11/6. Find the best-fit line that passes through
the point x = 10, y = 11.

■ Solution
Subtracting 10 from all the x values and 11 from all the y values, we obtain a new set of data in
terms of the new variables X = x − 10 and Y = y − 11.

X −10 −5 0

Y −9 −5 0
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Expressing (C.1.3) in terms of the new variables X and Y , we have

m
3∑

i=1

X2
i =

3∑
i=1

Xi Yi

3∑
i=1

X2
i = (−10)2 + 52 + 0 = 125

3∑
i=1

Xi Yi = (−10)(−9) + (−5)(−5) + 0 = 115

Thus, m = 115/125 = 23/25 and the best-fit line is Y = (23/25)X . In terms of the original
variables, this line is expressed as y − 11 = (23/25)(x − 10) or y = (23/25)x + 9/5.

CONSTRAINING A COEFFICIENT

Sometimes we know from physical theory that the data can be described by a function
with a specified form and specified values of one of more of its coefficients. For example,
the fluid-drag relation states that D = ρ ACDv2/2. In this case, we know that the relation
is a power function with an exponent of 2, and we need to estimate the value of the
drag coefficient CD . In such cases, we can modify the least-squares method to find the
best-fit function of a specified form.

Fitting a Power Function with a Known Exponent EXAMPLE C.1.3

■ Problem
Fit the power function y = bxm to the data yi . The value of m is known.

■ Solution
The least-squares criterion is

J =
n∑

i=1

(bxm − yi )
2

To obtain the value of b that minimizes J , we must solve ∂ J/∂b = 0.

∂ J

∂b
= 2

n∑
i=1

xm
i

(
bxm

i − yi

) = 0

This gives

b =
∑n

i=1 xm
i yi∑n

i=1 x2m
i

(1)

C.1.3 THE QUALITY OF A CURVE FIT

In general, if the arbitrary function y = f (x) is used to represent the data, then the error
in the representation is given by ei = f (xi ) − yi , for i = 1, 2, 3, . . . , n. The error ei

is the difference between the data value yi and the value of y obtained from the function;
that is, f (xi ). The least-squares criterion used to fit a function f (x) is the sum of the
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squares of the residuals, J . It is defined as

J =
n∑

i=1

[ f (xi ) − yi ]
2 (C.1.5)

We can use this criterion to compare the quality of the curve fit for two or more functions
used to describe the same data. The function that gives the smallest J value gives the
best fit.

We denote the sum of the squares of the deviation of the y values from their mean
ȳ by S, which can be computed from

S =
n∑

i=1

(yi − ȳ)2 (C.1.6)

This formula can be used to compute another measure of the quality of the curve fit, the
coefficient of determination, also known as the r-squared value. It is defined as

r2 = 1 − J

S
(C.1.7)

For a perfect fit, J = 0 and thus r2 = 1. Thus, the closer r2 is to 1, the better the fit. The
largest r2 can be is 1. The value of S is an indication of how much the data is spread
around the mean, and the value of J indicates how much of the data spread is left
unaccounted for by the model. Thus, the ratio J/S indicates the fractional variation
left unaccounted for by the model. It is possible for J to be larger than S, and thus it is
possible for r2 to be negative. Such cases, however, are indicative of a very poor model
that should not be used. As a rule of thumb, a very good fit accounts for at least 99%
of the data variation. This corresponds to r2 ≥ 0.99.

For example, the function y = 9/10x + 11/6 derived at the beginning of this
section has the values S = 40.6667, J = 0.1666, and r2 = 0.9959, which indicates a
very good fit. The line y = (23/25)x + 9/5, which is constrained to pass through the
point x = 10, y = 11 gives the values S = 40.6667, J = 0.2, and r2 = 0.9951. So the
constraint degraded the quality of the fit but very slightly.

The power function y = 5.068x1.9802 derived in Example C.1.1 has the values S =
3085.8, J = 2.9192, and r2 = 0.9991. Thus its fit is very good.

