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2
Stress and Strain—

Axial Loading
This chapter considers deformations occurring in structural 
components subjected to axial loading. The change in 
length of the diagonal stays was carefully accounted for in 
the design of this cable-stayed bridge.

Objectives
In this chapter, we will:

• Introduce students to the concept of strain.

• Discuss the relationship between stress and strain in diff erent 
materials.

• Determine the deformation of structural components under axial 
loading.

• Introduce Hooke’s Law and the modulus of elasticity.

• Discuss the concept of lateral strain and Poisson's ratio.

• Use axial deformations to solve indeterminate problems.

• Define Saint-Venant’s principle and the distribution of stresses.

• Review stress concentrations and how they are included in design.

• Define the diff erence between elastic and plastic behavior through 
a discussion of conditions such as elastic limit, plastic deformation, 
residual stresses.

• Look at specifi c topics related to fi ber-reinforced composite 
materials, fatigue, multiaxial loading.
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Introduction
An important aspect of the analysis and design of structures relates to the 
deformations caused by the loads applied to a structure. It is important to 
avoid deformations so large that they may prevent the structure from ful-
filling the purpose for which it was intended. But the analysis of deforma-
tions also helps us to determine stresses. Indeed, it is not always possible 
to determine the forces in the members of a structure by applying only 
the principles of statics. This is because statics is based on the assumption 
of undeformable, rigid structures. By considering engineering structures 
as deformable and analyzing the deformations in their various members, 
it will be possible for us to compute forces that are statically indeterminate.
The distribution of stresses in a given member is statically indeterminate, 
even when the force in that member is known.
 In this chapter, you will consider the deformations of a structural 
member such as a rod, bar, or plate under axial loading. First, the normal 
strain P in a member is defined as the deformation of the member per unit 
length. Plotting the stress s versus the strain e as the load applied to the 
member is increased produces a stress-strain diagram for the material 
used. From this diagram, some important properties of the material, such 
as its modulus of elasticity, and whether the material is ductile or brittle can 
be determined. While the behavior of most materials is independent of the 
direction of the load application, you will see that the response of fiber-
reinforced composite materials depends upon the direction of the load.
 From the stress-strain diagram, you also can determine whether 
the strains in the specimen will disappear after the load has been 
removed—when the material is said to behave elastically—or whether a 
permanent set or plastic deformation will result. 
 You will examine the phenomenon of fatigue, which causes struc-
tural or machine components to fail after a very large number of repeated 
loadings, even though the stresses remain in the elastic range.
 Sections 2.2 and 2.3 discuss statically indeterminate problems in 
which the reactions and the internal forces cannot be determined from 
statics alone. Here the equilibrium equations derived from the free-body 
diagram of the member must be complemented by relationships involving 
deformations that are obtained from the geometry of the problem.
 Additional constants associated with  isotropic materials—i.e., mate-
rials with mechanical characteristics independent of direction—are intro-
duced in Secs. 2.4 through 2.8. They include Poisson’s ratio, relating lateral 
and axial strain, the bulk modulus, characterizing the change in volume 
of a material under hydrostatic pressure, and the modulus of rigidity, con-
cerning the components of the shearing stress and shearing strain. Stress-
strain relationships for an isotropic material under a multiaxial loading 
also are determined.
 Stress-strain relationships involving modulus of elasticity, Poisson’s 
ratio, and the modulus of rigidity are developed for fiber-reinforced com-
posite materials under a multiaxial loading. While these materials are not 
isotropic, they usually display special orthotropic properties.
 In Chap. 1, stresses were assumed uniformly distributed in any given 
cross section; they were also assumed to remain within the elastic range. 
The first assumption is discussed in Sec. 2.10, while stress concentrations
near circular holes and fillets in flat bars are considered in Sec. 2.11. 
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2.1 An Introduction to Stress and Strain 57

Sections 2.12 and 2.13 discuss stresses and deformations in members made 
of a ductile material when the yield point of the material is exceeded, result-
ing in permanent plastic deformations and residual stresses.

2.1  AN INTRODUCTION TO 
STRESS AND STRAIN

2.1A  Normal Strain Under Axial 
Loading

Consider a rod BC of length L and uniform cross-sectional area A, which 
is suspended from B (Fig. 2.1a). If you apply a load P to end C, the rod 
elongates (Fig. 2.1b). Plotting the magnitude P of the load against the 
deformation d (Greek letter delta), you obtain a load-deformation diagram 
(Fig. 2.2). While this diagram contains information useful to the analysis 
of the rod under consideration, it cannot be used to predict the deforma-
tion of a rod of the same material but with different dimensions. Indeed, 
if a deformation d is produced in rod BC by a load P, a load 2P is required 
to cause the same deformation in rod B9C9 of the same length L but cross-
sectional area 2A (Fig. 2.3). Note that in both cases the value of the stress 
is the same: s 5 PyA. On the other hand, when load P is applied to a 
rod B0C0 of the same cross-sectional area A but of length 2L, a deformation 
2d occurs in that rod (Fig. 2.4). This is a deformation twice as large as the 
deformation d produced in rod BC. In both cases, the ratio of the deforma-
tion over the length of the rod is the same at dyL. This introduces the 
concept of strain. We define the normal strain in a rod under axial 
loading as the deformation per unit length of that rod. The normal 
strain, P (Greek letter epsilon), is

 P 5
d

L
 (2.1)

 Plotting the stress s 5 PyA against the strain P 5 dyL results in a 
curve that is characteristic of the properties of the material but does not 
depend upon the dimensions of the specimen used. This curve is called 
a stress-strain diagram.

Fig. 2.1 Undeformed and deformed axially-
loaded rod.
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Fig. 2.2 Load-deformation diagram.
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Fig. 2.3 Twice the load is required to 
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the cross-sectional area is doubled.
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Fig. 2.4 The deformation is doubled when the 
rod length is doubled while keeping the load P and 
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58 Stress and Strain—Axial Loading

 Since rod BC in Fig. 2.1 has a uniform cross section of area A, the 
normal stress s is assumed to have a constant value PyA throughout the 
rod. The strain e is the ratio of the total deformation d over the total 
length L of the rod. It too is consistent throughout the rod. However, for 
a member of variable cross-sectional area A, the normal stress s 5 PyA 
varies along the member, and it is necessary to define the strain at a 
given point Q by considering a small element of undeformed length Dx 
(Fig. 2.5). Denoting the deformation of the element under the given 
loading by Dd, the normal strain at point Q is defined as

 P 5 lim
¢xy0

¢d
¢x

5
dd

dx
 (2.2)

 Since deformation and length are expressed in the same units, the 
normal strain P obtained by dividing d by L (or dd by dx) is a dimensionless 
quantity. Thus, the same value is obtained for the normal strain, whether 
SI metric units or U.S. customary units are used. For instance, consider a 
bar of length L 5 0.600 m and uniform cross section that undergoes a 
deformation d 5 150 3 1026 m. The corresponding strain is

P 5
d

L
5

150 3 1026 m

0.600 m
5 250 3 1026 m/m 5 250 3 1026

Note that the deformation also can be expressed in micrometers: d 5 150 mm 
and the answer written in micros (m):

P 5
d

L
5

150 mm

0.600 m
5 250 mm/m 5 250 m

When U.S. customary units are used, the length and deformation of the same 
bar are L 5 23.6 in. and d 5 5.91 3 1023 in. The corresponding strain is

P 5
d

L
5

5.91 3 1023  in.

23.6 in.
5 250 3 1026 in./in.

which is the same value found using SI units. However, when lengths and 
deformations are expressed in inches or microinches (min.), keep the origi-
nal units obtained for the strain. Thus, in the previous example, the strain 
would be recorded as either P 5 250 3 1026 in./in. or P 5 250 min./in.

2.1B Stress-Strain Diagram
Tensile Test. To obtain the stress-strain diagram of a material, a tensile 
test is conducted on a specimen of the material. One type of specimen is 
shown in Photo 2.1. The cross-sectional area of the cylindrical central por-
tion of the specimen is accurately determined and two gage marks are 
inscribed on that portion at a distance L0 from each other. The distance L0 
is known as the gage length of the specimen.
 The test specimen is then placed in a testing machine (Photo 2.2), 
which is used to apply a centric load P. As load P increases, the distance L 
between the two gage marks also increases (Photo 2.3). The distance L 
is measured with a dial gage, and the elongation d 5 L 2 L0 is recorded 

Fig. 2.5 Deformation of axially-loaded member 
of variable cross-sectional area.

� ��x+ x +

Q

Q

�x x 

�

P

Photo 2.1 Typical tensile-test specimen. 
Undeformed gage length is L0.

bee98233_ch02_054-145.indd   58bee98233_ch02_054-145.indd   58 11/15/13   4:54 PM11/15/13   4:54 PM



2.1 An Introduction to Stress and Strain 59

for each value of P. A second dial gage is often used simultaneously to 
measure and record the change in diameter of the specimen. From each 
pair of readings P and d, the engineering stress s is 

 s 5
P

A0
 (2.3)

and the engineering strain e is

 P 5
d

L0
 (2.4)

The stress-strain diagram can be obtained by plotting e as an abscissa 
and s as an ordinate.
 Stress-strain diagrams of materials vary widely, and different tensile 
tests conducted on the same material may yield different results, depend-
ing upon the temperature of the specimen and the speed of loading. How-
ever, some common characteristics can be distinguished from stress-strain 
diagrams to divide materials into two broad categories: ductile and brittle 
materials.
 Ductile materials, including structural steel and many alloys of other 
materials are characterized by their ability to yield at normal tempera-
tures. As the specimen is subjected to an increasing load, its length first 
increases linearly with the load and at a very slow rate. Thus, the initial 
portion of the stress-strain diagram is a straight line with a steep slope 

Photo 2.2 Universal test machine used to test tensile specimens.
Photo 2.3 Elongated tensile test specimen 
having load P and deformed length L . L0.

P

P9
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60 Stress and Strain—Axial Loading

(Fig. 2.6). However, after a critical value sY of the stress has been reached, 
the specimen undergoes a large deformation with a relatively small 
increase in the applied load. This deformation is caused by slippage along 
oblique surfaces and is due primarily to shearing stresses. After a maxi-
mum value of the load has been reached, the diameter of a portion of the 
specimen begins to decrease, due to local instability (Photo 2.4a). This 
phenomenon is known as necking. After necking has begun, lower loads 
are sufficient for specimen to elongate further, until it finally ruptures 
(Photo 2.4b). Note that rupture occurs along a cone-shaped surface that 
forms an angle of approximately 458 with the original surface of the speci-
men. This indicates that shear is primarily responsible for the failure of 
ductile materials, confirming the fact that shearing stresses under an axial 
load are largest on surfaces forming an angle of 458 with the load (see 
Sec. 1.3). Note from Fig. 2.6 that the elongation of a ductile specimen after 
it has ruptured can be 200 times as large as its deformation at yield. The 
stress sY at which yield is initiated is called the yield strength of the mate-
rial. The stress sU corresponding to the maximum load applied is known 
as the ultimate strength. The stress sB corresponding to rupture is called 
the breaking strength.
 Brittle materials, comprising of cast iron, glass, and stone rupture 
without any noticeable prior change in the rate of elongation (Fig. 2.7). 
Thus, for brittle materials, there is no difference between the ultimate 
strength and the breaking strength. Also, the strain at the time of rupture 
is much smaller for brittle than for ductile materials. Note the absence of 
any necking of the specimen in the brittle material of Photo 2.5 and observe 
that rupture occurs along a surface perpendicular to the load. Thus, normal 
stresses are primarily responsible for the failure of brittle materials.†

Fig. 2.6 Stress-strain diagrams of two typical ductile materials.
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Photo 2.4 Ductile material tested specimens: 
(a) with cross-section necking, (b) ruptured.

†The tensile tests described in this section were assumed to be conducted at normal 
temperatures. However, a material that is ductile at normal temperatures may display 
the characteristics of a brittle material at very low temperatures, while a normally brittle 
material may behave in a ductile fashion at very high temperatures. At temperatures 
other than normal, therefore, one should refer to a material in a ductile state or to a 
material in a brittle state, rather than to a ductile or brittle material.
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2.1 An Introduction to Stress and Strain 61

 The stress-strain diagrams of Fig. 2.6 show that while structural steel 
and aluminum are both ductile, they have different yield characteristics. 
For structural steel (Fig. 2.6a), the stress remains constant over a large 
range of the strain after the onset of yield. Later, the stress must be 
increased to keep elongating the specimen until the maximum value sU 
has been reached. This is due to a property of the material known as 
strain-hardening. The yield strength of structural steel is determined dur-
ing the tensile test by watching the load shown on the display of the test-
ing machine. After increasing steadily, the load will suddenly drop to a 
slightly lower value, which is maintained for a certain period as the speci-
men keeps elongating. In a very carefully conducted test, one may be able 
to distinguish between the upper yield point, which corresponds to the 
load reached just before yield starts, and the lower yield point, which cor-
responds to the load required to maintain yield. Since the upper yield 
point is transient, the lower yield point is used to determine the yield 
strength of the material.
 For aluminum (Fig. 2.6b) and of many other ductile materials, the 
stress keeps increasing—although not linearly—until the ultimate strength 
is reached. Necking then begins and eventually ruptures. For such materi-
als, the yield strength sY can be determined using the offset method. For 
example the yield strength at 0.2% offset is obtained by drawing through 
the point of the horizontal axis of abscissa P 5 0.2% (or P 5 0.002), which 
is a line parallel to the initial straight-line portion of the stress-strain dia-
gram (Fig. 2.8). The stress sY corresponding to the point Y is defined as 
the yield strength at 0.2% offset.
 A standard measure of the ductility of a material is its percent 
elongation:

Percent elongation 5 100 
LB 2 L0

L0

where L0 and LB are the initial length of the tensile test specimen and its 
final length at rupture, respectively. The specified minimum elongation 
for a 2-in. gage length for commonly used steels with yield strengths up 
to 50 ksi is 21 percent. This means that the average strain at rupture should 
be at least 0.21 in./in.

Fig. 2.7 Stress-strain diagram for a 
typical brittle material.
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Photo 2.5 Ruptured brittle material specimen.

Fig. 2.8 Determination of yield 
strength by 0.2% offset method.
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62 Stress and Strain—Axial Loading

 Another measure of ductility that is sometimes used is the percent 
reduction in area:

Percent reduction in area 5 100 
A0 2 AB

A0

where A0 and AB are the initial cross-sectional area of the specimen and 
its minimum cross-sectional area at rupture, respectively. For structural 
steel, percent reductions in area of 60 to 70 percent are common.

Compression Test. If a specimen made of a ductile material is loaded 
in compression instead of tension, the stress-strain curve is essentially the 
same through its initial straight-line portion and through the beginning of 
the portion corresponding to yield and strain-hardening. Particularly 
noteworthy is the fact that for a given steel, the yield strength is the same 
in both tension and compression. For larger values of the strain, the ten-
sion and compression stress-strain curves diverge, and necking does not 
occur in compression. For most brittle materials, the ultimate strength in 
compression is much larger than in tension. This is due to the presence 
of flaws, such as microscopic cracks or cavities that tend to weaken the 
material in tension, while not appreciably affecting its resistance to com-
pressive failure.
 An example of brittle material with different properties in tension 
and compression is provided by concrete, whose stress-strain diagram is 
shown in Fig. 2.9. On the tension side of the diagram, we first observe a 
linear elastic range in which the strain is proportional to the stress. After 
the yield point has been reached, the strain increases faster than the stress 
until rupture occurs. The behavior of the material in compression is dif-
ferent. First, the linear elastic range is significantly larger. Second, rupture 
does not occur as the stress reaches its maximum value. Instead, the stress 
decreases in magnitude while the strain keeps increasing until rupture 
occurs. Note that the modulus of elasticity, which is represented by the 
slope of the stress-strain curve in its linear portion, is the same in tension 
and compression. This is true of most brittle materials.

Fig. 2.9 Stress-strain diagram for concrete shows difference in tensile and 
compression response.
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2.1 An Introduction to Stress and Strain 63

*2.1C True Stress and True Strain
Recall that the stress plotted in Figs. 2.6 and 2.7 was obtained by dividing 
the load P by the cross-sectional area A0 of the specimen measured before 
any deformation had taken place. Since the cross-sectional area of the 
specimen decreases as P increases, the stress plotted in these diagrams 
does not represent the actual stress in the specimen. The difference 
between the engineering stress s 5 PyA0 and the true stress st 5 PyA 
becomes apparent in ductile materials after yield has started. While the 
engineering stress s, which is directly proportional to the load P, decreases 
with P during the necking phase, the true stress st , which is proportional 
to P but also inversely proportional to A, keeps increasing until rupture of 
the specimen occurs.
 For engineering strain P 5 dyL0, instead of using the total elongation d 
and the original value L0 of the gage length, many scientists use all of the 
values of L that they have recorded. Dividing each increment DL of 
the distance between the gage marks by the corresponding value of L, the 
elementary strain DP 5 DLyL. Adding the successive values of DP, the true 
strain Pt is

Pt 5 o¢P 5 o1¢LyL2
With the summation replaced by an integral, the true strain can be 
expressed as:

 Pt 5 #
L

L0

 
dL
L

5 ln 
L
L0

 (2.5)

 Plotting true stress versus true strain (Fig. 2.10) more accurately 
reflects the behavior of the material. As already noted, there is no decrease 
in true stress during the necking phase. Also, the results obtained from 
either tensile or compressive tests yield essentially the same plot when 
true stress and true strain are used. This is not the case for large values of 
the strain when the engineering stress is plotted versus the engineering 
strain. However, in order to determine whether a load P will produce an 
acceptable stress and an acceptable deformation in a given member, engi-
neers will use a diagram based on Eqs. (2.3) and (2.4) since these involve 
the cross-sectional area A0 and the length L0 of the member in its unde-
formed state, which are easily available.

