
Additional Information - Shape Factors in Materials Selection

 The discussion in Sec. 11.8 focused attention on the last term in Eq. (11.5),     

P f F f G f M= ( ) × ( ) × ( )1 2 3
, as a key factor for material selection to enhance the per-

formance metric  P . However, since all three terms in Eq. (11.5) are multiplied to 
determine  P,  it is instructive to see how changes in the geometry affect the perfor-
mance metric. For example, we know from mechanics of materials that much greater 
stiffness can be achieved in a beam if it is in the shape of an I-section compared with 
a square section of equal weight. The following discussion builds on this idea to de-
velop the more general concept of shape factor in design and in the selection of mate-
rials. The shape factor indicates how much more load or torque can be carried by the 
structural shape than by the same mass of material with a square cross section. 

 Shaped sections carry loads in bending, torsion, or axial compression much more 
effi ciently than solid sections do. A shaped section is a body whose cross-sectional 
area has been formed into a shape like a tube, I-beam, or box section. More complex 
shapes are sandwich and corrugated structures. An effi cient structural shape is one 
that requires much less material than other shapes for a given load. Thus, a design 
with a high shape factor is less costly since less material is used. 

 We have talked exclusively about properties when referring to materials. But when 
we think about using a material to make a component or structure then we also need 
to defi ne its shape. The component’s shape factor, φ, is a measure of the effi ciency of 
material usage. 

 Machine elements, for simplicity, can be divided into beams, shafts, and axial 
elements.   

  Beams carry bending moments and are designed for strength and stiffness.   
  Shafts resist torques and are designed for strength and resistance to twist.   
  Columns carry axial loads and must resist buckling.   

 Each is used to withstand different kinds of deformations and loads. In the follow-
ing discussion, we describe how to fi nd the shape factor φ, fi rst in terms of failure 
by excessive deformation (lack of stiffness) and then by failure in terms of strength 
limitations.  

 Elastic Bending of Beams 
 The bending stiffness  S  of a beam is proportional to  EI , where  E  is Young’s mod-

ulus and  I  is the second moment of area of the beam about its bending axis.      
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 where  y  is measured normal to the x-axis (bending axis) and  dA  is the differential ele-
ment of area at  y . The shape factor  1  is defi ned with reference to a square cross section 
(indicated by subscript  o ).  I o   �  b o   4 /12 �  A 2  /12, where  b  o  is the length of an edge. The 
shape factor for elastic bending differs from that of a solid section by     
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 1.    M.F .  Ashby   ,   op. cit.,   Chap. 11. 
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 Equation (2) is dimensionless.  It depends only on the shape, not on the scale . 
The symbol for shape factor in Eq. (2) has special meaning. The subscript  B  
denotes it was determined in bending, while the superscript  e  indicates that it is based 
on elastic deformation.  

 E X A M P L E   

 Determine the shape factor for a tube of circular cross section, with outside radius  r o   
equal to 40 mm and the inner radius  r i   equal to 36 mm. The area  A  and moment of inertia 
 I  are given by     
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       Substituting in Eq.(2)
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 Substituting values into (3) gives        φB

e = 9 5. , meaning that the tubular section has 
9.5 times the resistance to defl ection in elastic bending (stiffness) of a square section with 
the same area. 

 A designer can use this information in one of two ways. She can take pride in design-
ing a much stiffer structure than if routine design practice was followed, or more likely, 
she will fi nd out how much the size of the beam, and hence the cost, can be reduced to still 
give the same stiffness as the beam with a square section. The tubular beam has an area of 
1005 mm, 2  which is equivalent to a square beam 31.7 mm on a side. Remembering that for 
the same material, the stiffness is directly proportional to the moment of inertia, we fi nd 
that  I  � 8.415 � 10 4  mm 4 . A tubular beam with the same value of  I  and  t  � 4 mm has an 
outside radius of 18.8 mm. This results in about a 30% saving in material cost, assuming 
that the tubular shape cost is approximately twice the cost of the rolled square bar.    

 Failure in Bending a Beam 
 Failure in bending a ductile material starts when the stress at some point exceeds 

the yield strength of the material. Failure in a brittle material occurs when the stress 
reaches the fracture strength. In both instances, plastic yielding or actual fracture, the 
engineering usefulness of the component is reached and the condition constitutes a 
failure. Following the nomenclature by Ashby, this stress is denoted s  f  . 

