Chapter 7 - Simple Model for Finite Model Analysis

The Concept Behind FEA

The finite element method was originally developed to solve problems in the anal-
ysis of structures. Therefore, it is natural to use a solid mechanics example to ex-
plain the process. In FEM the loaded structure is modeled with a mesh of separate
elements (Fig. 1). We shall use triangular elements here for simplicity, but later
we shall discuss other important elements of various shapes. The distribution of ele-
ments is called a mesh, and the connecting points are called nodes. For stress analy-
sis, a solution is arrived at by using basic solid mechanics equations to compute the
strain from the displacement of the nodal points due to the forces and moments at
the nodes. The stress is determined with the appropriate stress-strain relationship or
constitutive equation. However, the problem is more complex than first seen, because
the force at each node depends on the force at every other node. The elements be-
have like a system of springs and deform until all forces are in equilibrium. That
leads to a complex system of simultaneous equations. Matrix algebra is needed to
handle the cumbersome systems of equations. The key piece of information is the
stiffness matrix for each element. It can be thought of as a spring constant that can be
used to describe how much the nodal points are displaced under a system of applied
forces.



FIGURE 1

Simple finite element representation of a beam.

FIGURE 2

Model for a single linear element.

The simplest of all elements is a linear one-dimensional element that only sup-
ports an axial load, We model this as a spring, with a node at each end of the element,
Fig. 2. The force F at a node may be related to the displacement u at the same
node by the equations
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These equations can be written in matrix form as

F] _ kl _kl u, ( 3 )
F, _kl kl u,
The 2 X 2 matrix is the stiffness matrix for the linear element. An important
property of the stiffness matrix is that it is a symmetric matrix, that is, k; = k;
A numerical solution for the linear (axial) element can be obtained from the cross-

sectional area of the element A and its elastic modulus, E. From the definition of stress
o and Young’s modulus E:
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Therefore, the stiffness of the elementisk, = — =
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FIGURE 3
Model for two linear elements in series.

Now we expand this concept to the consideration of an axial loaded structure con-
sisting of two linear elements, Fig. 3. Using Eq. (103.27), the force-displacement
equation for each element may be written as:
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Element 2: 2l=| 2 2|1 (6)
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Note that F, u, is shared by both element (1) and element (2). We need to combine all

three forces into a single overall global element. To do this, expand Eqgs. ( 5) and
( 6) so they include F, F,, and F;.
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All terms on the stiffness matrix that contain a subscript 3 are zero, since element 1
does not interact with node 3.
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Element 2: Fe=10 k, —k,|[{u, (8)
F, 0 -k, Kk, ||u,

The global stiffness matrix is obtained by adding Egs. ( 8) and ( 9), term by
term.

F k, —k, 0 [|u
Ep=|-k k+k, =k, |qu, (9)
F3 0 _kz kz Uy

A rule of thumb for constructing the global matrix is that if nodes m and n are not
connected by an element, then k,,, = 0. For example, there is no connection between
nodes (1) and (3), so k5, = k3 =0.
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FIGURE 4
Two-element model of example problem.

EXAMPLE

Two bars of different material are welded together, end-to-end. The left end of the struc-
ture is firmly attached to a wall, and the right end is axially loaded with a force of 10 kN.
The properties of the bars are:

Bar (1) Bar (2)

Mild steel Aluminum alloy
A, =70 mm? A, =70 mm?

L, =100 mm L, =280 mm

E, =200 GN/m? E, =70 GN/m?

Find the stress in each bar and the total elongation of the structure. Also find the reaction
force of the structure on the wall.

Start by modeling the problem with linear elastic elements, Fig. 4. Note that be-
cause of the uniform geometry, the element (1) is the entire steel bar, and element (2) is
the aluminum alloy bar.

Find the spring constant for each element and construct the stiffness matrix.

AE, (70)x70x10°
280
140 -140 O
The global stiffness matrix from Eq (10.34)is K =|-140 157.5 17.5
0 -17.5 175

AE :
k= Ak 0020000 46 N &, =
L 100
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=17.5kN/mm

Also, from Eq. ( 9 ),
F 140 -140 0 0

1

0 p=|-140 157.5 -17.5|{u, ¢ where, from the boundary conditions at the wall, u, = 0.
10 0 -17.5 175 ||u

3

From the matrix equation we write the three linear algebraic equations representing the
two-element system.

P = 140(0)— 140u, + (O)u,
0 = —140(0)+157.5u, —17.5u,
10 = 0-17.5u, +17.5u,

The bottom two equations can be solved simultaneously to give u, = 0.0714 mm and
13 = 0.6390 mm. The total elongation of the structure is 0.0714 + 0.6390 = 0.7104 mm.



Then from the first equation, P, = —140(0.0714) = 9.996 kN.

The structure pushes on the wall with a force of 9.996 =~ 10 kN.

(Note: we could have obtained this from the summation of forces in the x direction.)
Now we need to find the stresses in each bar. The stress in bar 1 is
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=200x10%(7.104 x10™*) =1420 N =1420 N =142 MPa = 20,600 psi
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L 280
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Note that both elements (bars) have the same axial stress even though their materials have
a different elastic modulus. Physically, this is what we should expect from the simple
equation o = P/A since the load on each bar and its area is the same.

This section discusses the most elementary FEA element possible, an axial linear
element with only a single degree of freedom (DOF). From what you learned during
the first week in your mechanics of materials course, you would have quickly found
the stresses in the structure without resorting to the complexity of the matrix equa-
tions. However, if we used a three-dimensional beam element there are 6 DOF, and
the possibility of moments and forces normal to the axes, which are not possible with
a linear element. The mathematics quickly becomes very complex, and computer nu-
merical analysis becomes a must.