2.1D  Hooke’s Law; Modulus of Elasticity
Modulus of Elasticity. Most engineering structures are designed to 
undergo relatively small deformations, involving only the straight-line 
portion of the corresponding stress-strain diagram. For that initial portion 
of the diagram (Fig. 2.6), the stress s is directly proportional to the strain P:

 s 5 EP (2.6)

This is known as Hooke’s law, after Robert Hooke (1635–1703), an English 
scientist and one of the early founders of applied mechanics. The coefficient E 
of the material is the modulus of elasticity or Young’s modulus, after the 
English scientist Thomas Young (1773–1829). Since the strain P is a dimen-
sionless quantity, E is expressed in the same units as stress s—in pascals or 
one of its multiples for SI units and in psi or ksi for U.S. customary units.

Fig. 2.10 True stress versus true strain for a 
typical ductile material.
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64 Stress and Strain—Axial Loading

 The largest value of stress for which Hooke’s law can be used for a 
given material is the proportional limit of that material. For ductile materi-
als possessing a well-defined yield point, as in Fig. 2.6a, the proportional 
limit almost coincides with the yield point. For other materials, the pro-
portional limit cannot be determined as easily, since it is difficult to accu-
rately determine the stress s for which the relation between s and P 
ceases to be linear. For such materials, however, using Hooke’s law for 
values of the stress slightly larger than the actual proportional limit will 
not result in any significant error.
 Some physical properties of structural metals, such as strength, ductil-
ity, and corrosion resistance, can be greatly affected by alloying, heat treat-
ment, and the manufacturing process used. For example, the stress-strain 
diagrams of pure iron and three different grades of steel (Fig. 2.11) show that 
large variations in the yield strength, ultimate strength, and final strain (duc-
tility) exist. All of these metals possess the same modulus of elasticity—their 
“stiffness,” or ability to resist a deformation within the linear range is the 
same. Therefore, if a high-strength steel is substituted for a lower-strength 
steel and if all dimensions are kept the same, the structure will have an 
increased load-carrying capacity, but its stiffness will remain unchanged.
 For the materials considered so far, the relationship between normal 
stress and normal strain, s 5 EP, is independent of the direction of load-
ing. This is because the mechanical properties of each material, including 
its modulus of elasticity E, are independent of the direction considered. 
Such materials are said to be isotropic. Materials whose properties depend 
upon the direction considered are said to be anisotropic. 

Fiber-Reinforced Composite Materials. An important class of 
anisotropic materials consists of fiber- reinforced composite materials. 
These are obtained by embedding fibers of a strong, stiff material into a 
weaker, softer material, called a matrix. Typical materials used as fibers 
are graphite, glass, and polymers, while various types of resins are used as 
a matrix. Figure 2.12 shows a layer, or lamina, of a composite material 
consisting of a large number of parallel fibers embedded in a matrix. An 
axial load applied to the lamina along the x axis, (in a direction parallel to 
the fibers) will create a normal stress sx in the lamina and a corresponding 
normal strain Px , satisfying Hooke’s law as the load is increased and as 
long as the elastic limit of the lamina is not exceeded. Similarly, an axial 
load applied along the y axis, (in a direction perpendicular to the lamina) 
will create a normal stress sy and a normal strain Py , and an axial load 
applied along the z axis will create a normal stress sz and a normal 
strain Pz , all satisfy Hooke’s law. However, the moduli of elasticity Ex , Ey , 
and Ez corresponding, to each of these loadings will be different. Because 
the fibers are parallel to the x axis, the lamina will offer a much stronger 
resistance to a load directed along the x axis than to one directed along 
the y or z axis, and Ex will be much larger than either Ey or Ez .
 A flat laminate is obtained by superposing a number of layers or 
laminas. If the laminate is subjected only to an axial load causing tension, 
the fibers in all layers should have the same orientation as the load in 
order to obtain the greatest possible strength. But if the laminate is in 
compression, the matrix material may not be strong enough to prevent the 
fibers from kinking or buckling. The lateral stability of the laminate can be 
increased by  positioning some of the layers so that their fibers are 

Fig. 2.11 Stress-strain diagrams for iron and 
different grades of steel.
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Fig. 2.12 Layer of fiber-reinforced composite 
material.
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2.1 An Introduction to Stress and Strain 65

perpendicular to the load. Positioning some layers so that their fibers are 
oriented at 308, 458, or 608 to the load also can be used to increase the 
resistance of the laminate to in-plane shear. Fiber-reinforced composite 
materials will be further discussed in Sec. 2.9, where their behavior under 
multiaxial loadings will be considered.

2.1E  Elastic Versus Plastic Behavior 
of a Material

Material behaves elastically if the strains in a test specimen from a given 
load disappear when the load is removed. The largest value of stress caus-
ing this elastic behavior is called the elastic limit of the material.
 If the material has a well-defined yield point as in Fig. 2.6a, the elastic 
limit, the proportional limit, and the yield point are essentially equal. In 
other words, the material behaves elastically and linearly as long as the 
stress is kept below the yield point. However, if the yield point is reached, 
yield takes place as described in Sec. 2.1B. When the load is removed, the 
stress and strain decrease in a linear fashion along a line CD parallel to the 
straight-line portion AB of the loading curve (Fig. 2.13). The fact that P does 
not return to zero after the load has been removed indicates that a perma-
nent set or plastic deformation of the material has taken place. For most 
materials, the plastic deformation depends upon both the maximum value 
reached by the stress and the time elapsed before the load is removed. The 
stress-dependent part of the plastic deformation is called slip, and the time-
dependent part—also influenced by the temperature—is creep.
 When a material does not possess a well-defined yield point, the 
elastic limit cannot be determined with precision. However, assuming the 
elastic limit to be equal to the yield strength using the offset method 
(Sec. 2.1B) results in only a small error. Referring to Fig. 2.8, note that the 
straight line used to determine point Y also represents the unloading 
curve after a maximum stress sY has been reached. While the material 
does not behave truly elastically, the resulting plastic strain is as small as 
the selected offset.
 If, after being loaded and unloaded (Fig. 2.14), the test specimen is 
loaded again, the new loading curve will follow the earlier unloading 
curve until it almost reaches point C. Then it will bend to the right and 
connect with the curved portion of the original stress-strain diagram. This 
straight-line portion of the new loading curve is longer than the corre-
sponding portion of the initial one. Thus, the proportional limit and the 

Fig. 2.13  Stress-strain response of ductile 
material loaded beyond yield and unloaded.

C

A D

Rupture

B

�

�

Fig. 2.14 Stress-strain response of ductile material 
reloaded after prior yielding and unloading.

C
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B
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66 Stress and Strain—Axial Loading

elastic limit have increased as a result of the strain-hardening that occurred 
during the earlier loading. However, since the point of rupture R remains 
unchanged, the ductility of the specimen, which should now be measured 
from point D, has decreased.
 In previous discussions the specimen was loaded twice in the same 
direction (i.e., both loads were tensile loads). Now consider that the sec-
ond load is applied in a direction opposite to that of the first one. Assume 
the material is mild steel where the yield strength is the same in tension 
and in compression. The initial load is tensile and is applied until point C 
is reached on the stress-strain diagram (Fig. 2.15). After unloading 
(point D), a compressive load is applied, causing the material to reach 
point H, where the stress is equal to 2sY. Note that portion DH of the 
stress-strain diagram is curved and does not show any clearly defined 
yield point. This is referred to as the Bauschinger effect. As the compressive 
load is maintained, the material yields along line HJ.
 If the load is removed after point J has been reached, the stress 
returns to zero along line JK, and the slope of JK is equal to the modulus 
of elasticity E. The resulting permanent set AK may be positive, negative, 
or zero, depending upon the lengths of the segments BC and HJ. If a ten-
sile load is applied again to the test specimen, the portion of the stress-
strain diagram beginning at K (dashed line) will curve up and to the right 
until the yield stress sY has been reached.
 If the initial loading is large enough to cause strain-hardening of the 
material (point C9), unloading takes place along line C9D9. As the reverse 
load is applied, the stress becomes compressive, reaching its maximum 
value at H9 and maintaining it as the material yields along line H9J9. While 
the maximum value of the compressive stress is less than sY, the total 
change in stress between C9 and H9 is still equal to 2sY.
 If point K or K9 coincides with the origin A of the diagram, the per-
manent set is equal to zero, and the specimen may appear to have returned 
to its original condition. However, internal changes will have taken place 
and, the specimen will rupture without any warning after relatively few 
repetitions of the loading sequence. Thus, the excessive plastic 
deformations to which the specimen was subjected caused a radical 
change in the characteristics of the material. Therefore reverse loadings 
into the plastic range are seldom allowed, being permitted only under 

Fig. 2.15 Stress-strain response for mild steel subjected to two 
cases of reverse loading.
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2.1 An Introduction to Stress and Strain 67

carefully controlled conditions such as in the straightening of damaged 
material and the final alignment of a structure or machine.

2.1F Repeated Loadings and Fatigue
You might think that a given load may be repeated many times, provided 
that the stresses remain in the elastic range. Such a conclusion is correct 
for loadings repeated a few dozen or even a few hundred times. However, 
it is not correct when loadings are repeated thousands or millions of 
times. In such cases, rupture can occur at a stress much lower than the 
static breaking strength; this phenomenon is known as fatigue. A fatigue 
failure is of a brittle nature, even for materials that are normally ductile.
 Fatigue must be considered in the design of all structural and 
machine components subjected to repeated or fluctuating loads. The 
number of loading cycles expected during the useful life of a component 
varies greatly. For example, a beam supporting an industrial crane can be 
loaded as many as two million times in 25 years (about 300 loadings per 
working day), an automobile crankshaft is loaded about half a billion 
times if the automobile is driven 200,000 miles, and an individual turbine 
blade can be loaded several hundred billion times during its lifetime.
 Some loadings are of a fluctuating nature. For example, the passage 
of traffic over a bridge will cause stress levels that will fluctuate about the 
stress level due to the weight of the bridge. A more severe condition occurs 
when a complete reversal of the load occurs during the loading cycle. The 
stresses in the axle of a railroad car, for example, are completely reversed 
after each half-revolution of the wheel.
 The number of loading cycles required to cause the failure of a spec-
imen through repeated loadings and reverse loadings can be determined 
experimentally for any given maximum stress level. If a series of tests is 
conducted using different maximum stress levels, the resulting data is 
plotted as a s-n curve. For each test, the maximum stress s is plotted as 
an ordinate and the number of cycles n as an abscissa. Because of the 
large number of cycles required for rupture, the cycles n are plotted on a 
logarithmic scale.
 A typical s-n curve for steel is shown in Fig. 2.16. If the applied 
maximum stress is high, relatively few cycles are required to cause rup-
ture. As the magnitude of the maximum stress is reduced, the number of 
cycles required to cause rupture increases, until the endurance limit is 
reached. The endurance limit is the stress for which failure does not occur, 
even for an indefinitely large number of loading cycles. For a low-carbon 
steel, such as structural steel, the endurance limit is about one-half of the 
ultimate strength of the steel.
 For nonferrous metals, such as aluminum and copper, a typical s-n 
curve (Fig. 2.16) shows that the stress at failure continues to decrease as the 
number of loading cycles is increased. For such metals, the fatigue limit is 
the stress corresponding to failure after a specified number of loading cycles.
 Examination of test specimens, shafts, springs, and other compo-
nents that have failed in fatigue shows that the failure initiated at a micro-
scopic crack or some similar imperfection. At each loading, the crack was 
very slightly enlarged. During successive loading cycles, the crack propa-
gated through the material until the amount of undamaged material was 
insufficient to carry the maximum load, and an abrupt, brittle failure 

Fig. 2.16 Typical s-n curves.
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68 Stress and Strain—Axial Loading

occurred. For example, Photo 2.6 shows a progressive fatigue crack in a 
highway bridge girder that initiated at the irregularity associated with the 
weld of a cover plate and then propagated through the flange and into the 
web. Because fatigue failure can be initiated at any crack or imperfection, 
the surface condition of a specimen has an important effect on the endur-
ance limit obtained in testing. The endurance limit for machined and pol-
ished specimens is higher than for rolled or forged components or for 
components that are corroded. In applications in or near seawater or in 
other applications where corrosion is expected, a reduction of up to 50% 
in the endurance limit can be expected.

2.1G  Deformations of Members Under 
Axial Loading

Consider a homogeneous rod BC of length L and uniform cross section of 
area A subjected to a centric axial load P (Fig. 2.17). If the resulting axial 
stress s 5 PyA does not exceed the proportional limit of the material, 
Hooke’s law applies and

 s 5 EP (2.6)

from which

 P 5
s

E
5

P
AE

 (2.7)

Recalling that the strain P in Sec. 2.1A is P 5 dyL

 d 5 PL  (2.8)

and substituting for P from Eq. (2.7) into Eq.(2.8):

 d 5
PL
AE

 (2.9)

 Equation (2.9) can be used only if the rod is homogeneous 
(constant E), has a uniform cross section of area A, and is loaded at its 
ends. If the rod is loaded at other points, or consists of several portions of 
various cross sections and possibly of different materials, it must be 
divided into component parts that satisfy the required conditions for the 
application of Eq. (2.9). Using the internal force Pi , length Li , cross-
sectional area Ai , and modulus of elasticity Ei , corresponding to part i, the 
deformation of the entire rod is

 d 5 a
i

PiLi

AiEi
 (2.10)

 In the case of a member of variable cross section (Fig. 2.18), the 
strain P depends upon the position of the point Q, where it is computed 
as P 5 ddydx (Sec. 2.1A). Solving for dd and substituting for P from Eq. (2.7), 
the deformation of an element of length dx is

dd 5 P dx 5
P dx

AE

The total deformation d of the member is obtained by integrating this 
expression over the length L of the member:

 d 5 #
L

0

 
P dx
AE

 (2.11)

Fig. 2.17 Undeformed and deformed axially- 
loaded rod.
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C
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Photo 2.6 Fatigue crack in a steel girder of the 
Yellow Mill Pond Bridge, Connecticut, prior to 
repairs.

Fig. 2.18 Deformation of axially-loaded member 
of variable cross-sectional area.
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2.1 An Introduction to Stress and Strain 69

 Rod BC of Fig. 2.17, used to derive Eq. (2.9), and rod AD of Fig. 2.19 
have one end attached to a fixed support. In each case, the deformation d
of the rod was equal to the displacement of its free end. When both ends 
of a rod move, however, the deformation of the rod is measured by the rela-
tive displacement of one end of the rod with respect to the other. Consider 
the assembly shown in Fig. 2.20a, which consists of three elastic bars of 
length L connected by a rigid pin at A. If a load P is applied at B (Fig. 2.20b), 
each of the three bars will deform. Since the bars AC and AC9 are attached 
to fixed supports at C and C9, their common deformation is measured by 
the displacement dA of point A. On the other hand, since both ends of 
bar AB move, the deformation of AB is measured by the difference between 
the displacements dA and dB of points A and B, (i.e., by the relative displace-
ment of B with respect to A). Denoting this relative displacement by dByA, 

 dByA 5 dB 2 dA 5
PL

AE
  (2.12)

where A is the cross-sectional area of AB and E is its modulus of elasticity.

Concept Application 2.1
Determine the deformation of the steel rod shown in Fig. 2.19a under 
the given loads (E 5 29 3 106 psi).
 The rod is divided into three component parts in Fig. 2.19b, so

 L1 5 L2 5 12 in.     L3 5 16 in.

 A1 5 A2 5 0.9 in2     A3 5 0.3 in2

To find the internal forces P1, P2, and P3, pass sections through each 
of the component parts, drawing each time the free-body diagram of 
the portion of rod located to the right of the section (Fig. 2.19c). Each 
of the free bodies is in equilibrium; thus

 P1 5 60 kips 5 60 3 103 lb

 P2 5 215 kips 5 215 3 103 lb

 P3 5 30 kips 5 30 3 103 lb

Using Eq. (2.10)

 d 5 a
i

PiLi

AiEi
5

1

E
 aP1L1

A1
1

P2L2

A2
1

P3L3

A3
b

 5
1

29 3 106 c 160 3 1032 1122
0.9

  1
1215 3 1032 1122

0.9
1
130 3 1032 1162

0.3
d

 
 d 5

2.20 3 106

29 3 106 5 75.9 3 1023 in.

C D

30 kips

12 in. 12 in.
16 in.

75 kips 45 kips

A

A � 0.9 in2 A � 0.3 in2

B

(a)

(b)

(c)

C
D

C
D

30 kips

30 kips

30 kips

30 kips

75 kips 45 kips

45 kips

A

P3

P2

P1

B

C
D

B

75 kips 45 kips

321

Fig. 2.19 (a) Axially-loaded rod. (b) Rod 
divided into three sections. (c) Three 
sectioned free-body diagrams with internal 
resultant forces P1, P2 , and P3.

Fig. 2.20 Example of relative end displacement, 
as exhibited by the middle bar. (a) Unloaded. 
(b) Loaded, with deformation.