 The maximum stress in bending a beam is given by     

 σ = =
M y

I

M

Z
b bmax  (4)

 where  M b   is the bending moment, and  Y  max  is the point on the beam surface fur-
thest from the neutral axis.  Z  �  I / Y  max  is defi ned as the  section modulus . From 
Eq. (4) we see that for a given material the strength of the beam is determined by 
the section modulus. As with beam stiffness, the effi ciency of the strength of a section 
is measured by the ratio  Z / Z o  , where  Z o   is the section modulus of a square beam with 
the same cross-sectional area  A .     
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Equation (6) was constructed so that the shape factor of a square beam will be
one, regardless of its dimensions. A beam with a shape factor of l0 is l0 times stron-
ger in bending than a solid square section of the same weight and material.

TWisting of Shafts

Shafts are common machine elements that must resist torque. The stiffness of a
shaft is given by the torque, li divided by the angle of twist, 0.

g-=T=GK, 0  L  
( 7 )

where G is the shear modulus2, I is the length of the shaft, and K is a torsional
moment of area. K : l, the polar moment of inertia, for circular cross sections. For
noncircular sections K is less than J. From Eq. (7) and in analogy to Eq. (2),
the shape factor for elastic stiffness in torsion can be written

6:=L= K (8)
Yr 

s?b Ko

K, for a solid square section is K" : 0.14A2. Substituting into Eq. (8) gives

61= K -=1'rf  (9)rr 
o.l4A2 A2

Relationships for finding K for common shapes are given by Ashby.s

Failure in TWisting a Shaft

Finding a shape factor to relate to failure in twisting is more complicated than in
bending a beam. For circular bars or tubes subjected to a torque X the shear stress is a
maximum at the outer radius according to :

(10)

where J is the polar moment of inertia. The quantity J/r-o* is directly analogous to the
termZ\nEq. (4). For noncircular sections, Eq. (10) is written as

2. G = ,E , for an elastic material, and u is Poi$son's ratio.
2(1+  u )

3. M. F. Ashby, op. cit, pp. 288-89.
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 τ = T

Q
 (11)

 where Q has units of m 3 . Following the method used with developing the other shape 
factors,     
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 where the number 4.8 comes from the relation between  Q  and  A . Shafts with solid 
symmetric sections all have values of shape factor φT

f
π close to 1. Values of Q and φT

f
 

can be found in Ashby.   

 Buckling of an Axial Loaded Member 
 The compressive load  P  to cause an axially loaded member like a column to 

buckle is given by the Euler equation     

 P
EI

Lcr
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min  (13)

 where  I  min  is the smallest value of moment of inertia around any of the axes in the 
column and  L e   is the equivalent length of the column. It is equal to the actual length of 
the column  L  if its ends are hinged, but for more severe end constraints it can be less 
than  L .  4   

  The shape factor for elastic buckling in axial loading is the same as for elastic 
bending, Eq. (2), where  I , the largest moment of inertia for the cross section is 
replaced with  I  min , the moment of inertia taken with respect to the axis that gives the 
smallest value.   

 Material Performance Index with Shape Factor Included 
 Having developed the shape factor for bending and torsion, we now show how the 

shape factor can be included in the material performance index. 
 Equation (6) shows that the shape factor for yielding of a beam in bending is     
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 If the objective is to fi nd a material performance index to select a material for a 
beam with minimum mass and maximum resistance to yielding,      

 4.    F. P .  Beer   ,    E. R .  Johnston   , and    J. T .  DeWolf   ,   Mechanics of Materials,   4 th  ed., Chap. 10,  McGraw-
Hill, New York ,  2006 . 
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In agreement with Eq.(11.5) in the textbook, the Iirst term in Eq. (15) expresses the
function, the second the geometry and the last term is the material index. The
material performance index is formed by inverting this term so that the best material
and shape combination is the greatest value of the index M.

(a'^o.\'''
' 4 - \Ya " t l  ( 16 )
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By referring to Table 11.5 in the textbook, note that the forrnulation of M is identical
to that given without considering shape factor, but now the shape factor has been simply
included as a multiplier in the numerator. The same will be true for values of M for
stiffness, and those involving torques instead of bending moments.

There are two practical limits to achieving highly efficient structural shapes. The
first is the difficulty and expense of manufacturing complex shapes or box-like shapes
with high width-to+hickness ratios. Then, when efficient shapes are achieved, the lim-
its are set by the competition between different failure modes. Often a shape is chosen
that raises the load to cause yielding only to find that failure by buckling ensues be-
fore reaching the yielding load.
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