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 Then from the fi rst equation,  P   1  = −140(0.0714) = 9.996 kN. 

 The structure pushes on the wall with a force of 9.996 � 10 kN. 

 (Note: we could have obtained this from the summation of forces in the  x  direction.) 
 Now we need to fi nd the stresses in each bar. The stress in bar 1 is     
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Type of Finite Elements and Steps in FEA Process Note that both elements (bars) have the same axial stress even though their materials have 

a different elastic modulus. Physically, this is what we should expect from the simple 
equation s =  P / A  since the load on each bar and its area is the same.   

  This section discusses the most element ary FEA element possible, an axial linear 
element with only a single degree of freedom (DOF). From what you learned during 
the fi rst week in your mechanics of mater ia ls course, you would have quickly found 
the stresses in the structure without resorting to the complexity of the matrix equa-
tions. However, if we used a three-dimensional beam element there are 6 DOF, and 
the possibility of moments and forces normal to the axes, which are not possible with 
a linear element. The mathematics quickly becomes very complex, and computer nu-
merical analysis becomes a must.   

 10.6.2 Types of Elements 

 Finite element analysis was originally developed for two-dimensional (plane stress) 
situations. A three-dimensional solid causes an orders-of-magnitude increase in the 
number of simultaneous equations that must be solved, but by using higher-order mesh 
elements and faster computers these issues are routinely handled in FEA. Broadly, a 
 continuum element  is one whose geometry is completely defi ned by the coordinates 
of the nodes and allows variation of the displacement based on the deformation of the 
elements. Figure 210.16 shows a few of the elements available in FEA. Triangles and 
quadrilaterials, Fig. 210.16a and b, are the simplest plane elements, with two degrees 
of freedom at each node. Adding additional nodes, either at the centroid or along the 
edges (Fig. 210.16c), provides for curved edges and faces. Whenever the boundaries are 
curved in three dimensions, a special class of elements called  isoparametric elements  
are used. Figure 210.16d is an isoparametric triangle, (e) is a tetrahedron (tet), and 
(f) is a hexahedron (hex). These elements are most useful when it is desirable to ap-
proximate curved boundaries with a minimum number of elements. Another useful 
class of elements are  structural elements . These are based on common structural 
shapes and types of loading used in the mechanics of solids. The most common struc-
tural elements are the axial element shown in Fig. 10.13, and in Fig. 210.16 the beam 
element (g), the plate element (h), and the shell element (i). 
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 With the linear axial element, Sec.10.6.1, fi nding the values of the displace-
ment vector  u  was straightforward. It could be expressed as a linear polynomial  
u  =  a  1  +  a  2  x , where the constants are determined from the displacements at the nodes. 
In Fig. 10.13, at node 1,  x  = 0, so  u  =  u  1  =  a  1 . At node 2,  x  =  L , so  u  =  u  2  =  a  1  + 
 a  2  L . Therefore,  a  1  =  u  1  and  a  2  = ( u  2  �  u  1 )/ L . The variation in displacement over the 
element is     
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 This equation can be written in matrix form as     

 u
x

L

x

L

u

u
= −
⎡

⎣
⎢

⎤

⎦
⎥
⎧
⎨
⎩

⎫
⎬
⎭
= ⎡⎣ ⎤⎦{ }1 1

2

N u  ( 210.35)

  [N]  is called the  shape factor  of the element. It specifi es the variation in displacement 
within the element. 

 Two- and three-dimensional elements with more nodes and displacements at a 
node have much more complex shape factors. For example, in a 2-D triangular  element 

FIGURE 210.16
Some common elements used in fi nite element analysis.
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with three nodes and two displacements per node, the components of displacement  u  
along the  x -axis and  v  along the  y -axis are given by Eq. (10.36).     

 
u a a x a y

v a a x a y
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= + +
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 ( 310.36)

 Since the strain in the  x -direction is     εx

u

x
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2  we see that for this fi rst-order el-

ement the strain is constant throughout the element. For a 2-D quadrilateral, with 
four nodes and two displacements per node, the components of the displacement are     
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 Now the strain in the  x -direction is     ε
x

u

x
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∂
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2 4
, which provides for a strain

gradient in this higher-order element. Elements with additional nodes, like Fig. 210.16 c , 
lead to still higher-order polynomials to express the strain more accurately within the 
element and to more accurately represent curved boundaries. 