A�

B�

A
A

B

B

P

C' CC

L

C'

(a) (b)

Equation (2.11) should be used in place of (2.9) when both the cross-
sectional area A is a function of x, or when the internal force P depends 
upon x, as is the case for a rod hanging under its own weight.
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70 Stress and Strain—Axial Loading

Sample Problem 2.1
The rigid bar BDE is supported by two links AB and CD. Link AB is 
made of aluminum (E 5 70 GPa) and has a cross-sectional area of 
500 mm2. Link CD is made of steel (E 5 200 GPa) and has a cross-
sectional area of 600 mm2. For the 30-kN force shown, determine the 
deflection (a) of B, (b) of D, and (c) of E.

STRATEGY: Consider the free body of the rigid bar to determine the 
internal force of each link. Knowing these forces and the properties of 
the links, their deformations can be evaluated. You can then use sim-
ple geometry to determine the deflection of E.

MODELING: Draw the free body diagrams of the rigid bar (Fig. 1) 
and the two links (Fig. 2 and 3)

ANALYSIS: 

Free Body: Bar BDE (Fig. 1) 

 1lo MB 5 0: 2130 kN2 10.6 m2 1 FCD10.2 m2 5 0

 FCD 5 190 kN     FCD 5 90 kN  tension

1lo MD 5 0: 2130 kN2 10.4 m2 2 FAB10.2 m2 5 0

 FAB 5 260 kN      FAB 5 60 kN  compression

 a. Deflection of B. Since the internal force in link AB is compres-
sive (Fig. 2), P 5 260 kN and

dB 5
PL
AE

5
1260 3 103 N2 10.3 m2

1500 3 1026 m22 170 3 109 Pa2 5 2514 3 1026 m

 The negative sign indicates a contraction of member AB. Thus, the 
deflection of end B is upward:

 dB 5 0.514 mmx ◀

30 kN0.4 m
0.3 m

0.2 m
0.4 m

C

A

B D E

30 kN

0.2 m
0.4 m

B D

FAB FCD

E

(continued)

Fig. 1 Free-body diagram of rigid bar 
BDE. 

0.3 m

A

B

F'AB 5 60 kN

FAB 5 60 kN

A 5 500 mm2

E 5 70 GPa

Fig. 2 Free-body diagram 
of two-force member AB.

0.4 m

C

D

FCD 5 90 kN

FCD 5 90 kN

A 5 600 mm2

E 5 200 GPa

Fig. 3 Free-body diagram of 
two-force member CD.
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2.1 An Introduction to Stress and Strain 71

Sample Problem 2.2
The rigid castings A and B are connected by two 3

4-in.-diameter steel 
bolts CD and GH and are in contact with the ends of a 1.5-in.-diameter 
aluminum rod EF. Each bolt is single-threaded with a pitch of 0.1 in., 
and after being snugly fitted, the nuts at D and H are both tightened 
one-quarter of a turn. Knowing that E is 29 3 106 psi for steel and 
10.6 3 106 psi for aluminum, determine the normal stress in the rod.

STRATEGY: The tightening of the nuts causes a displacement of the 
ends of the bolts relative to the rigid casting that is equal to the differ-
ence in displacements between the bolts and the rod. This will give a 
relation between the internal forces of the bolts and the rod that, when 
combined with a free body analysis of the rigid casting, will enable you 
to solve for these forces and determine the corresponding normal 
stress in the rod.

MODELING: Draw the free body diagrams of the bolts and rod 
(Fig. 1) and the rigid casting (Fig. 2).

ANALYSIS: 

Deformations.

Bolts CD and GH. Tightening the nuts causes tension in the 
bolts (Fig. 1). Because of symmetry, both are subjected to the same 

 b. Deflection of D. Since in rod CD (Fig. 3), P 5 90 kN, write

 dD 5
PL
AE

5
190 3 103 N2 10.4 m2

1600 3 1026 m22 1200 3 109 Pa2
  5 300 3 1026 m  dD 5 0.300 mmw ◀

 c. Deflection of E. Referring to Fig. 4, we denote by B9 and D9

the displaced positions of points B and D. Since the bar BDE is rigid, 
points B9, D9, and E9 lie in a straight line. Therefore,

 
BB¿
DD¿

5
BH

HD
     

0.514 mm

0.300 mm
5
1200 mm2 2 x

x
    x 5 73.7 mm

 
EE¿
DD¿

5
HE

HD
     

dE

0.300 mm
5
1400 mm2 1 173.7 mm2

73.7 mm

dE 5 1.928 mmw ◀

REFLECT and THINK: Comparing the relative magnitude and direc-
tion of the resulting deflections, you can see that the answers obtained 
are consistent with the loading and the deflection diagram of Fig. 4.

(continued)

C

G

D

H

18 in.

E
A B

F

12 in.

400 mm

(200 mm – x)

 D 5 0.300 mm

200 mm

B'

E'

D'
B

H D E

d E

 B 5 0.514 mmd
d

x

Fig. 4 Deflections at B and D of rigid 
bar are used to find dE.

C

E F

G

D

P'b

P'rPr

P'b

Pb

Pb

H

Fig. 1 Free-body diagrams of bolts and 
aluminum bar. 
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72 Stress and Strain—Axial Loading

internal force Pb and undergo the same deformation d b. 
Therefore,

 db 5 1
PbLb

AbEb
5 1

Pb118 in.2
1
4 p10.75 in.22129 3 106 psi2 5 11.405 3 1026 Pb (1)

Rod EF. The rod is in compression (Fig. 1), where the magnitude of 
the force is Pr and the deformation dr :

 dr 5 2
 
 

PrLr

ArEr
5 2  

Pr112 in.2
1
4 p11.5 in.22110.6 3 106 psi2 5 20.6406 3 1026 Pr (2)

Displacement of D Relative to B. Tightening the nuts one-quarter 
of a turn causes ends D and H of the bolts to undergo a displacement 
of 1

4(0.1 in.) relative to casting B. Considering end D,

 dDyB 5
1
4 10.1 in.2 5 0.025 in. (3)

But dDyB 5 dD 2 dB, where dD and dB represent the displacements of D 
and B. If casting A is held in a fixed position while the nuts at D and H 
are being tightened, these displacements are equal to the deforma-
tions of the bolts and of the rod, respectively. Therefore,

 dDyB 5 db 2 dr  (4)

Substituting from Eqs. (1), (2), and (3) into Eq. (4),

 0.025 in. 5 1.405 3 1026 Pb 1 0.6406 3 1026 Pr  (5)

Free Body: Casting B (Fig. 2)

y
1

 oF 5 0: Pr 2 2Pb 5 0    Pr 5 2Pb (6)

Forces in Bolts and Rod Substituting for Pr from Eq. (6) into 
Eq. (5), we have

 0.025 in. 5 1.405 3 1026 Pb 1 0.6406 3 102612Pb2
 Pb 5 9.307 3 103 lb 5 9.307 kips

 Pr 5 2Pb 5 219.307 kips2 5 18.61 kips

Stress in Rod

 sr 5
Pr

Ar
5

18.61 kips
1
4 p11.5 in.22 sr 5 10.53 ksi ◀

REFLECT and THINK: This is an example of a statically indetermi-
nate problem, where the determination of the member forces could 
not be found by equilibrium alone. By considering the relative dis-
placement characteristics of the members, you can obtain additional 
equations necessary to solve such problems. Situations like this will be 
examined in more detail in the following section.

Pb

Pb

BPr

Fig. 2 Free-body diagram 
of rigid casting.
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 2.1 A nylon thread is subjected to a 8.5-N tension force. Knowing that 
E 5 3.3 GPa and that the length of the thread increases by 1.1%, 
determine (a) the diameter of the thread, (b) the stress in the 
thread.

 2.2 A 4.8-ft-long steel wire of 1
4 -in.-diameter is subjected to a 750-lb 

tensile load. Knowing that E 5 29 3 106 psi, determine (a) the 
elongation of the wire, (b) the corresponding normal stress.

 2.3 An 18-m-long steel wire of 5-mm diameter is to be used in the 
manufacture of a prestressed concrete beam. It is observed that 
the wire stretches 45 mm when a tensile force P is applied. Know-
ing that E 5 200 GPa, determine (a) the magnitude of the force P, 
(b) the corresponding normal stress in the wire.

 2.4 Two gage marks are placed exactly 250 mm apart on a 
12-mm-diameter aluminum rod with E 5 73 GPa and an ultimate 
strength of 140 MPa. Knowing that the distance between the gage 
marks is 250.28 mm after a load is applied, determine (a) the 
stress in the rod, (b) the factor of safety.

2.5 An aluminum pipe must not stretch more than 0.05 in. when it 
is subjected to a tensile load. Knowing that E 5 10.1 3 106 psi 
and that the maximum allowable normal stress is 14 ksi, deter-
mine (a) the maximum allowable length of the pipe, (b) the 
required area of the pipe if the tensile load is 127.5 kips.

 2.6 A control rod made of yellow brass must not stretch more than 
3 mm when the tension in the wire is 4 kN. Knowing that 
E 5 105 GPa and that the maximum allowable normal stress 
is 180 MPa, determine (a) the smallest diameter rod that 
should be used, (b) the corresponding maximum length of the 
rod.

 2.7 A steel control rod is 5.5 ft long and must not stretch more than 
0.04 in. when a 2-kip tensile load is applied to it. Knowing that 
E 5 29 3 106 psi, determine (a) the smallest diameter rod that 
should be used, (b) the corresponding normal stress caused by 
the load.

 2.8 A cast-iron tube is used to support a compressive load. Knowing 
that E 5 10 3 106 psi and that the maximum allowable change 
in length is 0.025%, determine (a) the maximum normal stress in 
the tube, (b) the minimum wall thickness for a load of 1600 lb if 
the outside diameter of the tube is 2.0 in.

 2.9 A 4-m-long steel rod must not stretch more than 3 mm and the 
normal stress must not exceed 150 MPa when the rod is sub-
jected to a 10-kN axial load. Knowing that E 5 200 GPa, deter-
mine the required diameter of the rod.

Problems
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2.10 A nylon thread is to be subjected to a 10-N tension. Knowing that 
E 5 3.2 GPa, that the maximum allowable normal stress is 
40 MPa, and that the length of the thread must not increase by 
more than 1%, determine the required diameter of the thread.

 2.11 A block of 10-in. length and 1.8 3 1.6-in. cross section is to sup-
port a centric compressive load P. The material to be used is a 
bronze for which E 5 14 3 106 psi. Determine the largest load 
that can be applied, knowing that the normal stress must not 
exceed 18 ksi and that the decrease in length of the block should 
be at most 0.12% of its original length.

2.12 A square yellow-brass bar must not stretch more than 
2.5 mm when it is subjected to a tensile load. Knowing that 
E 5 105 GPa and that the allowable tensile strength is 180 MPa, 
determine (a) the maximum allowable length of the bar, (b) the 
required dimensions of the cross section if the tensile load is 
40 kN.

 2.13 Rod BD is made of steel (E 5 29 3 106 psi) and is used to brace 
the axially compressed member ABC. The maximum force that 
can be developed in member BD is 0.02P. If the stress must not 
exceed 18 ksi and the maximum change in length of BD must not 
exceed 0.001 times the length of ABC, determine the smallest-
diameter rod that can be used for member BD.

 2.14 The 4-mm-diameter cable BC is made of a steel with E 5 
200 GPa. Knowing that the maximum stress in the cable must 
not exceed 190 MPa and that the elongation of the cable must 
not exceed 6 mm, find the maximum load P that can be applied 
as shown.

 2.15 A single axial load of magnitude P 5 15 kips is applied at end C 
of the steel rod ABC. Knowing that E 5 30 3 106 psi, determine 
the diameter d of portion BC for which the deflection of point C 
will be 0.05 in.

 2.16 A 250-mm-long aluminum tube (E 5 70 GPa) of 36-mm outer 
diameter and 28-mm inner diameter can be closed at both ends 
by means of single-threaded screw-on covers of 1.5-mm pitch. 
With one cover screwed on tight, a solid brass rod (E 5 105 GPa) 
of 25-mm diameter is placed inside the tube and the second cover 
is screwed on. Since the rod is slightly longer than the tube, it is 
observed that the cover must be forced against the rod by rotating 
it one-quarter of a turn before it can be tightly closed. Determine 
(a) the average normal stress in the tube and in the rod, (b) the 
deformations of the tube and of the rod.

Fig. P2.13

72 in.

54 in.

72 in.

B

A

C

D

P � 130 kips

Fig. P2.14

3.5 m

4.0 m

2.5 m

B

A C

P

Fig. P2.15

P

1.25-in. diameter

4 ft
3 ft

d

A

B
C

Fig. P2.16

36 mm 28 mm

25 mm

250 mm
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 2.17 The specimen shown has been cut from a 1
4-in.-thick sheet of 

vinyl (E 5 0.45 3 106 psi) and is subjected to a 350-lb tensile load. 
Determine (a) the total deformation of the specimen, (b) the 
deformation of its central portion BC.

Fig. P2.17

P 5 350 lb
A B C D

1 in. 1 in.

1.6 in. 2 in.

0.4 in.

1.6 in.

P 5 350 lb

Fig. P2.18

375 mm

1 mm

C

D A

B

P

Fig. P2.19 and P2.20

0.4 m

0.5 m

P

Q

20-mm diameter

60-mm diameter

A

B

C

 2.20 The rod ABC is made of an aluminum for which E 5 70 GPa. 
Knowing that P 5 6 kN and Q 5 42 kN, determine the deflection 
of (a) point A, (b) point B.

 2.21 For the steel truss (E 5 200 GPa) and loading shown, determine 
the deformations of members AB and AD, knowing that their 
cross-sectional areas are 2400 mm2 and 1800 mm2, respectively.

Fig. P2.21

4.0 m 4.0 m

2.5 m
D CA

B

228 kN

2.18 The brass tube AB (E 5 105 GPa) has a cross-sectional area of 
140 mm2 and is fitted with a plug at A. The tube is attached at B 
to a rigid plate that is itself attached at C to the bottom of an 
aluminum cylinder (E 5 72 GPa) with a cross-sectional area of 
250 mm2. The cylinder is then hung from a support at D. In order 
to close the cylinder, the plug must move down through  1  mm. 
Determine the force P that must be applied to the cylinder.

 2.19 Both portions of the rod ABC are made of an aluminum for which 
E 5 70 GPa. Knowing that the magnitude of P is 4 kN, determine 
(a) the value of Q so that the deflection at A is zero, (b) the cor-
responding deflection of B.
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2.22 For the steel truss (E 5 29 3 106 psi) and loading shown, 
determine the deformations of members BD and DE, know-
ing  that their cross-sectional areas are 2 in2 and 3 in2, 
respectively.

Fig. P2.23

6 ft 6 ft

5 ft

C

D E
A

B

28 kips 54 kips

Fig. P2.24

6 m

5 m

C

DA

B

P

Fig. P2.22

15 ft

8 ft

8 ft

8 ft

D

C

F

E

G

A

B

30 kips

30 kips

30 kips

 2.23 Members AB and BC are made of steel (E 5 29 3 106 psi) with 
cross-sectional areas of 0.80 in2 and 0.64 in2, respectively. For the 
loading shown, determine the elongation of (a) member AB,
(b) member BC.

 2.24 The steel frame (E 5 200 GPa) shown has a diagonal brace BD 
with an area of 1920 mm2. Determine the largest allowable load P
if the change in length of member BD is not to exceed 1.6 mm.

 2.25 Link BD is made of brass (E 5 105 GPa) and has a cross-sectional 
area of 240 mm2. Link CE is made of aluminum (E 5 72 GPa) and 
has a cross-sectional area of 300 mm2. Knowing that they support 
rigid member ABC, determine the maximum force P that can be 
applied vertically at point A if the deflection of A is not to exceed 
0.35 mm.Fig. P2.25

P

125 mm
225 mm

225 mm

150 mm

E

D

A B

C
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 2.26 Members ABC and DEF are joined with steel links (E 5 200 GPa). 
Each of the links is made of a pair of 25 3 35-mm plates. Determine 
the change in length of (a) member BE, (b) member CF.

 2.27 Each of the links AB and CD is made of aluminum (E 5 10.9 3 106 psi) 
and has a cross-sectional area of 0.2 in2. Knowing that they support 
the rigid member BC, determine the deflection of point E.

Fig. P2.26

260 mm

18 kN 18 kN240 mm

180 mm
C

D

E

F

A

B

Fig. P2.27

P = 1 kip

10 in.
22 in.

18 in.

A

E

D

B C

Fig. P2.28

12.5 in.

D

C
A

x

B50 lb 

16 in.
4 in.

E
1
16 in.

Fig. P2.30

h

A a

b

P

2.28 The length of the 3
32-in.-diameter steel wire CD has been adjusted 

so that with no load applied, a gap of 1
16 in. exists between the 

end B of the rigid beam ACB and a contact point E. Knowing that 
E 5 29 3 106 psi, determine where a 50-lb block should be placed 
on the beam in order to cause contact between B and E.

 2.29 A homogenous cable of length L and uniform cross section is 
suspended from one end. (a) Denoting by r the density (mass 
per unit volume) of the cable and by E its modulus of elasticity, 
determine the elongation of the cable due to its own weight. 
(b) Show that the same elongation would be obtained if the cable 
were horizontal and if a force equal to half of its weight were 
applied at each end.

 2.30 The vertical load P is applied at the center A of the upper section 
of a homogeneous frustum of a circular cone of height h, mini-
mum radius a, and maximum radius b. Denoting by E the modu-
lus of elasticity of the material and neglecting the effect of its 
weight, determine the deflection of point A.