When the least-squares method is applied to fit quadratic and higher-order polyno-
mials, the resulting equations for the coefficents are linear algebraic equations, which
are easily solved. Their solution forms the basis for MATLAB algorithm contained in
the polyfit function, which is discussed in Section C.2.

C.1.4 INTEGRAL FORM OF THE LEAST-SQUARES CRITERION

Sometimes we must obtain a linear description of a process over a range of the inde-
pendent variable so large that linearization is impractical. In such cases we can apply
the least-squares method to obtain the linear description. Because there are no data in
such cases, we use the integral form of the least-squares criterion.

EXAMPLE C.1.4 Fitting a Linear Function to a Power Function

■ Problem
a. Fit the linear function y = mx to the power function y = axn over the range 0 ≤ x ≤ L .

The values of a and n are given.
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b. Apply the result to the Aerobee drag function D = 0.00056v2 over the range 0 ≤ v ≤ 1000,
discussed in Example 1.3.4.

■ Solution
a. The appropriate least-squares criterion is the integral of the square of the difference

between the linear model and the power function over the stated range. Thus,

J =
∫ L

0
(mx − axn)2 dx

To obtain the value of m that minimizes J , we must solve ∂ J/∂m = 0.

∂ J

∂m
= 2

∫ L

0
x(mx − axn) dx = 0

This gives

m = 3a

n + 2
Ln−1 (1)

b. For the Aerobee drag function D = 0.00056v2, a = 0.00056, n = 2, and L = 1000. Thus,

m = 3(0.00056)

2 + 2
10002−1 = 0.42

and the linear description is D = 0.42v, where D is in pounds and v is in ft /sec. This is the
linear model that minimizes the integral of the squared error over 0 ≤ v ≤ 1000 ft /sec.

C.2 MATLAB AND THE LEAST-SQUARES METHOD
We now show how to use MATLAB’s polyfit function to fit polynomials and func-
tions that can be transformed into polynomials. The polyfit function is based on the
least-squares method. Its syntax is p=polyfit(x,y,n). The function fits a poly-
nomial of degree n to data described by the vectors x and y, where x is the independent
variable. The result p is the row vector of length n + 1 that contains the polynomial
coefficients in order of descending powers.

Fitting First and Second Degree Polynomials EXAMPLE C.2.1

■ Problem
Use the polyfit function to find the first and second degree polynomials that fit the following
data in the least-squares sense. Evaluate the quality of fit for each polynomial.

x 0 1 2 3 4 5 6 7 8 9 10

y 48 49 52 63 76 98 136 150 195 236 260

■ Solution
The following MATLAB program computes the polynomial coefficients.

% Enter the data.

x = (0:10);

y = [48, 49, 52, 63, 76, 98, 136, 150, 195, 236, 260];

% Fit a first-degree polynomial.

p_first = polyfit(x,y,1)

Fit a second-degree polynomial.

p_second = polyfit(x,y,2)
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The polynomial coefficients of the first degree polynomial are contained in the vectorp_first,
and the coefficients of the second degree polynomial are contained in the vector p_second.
The results are p_first = [22.1909, 12.0455], which corresponds to the polynomial
y = 22.1909x +12.0455, and p_second = [2.1993, 0.1979, 45.035], which cor-
responds to the polynomial y = 2.1993x2 + 0.1979x + 45.035.

We can use MATLAB to plot the polynomials and to evaluate the “quality of fit” quantities
J , S, and r2. The following script file does this.

% Enter the data and find the mean of y.

x = (0:10);

y = [48, 49, 52, 63, 76, 98, 136, 150, 195, 236, 260];

mu = mean(y);

% Define a range of x and y values for plotting.

xp = (0:0.01:10);

for k = 1:2

yp(k,:) = polyval(polyfit(x,y,k),xp);

% Compute J, S, and r squared.