 Since FEA creates a model of elements that aims to predict the behavior of a con-
tinuum, the selection of type of element and its size is very important. For example, 
using straight-sided triangular elements to model the region around a hole in a plate 
would lead to a poor approximation to the circular hole unless the size of the ele-
ments is very small. This is an example of a type of modeling error called  discretiza-
tion .  Formulation errors  arise from using elements that do not exactly duplicate the 
way the physical part would behave under the loading. If we think that displacements 
change linearly over the meshed region, then a linear element would be appropriate. 
However, if the displacements vary quadratically, then there would be a formulation 
error, and a higher-order element should be chosen. To create a good element mesh, 
the stress distribution, not the stresses, should be understood beforehand. 

 FEA software generally provides the capability for automatically meshing a solid 
with triangles, quadrilaterals, tetrahedrons, and hexahedrons. The accuracy of the 
model will be determined by its  convergence error.  This is the percent difference 
between the results of one run and the next iteration as either the element size or the 
nature of the element is changed. There are two ways that FEA software approaches 
this problem. In the  h-element method , the size of the element (h is the element size) 
is reduced. In the  p-element method  ( p  for polynomial), the software increases the 
element’s order of the polynomial describing the variation of displacement with dis-
tance without changing the original mesh. 

 Figure 310.17 illustrates these approaches. At the top left, we see the original mesh 
of fi rst-order elements in an  h -element approach. After the fi rst run the analysis shows 
the stresses to be highest in the curved region, and the automatic mesher decreases the 
size of the elements in this region to account for the steep stress gradient (top right). A 
third iteration, with still smaller elements in the critical region, is run to see whether 
the stress is converging. The bottom of Fig. 310.24 illustrates the  p -element approach. 
The initial mesh (bottom left) is changed by the automatic mesher to second-order 
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 elements without changing the mesh size. There is controversy as to which is the better 
approach. The  p -element method gives better representation of curved surfaces and is 
better suited where stress gradients are high. However, it requires much greater com-
putational resources. Moreover, if the element is too large in the  p -element method, it 
can have a major impact on accuracy. Many FEA software programs provide for both 
approaches. As to choice of elements, most 3-D work in FEA modeling is done with the 
higher-order elements shown in Fig. 210.16 e  and  f . The 10-node tetrahedron element and 
the 20-node hexahedron element provide good results for stress analysis at reasonable 
mesh size with a similar number of nodes. 14  However, the 10-node  tetrahedron elements 
provide accuracy comparable to the 20-node hexahedron at less computation time.    

 10.6.3 Steps in FEA Process 

 Finite element modeling is divided into three phases: preprocessing, computation, and 
post processing. However, even before entering the fi rst phase, a careful engineer will 

FIGURE 310.17
Top row—h-element approach to improving accuracy in remeshing. Bottom row—p-element 
approach.

 14.    A. M .  Niazy   ,   Machine Design,   Nov. 6,  1997 ,  pp. 54–58 . 
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perform a preliminary analysis to defi ne the problem. Is the physics of the problem well 
enough known? What is an approximate solution based on simple methods of analysis 
and calculation? Does the problem really need an expensive fi nite element analysis?   

  Preprocessing phase : In the preprocessing phase the following decisions and ac-
tions are taken:   

  The geometry of the part is imported from the CAD model. Because solid 
models contain great detail, they often must be simplifi ed by deleting small 
nonstructural features and taking advantage of symmetry to reduce computa-
tion time.   

  Make decisions concerning the division of the geometry into elements, often 
called meshing. The issue is knowing which types of elements to use, linear, 
quadratic, or cubic interpolation functions, and building a mesh that will pro-
vide a solution with the needed accuracy and effi ciency. Most FEA software 
provide a means for automatically meshing the geometry. The fi nite element 
mesh is applied in one of two ways: structured (mapped) mesh or unstructured 
(free) mesh. Structured meshes have a clear structure of triangles or quadrilat-
eral elements (for 2-D) or tets or hexes (for 3-D) that are produced by rule-based 
mapping techniques. Grid points can be distributed along lines with effective 
spacing, and well-graded grids can be constructed. This approach is effective 
when the geometry is relatively simple. With complex geometries a multiblock 
approach is used, in which the geometry is fi lled with an assemblage of meshed 
cubes. This requires the additional step of setting up the connections between 
the blocks. Unstructured meshing does not show structure in the placement of 
the elements.   