 2.31 Denoting by P the “engineering strain” in a tensile specimen, 
show that the true strain is Pt 5 ln(1 1 P).

 2.32 The volume of a tensile specimen is essentially constant while 
plastic deformation occurs. If the initial diameter of the specimen 
is d1, show that when the diameter is d, the true strain is 
Pt 5 2 ln(d1/d).
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78 Stress and Strain—Axial Loading

2.2  STATICALLY INDETERMINATE 
PROBLEMS

In the problems considered in the preceding section, we could always use 
free-body diagrams and equilibrium equations to determine the internal 
forces produced in the various portions of a member under given loading 
conditions. There are many problems, however, where the internal forces 
cannot be determined from statics alone. In most of these problems, the 
reactions themselves—the external forces— cannot be determined by 
simply drawing a free-body diagram of the member and writing the cor-
responding equilibrium equations. The equilibrium equations must be 
complemented by relationships involving deformations obtained by con-
sidering the geometry of the problem. Because statics is not sufficient to 
determine either the reactions or the internal forces, problems of this 
type are called statically indeterminate. The following concept applica-
tions show how to handle this type of problem.

Concept Application 2.2
A rod of length L, cross-sectional area A1, and modulus of elasticity E1, 
has been placed inside a tube of the same length L, but of cross-
sectional area A2 and modulus of elasticity E2 (Fig. 2.21a). What is the 
deformation of the rod and tube when a force P is exerted on a rigid 
end plate as shown?
 The axial forces in the rod and in the tube are P1 and P2, respec-
tively. Draw free-body diagrams of all three elements (Fig. 2.21b, c, d). 
Only Fig. 2.21d yields any significant information, as:

 P1 1 P2 5 P (1)

Clearly, one equation is not sufficient to determine the two unknown 
internal forces P1 and P2. The problem is statically indeterminate.
 However, the geometry of the problem shows that the deformations 
d1 and d2 of the rod and tube must be equal. Recalling Eq. (2.9), write

 d1 5
P1L

A1E1
     d2 5

P2L

A2E2
 (2)

Equating the deformations d1 and d2,

 
P1

A1E1
5

P2

A2E2
 (3)

Equations (1) and (3) can be solved simultaneously for P1 and P2:

P1 5
A1E1P

A1E1 1 A2E2
    P2 5

A2E2P

A1E1 1 A2E2

Either of Eqs. (2) can be used to determine the common deformation 
of the rod and tube.

P

P1 P'1

Tube (A2, E2)

Rod (A1, E1)

End
plate

(a)

(b)

(c)

(d)

L

P'2P2

P
P1

P2

Fig. 2.21 (a) Concentric rod and tube, 
loaded by force P. (b) Free-body diagram 
of rod. (c) Free-body diagram of tube. 
(d) Free-body diagram of end plate.
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2.2 Statically Indeterminate Problems 79

Superposition Method. A structure is statically indeterminate when-
ever it is held by more supports than are required to maintain its equilib-
rium. This results in more unknown reactions than available equilibrium 
equations. It is often convenient to designate one of the reactions as 
redundant and to eliminate the corresponding support. Since the stated 
conditions of the problem cannot be changed, the redundant reaction 
must be maintained in the solution. It will be treated as an unknown load
that, together with the other loads, must produce deformations compati-
ble with the original constraints. The actual solution of the problem con-
siders separately the deformations caused by the given loads and the 
redundant reaction, and by adding—or superposing—the results obtained. 
The general conditions under which the combined effect of several loads 
can be obtained in this way are discussed in Sec. 2.5.

Concept Application 2.3
A bar AB of length L and uniform cross section is attached to rigid 
supports at A and B before being loaded. What are the stresses in por-
tions AC and BC due to the application of a load P at point C 
(Fig. 2.22a)?
 Drawing the free-body diagram of the bar (Fig. 2.22b), the equi-
librium equation is

 RA 1 RB 5 P (1)

Since this equation is not sufficient to determine the two unknown 
reactions RA and RB, the problem is statically indeterminate.
 However, the reactions can be determined if observed from the 
geometry that the total elongation d of the bar must be zero. The elon-
gations of the portions AC and BC are respectively d1 and d2, so

d 5 d1 1 d2 5 0

Using Eq. (2.9), d1 and d2 can be expressed in terms of the correspond-
ing internal forces P1 and P2,

 d 5
P1L1

AE
1

P2L2

AE
5 0 (2)

Note from the free-body diagrams shown in parts b and c of Fig. 2.22c 
that P1 5 RA and P2 5 2RB. Carrying these values into Equation (2),

 RAL1 2 RBL2 5 0 (3)

Equations (1) and (3) can be solved simultaneously for RA and RB, as 
RA 5 PL2yL and RB 5 PL1yL. The desired stresses s1 in AC and s2 in 
BC are obtained by dividing P1 5 RA and P2 5 2RB by the cross-
sectional area of the bar:

s1 5
PL2

AL
    s2 5 2 

PL1

AL

P

L1

L2

RA

RB

(a) (b)

L

A

B

A

B

C C

P

RA

P

RA

RB RB

(a)

(b)

(c)

A

B

C P1

P2

(c)

Fig. 2.22 (a) Restrained bar 
with axial load. (b) Free-body 
diagram of bar. (c) Free-body 
diagrams of sections above and 
below point C used to determine 
internal forces P1 and P2.
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80 Stress and Strain—Axial Loading

Concept Application 2.4
Determine the reactions at A and B for the steel bar and loading shown 
in Fig. 2.23a, assuming a close fit at both supports before the loads are 
applied.
 We consider the reaction at B as redundant and release the bar 
from that support. The reaction RB is considered to be an unknown 
load and is determined from the condition that the deformation d of 
the bar equals zero.
 The solution is carried out by considering the deformation dL 
caused by the given loads and the deformation dR due to the redun-
dant reaction RB (Fig. 2.23b).
 The deformation dL is obtained from Eq. (2.10) after the bar has 
been divided into four portions, as shown in Fig. 2.23c. Follow the 
same procedure as in Concept Application 2.1:

 P1 5 0    P2 5 P3 5 600 3 103 N    P4 5 900 3 103 N

 A1 5 A2 5 400 3 1026 m2    A3 5 A4 5 250 3 1026 m2

L1 5 L2 5 L3 5 L4 5 0.150 m

Substituting these values into Eq. (2.10),

  dL 5 a
4

i51

PiLi

AiE
5 a0 1

600 3 103 N

400 3 1026 m2 

  1
600 3 103 N

250 3 1026 m2 1
900 3 103 N

250 3 1026 m2b 0.150 m

E
 

  dL 5
1.125 3 109

E
 (1)

 Considering now the deformation dR due to the redundant reac-
tion RB, the bar is divided into two portions, as shown in Fig. 2.23d

P1 5 P2 5 2RB

A1 5 400 3 1026 m2  A2 5 250 3 1026 m2

L1 5 L2 5 0.300 m

Substituting these values into Eq. (2.10), 

 dR 5
P1L1

A1E
1

P2L2

A2E
5 2 

11.95 3 1032RB

E
 (2)

Express the total deformation d of the bar as zero:

 d 5 dL 1 dR 5 0 (3)

and, substituting for dL and dR from Eqs. (1) and (2) into Eqs. (3),

d 5
1.125 3 109

E
2
11.95 3 1032RB

E
5 0

C

A

D

K

B

A 5 250 mm2 

A 5 400 mm2 

300 kN 

600 kN 150 mm

150 mm

150 mm

150 mm

(a)

A

300 kN 

600 kN 

A

300 kN 

600 kN 

A

L�� R�  � 0

RB RB 

(b)

C

K

D
3

4

2

1

A

B

300 kN 

600 kN 

(c)

150 mm

150 mm

150 mm

150 mm

C

1

2

A

B

RB

300 mm

300 mm

(d)

Fig. 2.23 (a) Restrained axially-loaded 
bar. (b) Reactions will be found by 
releasing constraint at point B and adding 
compressive force at point B to enforce 
zero deformation at point B. (c) Free-body 
diagram of released structure. 
(d) Free-body diagram of added reaction 
force at point B to enforce zero 
deformation at point B.

(continued)
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2.2 Statically Indeterminate Problems 81

Solving for RB,

RB 5 577 3 103 N 5 577 kN

 The reaction RA at the upper support is obtained from the free-
body diagram of the bar (Fig. 2.23e),

 1 x o Fy 5 0:    RA 2 300 kN 2 600 kN 1 RB 5 0

 RA 5 900 kN 2 RB 5 900 kN 2 577 kN 5 323 kN

 Once the reactions have been determined, the stresses and strains 
in the bar can easily be obtained. Note that, while the total deforma-
tion of the bar is zero, each of its component parts does deform under 
the given loading and restraining conditions.

C

A

300 kN 

600 kN 

B

RB

RA

(e)

Concept Application 2.5

Determine the reactions at A and B for the steel bar and loading of 
Concept Application 2.4, assuming now that a 4.5-mm clearance exists 
between the bar and the ground before the loads are applied (Fig. 2.24). 
Assume E 5 200 GPa.
 Considering the reaction at B to be redundant, compute the defor-
mations dL and dR caused by the given loads and the redundant reac-
tion RB. However, in this case, the total deformation is d 5 4.5 mm. 
Therefore,

 d 5 dL 1 dR 5 4.5 3 1023 m (1)

Substituting for dL and dR into (Eq. 1), and recalling that E 5 200 GPa 
5 200 3 109 Pa, 

d 5
1.125 3 109

200 3 109 2
11.95 3 1032RB

200 3 109 5 4.5 3 1023 m

Solving for RB,

RB 5 115.4 3 103 N 5 115.4 kN

The reaction at A is obtained from the free-body diagram of the bar 
(Fig. 2.23e):

1 x o Fy 5 0:    RA 2 300 kN 2 600 kN 1 RB 5 0

 RA 5 900 kN 2 RB 5 900 kN 2 115.4 kN 5 785 kN

CC

AA

B B

300 kN

600 kN

300 mm

4.5 mm

300 mm

A 5 250 mm2 

A 5 400 mm2 

d

Fig. 2.24 Multi-section bar of Concept 
Application 2.4 with initial 4.5-mm gap at 
point B. Loading brings bar into contact 
with constraint.

Fig. 2.23 (cont.) (e) Complete 
free-body diagram of ACB.
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82 Stress and Strain—Axial Loading

2.3  PROBLEMS INVOLVING 
TEMPERATURE CHANGES

Consider a homogeneous rod AB of uniform cross section that rests freely 
on a smooth horizontal surface (Fig. 2.25a). If the temperature of the rod is 
raised by DT, the rod elongates by an amount dT that is proportional to both 
the temperature change DT and the length L of the rod (Fig. 2.25b). Here 

 dT 5 a(DT)L (2.13)

where a is a constant characteristic of the material called the coefficient of 
thermal expansion. Since dT and L are both expressed in units of length, 
a represents a quantity per degree C or per degree F, depending whether 
the temperature change is expressed in degrees Celsius or Fahrenheit.

Fig. 2.25 Elongation of an 
unconstrained rod due to temperature 
increase.

A

L

L

B

B

(b)

A

(a)

T�

Fig. 2.26 Force P develops when the 
temperature of the rod increases while ends 
A and B are restrained.

L

(b)

A B

A B

P' P

(a)

 Associated with deformation dT must be a strain PT 5 dTyL. Recalling 
Eq. (2.13),

PT 5 aDT (2.14)

The strain PT is called a thermal strain, as it is caused by the change 
in  temperature of the rod. However, there is no stress associated with 
the strain PT .
 Assume the same rod AB of length L is placed between two fixed 
supports at a distance L from each other (Fig. 2.26a). Again, there is nei-
ther stress nor strain in this initial condition. If we raise the temperature 
by DT, the rod cannot elongate because of the restraints imposed on its 
ends; the elongation dT of the rod is zero. Since the rod is homogeneous 
and of uniform cross section, the strain PT at any point is PT 5 dTyL and 
thus is also zero. However, the supports will exert equal and opposite 
forces P and P9 on the rod after the temperature has been raised, to keep 
it from elongating (Fig. 2.26b). It follows that a state of stress (with no cor-
responding strain) is created in the rod.
 The problem created by the temperature change DT is statically 
indeterminate. Therefore, the magnitude P of the reactions at the supports 
is determined from the condition that the elongation of the rod is zero. 
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2.3 Problems Involving Temperature Changes 83

Using the superposition method described in Sec. 2.2, the rod is detached 
from its support B (Fig. 2.27a) and elongates freely as it undergoes the 
temperature change DT (Fig. 2.27b). According to Eq. (2.13), the corre-
sponding elongation is

dT 5 a(DT)L

Applying now to end B the force P representing the redundant reaction, 
and recalling Eq. (2.9), a second deformation (Fig. 2.27c) is

dP 5
PL
AE

Expressing that the total deformation d must be zero,

d 5 dT 1 dP 5 a1¢T2L 1
PL
AE

5 0

from which

P 5 2AEa(DT)

The stress in the rod due to the temperature change DT is

 s 5
P

A
5 2Ea1¢T2 (2.15)

 The absence of any strain in the rod applies only in the case of a 
homogeneous rod of uniform cross section. Any other problem involving a 
restrained structure undergoing a change in temperature must be ana-
lyzed on its own merits. However, the same general approach can be used 
by considering the deformation due to the temperature change and the 
deformation due to the redundant reaction separately and superposing 
the two solutions obtained.

Fig. 2.27 Superposition method to find force at point 
B of restrained rod AB undergoing thermal expansion. 
(a) Initial rod length; (b) thermally expanded rod length; 
(c) force P pushes point B back to zero deformation.

L

(b)

(c)

L

A

A B

B

P

(a)
T�

A B

P�
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84 Stress and Strain—Axial Loading

Concept Application 2.6

Determine the values of the stress in portions AC and CB of the steel 
bar shown (Fig. 2.28a) when the temperature of the bar is 2508F, know-
ing that a close fit exists at both of the rigid supports when the tem-
perature is 1758F. Use the values E 5 29 3 106 psi and a 5 6.5 3 10–6/8F 
for steel.
 Determine the reactions at the supports. Since the problem is 
statically indeterminate, detach the bar from its support at B and let it 
undergo the temperature change

¢T 5 12508F2 2 1758F2 5 21258F

The corresponding deformation (Fig. 2.28c) is

 dT 5 a1¢T2L 5 16.5 3 1026/8F2 121258F2 124 in.2
 5 219.50 3 1023 in.

Applying the unknown force RB at end B (Fig. 2.28d), use Eq. (2.10) to 
express the corresponding deformation dR. Substituting

L1 5 L2 5 12 in.

A1 5 0.6 in2    A2 5 1.2 in2

P1 5 P2 5 RB    E 5 29 3 106 psi

into Eq. (2.10), write

 dR 5
P1L1

A1E
1

P2L2

A2E

 5
RB

29 3 106 psi
 a 12 in.

0.6 in2 1
12 in.

1.2 in2b
 5 11.0345 3 1026 in./lb2RB

Expressing that the total deformation of the bar must be zero as a 
result of the imposed constraints, write

 d 5 dT 1 dR 5 0

 5 219.50 3 1023 in. 1 11.0345 3 1026 in./lb2RB 5 0

from which

RB 5 18.85 3 103 lb 5 18.85 kips

The reaction at A is equal and opposite.
 Noting that the forces in the two portions of the bar are P1 5 P2 
5 18.85 kips, obtain the following values of the stress in portions AC 
and CB of the bar:

Fig. 2.28 (a) Restrained bar. (b) Bar at 
1758F temperature. (c) Bar at lower 
temperature. (d) Force RB needed to 
enforce zero deformation at point B.

C
A

A 5 0.6 in2 A 5 1.2 in2

12 in.12 in.

B

(a)

(c)

(d)

RB

(b)
T�

R�

C
A

B

C

L1 L2

A
B

C

1 2

1 2

A
B

(continued)

bee98233_ch02_054-145.indd   84bee98233_ch02_054-145.indd   84 11/15/13   4:55 PM11/15/13   4:55 PM



2.3 Problems Involving Temperature Changes 85

 s1 5
P1

A1
5

18.85 kips

0.6 in2 5 131.42 ksi

s2 5
P2

A2
5

18.85 kips

1.2 in2 5 115.71 ksi

 It cannot emphasized too strongly that, while the total deforma-
tion of the bar must be zero, the deformations of the portions AC and 
CB are not zero. A solution of the problem based on the assumption 
that these deformations are zero would therefore be wrong. Neither 
can the values of the strain in AC or CB be assumed equal to zero. To 
amplify this point, determine the strain PAC in portion AC of the bar. 
The strain PAC can be divided into two component parts; one is the 
thermal strain PT produced in the unrestrained bar by the temperature 
change DT (Fig. 2.28c). From Eq. (2.14),

 PT 5 a ¢T 5 16.5 3 1026/8F2 121258F2
 5 2812.5 3 1026 in./in.

The other component of PAC is associated with the stress s1 due to the 
force RB applied to the bar (Fig. 2.28d). From Hooke’s law, express this 
component of the strain as

s1

E
5

131.42 3 103 psi

29 3 106 psi
5 11083.4 3 1026 in./in.

Add the two components of the strain in AC to obtain

 PAC 5 PT 1
s1

E
5 2812.5 3 1026 1 1083.4 3 1026

 5 1271 3 1026 in./in.

A similar computation yields the strain in portion CB of the bar:

 PCB 5 PT 1
s2

E
5 2812.5 3 1026 1 541.7 3 1026

 5 2271 3 1026 in./in.

The deformations dAC and dCB of the two portions of the bar are

 dAC 5 PAC1AC2 5 11271 3 10262 112 in.2
 5 13.25 3 1023 in.

 dCB 5 PCB1CB2 5 12271 3 10262 112 in.2
 5 23.25 3 1023 in.