J(k) = sum((polyval(polyfit(x,y,k),x)-y).^2);
S(k) = sum((polyval(polyfit(x,y,k),x)- mu).^2);
r2(k) = 1-J(k)/S(k);

end

% Plot the first-degree polynomial.

subplot(2,1,1)

plot(xp,yp(1,:),x,y,'o'),axis([0 10 0 300]),xlabel('x'),...
ylabel('y'),title('First-degree fit')

% Plot the second-degree polynomial.

subplot(2,1,2)

plot(xp,yp(2,:),x,y,'o'),axis([0 10 0 300]),xlabel('x'),...
ylabel('y'),title('Second-degree fit')

% Display the computed values.

disp('The J values are:'),J
disp('The S values are:'),S
disp('The r^2 values are:'),r2

The polynomial coefficients in the above script file are contained in the vector polyfit
(x,y,k). If you need the polynomial coefficients, say for the second-degree polynomial, type
polyfit(x,y,2) after the program has been run.

The plots are shown in Figure C.2.1. The following table gives the values of J , S, and r2

for each polynomial.

Degree n J S r2

1 4348 54,168 0.9197
2 197.9 58,318 0.9997

Because the second-degree polynomial has the largest r2 value, it represents the data better
than the first-degree polynomial, according to the r2 criterion. This is also obvious from the
plots.
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Figure C.2.1 Plots of first-
and second-degree polynomial
curve fits.

When we type p=polyfit(z,w,1), MATLAB will fit a linear function w =
p1z + p2. The coefficients p1 and p2 are the first and second elements in the vector p;
that is, p will be [p1, p2]. With a suitable transformation, the power and exponential
functions can be transformed into a linear function, but the polynomial w = p1z + p2

has a different interpretation in each of the three cases.

The linear function: y = mx + b. In this case the variables w and z in the
polynomial w = p1z + p2 are the original data variables, and we can find the
linear function that fits the data by typing p=polyfit(x,y,1). The first
element p1 of the vector p will be m, and the second element p2 will be b.
The power function: y = bxm . In this case log y = m log x + log b, which has the
form w = p1z + p2, where the polynomial variables w and z are related to the
original data variables x and y by w = log y and z = log x . Thus, we can find the
power function that fits the data by typing p = polyfit(log10(x),
log10(y),1). The first element p1 of the vector p will be m, and the second
element p2 will be log b. We can find b from b = 10p2 .
The exponential function: y = bemx . In this case, ln y = mx + ln b, which has
the form w = p1z + p2, where the polynomial variables w and z are related to the
original data variables x and y by w = ln y and z = x . Thus, we can find the
exponential function that fits the data by typing p = polyfit(x,log(y),1).
The first element p1 of the vector p will be m, and the second element p2 will be
ln b. We can find b from b = ep2 .

Note

The notation for logarithms used by MATLAB is different than that used in mathematical
expressions. Do not make the common mistake of using the MATLAB function log to represent
the base-ten logarithm. The natural logarithm ln x is expressed in MATLAB by log(x),
whereas the base-ten logarithm log x is expressed as log10(x) in MATLAB.
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Example C.2.2 illustrates how to use MATLAB to estimate the force-deflection
characteristics of the cantilever support beam treated in Example 1.3.1.

EXAMPLE C.2.2 A Cantilever Beam Deflection Model

■ Problem
The force-deflection data from Example 1.3.1 for the cantilever beam shown in Figure 1.3.1 is
given in the following table.

Force f (lb) 0 100 200 300 400 500 600 700 800

Deflection x (in.) 0 0.15 0.23 0.35 0.37 0.5 0.57 0.68 0.77

Use MATLAB to obtain a linear relation between x and f , estimate the stiffness k of the beam,
and evaluate the quality of the fit.

■ Solution
Note that here X is the dependent variable and f is the independent variable. In the following
MATLAB script file the data are entered in the arrays x and f. The arrays xp and fp are created
to plot the straight line at many points.

% Enter the data.

x = [0, 0.15, 0.23, 0.35, 0.37, 0.5, 0.57, 0.68, 0.77];

f = (0:100:800);

% Fit a first-degree polynomial.

p = polyfit(f,x,1)

% Compute the stiffness.

k = 1/p(1)

% Compute a set of f, x points.

fp = (0:800);

xp = p(1)*fp+p(2);

% Plot the fitted function and the data.

plot(fp,xp,f,x,'o'), xlabel('Applied Force f (lb)'), ...

ylabel('Deflection x (in.)'), ...

axis([0 800 0 0.8])

% Compute the J, S, and r squared values.

