Brief Contents

Preface xv

Part 1	Basics 2
1	Introduction to Mechanical Engineering Design 3
2	Materials 41
3	Load and Stress Analysis 85
4	Deflection and Stiffness 161
Part 2	Failure Prevention 226
5	Failures Resulting from Static Loading 227
6	Fatigue Failure Resulting from Variable Loading 273
Part 3	Design of Mechanical Elements 350
7	Shafts and Shaft Components 351
8	Screws, Fasteners, and the Design of Nonpermanent Joints 401
9	Welding, Bonding, and the Design of Permanent Joints 467
10	Mechanical Springs 509
11	Rolling-Contact Bearings 561
12	Lubrication and Journal Bearings 609
13	Gears—General 665
14	Spur and Helical Gears 725
15	Bevel and Worm Gears 777
16	Clutches, Brakes, Couplings, and Flywheels 817
17	Flexible Mechanical Elements 871
18	Power Transmission Case Study 925

Part 4 Special Topics 944

- **19** Finite-Element Analysis 945
- **20** Geometric Dimensioning and Tolerancing 969

Appendixes

- A Useful Tables 1011
- **B** Answers to Selected Problems 1067

Index 1073

Contents

Preface xv

Part 1 Basics 2

1 Introduction to Mechanical Engineering Design 3

- 1–1 Design 4
- **1–2** Mechanical Engineering Design 5
- 1-3 Phases and Interactions of the Design Process 5
- **1–4** Design Tools and Resources 8
- 1-5 The Design Engineer's Professional Responsibilities 10
- **1–6** Standards and Codes 12
- **1–7** Economics 13
- **1–8** Safety and Product Liability 15
- **1–9** Stress and Strength 16
- **1–10** Uncertainty 16
- **1–11** Design Factor and Factor of Safety 18
- **1–12** Reliability and Probability of Failure 20
- **1–13** Relating the Design Factor to Reliability 24
- **1–14** Dimensions and Tolerances 27
- **1–15** Units 31
- **1–16** Calculations and Significant Figures 32
- **1–17** Design Topic Interdependencies 33
- 1-18 Power Transmission Case Study Specifications 34
 Problems 36

2 Materials 41

- **2–1** Material Strength and Stiffness 42
- **2–2** The Statistical Significance of Material Properties 46
- **2–3** Strength and Cold Work 49
- **2–4** Hardness 52

- 2-5 Impact Properties 53 2-6 Temperature Effects 54 2-7 Numbering Systems 56 2-8 Sand Casting 57 2-9 Shell Molding 57 2-10 Investment Casting 58 2-11 Powder-Metallurgy Process 58 2-12 Hot-Working Processes 58 2 - 13Cold-Working Processes 59 2 - 14The Heat Treatment of Steel 60 2-15 Alloy Steels 62 2-16 Corrosion-Resistant Steels 64 2-17 Casting Materials 65 2-18 Nonferrous Metals 67 2-19 Plastics 70 2-20 Composite Materials 71 2 - 21Materials Selection 72
 - Problems 79

3 Load and Stress Analysis 85

- 3-1 Equilibrium and Free-Body Diagrams 86 3-2 Shear Force and Bending Moments in Beams 89 3-3 Singularity Functions 91 3-4 Stress 93 3-5 Cartesian Stress Components 93 3-6 Mohr's Circle for Plane Stress 94 3-7 General Three-Dimensional Stress 100 3-8 Elastic Strain 101 3-9 Uniformly Distributed Stresses 102 3-10 Normal Stresses for Beams in Bending 103 3-11 Shear Stresses for Beams in Bending 108 3-12 Torsion 115
- **3–13** Stress Concentration 124

- **3–14** Stresses in Pressurized Cylinders 127
- **3–15** Stresses in Rotating Rings 129
- **3–16** Press and Shrink Fits 130
- **3–17** Temperature Effects 131
- **3–18** Curved Beams in Bending 132
- **3–19** Contact Stresses 136
- **3–20** Summary 140
 - Problems 141