Thus, while the sum d 5 dAC 1 dCB of the two deformations is zero, 
neither of the deformations is zero.
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86 Stress and Strain—Axial Loading

Sample Problem 2.3
The 1

2-in.-diameter rod CE and the 3
4-in.-diameter rod DF are attached 

to the rigid bar ABCD as shown. Knowing that the rods are made of 
aluminum and using E 5 10.6 3 106 psi, determine (a) the force in 
each rod caused by the loading shown and (b) the corresponding 
deflection of point A.

STRATEGY: To solve this statically indeterminate problem, you must 
supplement static equilibrium with a relative deflection analysis of the 
two rods.

MODELING: Draw the free body diagram of the bar (Fig. 1)

ANALYSIS: 

Statics. Considering the free body of bar ABCD in Fig. 1, note that 
the reaction at B and the forces exerted by the rods are indeterminate. 
However, using statics, 

1 l o MB 5 0:  110 kips2 118 in.2 2 FCE 
112 in.2 2 FDF 120 in.2 5 0

 12FCE 1 20FDF 5 180 (1)

Geometry. After application of the 10-kip load, the position of the 
bar is A9BC9D9 (Fig. 2). From the similar triangles BAA9, BCC9, and 
BDD9,

 
dC

12 in.
5
dD

20 in.
    dC 5 0.6dD (2)

 
dA

18 in.
5
dD

20 in.
    dA 5 0.9dD (3)

Deformations. Using Eq. (2.9), and the data shown in Fig. 3, write

dC 5
FCELCE

ACEE
    dD 5

FDFLDF

ADFE

Substituting for dC and dD into Eq. (2), write

dC 5 0.6dD    FCELCE

ACEE
5 0.6 

FDFLDF

ADFE

FCE 5 0.6 
LDF

LCE
 
ACE

ADF
 FDF 5 0.6 a30 in.

24 in.
b c

1
4p112 in.22
1
4p134 in.22 d  FDF  FCE 5 0.333FDF

Force in Each Rod. Substituting for FCE into Eq. (1) and recalling 
that all forces have been expressed in kips,

 1210.333FDF2 1 20FDF 5 180 FDF 5 7.50 kips ◀

 FCE 5 0.333FDF 5 0.33317.50 kips2 FCE 5 2.50 kips ◀

(continued)

Fig. 1 Free-body diagram of rigid 
bar ABCD. 

18 in.
12 in.

30 in.
24 in.

8 in.

10 kips

B

E

F

C DA

18 in.
12 in. 8 in.

FCE

By

Bx

FDF10 kips

B
C DA

18 in.
12 in. 8 in.

B
C' D'

C D
A

A' Ad Cd
Dd

30 in.
24 in.

Cd
Dd

C D

E

F

in.1
2

in.3
4

FCE FDF

Fig. 2 Linearly proportional 
displacements along rigid bar 
ABCD. 

Fig. 3 Forces and deformations 
in CE and DF.
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2.3 Problems Involving Temperature Changes 87

Deflections. The deflection of point D is

dD 5
FDFLDF

ADFE
5
17.50 3 103 lb2 Ê130 in.2

1
4p134 in.22110.6 3 106 psi2    dD 5 48.0 3 1023 in.

Using Eq. (3),

 dA 5 0.9dD 5 0.9148.0 3 1023 in.2 dA 5 43.2 3 1023 in. ◀

REFLECT and THINK: You should note that as the rigid bar rotates 
about B, the deflections at C and D are proportional to their distance 
from the pivot point B, but the forces exerted by the rods at these 
points are not. Being statically indeterminate, these forces depend 
upon the deflection attributes of the rods as well as the equilibrium 
of the rigid bar.

(continued)(continued)(continued)(continued)

Sample Problem 2.4
The rigid bar CDE is attached to a pin support at E and rests on the 
30-mm-diameter brass cylinder BD. A 22-mm-diameter steel rod AC 
passes through a hole in the bar and is secured by a nut that is snugly 
fitted when the temperature of the entire assembly is 208C. The tem-
perature of the brass cylinder is then raised to 508C, while the steel rod 
remains at 208C. Assuming that no stresses were present before the 
temperature change, determine the stress in the cylinder.

 Rod AC: Steel Cylinder BD: Brass
 E 5 200 GPa E 5 105 GPa
 a 5 11.7 3 1026/8C a 5 20.9 3 1026/8C

STRATEGY: You can use the method of superposition, considering 
RB as redundant. With the support at B removed, the temperature rise 
of the cylinder causes point B to move down through dT. The reaction 
RB must cause a deflection d1, equal to dT so that the final deflection 
of B will be zero (Fig. 2)

MODELING: Draw the free-body diagram of the entire assembly 
(Fig. 1).

ANALYSIS: 

Statics. Considering the free body of the entire assembly, write

1l o ME 5 0:  RA10.75 m2 2 RB10.3 m2 5 0   RA 5 0.4RB (1)

(continued)

C

A

B0.9 m

0.3 m

0.45 m 0.3 m

D

E

C

A

B

0.3 m0.45 m

D E

RA

RB

Ey

Ex

Fig. 1 Free-body diagram of bolt, 
cylinder and bar.
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88 Stress and Strain—Axial Loading

 Deflection dT. Because of a temperature rise of 508 2 208 5 308C, 
the length of the brass cylinder increases by dT. (Fig. 2a).

 dT 5 L1¢T2a 5 10.3 m2 Ê1308C2 Ê120.9 3 1026/8C2 5 188.1 3 1026 m w

 Deflection d1.  From Fig. 2b, note that dD 5 0.4dC and 
d1 5 dD 1 dByD.

 dC 5
RAL

AE
5

RA10.9 m2
1
4p10.022 m221200 GPa2 5 11.84 3 1029RA x

 dD 5 0.40dC 5 0.4111.84 3 1029RA2 5 4.74 3 1029RAx

 dByD 5
RBL

AE
5

RB10.3 m2
1
4p10.03 m221105 GPa2 5 4.04 3 1029RB x

Recall from Eq. (1) that RA 5 0.4RB , so

d1 5 dD 1 dByD 5 34.7410.4RB2 1 4.04RB 41029 5 5.94 3 1029RB x

But dT 5 d1: 188.1 3 1026 m 5 5.94 3 1029 RB RB 5 31.7 kN

Stress in Cylinder: sB 5
RB

A
5

31.7 kN
1
4p10.03 m22  sB 5 44.8 MPa ◀

REFLECT and THINK: This example illustrates the large stresses 
that can develop in statically indeterminate systems due to even mod-
est temperature changes. Note that if this assembly was statically 
determinate (i.e., the steel rod was removed), no stress at all would 
develop in the cylinder due to the temperature change.

(a) (b)

5
0.3 0.4   C0.75

(c)

C

C C

D
DD

E E

A AA

B
B B

RB

RA  

dT

dC dC

dD 5d dC

d1

Fig. 2 Superposition of thermal and restraint force deformations (a) Support at B removed. 
(b) Reaction at B applied. (c) Final position.
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Problems
 2.33 An axial centric force of magnitude P 5 450 kN is applied to the 

composite block shown by means of a rigid end plate. Knowing 
that h 5 10 mm, determine the normal stress in (a) the brass 
core, (b) the aluminum plates.

Fig. P2.33

40 mm

60 mm

Aluminum plates
(E = 70 GPa)

300 mm

Brass core
(E = 105 GPa) Rigid

end plateP

h

h

Fig. P2.35

4.5 ft

18 in.

P

Fig. P2.37 and P2.38

300 mm

60 mm

Aluminium shell
E � 70 GPa

Brass core
E � 105 GPa

25 mm

 2.34 For the composite block shown in Prob. 2.33, determine (a) the 
value of h if the portion of the load carried by the aluminum 
plates is half the portion of the load carried by the brass core, (b)
the total load if the stress in the brass is 80 MPa.

 2.35 The 4.5-ft concrete post is reinforced with six steel bars, each with a 
11

8-in. diameter. Knowing that Es 5 29 3 106 psi and Ec 5 4.2 3 106

psi, determine the normal stresses in the steel and in the concrete 
when a 350-kip axial centric force P is applied to the post.

 2.36 For the post of Prob. 2.35, determine the maximum centric force 
that can be applied if the allowable normal stress is 20 ksi in the 
steel and 2.4 ksi in the concrete.

2.37 An axial force of 200 kN is applied to the assembly shown by 
means of rigid end plates. Determine (a) the normal stress in the 
aluminum shell, (b) the corresponding deformation of the 
assembly.

2.38 The length of the assembly shown decreases by 0.40 mm when 
an axial force is applied by means of rigid end plates. Determine 
(a) the magnitude of the applied force, (b) the corresponding 
stress in the brass core.
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 2.39 A polystyrene rod consisting of two cylindrical portions AB and 
BC is restrained at both ends and supports two 6-kip loads as 
shown. Knowing that E 5 0.45 3 106 psi, determine (a) the reac-
tions at A and C, (b) the normal stress in each portion of the rod.

 2.40 Three steel rods (E 5 29 3 106 psi) support an 8.5-kip load P. 
Each of the rods AB and CD has a 0.32-in2 cross-sectional area 
and rod EF has a 1-in2 cross-sectional area. Neglecting the defor-
mation of bar BED, determine (a) the change in length of rod EF, 
(b) the stress in each rod.

Fig. P2.39

B

C

15 in.

25 in.
1.25 in.

A

6 kips6 kips

2 in.

Fig. P2.40

A

B

C

D

E

F

20 in.

16 in.

P

Fig. P2.41

180

40-mm diam. 30-mm diam.

120
100

Dimensions in mm

100

A C D E

60 kN 40 kN

BrassSteel B

Fig. P2.43

A
B

D E

F

C

550 mm

75 mm 100 mm

225 mm2 kN

Fig. P2.44

P

F

C

D

BA

E

12 in.12 in.12 in.

8 in.

10 in.

 2.41 Two cylindrical rods, one of steel and the other of brass, are 
joined at C and restrained by rigid supports at A and E. For 
the  loading shown and knowing that Es 5 200 GPa and 
Eb 5 105 GPa, determine (a) the reactions at A and E, (b) the 
deflection of point C.

 2.42 Solve Prob. 2.41, assuming that rod AC is made of brass and rod 
CE is made of steel.

 2.43 Each of the rods BD and CE is made of brass (E 5 105 GPa) and 
has a cross-sectional area of 200 mm2. Determine the deflection 
of end A of the rigid member ABC caused by the 2-kN load.

 2.44 The rigid bar AD is supported by two steel wires of 1
16-in. diameter 

(E 5 29 3 106 psi) and a pin and bracket at A. Knowing that the 
wires were initially taut, determine (a) the additional tension in 
each wire when a 220-lb load P is applied at D, (b) the corre-
sponding deflection of point D.

bee98233_ch02_054-145.indd   90bee98233_ch02_054-145.indd   90 11/15/13   4:55 PM11/15/13   4:55 PM



91

 2.45 The rigid bar ABC is suspended from three wires of the same 
material. The cross-sectional area of the wire at B is equal to half 
of the cross-sectional area of the wires at A and C. Determine the 
tension in each wire caused by the load P shown.

 2.46 The rigid bar AD is supported by two steel wires of 1
16-in. diameter 

(E 5 29 3 106 psi) and a pin and bracket at D. Knowing that the 
wires were initially taut, determine (a) the additional tension in 
each wire when a 120-lb load P is applied at B, (b) the corre-
sponding deflection of point B. Fig. P2.45

P

A
D B

L L

C

L3
4

Fig. P2.46

D

P

B C

E

15 in.

8 in.8 in.8 in.

F

A

8 in.

Fig. P2.47

Brass core
     E � 105 GPa
         � 20.9  � 10–6/�C   

Aluminum shell
     E � 70 GPa
         � 23.6  � 10–6/�C   

25 mm

60 mm

�

�

Fig. P2.49

12 in.

1 in.1 in.

Steel core
E � 29 � 106 psi

Brass shell
E � 15 � 106 psi

in.1
4

in.1
4

in.1
4

in.1
4

 2.47 The aluminum shell is fully bonded to the brass core and the 
assembly is unstressed at a temperature of 158C. Considering 
only axial deformations, determine the stress in the aluminum 
when the temperature reaches 1958C.

 2.48 Solve Prob. 2.47, assuming that the core is made of steel 
(Es 5 200 GPa, as 5 11.7 3 1026/8C) instead of brass.

 2.49 The brass shell (ab 5 11.6 3 1026/8F) is fully bonded to the steel 
core (as 5 6.5 3 1026/8F). Determine the largest allowable 
increase in temperature if the stress in the steel core is not to 
exceed 8 ksi.
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 2.50 The concrete post (Ec 5 3.6 3 106 psi and ac 5 5.5 3 1026/8F) is 
reinforced with six steel bars, each of  7

8-in. diameter 
(Es 5 29 3 106 psi and as 5 6.5 3 1026/8F). Determine the normal 
stresses induced in the steel and in the concrete by a temperature 
rise of 658F.

 2.51 A rod consisting of two cylindrical portions AB and BC is 
restrained at both ends. Portion AB is made of steel (Es 5 200 GPa, 
as 5 11.7 3 1026/8C) and portion BC is made of brass (Eb 5 105 
GPa, ab 5 20.9 3 1026/8C). Knowing that the rod is initially 
unstressed, determine the compressive force induced in ABC 
when there is a temperature rise of 508C.

Fig. P2.50

6 ft

10 in.10 in.

Fig. P2.51

B

C

250 mm

300 mm

A

50-mm diameter

30-mm diameter

 2.52 A rod consisting of two cylindrical portions AB and BC is restrained 
at both ends. Portion AB is made of steel (Es 5 29 3 106 psi, 
as 5 6.5 3 1026/8F) and portion BC is made of aluminum 
(Ea 5 10.4 3 106 psi, aa 5 13.3 3 1026/8F). Knowing that the rod 
is initially unstressed, determine (a) the normal stresses induced 
in portions AB and BC by a temperature rise of 708F, (b) the cor-
responding deflection of point B.

2.53 Solve Prob. 2.52, assuming that portion AB of the composite rod 
is made of aluminum and portion BC is made of steel.

 2.54 The steel rails of a railroad track (Es 5 200 GPa, as 5 11.7 3 1026/8C) 
were laid at a temperature of 68C. Determine the normal stress 
in the rails when the temperature reaches 488C, assuming that 
the rails (a) are welded to form a continuous track, (b) are 10 m 
long with 3-mm gaps between them.

 2.55 Two steel bars (Es 5 200 GPa and as 5 11.7 3 1026/8C) are used 
to reinforce a brass bar (Eb 5 105 GPa, ab 5 20.9 3 1026/8C) that 
is subjected to a load P 5 25 kN. When the steel bars were fabri-
cated, the distance between the centers of the holes that were to 
fit on the pins was made 0.5 mm smaller than the 2 m needed. 
The steel bars were then placed in an oven to increase their length 
so that they would just fit on the pins. Following fabrication, the 
temperature in the steel bars dropped back to room temperature. 
Determine (a) the increase in temperature that was required to fit 
the steel bars on the pins, (b) the stress in the brass bar after the 
load is applied to it.

Fig. P2.52

A B C

1   -in. diameter1
2

24 in. 32 in.

2   -in. diameter1
4

Fig. P2.55

15 mm

40 mm

2 m

5 mmSteel

Brass

Steel

P�

P
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 2.56 Determine the maximum load P that can be applied to the brass 
bar of Prob. 2.55 if the allowable stress in the steel bars is 30 MPa 
and the allowable stress in the brass bar is 25 MPa.

2.57 An aluminum rod (Ea 5 70 GPa, aa 5 23.6 3 1026/8C) and a 
steel link (Es 5 200 GPa, as 5 11.7 3 1026/8C) have the dimen-
sions shown at a temperature of 208C. The steel link is heated 
until the aluminum rod can be fitted freely into the link. The 
temperature of the whole assembly is then raised to 1508C. 
Determine the final normal stress (a) in the rod, (b) in the link.

Fig. P2.60

Aluminum
 A 5 2000 mm2

 E 5 75 GPa
     5 23 3 10–6/8C

A B

300 mm 250 mm

0.5 mm

a

Stainless steel
 A 5 800 mm2

 E 5 190 GPa  
     5 17.3 3 10–6/8Ca

Bronze
 A � 2.4 in2

 E � 15 � 106 psi 
     � 12 � 10–6/�F

0.02 in.
14 in. 18 in.

�

Aluminum
 A � 2.8 in2

 E � 10.6 � 106 psi 
     � 12.9 � 10–6/�F�

Fig. P2.58 and P2.59

 2.58 Knowing that a 0.02-in. gap exists when the temperature is 758F, 
determine (a) the temperature at which the normal stress in the 
aluminum bar will be equal to 211 ksi, (b) the corresponding 
exact length of the aluminum bar.

 2.59 Determine (a) the compressive force in the bars shown after a 
temperature rise of 1808F, (b) the corresponding change in length 
of the bronze bar.

2.60 At room temperature (208C) a 0.5-mm gap exists between 
the  ends of the rods shown. At a later time when the 
temperature has reached 1408C, determine (a) the normal 
stress in the aluminum rod, (b) the change in length of the 
aluminum rod.