J = sum((polyval(p,f)-x).^2)
S = sum(x-mean(x)).^2)
r2 = 1 - J/S

The computed values in the array p are p = [9.1667 × 10−4, 3.5556 × 10−2]. Thus the fitted
straight line is x = 9.1667 × 10−4 f + 3.5556 × 10−2. Note that this line, which is shown
in Figure C.2.2, does not pass through the origin as required, but it is close (it predicts that
x = 0.035556 in. when f = 0). The quality-of-fit values are J = 0.0048, S = 0.5090, and
r2 = 0.9906, which indicates a very good fit.

Solving for f gives f = (x − 3.5556 × 10−2)/9.1667 × 10−4 = 1091x − 38.7879. The
computed value of the stiffness k is the coefficient of x ; thus k = 1091 lb/in.
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Figure C.2.2 Models of beam
deflection. Unconstrained
linear function.

Constraining the Curve Fit EXAMPLE C.2.3

■ Problem
Use MATLAB to fit a straight line to the beam force-deflection data given in Example C.2.2,
but constrain the line to pass through the origin.

■ Solution
We can apply (C.1.3), noting here that the measured variable is the deflection x and the inde-
pendent variable is the force f . Thus (C.1.3) becomes

m
n∑

i=1

f 2
i =

n∑
i=1

fi xi (1)

The MATLAB program to solve this equation for m and k is

% Enter the data

x = [0, 0.15, 0.23, 0.35, 0.37, 0.5, 0.57, 0.68, 0.77];

f = (0:100:800);

% Compute m from (1).

m = sum(f.*x)/sum(f.^2);
% Compute the stiffness.

k = 1/m

% Compute J, S, and r squared.

J = sum((m*f-x).^2)
S = sum((x-mean(x)).^2)
r2 = 1 - J/S

The answer is k = 1021 lb/in. The corresponding line is shown in Figure C.2.3. The quality-of-fit
values are J = 0.0081, S = 0.5090, and r2 = 0.9840, which indicates a good fit.
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Figure C.2.3 Linear function
constrained to pass through
the origin.
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EXAMPLE C.2.4 Temperature Dynamics of Water

■ Problem
Consider again Example 1.4.1. Water in a glass measuring cup was allowed to cool after being
heated to 204◦F. The ambient air temperature was 70◦F. The measured water temperature at
various times is given in the following table.

Time (sec) 0 120 240 360 480 600

Temperature (◦F) 204 191 178 169 160 153

Time (sec) 720 840 960 1080 1200

Temperature (◦F) 147 141 137 132 127

Obtain a functional description of the water temperature versus time.

■ Solution
From Example 1.4.1, we learned that the relative temperature, �T = T −70 has the exponential
form

�T = bemt (1)

We can find values of m and b by using p = polyfit(x,log(y),1). The first element p1

of the vector p will be m, and the second element p2 will be ln b. We can find b from b = ep2 .
The following MATLAB program performs the calculations.

% Enter the data.

time = (0:120:1200);

temp = [204,191,178,169,160,153,147,141,137,132,127];

% Compute the relative temperature and its logarithm.

rel_temp = temp - 70;

log_rel_temp = log(rel_temp);
% Fit a first-degree polynomial.
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p = polyfit(time,log_rel_temp,1);
% Compute m and b from the polynomial coefficients.

m = p(1),b = exp(p(2))

% Compute DT (delta T) from (1).

DT = b*exp(m*time);

% Compute J, S, and r squared.

J = sum((DT-rel_temp).^2)
S = sum((rel_temp - mean(rel_temp)).^2)
r2 = 1 - J/S

The results are m = −6.9710×10−4 and b = 1.2916×102, and the corresponding function is

�T = bemt or T = �T + 70 = bemt + 70

The quality-of-fit values are J = 47.4850, S = 6.2429×103, and r2 = 0.9924, which indicates
a very good fit.