4 Deflection and Stiffness 161

4-1	Spring Rates 162
4-2	Tension, Compression, and Torsion 163
4-3	Deflection Due to Bending 164
4-4	Beam Deflection Methods 166
4-5	Beam Deflections by Superposition 167
4-6	Beam Deflections by Singularity Functions 170
4-7	Strain Energy 176
4-8	Castigliano's Theorem 178
4-9	Deflection of Curved Members 183
4-10	Statically Indeterminate Problems 189
4-11	Compression Members—General 195
4-12	Long Columns with Central Loading 198
4-13	Intermediate-Length Columns with Central Loading 198
4-14	Columns with Eccentric Loading 198
4-15	Struts or Short Compression Members 202
4-16	Elastic Stability 204
4-17	Shock and Impact 205
	Problems 206

Part 2 Failure Prevention 226

5 Failures Resulting from Static Loading 227

- **5–1** Static Strength 230
- **5–2** Stress Concentration 231
- **5–3** Failure Theories 233
- 5-4 Maximum-Shear-Stress Theory for Ductile Materials 233

- **5–5** Distortion-Energy Theory for Ductile Materials 235
- **5–6** Coulomb-Mohr Theory for Ductile Materials 242
- **5–7** Failure of Ductile Materials Summary 245
- **5–8** Maximum-Normal-Stress Theory for Brittle Materials 249
- **5-9** Modifications of the Mohr Theory for Brittle Materials 249
- **5–10** Failure of Brittle Materials Summary 252
- **5–11** Selection of Failure Criteria 252
- **5–12** Introduction to Fracture Mechanics 253
- **5–13** Important Design Equations 262

Problems 264

6 Fatigue Failure Resulting from Variable Loading 273

6-1 Introduction to Fatigue in Metals 274 6-2 Approach to Fatigue Failure in Analysis and Design 280 6-3 Fatigue-Life Methods 281 6-4 The Stress-Life Method 281 6-5 The Strain-Life Method 284 6-6 The Linear-Elastic Fracture Mechanics Method 286 6-7 The Endurance Limit 290 6-8 Fatigue Strength 291 6-9 Endurance Limit Modifying Factors 294 6-10 Stress Concentration and Notch Sensitivity 303 6-11 Characterizing Fluctuating Stresses 308 6-12 Fatigue Failure Criteria for Fluctuating Stress 311 6-13 Torsional Fatigue Strength under Fluctuating Stresses 325 6-14 Combinations of Loading Modes 325 6-15 Varying, Fluctuating Stresses; Cumulative Fatigue Damage 329 6-16 Surface Fatigue Strength 335 6-17 Road Maps and Important Design Equations for the Stress-Life Method 338 Problems 341

Part 3 Design of Mechanical Elements 350

7 Shafts and Shaft Components 351

- **7–1** Introduction 352
- **7–2** Shaft Materials 352
- 7–3 Shaft Layout 353
- **7–4** Shaft Design for Stress 358
- **7–5** Deflection Considerations 371
- **7–6** Critical Speeds for Shafts 375
- 7–7 Miscellaneous Shaft Components 380
- **7–8** Limits and Fits 387
 - Problems 392

8 Screws, Fasteners, and the Design of Nonpermanent Joints 401

- **8–1** Thread Standards and Definitions 402
- **8–2** The Mechanics of Power Screws 406
- **8–3** Threaded Fasteners 414
- **8–4** Joints—Fastener Stiffness 416
- **8–5** Joints—Member Stiffness 419
- 8–6 Bolt Strength 424
- **8–7** Tension Joints—The External Load 427
- **8–8** Relating Bolt Torque to Bolt Tension 429
- **8-9** Statically Loaded Tension Joint with Preload 432
- **8–10** Gasketed Joints 436
- **8–11** Fatigue Loading of Tension Joints 436
- 8-12 Bolted and Riveted Joints Loaded in Shear 443Problems 451