20

20 20
200

0.15

Dimensions in mm

30

A A

Section A-A

Fig. P2.57
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94 Stress and Strain—Axial Loading

2.4 POISSON’S RATIO
When a homogeneous slender bar is axially loaded, the resulting stress 
and strain satisfy Hooke’s law, as long as the elastic limit of the material 
is not exceeded. Assuming that the load P is directed along the x axis 
(Fig. 2.29a), sx 5 PyA, where A is the cross-sectional area of the bar, and 
from Hooke’s law,

 Px 5 sxyE (2.16)

where E is the modulus of elasticity of the material.
 Also, the normal stresses on faces perpendicular to the y and z axes 
are zero: sy 5 sz 5 0 (Fig. 2.29b). It would be tempting to conclude that 
the corresponding strains Py and Pz are also zero. This is not the case. In 
all engineering materials, the elongation produced by an axial tensile 
force P in the direction of the force is accompanied by a contraction in 
any transverse direction (Fig. 2.30).† In this section and the following 
sections, all materials are assumed to be both homogeneous and isotro-
pic (i.e., their mechanical properties are independent of both position
and direction). It follows that the strain must have the same value for any 
transverse direction. Therefore, the loading shown in Fig. 2.29 must have 
Py 5 Pz. This common value is the lateral strain. An important constant 
for a given material is its Poisson’s ratio, named after the French math-
ematician Siméon Denis Poisson (1781–1840) and denoted by the Greek 
letter n (nu).

 n 5 2 
lateral strain

axial strain
 (2.17)

or

 n 5 2 
Py

Px
5 2 

Pz

Px
 (2.18)

for the loading condition represented in Fig. 2.29. Note the use of a minus 
sign in these equations to obtain a positive value for n, as the axial and 
lateral strains have opposite signs for all engineering materials.‡ Solving 
Eq. (2.18) for Py and Pz  , and recalling Eq. (2.16), write the following rela-
tionships, which fully describe the condition of strain under an axial load 
applied in a direction parallel to the x axis:

 Px 5
sx

E
      Py 5 Pz 5 2 

nsx

E
 (2.19)

Fig. 2.29 A bar in uniaxial tension and a 
representative stress element.

z

y

x

x

(a)

(b)

P
A

� �

y 0� �

z 0� �

P

A

Fig. 2.30 Materials undergo transverse 
contraction when elongated under axial load.

P

P'

†It also would be tempting, but equally wrong, to assume that the volume of the rod 
remains unchanged as a result of the combined effect of the axial elongation and trans-
verse contraction (see Sec. 2.6).
‡However, some experimental materials, such as polymer foams, expand laterally when 
stretched. Since the axial and lateral strains have then the same sign, Poisson’s ratio of 
these materials is negative. (See Roderic Lakes, “Foam Structures with a Negative 
Poisson’s Ratio,” Science, 27 February 1987, Volume 235, pp. 1038–1040.)
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2.5 Multiaxial Loading: Generalized Hooke’s Law 95

2.5  MULTIAXIAL LOADING: 
GENERALIZED HOOKE’S LAW

All the examples considered so far in this chapter have dealt with slender 
members subjected to axial loads, i.e., to forces directed along a single 
axis. Consider now structural elements subjected to loads acting in the 
directions of the three coordinate axes and producing normal stresses sx  ,
sy  , and sz that are all different from zero (Fig. 2.32). This condition is a 

Concept Application 2.7

A 500-mm-long, 16-mm-diameter rod made of a homogenous, 
isotropic material is observed to increase in length by 300 mm, and to 
decrease in diameter by 2.4 mm when subjected to an axial 12-kN load. 
Determine the modulus of elasticity and Poisson’s ratio of the 
material.
 The cross-sectional area of the rod is

A 5 pr2 5 p18 3 1023 m22 5 201 3 1026 m2

Choosing the x axis along the axis of the rod (Fig. 2.31), write

 sx 5
P

A
5

12 3 103 N

201 3 1026  m2 5 59.7 MPa

 Px 5
dx

L
5

300 mm

500 mm
5 600 3 1026

 Py 5
dy

d
5

22.4 mm

16 mm
5 2150 3 1026

From Hooke’s law, sx 5 EPx  ,

E 5
sx

Px
5

59.7 MPa

600 3 1026 5 99.5 GPa

and from Eq. (2.18),

n 5 2 
Py

Px
5 2 

2150 3 1026

600 3 1026 5 0.25

12 kN

L � 500 mm

d � 16 mm
��y � – 2.4    

�� x � 300    

z

y

x

m

m

Fig. 2.31 Axially loaded rod.

Fig. 2.32 State of stress for 
multiaxial loading.

x�

y�

y�

x�
z�

z�
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96 Stress and Strain—Axial Loading

multiaxial loading. Note that this is not the general stress condition 
described in Sec. 1.3, since no shearing stresses are included among the 
stresses shown in Fig. 2.32.
 Consider an element of an isotropic material in the shape of a cube 
(Fig. 2.33a). Assume the side of the cube to be equal to unity, since it is always 
possible to select the side of the cube as a unit of length. Under the given 
multiaxial loading, the element will deform into a rectangular parallelepiped 
of sides equal to 1 1 Px , 1 1 Py , and 1 1 Pz , where Px , Py , and Pz denote the 
values of the normal strain in the directions of the three coordinate axes 
(Fig. 2.33b). Note that, as a result of the deformations of the other elements 
of the material, the element under consideration could also undergo a trans-
lation, but the concern here is with the actual deformation of the element, 
not with any possible superimposed rigid-body displacement.
 In order to express the strain components Px , Py , Pz in terms of the 
stress components sx , sy , sz , consider the effect of each stress component 
and combine the results. This approach will be used repeatedly in this 
text, and is based on the principle of superposition. This principle states 
that the effect of a given combined loading on a structure can be obtained 
by determining the effects of the various loads separately and combining 
the results, provided that the following conditions are satisfied:

 1. Each effect is linearly related to the load that produces it.
 2. The deformation resulting from any given load is small and does not 

affect the conditions of application of the other loads.

 For multiaxial loading, the first condition is satisfied if the stresses 
do not exceed the proportional limit of the material, and the second con-
dition is also satisfied if the stress on any given face does not cause defor-
mations of the other faces that are large enough to affect the computation 
of the stresses on those faces.
 Considering the effect of the stress component sx , recall from 
Sec. 2.4 that sx causes a strain equal to sxyE in the x direction and strains 
equal to 2nsxyE in each of the y and z directions. Similarly, the stress 
component sy , if applied separately, will cause a strain syyE in the y direc-
tion and strains 2nsyyE in the other two directions. Finally, the stress 
component sz causes a strain szyE in the z direction and strains 2nszyE 
in the x and y directions. Combining the results, the components of strain 
corresponding to the given multiaxial loading are

 Px 5 1
sx

E
2
nsy

E
2
nsz

E

  Py 5 2 
nsx

E
1
sy

E
2
nsz

E
 (2.20)

 Pz 5 2 
nsx

E
2
nsy

E
1
sz

E

 Equations (2.20) are the generalized Hooke’s law for the multiaxial 
loading of a homogeneous isotropic material. As indicated earlier, these 
results are valid only as long as the stresses do not exceed the proportional 
limit and the deformations involved remain small. Also, a positive value 
for a stress component signifies tension and a negative value compression. 
Similarly, a positive value for a strain component indicates expansion in 
the corresponding direction and a negative value contraction.

Fig. 2.33 Deformation of unit cube under 
multiaxial loading: (a) unloaded; (b) deformed.

x

(a)

�

y�

z	

z�

1

1

1

(b)

1 
 

x	1 
 

y	1 
 

z

y

x

z

y

x
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*2.6 Dilatation and Bulk Modulus 97

*2.6  DILATATION AND BULK 
MODULUS

This section examines the effect of the normal stresses sx , sy , and sz on 
the volume of an element of isotropic material. Consider the element 
shown in Fig. 2.33. In its unstressed state, it is in the shape of a cube of 
unit volume. Under the stresses sx , sy , sz , it deforms into a rectangular 
parallelepiped of volume

v 5 (1 1 Px)(1 1 Py)(1 1 Pz)

Since the strains Px , Py , Pz are much smaller than unity, their products can 
be omitted in the expansion of the product. Therefore,

v 5 1 1 Px 1 Py 1 Pz

The change in volume e of the element is

e 5 v 2 1 5 1 1 Px 1 Py 1 Pz 2 1

Concept Application 2.8

The steel block shown (Fig. 2.34) is subjected to a uniform pressure 
on all its faces. Knowing that the change in length of edge AB is 
21.2 3 1023 in., determine (a) the change in length of the other two 
edges and (b) the pressure p applied to the faces of the block. Assume 
E 5 29 3 106 psi and n 5 0.29.

 a. Change in Length of Other Edges. Substituting sx 5 sy 5 
sz 5 2p into Eqs. (2.20), the three strain components have the 
common value

 Px 5 Py 5 Pz 5 2 
p

E
 11 2 2n2 (1)

Since

 Px 5 dxyAB 5 121.2 3 1023 in.2y14 in.2
 5 2300 3 1026 in./in.

obtain

Py 5 Pz 5 Px 5 2300 3 1026 in./in.

from which

 dy 5 Py1BC2 5 12300 3 10262 12 in.2 5 2600 3 1026 in.

 dz 5 Pz1BD2 5 12300 3 10262 13 in.2 5 2900 3 1026 in.

 b. Pressure. Solving Eq. (1) for p,

p 5 2 
EPx

1 2 2n
5 2 

129 3 106 psi2 12300 3 10262
1 2 0.58

p 5 20.7 ksi

2 in.

3 in.4  in.
z

y

A

B

D

C

x

Fig. 2.34 Steel block under uniform 
pressure p.
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98 Stress and Strain—Axial Loading

or

 e 5 Px 1 Py 1 Pz (2.21)

Since the element originally had a unit volume, e represents the change in 
volume per unit volume and is called the dilatation of the material. 
Substituting for Px, Py, and Pz from Eqs. (2.20) into (2.21), the change is

e 5
sx 1 sy 1 sz

E
2

2n1sx 1 sy 1 sz2
E

 e 5
1 2 2n

E
1sx 1 sy 1 sz2 (2.22)†

 When a body is subjected to a uniform hydrostatic pressure p, each 
of the stress components is equal to 2p and Eq. (2.22) yields

 e 5 2 
311 2 2n2

E
 p (2.23)

Introducing the constant

 k 5
E

311 2 2n2  (2.24)

Eq. (2.23) is given in the form

 e 5 2 
p

k
 (2.25)

The constant k is known as the bulk modulus or modulus of compression 
of the material. It is expressed in pascals or in psi.
 Because a stable material subjected to a hydrostatic pressure can 
only decrease in volume, the dilatation e in Eq. (2.25) is negative, and the 
bulk modulus k is a positive quantity. Referring to Eq. (2.24), 1 2 2n . 0 or 
n ,  12. Recall from Sec. 2.4 that n is positive for all engineering materials. 
Thus, for any engineering material,

 0 , n ,
1
2 (2.26)

Note that an ideal material having n equal to zero can be stretched in one 
direction without any lateral contraction. On the other hand, an ideal mate-
rial for which n 5

1
2 and k 5 ` is perfectly incompressible (e 5 0). Referring 

to Eq. (2.22) and noting that since n ,
1
2 in the elastic range, stretching an 

engineering material in one direction, for example in the x direction (sx . 0, 
sy 5 sz 5 0), results in an increase of its volume (e . 0).‡

†Since the dilatation e represents a change in volume, it must be independent of the 
orientation of the element considered. It then follows from Eqs. (2.21) and (2.22) that 
the quantities Px 1 Py 1 Pz and sx 1 sy 1 sz are also independent of the orientation of 
the element. This property will be verified in Chap. 7.
‡However, in the plastic range, the volume of the material remains nearly constant.
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2.7 Shearing Strain 99

2.7 SHEARING STRAIN
When we derived in Sec. 2.5 the relations (2.20) between normal stresses 
and normal strains in a homogeneous isotropic material, we assumed 
that no shearing stresses were involved. In the more general stress situa-
tion represented in Fig. 2.35, shearing stresses txy , tyz , and tzx are present 
(as well as the corresponding shearing stresses tyx , tzy , and txz). These 
stresses have no direct effect on the normal strains and, as long as all the 
deformations involved remain small, they will not affect the derivation nor 
the validity of Eqs. (2.20). The shearing stresses, however, tend to deform 
a cubic element of material into an oblique parallelepiped.

Concept Application 2.9

Determine the change in volume DV of the steel block shown in 
Fig. 2.34, when it is subjected to the hydrostatic pressure p 5 180 MPa. 
Use E 5 200 GPa and n 5 0.29.
 From Eq. (2.24), the bulk modulus of steel is

k 5
E

311 2 2n2 5
200 GPa

311 2 0.582 5 158.7 GPa

and from Eq. (2.25), the dilatation is

e 5 2 
p

k
5 2 

180 MPa

158.7 GPa
5 21.134 3 1023

Since the volume V of the block in its unstressed state is

V 5 (80 mm)(40 mm)(60 mm) 5 192 3 103 mm3

and e represents the change in volume per unit volume, e 5 DVyV,

DV 5 eV 5 (21.134 3 1023)(192 3 103 mm3)

DV 5 2218 mm3

Fig. 2.35 Positive stress components at point Q 
for a general state of stress.
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100 Stress and Strain—Axial Loading

 Consider a cubic element (Fig. 2.36) subjected to only the shearing 
stresses txy and tyx applied to faces of the element respectively perpendi-
cular to the x and y axes. (Recall from Sec. 1.4 that txy 5 tyx .) The cube is 
observed to deform into a rhomboid of sides equal to one (Fig. 2.37). Two 
of the angles formed by the four faces under stress are reduced from p2  to 
p
2 2 gxy , while the other two are increased from p2  to p2  1 gxy . The small angle 
gxy (expressed in radians) defines the shearing strain corresponding to the 
x and y directions. When the deformation involves a reduction of the angle 
formed by the two faces oriented toward the positive x and y axes (as shown 
in Fig. 2.37), the shearing strain gxy is positive; otherwise, it is negative.
 As a result of the deformations of the other elements of the material, 
the element under consideration also undergoes an overall rotation. The 
concern here is with the actual deformation of the element, not with any 
possible superimposed rigid-body displacement.†

 Plotting successive values of txy against the corresponding values of 
gxy , the shearing stress-strain diagram is obtained for the material. (This 
can be accomplished by carrying out a torsion test, as you will see in 
Chap. 3.) This diagram is similar to the normal stress-strain diagram from 
the tensile test described earlier; however, the values for the yield strength, 
ultimate strength, etc., are about half as large in shear as they are in ten-
sion. As for normal stresses and strains, the initial portion of the shearing 
stress-strain diagram is a straight line. For values of the shearing stress that 
do not exceed the proportional limit in shear, it can be written for any 
homogeneous isotropic material that

 txy 5 Ggxy (2.27)

This relationship is Hooke’s law for shearing stress and strain, and the con-
stant G is called the modulus of rigidity or shear modulus of the material. 

Fig. 2.36 Unit cubic element subjected to 
shearing stress.

yx�
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xy�
xy�

1

1

1

1

1

z
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x

yx�

xy�

xy
� 
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xy
� 
2 �

Fig. 2.37 Deformation of unit cubic 
element due to shearing stress.

y

x

xy
� 
2 �

xy


Fig. 2.38 Cubic element as viewed in xy-plane 
after rigid rotation.

y

x

xy
� 
2 �

xy

2
1

xy

2
1

Fig. 2.39 Cubic element as viewed in xy-plane 
with equal rotation of x and y faces.

† In defining the strain gxy , some authors arbitrarily assume that the actual deformation of 
the element is accompanied by a rigid-body rotation where the horizontal faces of the ele-
ment do not rotate. The strain gxy is then represented by the angle through which the other 
two faces have rotated (Fig. 2.38). Others assume a rigid-body rotates where the horizontal 
faces rotate through 1

2 gxy counterclockwise and the vertical faces through 1
2 gxy clockwise 

(Fig. 2.39). Since both assumptions are unnecessary and may lead to confusion, in this text 
you will associate the shearing strain gxy with the change in the angle formed by the two 
faces, rather than with the rotation of a given face under restrictive conditions.
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2.7 Shearing Strain 101

Since the strain gxy is defined as an angle in radians, it is dimensionless, 
and the modulus G is expressed in the same units as txy in pascals or in 
psi. The modulus of rigidity G of any given material is less than one-half, 
but more than one-third of the modulus of elasticity E of that material.†

 Now consider a small element of material subjected to shearing 
stresses tyz and tzy (Fig. 2.40a), where the shearing strain gyz is the change 
in the angle formed by the faces under stress. The shearing strain gzx is 
found in a similar way by considering an element subjected to shearing 
stresses tzx and txz (Fig. 2.40b). For values of the stress that do not exceed 
the proportional limit, you can write two additional relationships:

 tyz 5 Ggyz      tzx 5 Ggzx (2.28)

where the constant G is the same as in Eq. (2.27).
 For the general stress condition represented in Fig. 2.35, and as long 
as none of the stresses involved exceeds the corresponding proportional 
limit, you can apply the principle of superposition and combine the 
results. The generalized Hooke’s law for a homogeneous isotropic material 
under the most general stress condition is

  Px 5 1
sx

E
2
nsy

E
2
nsz

E

  Py 5 2 
nsx

E
1
sy

E
2
nsz

E

  Pz 5 2 
nsx

E
2
nsy

E
1
sz

E
 (2.29)

  gxy 5
txy

G
    gyz 5

tyz

G
    gzx 5

tzx

G
 

 An examination of Eqs. (2.29) leads us to three distinct constants, E, 
n, and G, which are used to predict the deformations caused in a given 
material by an arbitrary combination of stresses. Only two of these con-
stants need be determined experimentally for any given material. The next 
section explains that the third constant can be obtained through a very 
simple computation.

