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method, the rapid increase in the computational power of desktop computers and the 
development of improved functionality and ease of use in FEA software has made it 
the method of choice for solving problems in a wide range of engineering areas such 
as stress analysis, thermal analysis and fl uid fl ow, diffusion, and magnetic fi eld inter-
actions. FEA programs for dealing with transient problems and nonlinear material 
behavior are also available. In FEA, a continuum solid or fl uid is divided into small 
fi nite segments or elements. The behavior over each element is described by the value 
of the unknown variables evaluated at nodes and the physical laws for the behavior of 

the mChapter 7 - Simple Model for Finite Model Analysisaterial (constitutive equations). All elements are then linked together taking care 

to ensure continuity at the boundaries between elements. Provided the boundary con-
ditions are satisfi ed, a unique solution can be obtained for the large system of linear 
algebraic equations that result. 

 Since the elements can be arranged in virtually any fashion, they can be used 
to model very complex shapes. Thus, it is no longer necessary to fi nd an analytical 
solution that treats a close “idealized” model and guess at how the deviation from 
the model affects the prototype. As the fi nite element method has developed, it has 
replaced a great deal of expensive preliminary cut-and-try development with quicker 
and cheaper computer modeling. 

 In contrast to the analytical methods that often require the use of higher-level 
mathematics, the fi nite element method is based on linear algebraic equations. How-
ever, an FEA solution may require thousands of simultaneous equations with thou-
sands of unknown terms. Therefore, the development of the technique required the 
availability of the high-speed digital computer for solving the equations effi ciently by 
matrix methods. The rapid acceptance of fi nite element analysis has been largely due 
to the increased availability of FEA software through interactive computer systems. 

  10.6.1 The Concept Behind FEA 

 The fi nite element method was originally developed to solve problems in the anal-
ysis of structures. Therefore, it is natural to use a solid mechanics example to ex-
plain the process. In FEM the loaded structure is modeled with a mesh of separate 
elements (Fig. 10.12). We shall use triangular elements here for simplicity, but later 
we shall discuss other important elements of various shapes. The distribution of ele-
ments is called a  mesh , and the connecting points are called  nodes . For stress analy-
sis, a solution is arrived at by using basic solid mechanics equations to compute the 
strain from the displacement of the nodal points due to the forces and moments at 
the nodes. The stress is determined with the appropriate stress-strain relationship or 
constitutive equation. However, the problem is more complex than fi rst seen, because 
the force at each node depends on the force at every other node. The elements be-
have like a system of springs and deform until all forces are in equilibrium. That 
leads to a complex system of simultaneous equations. Matrix algebra is needed to 
handle the cumbersome systems of equations. The key piece of information is the 
 stiffness matrix  for each element. It can be thought of as a spring constant that can be 
used to describe how much the nodal points are displaced under a system of applied 
forces. 
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10  The simplest of all elements is a linear one-dimensional element that only sup-
ports an axial load, We model this as a spring, with a node at each end of the element, 
Fig. 210.13. The force  F  at a node may be related to the displacement  u  at the same 
node by the equations 

 F k u u k u k u
1 1 1 2 1 1 1 2
= − = −( )  (101 .25)

 F k u u k u k u
2 1 2 1 1 1 1 2
= − = − +( )  (102 .26)

 These equations can be written in matrix form as     
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 The 2  2 matrix is the  stiffness matrix  for the linear element. An important 
property of the stiffness matrix is that it is a symmetric matrix, that is,  k ij   =  k ji   

 A numerical solution for the linear (axial) element can be obtained from the cross-
sectional area of the element  A  and its elastic modulus,  E . From the defi nition of stress 
s and Young’s modulus  E :     
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FIGURE 10.12
Simple fi nite element representation of a beam.

FIGURE 2 10.13
Model for a single linear element.
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 Now we expand this concept to the consideration of an axial loaded structure con-
sisting of two linear elements, Fig. 310.14. Using Eq. (103.27), the force-displacement 
equation for each element may be written as:     
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 (105 .29)
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 Note that  F  2 ,  u  2  is shared by both element (1) and element (2). We need to combine all 
three forces into a single overall global element. To do this, expand Eqs. (105 .29) and 
(106 .30) so they include  F  1 ,  F  2 , and  F  3 .     
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 (107 .31)

 All terms on the stiffness matrix that contain a subscript 3 are zero, since element 1 
does not interact with node 3.     
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 (108 .32)

 The global stiffness matrix is obtained by adding Eqs. (108 .32) and (109 .33), term by 
term.     
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 A rule of thumb for constructing the global matrix is that if nodes  m  and  n  are not 
connected by an element, then  k mn   = 0. For example, there is no connection between 
nodes (1) and (3), so  k 31   =  k 13   = 0.  