9 Welding, Bonding, and the Design of Permanent Joints 467

- **9–1** Welding Symbols 468
- **9–2** Butt and Fillet Welds 470
- **9–3** Stresses in Welded Joints in Torsion 474
- 9-4 Stresses in Welded Joints in Bending 479

- **9–5** The Strength of Welded Joints 481
- **9–6** Static Loading 484
- 9–7 Fatigue Loading 488
- **9–8** Resistance Welding 490
- **9-9** Adhesive Bonding 490
 - Problems 499

10 Mechanical Springs 509

- 10-1 Stresses in Helical Springs 510 10-2 The Curvature Effect 511 10-3 Deflection of Helical Springs 512 10-4 Compression Springs 512 10-5 Stability 514 10-6 Spring Materials 515 10-7 Helical Compression Spring Design for Static Service 520 10-8 Critical Frequency of Helical Springs 526 10-9 Fatigue Loading of Helical Compression Springs 528 10-10 Helical Compression Spring Design for Fatigue Loading 531
- **10–11** Extension Springs 534
- **10–12** Helical Coil Torsion Springs 542
- **10–13** Belleville Springs 549
- **10–14** Miscellaneous Springs 550
- **10–15** Summary 552
 - Problems 552

11 Rolling-Contact Bearings 561

11-1 Bearing Types 562 11-2 Bearing Life 565 11-3 Bearing Load Life at Rated Reliability 566 11-4 Reliability versus Life-The Weibull Distribution 568 11-5 Relating Load, Life, and Reliability 569 11-6 Combined Radial and Thrust Loading 571 11-7 Variable Loading 577 11-8 Selection of Ball and Cylindrical Roller Bearings 580 11-9 Selection of Tapered Roller Bearings 583 11-10 Design Assessment for Selected Rolling-Contact Bearings 592

- Lubrication 596
- **11–12** Mounting and Enclosure 597 **Problems** 601

12 Lubrication and Journal Bearings 609

- 12-1
 Types of Lubrication
 610

 12-2
 Viscosity
 611
- **12–3** Petroff's Equation 613
- **12–4** Stable Lubrication 615
- **12–5** Thick-Film Lubrication 616
- **12–6** Hydrodynamic Theory 617
- **12–7** Design Considerations 621
- **12–8** The Relations of the Variables 623
- **12–9** Steady-State Conditions in Self-Contained Bearings 637
- **12–10** Clearance 640
- **12–11** Pressure-Fed Bearings 642
- **12–12** Loads and Materials 648
- **12–13** Bearing Types 650
- 12–14 Thrust Bearings 651
- **12–15** Boundary-Lubricated Bearings 652 **Problems** 660

13 Gears-General 665

- **13–1** Types of Gears 666 **13–2** Nomenclature 667
- **13–3** Conjugate Action 669
- **13–4** Involute Properties 670
- **13–5** Fundamentals 670
- **13–6** Contact Ratio 676
- **13–7** Interference 677
- **13–8** The Forming of Gear Teeth 679
- **13–9** Straight Bevel Gears 682
- **13–10** Parallel Helical Gears 683
- **13–11** Worm Gears 687
- **13–12** Tooth Systems 688
- **13–13** Gear Trains 690
- **13–14** Force Analysis—Spur Gearing 697
- **13–15** Force Analysis—Bevel Gearing 701
- **13–16** Force Analysis—Helical Gearing 704