Fig. 2.40 States of pure shear in: (a) yz-plane; (b) xz-plane.
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†See Prob. 2.90.
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102 Stress and Strain—Axial Loading

2.8  DEFORMATIONS UNDER 
AXIAL LOADING—RELATION 
BETWEEN E, n, AND G

Section 2.4 showed that a slender bar subjected to an axial tensile load P 
directed along the x axis will elongate in the x direction and contract in 
both of the transverse y and z directions. If Px denotes the axial strain, the 
lateral strain is expressed as Py 5 Pz 5 2nPx, where n is Poisson’s ratio. 
Thus, an element in the shape of a cube of side equal to one and oriented 
as shown in Fig. 2.42a will deform into a rectangular parallelepiped of sides 
1 1 Px, 1 2 nPx, and 1 2 nPx. (Note that only one face of the element is 
shown in the figure.) On the other hand, if the element is oriented at 458 
to the axis of the load (Fig. 2.42b), the face shown deforms into a rhombus. 
Therefore, the axial load P causes a shearing strain g9 equal to the amount 
by which each of the angles shown in Fig. 2.42b increases or decreases.†

 The fact that shearing strains, as well as normal strains, result from 
an axial loading is not a surprise, since it was observed at the end of 
Sec. 1.4 that an axial load P causes normal and shearing stresses of equal 
magnitude on four of the faces of an element oriented at 458 to the axis of 
the member. This was illustrated in Fig. 1.38, which has been repeated 

Concept Application 2.10

A rectangular block of a material with a modulus of rigidity G 5 90 ksi 
is bonded to two rigid horizontal plates. The lower plate is fixed, while 
the upper plate is subjected to a horizontal force P (Fig. 2.41a). Know-
ing that the upper plate moves through 0.04 in. under the action of the 
force, determine (a) the average shearing strain in the material and 
(b) the force P exerted on the upper plate.

 a. Shearing Strain. The coordinate axes are centered at the mid-
point C of edge AB and directed as shown (Fig. 2.41b). The shearing 
strain gxy is equal to the angle formed by the vertical and the line CF 
joining the midpoints of edges AB and DE. Noting that this is a very 
small angle and recalling that it should be expressed in radians, write

gxy < tan gxy 5
0.04 in.

2 in.
    gxy 5 0.020 rad

 b. Force Exerted on Upper Plate. Determine the shearing stress 
txy in the material. Using Hooke’s law for shearing stress and strain,

txy 5 Ggxy 5 190 3 103 psi2 10.020 rad2 5 1800 psi

The force exerted on the upper plate is

P 5 txy A 5 11800 psi2 18 in.2 12.5 in.2 5 36.0 3 103 lb

P 5 36.0 kips

P

2.5 in.

2 in.

8 in.

(a)

P2 in.

0.04 in.

A

F
E

C
B

D

z

y

x
xy�

(b)

Fig. 2.41 (a) Rectangular block loaded 
in shear. (b) Deformed block showing the 
shearing strain.

Fig. 2.42 Representations of strain in an 
axially-loaded bar: (a) cubic strain element faces 
aligned with coordinate axes; (b) cubic strain 
element faces rotated 45° about z-axis.

y

x1

1

1 
 x	

1 � x�	

(a)

P

(b)

� 
22 '
 ' �� 


PP'

P'

†Note that the load P also produces normal strains in the element shown in Fig. 2.42b
(see Prob. 2.72).
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2.8 Deformations Under Axial Loading—Relation Between E, n, and G 103

here. It was also shown in Sec. 1.3 that the shearing stress is maximum on 
a plane forming an angle of 458 with the axis of the load. It follows from 
Hooke’s law for shearing stress and strain that the shearing strain g9 asso-
ciated with the element of Fig. 2.42b is also maximum: g9 5 gm .
 While a more detailed study of the transformations of strain is cov-
ered in Chap. 7, this section provides a  relationship between the maxi-
mum shearing strain g9 5 gm associated with the element of Fig. 2.42b 
and the normal strain Px in the direction of the load. Consider the pris-
matic element obtained by intersecting the cubic element of Fig. 2.42a by 
a diagonal plane (Fig. 2.43a and b). Referring to Fig. 2.42a, this new ele-
ment will deform into that shown in Fig. 2.43c, which has horizontal and 
vertical sides equal to 1 1 Px and 1 2 nPx . But the angle formed by the 
oblique and horizontal faces of Fig. 2.43b is precisely half of one of the 
right angles of the cubic element in Fig. 2.42b. The angle b into which this 
angle deforms must be equal to half of py2 2 gm . Therefore,

b 5
p

4
2
gm

2

Applying the formula for the tangent of the difference of two angles, 

tan b 5

tan 
p

4
2 tan 

gm

2

1 1 tan 
p

4
 tan 
gm

2

5

1 2 tan 
gm

2

1 1 tan 
gm

2

or since gmy2 is a very small angle,

 tan b 5

1 2
gm

2

1 1
gm

2

 (2.30)

From Fig. 2.43c, observe that

 tan b 5
1 2 nPx

1 1 Px
 (2.31)

Equating the right-hand members of Eqs. (2.30) and (2.31) and solving 
for gm, results in

gm 5
11 1 n2Px

1 1
1 2 n

2
 Px

Since Px V 1, the denominator in the expression obtained can be assumed 
equal to one. Therefore,

 gm 5 (1 1 n)Px (2.32)

which is the desired relation between the maximum shearing strain gm 
and the axial strain Px.
 To obtain a relation among the constants E, n, and G, we recall that, 
by Hooke’s law, gm 5 tmyG, and for an axial loading, Px 5 sxyE. 
Equation (2.32) can be written as

tm

G
5 11 1 n2sx

E

Fig. 2.43 (a) Cubic strain unit element, 
to be sectioned on a diagonal plane. 
(b) Undeformed section of unit element. 
(c) Deformed section of unit element.
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104 Stress and Strain—Axial Loading

Fig. 2.44 Orthotropic fiber-reinforced composite 
material under uniaxial tensile load.

Layer of
material

Fibers

Load

Load

y

z

x

(a)

y�

z�
x

x�

(b)

�

x�

or

E
G

5 11 1 n2sx

tm
 (2.33)

Recall from Fig. 1.38 that sx 5 PyA and tm 5 Py2A, where A is the cross-
sectional area of the member. Thus, sxytm 5 2. Substituting this value into 
Eq. (2.33) and dividing both members by 2, the relationship is

 
E

2G
5 1 1 n (2.34)

which can be used to determine one of the constants E, n, or G from the 
other two. For example, solving Eq. (2.34) for G,

G 5
E

211 1 n2  (2.35)

*2.9  STRESS-STRAIN 
RELATIONSHIPS FOR 
FIBER-REINFORCED 
COMPOSITE MATERIALS

Fiber-reinforced composite materials are fabricated by embedding fibers 
of a strong, stiff material into a weaker, softer material called a matrix. The 
relationship between the normal stress and the corresponding normal 
strain created in a lamina or layer of a composite material depends upon 
the direction in which the load is applied. Different moduli of elasticity, 
Ex , Ey , and Ez , are required to describe the relationship between normal 
stress and normal strain, according to whether the load is applied parallel 
to the fibers, perpendicular to the layer, or in a transverse direction.
 Consider again the layer of composite material discussed in Sec. 2.1D 
and subject it to a uniaxial tensile load parallel to its fibers (Fig. 2.44a). It 
is assumed that the properties of the fibers and of the matrix have been 
combined or “smeared” into a fictitious, equivalent homogeneous mate-
rial possessing these combined properties. In a small element of that layer 
of smeared material (Fig. 2.44b), the corresponding normal stress is sx

and sy 5 sz 5 0. As indicated in Sec. 2.1D, the corresponding normal 
strain in the x direction is Px 5 sxyEx , where Ex is the modulus of elasticity 
of the composite material in the x direction. As for isotropic materials, the 
elongation of the material in the x direction is accompanied by contrac-
tions in the y and z directions. These contractions depend upon the place-
ment of the fibers in the matrix and generally will be different. Therefore, 
the lateral strains Py and Pz also will be different, and the corresponding 
Poisson’s ratios are

 nxy 5 2 
Py

Px
  and  nxz 5 2 

Pz

Px
 (2.36)

Note that the first subscript in each of the Poisson’s ratios nxy and nxz in 
Eqs. (2.36) refers to the direction of the load and the second to the direc-
tion of the contraction.
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*2.9 Stress-Strain Relationships For Fiber-Reinforced Composite Materials 105

 In the case of the multiaxial loading of a layer of a composite mate-
rial, equations similar to Eqs. (2.20) of Sec. 2.5 can be used to describe the 
stress-strain relationship. In this case, three different values of the modulus 
of elasticity and six different values of Poisson’s ratio are involved. We write

  Px 5
sx

Ex
2
nyxsy

Ey
2
nzxsz

Ez

  Py 5 2 
nxysx

Ex
1
sy

Ey
2
nzysz

Ez
 (2.37)

  Pz 5 2 
nxzsx

Ex
2
nyzsy

Ey
1
sz

Ez

Equations (2.37) can be considered as defining the transformation of 
stress into strain for the given layer. It follows from a general property of 
such transformations that the coefficients of the stress components are 
symmetric:

 
nxy

Ex
5
nyx

Ey
  

nyz

Ey
5
nzy

Ez
  

nzx

Ez
5
nxz

Ex
 (2.38)

While different, these equations show that Poisson’s ratios nxy and nyx are 
not independent; either of them can be obtained from the other if the 
corresponding values of the modulus of elasticity are known. The same is 
true of nyz and nzy , and of nzx and nxz .
 Consider now the effect of shearing stresses on the faces of a small 
element of smeared layer. As discussed in Sec. 2.7 for isotropic materials, 
these stresses come in pairs of equal and opposite vectors applied to 
opposite sides of the given element and have no effect on the normal 
strains. Thus, Eqs. (2.37) remain valid. The shearing stresses, however, cre-
ate shearing strains that are defined by equations similar to the last three 
of Eqs. (2.29) of Sec. 2.7, except that three different values of the modulus 
of rigidity, Gxy , Gyz , and Gzx , must be used:

 gxy 5
txy

Gxy
  gyz 5

tyz

Gyz
  gzx 5

tzx

Gzx
 (2.39)

 The fact that the three components of strain Px , Py , and Pz can be 
expressed in terms of the normal stresses only and do not depend upon 
any shearing stresses characterizes orthotropic materials and distinguishes 
them from other anisotropic materials.
 As in Sec. 2.1D, a flat laminate is obtained by superposing a number 
of layers or laminas. If the fibers in all layers are given the same orienta-
tion to withstand an axial tensile load, the laminate itself will be ortho-
tropic. If the lateral stability of the laminate is increased by positioning 
some of its layers so that their fibers are at a right angle to the fibers of the 
other layers, the resulting laminate also will be orthotropic. On the other 
hand, if any of the layers of a laminate are positioned so that their fibers 
are neither parallel nor perpendicular to the fibers of other layers, the 
lamina generally will not be orthotropic.†

†For more information on fiber-reinforced composite materials, see Hyer, M. W., Stress 
Analysis of Fiber-Reinforced Composite Materials, DEStech Publications, Inc., Lancaster, 
PA, 2009.

bee98233_ch02_054-145.indd   105bee98233_ch02_054-145.indd   105 11/15/13   4:55 PM11/15/13   4:55 PM



106 Stress and Strain—Axial Loading

Concept Application 2.11

A 60-mm cube is made from layers of graphite epoxy with fibers 
aligned in the x direction. The cube is subjected to a compressive load 
of 140 kN in the x direction. The properties of the composite material 
are: Ex 5 155.0 GPa, Ey 5 12.10 GPa, Ez 5 12.10 GPa, nxy 5 0.248, 
nxz 5 0.248, and nyz 5 0.458. Determine the changes in the cube 
dimensions, knowing that (a) the cube is free to expand in the y and 
z directions (Fig. 2.45a); (b) the cube is free to expand in the z direc-
tion, but is restrained from expanding in the y direction by two fixed 
frictionless plates (Fig. 2.45b).

y

z

140 kN

60 mm

60 mm

60 mm
140 kN

x

(a)

y

z

140 kN

60 mm

60 mm

Fixed
frictionless

plates

60 mm

140 kN

x

(b)

Fig. 2.45 Graphite-epoxy cube undergoing compression loading along the fiber 
direction; (a) unrestrained cube; (b) cube restrained in y direction.

 a. Free in y and z Directions. Determine the stress sx in the 
direction of loading.

sx 5
P

A
5

2140 3 103 N

10.060 m2 10.060 m2 5 238.89 MPa

Since the cube is not loaded or restrained in the y and z directions, we 
have sy 5 sz 5 0. Thus, the right-hand members of Eqs. (2.37) reduce 
to their first terms. Substituting the given data into these equations,

 Px 5
sx

Ex
5

238.89 MPa

155.0 GPa
5 2250.9 3 1026

 Py 5 2 
nxysx

Ex
5 2 

10.2482 1238.89 MPa2
155.0 GPa

5 162.22 3 1026

 Pz 5 2 
nxzsx

Ex
5 2 

10.2482 1238.69 MPa2
155.0 GPa

5 162.22 3 1026

The changes in the cube dimensions are obtained by multiplying the 
corresponding strains by the length L 5 0.060 m of the side of the cube:

 dx 5 PxL 5 12250.9 3 10262 10.060 m2 5 215.05 mm

 dy 5 PyL 5 1162.2 3 10262 10.060 m2 5 13.73 mm

 dz 5 PzL 5 1162.2 3 10262 10.060 m2 5 13.73 mm

(continued)
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 b. Free in z Direction, Restrained in y Direction. The stress in 
the x direction is the same as in part a, namely, sx 5 38.89 MPa. Since 
the cube is free to expand in the z direction as in part a, sz 5 0. But 
since the cube is now restrained in the y direction, the stress sy is not 
zero. On the other hand, since the cube cannot expand in the y direc-
tion, dy 5 0. Thus, Py 5 dy/L 5 0. Set sz 5 0 and Py 5 0 in the second 
of Eqs. (2.37) and solve that equation for sy :

 sy 5 aEy

Ex
b nxysx 5 a12.10

155.0
b10.2482 1238.89 MPa2

 5 2752.9 kPa

Now that the three components of stress have been determined, use 
the first and last of Eqs. (2.37) to compute the strain components Px 
and Pz . But the first of these equations contains Poisson’s ratio nyx , and 
as you saw earlier this ratio is not equal to the ratio nxy that was among 
the given data. To find nyx , use the first of Eqs. (2.38) and write

nyx 5 aEy

Ex
b nxy 5 a12.10

155.0
b10.2482 5 0.01936

Now set sz 5 0 in the first and third of Eqs. (2.37) and substitute the 
given values of Ex , Ey , nxz , and nyz , as well as the values obtained for 
sx , sy , and nyx , resulting in

  Px 5
sx

Ex
2
nyxsy

Ey
5

238.89 MPa

155.0 GPa
2
10.019362 12752.9 kPa2

12.10 GPa

 5 2249.7 3 1026

 Pz 5 2
nxzsx

Ex
2
nyzsy

Ey
5 2

10.2482 1238.89 MPa2
155.0 GPa

2
10.4582 12752.9 kPa2

12.10 GPa

 5 190.72 3 1026

The changes in the cube dimensions are obtained by multiplying the 
corresponding strains by the length L 5 0.060 m of the side of the 
cube:

 dx 5 PxL 5 12249.7 3 10262 10.060 m2 5 214.98 mm

 dy 5 PyL 5 102 10.060 m2 5 0

 dz 5 PzL 5 1190.72 3 10262 10.060 m2 5 15.44 mm

Comparing the results of parts a and b, note that the difference 
between the values for the deformation dx in the direction of the fibers 
is negligible. However, the difference between the values for the lateral 
deformation dz is not negligible when the cube is restrained from 
deforming in the y direction.
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108 Stress and Strain—Axial Loading

Sample Problem 2.5
A circle of diameter d 5 9 in. is scribed on an unstressed aluminum 
plate of thickness t 5

3
4 in. Forces acting in the plane of the plate later 

cause normal stresses sx 5 12 ksi and sz 5 20 ksi. For E 5 10 3 106 psi 
and n 5

1
3, determine the change in (a) the length of diameter AB, 

(b) the length of diameter CD, (c) the thickness of the plate, and (d) the 
volume of the plate.

STRATEGY: You can use the generalized Hooke’s Law to determine 
the components of strain. These strains can then be used to evaluate 
the various dimensional changes to the plate, and through the dilata-
tion, also assess the volume change.

ANALYSIS: 

Hooke’s Law.  Note that sy 5 0. Using Eqs. (2.20), find the strain in 
each of the coordinate directions.

Px 5 1
sx

E
2
nsy

E
2
nsz

E

 5
1

10 3 106 psi
Ê c 112 ksi2 2 0 2

1

3
Ê120 ksi2 d 5 10.533 3 1023 in./in.

 Py 5 2 

nsx

E
1
sy

E
2
nsz

E

 5
1

10 3 106 psi
Ê c21

3
Ê112 ksi2 1 0 2

1

3
Ê 120 ksi2 d 5 21.067 3 1023 in./in.