FIGURE 3 10.14
Model for two linear elements in series.
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 E X A M P L E  1 0 . 4 

 Two bars of different material are welded together, end-to-end. The left end of the struc-
ture is fi rmly attached to a wall, and the right end is axially loaded with a force of 10 kN. 
The properties of the bars are: 

Bar (1) Bar (2)

Mild steel Aluminum alloy 

 A  1  = 70 mm 2  A  2  = 70 mm 2 

 L  1  = 100 mm  L  2  = 280 mm

 E  1  = 200 GN/m 2  E  2  = 70 GN/m 2 

 Find the stress in each bar and the total elongation of the structure. Also fi nd the reaction 
force of the structure on the wall. 

 Start by modeling the problem with linear elastic elements, Fig. 410.15. Note that be-
cause of the uniform geometry, the element (1) is the entire steel bar, and element (2) is 
the aluminum alloy bar. 

 Find the spring constant for each element and construct the stiffness matrix.     
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 Also, from Eq. (10.933),     
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 From the matrix equation we write the three linear algebraic equations representing the 
two-element system.     
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 The bottom two equations can be solved simultaneously to give    u 2   = 0.0714 mm and 
 u 3   = 0.6390 mm. The total elongation of the structure is 0.0714 + 0.6390 = 0.7104 mm. 

FIGURE 4 10.15
Two-element model of example problem.
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 Then from the fi rst equation,  P  1  = −140(0.0714) = 9.996 kN. 
 The structure pushes on the wall with a force of 9.996 � 10 kN. 
 (Note: we could have obtained this from the summation of forces in the  x  direction.) 

 Now we need to fi nd the stresses in each bar. The stress in bar 1 is     
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 Note that both elements (bars) have the same axial stress even though their materials have 
a different elastic modulus. Physically, this is what we should expect from the simple 
equation s =  P / A  since the load on each bar and its area is the same.   

  This section discusses the most elementary FEA element possible, an axial linear 
element with only a single degree of freedom (DOF). From what you learned during 
the fi rst week in your mechanics of materials course, you would have quickly found 
the stresses in the structure without resorting to the complexity of the matrix equa-
tions. However, if we used a three-dimensional beam element there are 6 DOF, and 
the possibility of moments and forces normal to the axes, which are not possible with 
a linear element. The mathematics quickly becomes very complex, and computer nu-
merical analysis becomes a must.   

 10.6.2 Types of Elements 

 Finite element analysis was originally developed for two-dimensional (plane stress) 
situations. A three-dimensional solid causes an orders-of-magnitude increase in the 
number of simultaneous equations that must be solved, but by using higher-order mesh 
elements and faster computers these issues are routinely handled in FEA. Broadly, a 
 continuum element  is one whose geometry is completely defi ned by the coordinates 
of the nodes and allows variation of the displacement based on the deformation of the 
elements. Figure 10.16 shows a few of the elements available in FEA. Triangles and 
quadrilaterials, Fig. 10.16a and b, are the simplest plane elements, with two degrees 
of freedom at each node. Adding additional nodes, either at the centroid or along the 
edges (Fig. 10.16c), provides for curved edges and faces. Whenever the boundaries are 
curved in three dimensions, a special class of elements called  isoparametric elements  
are used. Figure 10.16d is an isoparametric triangle, (e) is a tetrahedron (tet), and 
(f) is a hexahedron (hex). These elements are most useful when it is desirable to ap-
proximate curved boundaries with a minimum number of elements. Another useful 
class of elements are  structural elements . These are based on common structural 
shapes and types of loading used in the mechanics of solids. The most common struc-
tural elements are the axial element shown in Fig. 10.13, and in Fig. 10.16 the beam 
element (g), the plate element (h), and the shell element (i). 

10-M4470.indd   43910-M4470.indd   439 1/28/08   2:32:54 PM1/28/08   2:32:54 PM