13–17 Force Analysis—Worm Gearing 706 **Problems** 712

14 Spur and Helical Gears 725

14-1	The Lewis Bending Equation 726
14-2	Surface Durability 735
14-3	AGMA Stress Equations 737
14-4	AGMA Strength Equations 739
14-5	Geometry Factors I and J (Z_I and Y_J) 743
14-6	The Elastic Coefficient $C_p(Z_E)$ 748
14-7	Dynamic Factor K_v 748
14-8	Overload Factor K_o 750
14-9	Surface Condition Factor $C_f(Z_R)$ 750
14-10	Size Factor K_s 751
14-11	Load-Distribution Factor $K_m(K_H)$ 751
14-12	Hardness-Ratio Factor $C_H(Z_W)$ 753
14-13	Stress-Cycle Factors Y_N and Z_N 754
14-14	Reliability Factor $K_R(Y_Z)$ 755
14-15	Temperature Factor $K_T(Y_{\theta})$ 756
14-16	Rim-Thickness Factor K_B 756
14-17	Safety Factors S_F and S_H 757
14-18	Analysis 757
14-19	Design of a Gear Mesh 767
	Problems 772

15 Bevel and Worm Gears 777

15-1 Bevel Gearing—General 778 15 - 2Bevel-Gear Stresses and Strengths 780 15 - 3AGMA Equation Factors 783 15 - 4Straight-Bevel Gear Analysis 795 15-5 Design of a Straight-Bevel Gear Mesh 798 15-6 Worm Gearing-AGMA Equation 801 15-7 Worm-Gear Analysis 805 15-8 Designing a Worm-Gear Mesh 809 15-9 Buckingham Wear Load 812 Problems 813

16 Clutches, Brakes, Couplings, and Flywheels 817

16-1 Static Analysis of Clutches and Brakes 819
16-2 Internal Expanding Rim Clutches and Brakes 824

16-3	External Contracting Rim Clutches and
	Brakes 832
16-4	Band-Type Clutches and Brakes 836
16-5	Frictional-Contact Axial Clutches 837
16-6	Disk Brakes 841
16-7	Cone Clutches and Brakes 845
16-8	Energy Considerations 848
16-9	Temperature Rise 849
16-10	Friction Materials 853
16-11	Miscellaneous Clutches and Couplings 856
16-12	Flywheels 858
	Problems 863

17 Flexible Mechanical Elements 871

- **17–1** Belts 872
- 17–2 Flat- and Round-Belt Drives 875
- **17–3** V Belts 890
- 17–4 Timing Belts 898
- **17–5** Roller Chain 899
- **17-6** Wire Rope 908
- **17–7** Flexible Shafts 916 **Problems** 917

18 Power Transmission Case Study 925

- **18–1** Design Sequence for Power Transmission 927
- **18–2** Power and Torque Requirements 928
- **18–3** Gear Specification 928
- **18–4** Shaft Layout 935
- **18–5** Force Analysis 937
- **18–6** Shaft Material Selection 937
- **18–7** Shaft Design for Stress 938
- **18–8** Shaft Design for Deflection 938
- **18-9** Bearing Selection 939
- **18–10** Key and Retaining Ring Selection 940
- **18–11** Final Analysis 943

Problems 943

Part 4 Special Topics 944

19 Finite-Element Analysis 945

19-1	The Finite-Element Method 947
19-2	Element Geometries 949
19-3	The Finite-Element Solution Process 951
19-4	Mesh Generation 954
19-5	Load Application 956
19-6	Boundary Conditions 957
19-7	Modeling Techniques 958
19-8	Thermal Stresses 961
19-9	Critical Buckling Load 961
19-10	Vibration Analysis 963
19-11	Summary 964
	Problems 966

20 Geometric Dimensioning and Tolerancing 969

20-1	Dimensioning and Tolerancing
	Systems 970
20-2	Definition of Geometric Dimensioning and Tolerancing 971
20–3	Datums 976
20–4	Controlling Geometric Tolerances 981
20-5	Geometric Characteristic Definitions 985
20-6	Material Condition Modifiers 994
20-7	Practical Implementation 996
20-8	GD&T in CAD Models 1001
20-9	Glossary of GD&T Terms 1002
	Problems 1005

Appendixes

- A Useful Tables 1011
- B Answers to Selected Problems 1067

Index 1073