Orifice Flow EXAMPLE C.2.5

■ Problem
Consider again Example 1.4.2. A hole 6 mm in diameter was made in a translucent milk container
(Figure 1.4.7). A series of marks 1 cm apart was made above the hole. While adjusting the tap
flow to keep the water height constant, the time for the outflow to fill a 250 ml cup was measured
(1 ml = 10−6 m3). This was repeated for several heights. The data are given in the following table.

Height h (cm) 11 10 9 8 7 6 5 4 3 2 1

Time t (s) 7 7.5 8 8.5 9 9.5 11 12 14 19 26

Obtain a functional description of the volume outflow rate f as a function of water height h
above the hole.

■ Solution
First obtain the flow rate data in ml/s by dividing the 250 ml volume by the time to fill:

f = 250

t
(1)

In Example 1.4.2, we learned that the following power function can describe the data:

f = bhm (2)

We can find the values of m and b by using p=polyfit(log10(x),log10(y),1). The
first element p1 of the vector p will be m, and the second element p2 will be log b. We can find
b from b = 10p2 . The following MATLAB program performs the calculations.

% Enter the data.

h = (1:11);

time = [26, 19, 14, 12, 11, 9.5, 9, 8.5, 8, 7.5, 7];

% Compute the flow rate from (1) and its logarithm.

flow = 250./time;

logflow = log10(flow);logheight = log10(h);

% Fit a first-degree polynomial.

p = polyfit(logheight,logflow,1);

% Compute m and b from the polynomial coefficients.

m = p(1),b =10^p(2)
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% Compute f from (2).

f = b*h.^m;
% Compute J, S, and r squared.

J = sum((f - flow).^2)
S = sum((flow - mean(flow)).^2)
r2 = 1 - J/S

The results are m = 0.5499 and b = 9.4956, and the corresponding function is

f = bhm = 9.4956h0.5499

The quality-of-fit values are J = 2.5011, S = 698.2203, and r2 = 0.9964, which indicates a
very good fit.

Sometimes we know from physical theory that the data can be described by a
power function with a specified exponent. For example, Torricelli’s principle of hy-
draulic resistance states that the volume flow rate f of a liquid through a restriction
is proportional to the square root of the pressure drop p across the restriction; that is,
q = c

√
p = cp1/2. In many applications, the pressure drop is due to the weight of

liquid in a container. This is the case for water in the milk container of Example 1.4.2.
In such situations, Torricelli’s principle states that the flow rate is proportional to the
square root of the height h of the liquid above the orifice. Thus,

f = b
√

h = bh1/2

where b is a constant that must be determined from data.

EXAMPLE C.2.6 Orifice Flow with Constrained Exponent

■ Problem
Consider the data of Example C.2.5. Determine the best-fit value of the coefficient b in the
square-root function

f = bh1/2 (1)

Height h (cm) 11 10 9 8 7 6 5 4 3 2 1

Time t (s) 7 7.5 8 8.5 9 9.5 11 12 14 19 26

■ Solution
First obtain the flow rate data in ml/s by dividing the 250 ml volume by the time to fill:

f = 250

t
(2)

Referring to Example C.1.3, whose model is y = bxm , we see here that y = f , h = x , and
m = 0.5. From Equation (1) of Example C.1.3,

b =
∑n

i=1 h0.5
i yi∑n

i=1 hi
(3)

The MATLAB program to carry out these calculations is shown next.
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% Enter the data.

h = (1:11);

time = [26, 19, 14, 12, 11, 9.5, 9, 8.5, 8, 7.5, 7];

% Compute flow rate from (2).

flow = 250./time;

% Compute b from (3).

b = sum(sqrt(h).*flow)/sum(h)

% Compute f from (1).

f = b*sqrt(h);

% Compute J, S, and r squared.

J = sum((f - flow).^2)
S = sum((flow - mean(flow)).^2)
r2 = 1 - J/S

The result is a = 10.4604 and the flow model is f = 10.4604
√

h. The quality-of-fit values are
J = 5.5495, S = 698.2203, and r2 = 0.9921, which indicates a very good fit.