  Determine how the structure is loaded and supported, or in a thermal problem 
determine the initial conditions of temperature. Make sure you understand the 
boundary conditions. It is important to incorporate suffi cient restraints to dis-
placement so that rigid body motion of the structure is prevented.   

  Select the constitutive equation for describing the material (linear, nonlinear, 
etc.) that relates displacement to strain and then to stress.     

  Computation:  The operations in this phase are performed by the FEA software.   
  The FEA program renumbers the nodes in the mesh to minimize computa-
tional resources by minimizing the size of the global stiffness matrix  K .   

  It generates a stiffness matrix  k  for each element and assembles the elements 
together so that continuity is maintained to form the  global  or  structural  ma-
trix  K . Based on the load vector the software generates the external loads and 
applies displacement boundary conditions.   

  Then the computer solves the massive matrix equation for the displacement 
vector or whatever is the dependent variable in the problem. The constraint 
forces , such as  P  1  in Example 10.1 are also determined.     

  Post processing : These operations are also performed by the FEA software.   
  In a stress analysis problem, post processing takes the displacement vector and 
converts into strains, element by element, and then, with the appropriate consti-
tutive equation, into a fi eld of stress values.    
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  A fi nite element solution could easily contain thousands of fi eld values. There-
fore, post processing operations are needed to interpret the numbers effi ciently. 
Typically the geometry of the part is shown on which contours of constant 
stress have been plotted , Fig. 10.25. Mathematical operations may have to be 
performed on the data by the FEA software before it is displayed, such as de-
termining the Von Mises effective stress.   

  Increasingly, FEA software is being combined with an optimization package 
and used in iterative calculations to optimize a critical dimension or shape.       

 10.6.4 Current Practice 

 The key to practical utilization of fi nite element modeling is the model itself. To mini-
mize cost, the model should contain the smallest number of elements to produce the 
needed accuracy. The best procedure is to use an iterative modeling strategy whereby 
coarse meshes with few elements are increasingly refi ned in critical areas of the model. 
Coarse models can be constructed with beam and plate structural models, ignoring 
details like holes and fl anges. Once the overall structural characteristics have been 
found with the coarse model, a fi ne-mesh model is used, with many more elements 
constructed in regions where stress and defl ection must be determined more accu-
rately. Accuracy increases rapidly as a function of the number of degrees of freedom 
(DOF), defi ned as the product of the number of nodes times the number of unknowns 
per node. However, cost increases exponentially with DOF. 

 The application of FEA to the complex problem of a truck frame is illustrated 
in Fig. 10.18. A “stick fi gure” or beam model of the frame is constructed fi rst to fi nd 
the defl ections and locate the high-stress areas. Once the critical stresses are found, 
a fi ne-mesh model is constructed to get detailed analysis. The result is a computer- 
generated drawing of the part with the stresses plotted as contours. 

 In many instances, fi nite element modeling software is combined with computer 
modeling software to give a seamless suite of functionality. Some capabilities found 
in a typical mainline CAD system are:   

  Easy 2-D–to–3-D data integration and transition   
  Easy design collaboration through sharing of drawings via e-mail   
  Machine design tools, including a library of machine design features, weldment 
design capability, and a sheet-metal design feature   

  Tools for plastic mold design   
  Access to an online catalog of ready-made components   
  Design visualization tools that allow simulation of stresses, defl ections, and mo-
tions of parts in an assembly   

  A fl uid fl ow package that allows analysis of fl uid fl ow and heat transfer problems. 
Because the software is integrated, there is no need to transfer the data to the analy-
sis program.   

 The last feature in this list is typical of a new class of fi nite element software 
called  multiphysics  modeling. Multiphysics software can create a computer simula-
tion of any physical process that can be described with partial differential equations. 
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