 Pz 5 2 

nsx

E
2
nsy

E
1
sz

E

 5
1

10 3 106 psi
Ê c21

3
Ê 112 ksi2 2 0 1 120 ksi2 d 5 11.600 3 1023 in./in.

 a. Diameter AB. The change in length is dByA 5 Px d.

dByA 5 Pxd 5 110.533 3 1023 in./in.2 19 in.2    
dByA 5 14.8 3 1023 in. ◀

 b. Diameter CD.
dCyD 5 Pzd 5 111.600 3 1023 in./in.2 19 in.2

dCyD 5 114.4 3 1023 in. ◀

 c. Thickness. Recalling that t 5
3
4 in.,

dt 5 Pyt 5 121.067 3 1023 in./in.2 134  in.2
dt 5 20.800 3 1023 in. ◀

 d. Volume of the Plate.  Using Eq. (2.21),

e 5 Px 1 Py 1 Pz 5 110.533 2 1.067 1 1.60021023 5 11.067 3 1023

¢V 5 eV 5 11.067 3 1023 3 115 in.2 115 in.2 134 in.2 4
¢V 5 10.180 in3 ◀

x�
z�

15 in.
15 in.

z

y

x

A
B

C

D
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Problems
 2.61 A standard tension test is used to determine the properties of an 

experimental plastic. The test specimen is a 5
8-in.-diameter rod and 

it is subjected to an 800-lb tensile force. Knowing that an elongation 
of 0.45 in. and a decrease in diameter of 0.025 in. are observed in 
a 5-in. gage length, determine the modulus of elasticity, the modu-
lus of rigidity, and Poisson’s ratio for the material.

 2.62 A 2-m length of an aluminum pipe of 240-mm outer diameter and 
10-mm wall thickness is used as a short column to carry a 640-kN 
centric axial load. Knowing that E 5 73 GPa and n 5 0.33, deter-
mine (a) the change in length of the pipe, (b) the change in its outer 
diameter, (c) the change in its wall thickness.

Fig. P2.61

 in. diameter
5.0 in.

P'

P

5
8

Fig. P2.62

640 kN

2 m

Fig. P2.63

10

200 mm

150 mm4
200 kN 200 kN

Fig. P2.64

2.75 kN2.75 kN

50 mm

A B

12 mm

 2.63 A line of slope 4:10 has been scribed on a cold-rolled yellow-brass 
plate, 150 mm wide and 6 mm thick. Knowing that E 5 105 GPa 
and n 5 0.34, determine the slope of the line when the plate is 
subjected to a 200-kN centric axial load as shown.

 2.64 A 2.75-kN tensile load is applied to a test coupon made from 1.6-
mm flat steel plate (E 5 200 GPa, n 5 0.30). Determine the result-
ing change (a) in the 50-mm gage length, (b) in the width of 
portion AB of the test coupon, (c) in the thickness of portion AB,
(d) in the cross-sectional area of portion AB.
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2.65 In a standard tensile test a steel rod of 22-mm diameter is 
subjected to a tension force of 75 kN. Knowing that n 5 0.30 and 
E 5 200 GPa, determine (a) the elongation of the rod in a 200-mm 
gage length, (b) the change in diameter of the rod.

 2.66 The change in diameter of a large steel bolt is carefully measured 
as the nut is tightened. Knowing that E 5 29 3 106 psi and n 5
0.30, determine the internal force in the bolt if the diameter is 
observed to decrease by 0.5 3 1023 in.

 2.67 The brass rod AD is fitted with a jacket that is used to apply a 
hydrostatic pressure of 48 MPa to the 240-mm portion BC of the 
rod. Knowing that E 5 105 GPa and n 5 0.33, determine (a) the 
change in the total length AD, (b) the change in diameter at the 
middle of the rod.

200 mm

22-mm diameter
75 kN 75 kN

Fig. P2.65

2.5 in.

Fig. P2.66

 2.68 A fabric used in air-inflated structures is subjected to a biaxial 
loading that results in normal stresses sx 5 18 ksi and sz 5 24 ksi. 
Knowing that the properties of the fabric can be approximated as 
E 5 12.6 3 106 psi and n 5 0.34, determine the change in length 
of (a) side AB, (b) side BC, (c) diagonal AC.

 2.69 A 1-in. square was scribed on the side of a large steel pressure 
vessel. After pressurization the biaxial stress condition at the 
square is as shown. Knowing that E 5 29 3 106 psi and n 5 0.30, 
determine the change in length of (a) side AB, (b) side BC, (c) 
diagonal AC.

Fig. P2.67

240 mm
600 mm

C

D

A

B

50 mm

Fig. P2.68

x�
z�

3 in.
4 in.

z

y

x

A

B

C

D

Fig. P2.69

y � 6 ksi�

x � 12 ksi�1 in.

A B

CD

1 in.
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 2.70 The block shown is made of a magnesium alloy for which 
E 5 45 GPa and n 5 0.35. Knowing that sx 5 2180 MPa, deter-
mine (a) the magnitude of sy for which the change in the height 
of the block will be zero, (b) the corresponding change in the area 
of the face ABCD, (c) the corresponding change in the volume of 
the block.

Fig. P2.70

40 mm

100 mm xz

y

x�

y�

C

BD

G

F

A

E

25 mm

Fig. P2.71

x�
z�z

y

x

A

B

C

D

Fig. P2.73

x�

y�

2.71 The homogeneous plate ABCD is subjected to a biaxial loading as 
shown. It is known that sz 5 s0 and that the change in length of 
the plate in the x direction must be zero, that is, Px 5 0. Denoting 
by E the modulus of elasticity and by n Poisson’s ratio, determine 
(a) the required magnitude of sx , (b) the ratio s0/Pz·

2.72 For a member under axial loading, express the normal strain P9

in a direction forming an angle of 458 with the axis of the load in 
terms of the axial strain Px by (a) comparing the hypotenuses of 
the triangles shown in Fig. 2.43, which represent respectively an 
element before and after deformation, (b) using the values of the 
corresponding stresses s9 and sx shown in Fig. 1.38, and the gen-
eralized Hooke’s law.

 2.73 In many situations it is known that the normal stress in a given 
direction is zero. For example, sz 5 0 in the case of the thin plate 
shown. For this case, which is known as plane stress, show that if 
the strains Px and Py have been determined experimentally, we 
can express sx , sy , and Pz as follows:

 sx 5 E 

Px 1 nPy

1 2 n2

 sy 5 E 

Py 1 nPx

1 2 n2

 Pz 5 2
n

1 2 n
 1Px 1 Py2
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 2.74 In many situations physical constraints prevent strain from 
occurring in a given direction. For example, Pz 5 0 in the case 
shown, where longitudinal movement of the long prism is pre-
vented at every point. Plane sections perpendicular to the longi-
tudinal axis remain plane and the same distance apart. Show that 
for this situation, which is known as plane strain, we can express 
sz , Px , and Py as follows:

 sz 5 n1sx 1 sy2
 Px 5

1

E
 3 11 2 n22sx 2 n11 1 n2sy 4

 Py 5
1

E
 3 11 2 n22sy 2 n11 1 n2sx 4

4.8 in.

3.2 in.

2 in. P

Fig. P2.75 a a

c

b

A

B

P

Fig. P2.77 and P2.78

Fig. P2.74

xx�

zz�

yy�
y

x

z (a) (b)

�

2.75 The plastic block shown is bonded to a rigid support and to a verti-
cal plate to which a 55-kip load P is applied. Knowing that for the 
plastic used G 5 150 ksi, determine the deflection of the plate.

 2.76 What load P should be applied to the plate of Prob. 2.75 to pro-
duce a 1

16-in. deflection?

 2.77 Two blocks of rubber with a modulus of rigidity G 5 12 MPa are 
bonded to rigid supports and to a plate AB. Knowing that 
c 5 100 mm and P 5 45 kN, determine the smallest allowable 
dimensions a and b of the blocks if the shearing stress in the 
rubber is not to exceed 1.4 MPa and the deflection of the plate is 
to be at least 5 mm.

 2.78 Two blocks of rubber with a modulus of rigidity G 5 10 MPa are 
bonded to rigid supports and to a plate AB. Knowing that b 5 200 
mm and c 5 125 mm, determine the largest allowable load P and 
the smallest allowable thickness a of the blocks if the shearing 
stress in the rubber is not to exceed 1.5 MPa and the deflection 
of the plate is to be at least 6 mm.
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 2.79 An elastomeric bearing (G 5 130 psi) is used to support a bridge 
girder as shown to provide flexibility during earthquakes. The 
beam must not displace more than 3

8 in. when a 5-kip lateral load 
is applied as shown. Knowing that the maximum allowable 
shearing stress is 60 psi, determine (a) the smallest allowable 
dimension b, (b) the smallest required thickness a.

8 in.

b

a

P

Fig. P2.79

150 mm
100 mm

30 mm

B

A

30 mm

P

Fig. P2.81 and P2.82

 2.80 For the elastomeric bearing in Prob. 2.79 with b 5 10 in. and 
a 5 1 in., determine the shearing modulus G and the shear 
stress t for a maximum lateral load P 5 5 kips and a maximum 
displacement d 5 0.4 in.

 2.81 A vibration isolation unit consists of two blocks of hard rubber 
bonded to a plate AB and to rigid supports as shown. Knowing 
that a force of magnitude P 5 25 kN causes a deflection 
d 5 1.5 mm of plate AB, determine the modulus of rigidity of the 
rubber used.

 2.82 A vibration isolation unit consists of two blocks of hard rubber 
with a modulus of rigidity G 5 19 MPa bonded to a plate AB and 
to rigid supports as shown. Denoting by P the magnitude of the 
force applied to the plate and by d the corresponding deflection, 
determine the effective spring constant, k 5 P/d, of the system.
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 *2.83 A 6-in.-diameter solid steel sphere is lowered into the ocean to a 
point where the pressure is 7.1 ksi (about 3 miles below the sur-
face). Knowing that E 5 29 3 106 psi and n 5 0.30, determine 
(a) the decrease in diameter of the sphere, (b) the decrease in 
volume of the sphere, (c) the percent increase in the density of 
the sphere.

 *2.84 (a) For the axial loading shown, determine the change in 
height  and the change in volume of the brass cylinder shown. 
(b) Solve part a, assuming that the loading is hydrostatic with 
sx 5 sy 5 sz 5 270 MPa.

 *2.85 Determine the dilatation e and the change in volume of the 8-in. 
length of the rod shown if (a) the rod is made of steel with  E 5
29 3 106 psi and n 5 0.30, (b) the rod is made of aluminum with 
E 5 10.6 3 106 psi and n 5 0.35.

 *2.86 Determine the change in volume of the 50-mm gage length seg-
ment AB in Prob. 2.64 (a) by computing the dilatation of the 
material, (b) by subtracting the original volume of portion AB 
from its final volume.

 *2.87 A vibration isolation support consists of a rod A of radius 
R1 5 10 mm and a tube B of inner radius R2 5 25 mm bonded to 
an 80-mm-long hollow rubber cylinder with a modulus of rigidity 
G 5 12 MPa. Determine the largest allowable force P that can be 
applied to rod A if its deflection is not to exceed 2.50 mm.

 *2.88 A vibration isolation support consists of a rod A of radius R1 and 
a tube B of inner radius R2 bonded to an 80-mm-long hollow 
rubber cylinder with a modulus of rigidity G 5 10.93 MPa. Deter-
mine the required value of the ratio R2/R1 if a 10-kN force P is to 
cause a 2-mm deflection of rod A.

 *2.89 The material constants E, G, k, and n are related by Eqs. (2.24) and 
(2.34). Show that any one of the constants may be expressed in 
terms of any other two constants. For example, show that 
(a) k 5 GE/(9G 2 3E) and (b) n 5 (3k 2 2G)/(6k 1 2G).

 *2.90 Show that for any given material, the ratio G/E of the modulus of 
rigidity over the modulus of elasticity is always less than 1

2 but 
more than 1

3. [Hint: Refer to Eq. (2.34) and to Sec. 2.1e.]

 *2.91 A composite cube with 40-mm sides and the properties shown is 
made with glass polymer fibers aligned in the x direction. The 
cube is constrained against deformations in the y and z directions 
and is subjected to a tensile load of 65 kN in the x direction. 
Determine (a) the change in the length of the cube in the x direc-
tion and (b) the stresses sx, sy, and sz.

 *2.92 The composite cube of Prob. 2.91 is constrained against deforma-
tion in the z direction and elongated in the x direction by 
0.035 mm due to a tensile load in the x direction. Determine (a) 
the stresses sx, sy, and sz and (b) the change in the dimension 
in the y direction.

s

E 5 105 GPa 

y 5 258 MPa

n 5 0.33

135 mm

85 mm

Fig. P2.84

11 kips11 kips

8 in.

1 in. diameter

Fig. P2.85

A

B

R1

80 mm

R2

P

Fig. P2.87 and P2.88

Fig. P2.91

Ex � 50 GPa 
Ey � 15.2 GPa 
Ez � 15.2 GPa 

�xz � 0.254
�xy � 0.254 
�zy � 0.428 

y

z
x
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2.10 Stress and Strain Distribution Under Axial Loading: Saint-Venant’s Principle 115

2.10  STRESS AND STRAIN 
DISTRIBUTION UNDER 
AXIAL LOADING: SAINT-
VENANT’S PRINCIPLE

We have assumed so far that, in an axially loaded member, the normal 
stresses are uniformly distributed in any section perpendicular to the axis 
of the member. As we saw in Sec. 1.2A, such an assumption may be quite 
in error in the immediate vicinity of the points of application of the loads. 
However, the determination of the actual stresses in a given section of the 
member requires the solution of a statically indeterminate problem.
 In Sec. 2.2, you saw that statically indeterminate problems involving 
the determination of forces can be solved by considering the deformations
caused by these forces. It is thus reasonable to conclude that the determina-
tion of the stresses in a member requires the analysis of the strains produced 
by the stresses in the member. This is essentially the approach found in 
advanced textbooks, where the mathematical theory of elasticity is used to 
determine the distribution of stresses corresponding to various modes of 
application of the loads at the ends of the member. Given the more limited 
mathematical means at our disposal, our analysis of stresses will be restricted 
to the particular case when two rigid plates are used to transmit the loads 
to a member made of a homogeneous isotropic material (Fig. 2.46).
 If the loads are applied at the center of each plate,† the plates will 
move toward each other without rotating, causing the member to get 
shorter, while increasing in width and thickness. It is assumed that the 
member will remain straight, plane sections will remain plane, and all ele-
ments of the member will deform in the same way, since this assumption 
is compatible with the given end conditions. Figure 2.47 shows a rubber 
model before and after loading.‡ Now, if all elements deform in the same 

Fig. 2.46 Axial load applied by rigid plates.

P

P'

Fig. 2.47 Axial load applied by rigid 
plates to rubber model.

(a) (b)

P

P′

†More precisely, the common line of action of the loads should pass through the cen-
troid of the cross section (cf. Sec. 1.2A).
‡Note that for long, slender members, another configuration is possible and will prevail 
if the load is sufficiently large; the member buckles and assumes a curved shape. This 
will be discussed in Chap. 10.
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116 Stress and Strain—Axial Loading

way, the distribution of strains throughout the member must be uniform. 
In other words, the axial strain Py and the lateral strain Px 5 2nPy are con-
stant. But, if the stresses do not exceed the proportional limit, Hooke’s law 
applies, and sy 5 EPy , so the normal stress sy is also constant. Thus, the 
distribution of stresses is uniform throughout the member, and at any point,

sy 5 1sy2ave 5
P
A

 If the loads are concentrated, as in Fig. 2.48, the elements in the 
immediate vicinity of the points of application of the loads are subjected to 
very large stresses, while other elements near the ends of the member are 
unaffected by the loading. This results in large deformations, strains, and 
stresses near the points of application of the loads, while no deformation 
takes place at the corners. Considering elements farther and farther from 
the ends, a progressive equalization of the deformations and a more uni-
form distribution of the strains and stresses are seen across a section of the 
member. Using the mathematical theory of elasticity found in advanced 
textbooks, Fig. 2.49 shows the resulting distribution of stresses across various 
sections of a thin rectangular plate subjected to concentrated loads. Note 

Fig. 2.48 Concentrated axial load applied 
to rubber model.

P

P'

Fig. 2.49 Stress distributions in a plate under concentrated axial loads.

b b
b1

2
b1

4 �min

�ave

�max

P
A�

�min �ave� 0.973

�max �ave� 1.027

�min �ave� 0.668

�max �ave� 1.387

�min �ave� 0.198

�max �ave� 2.575

PPPP

P'

that at a distance b from either end, where b is the width of the plate, 
the stress distribution is nearly uniform across the section, and the value of 
the stress sy at any point of that section can be assumed to be equal to the 
average value PyA. Thus, at a distance equal to or greater than the width of 
the member, the distribution of stresses across a section is the same, whether 
the member is loaded as shown in Fig. 2.46 or Fig. 2.48. In other words, 
except in the immediate vicinity of the points of application of the loads, 
the stress distribution is assumed independent of the actual mode of appli-
cation of the loads. This statement, which applies to axial loadings and to 
practically any type of load, is known as Saint-Venant’s principle, after the 
French mathematician and engineer Adhémar Barré de Saint-Venant 
(1797–1886).
 While Saint-Venant’s principle makes it possible to replace a given 
loading by a simpler one to compute the stresses in a structural member, 
keep in mind two important points when applying this principle:

 1. The actual loading and the loading used to compute the stresses 
must be statically equivalent.
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2.11 Stress Concentrations 117

2. Stresses cannot be computed in this manner in the immediate 
vicinity of the points of application of the loads. Advanced theoreti-
cal or experimental methods must be used to determine the distri-
bution of stresses in these areas.

 You should also observe that the plates used to obtain a uniform stress 
distribution in the member of Fig. 2.47 must allow the member to freely 
expand laterally. Thus, the plates cannot be rigidly attached to the member; 
assume them to be just in contact with the member and smooth enough not 
to impede lateral expansion. While such end conditions can be achieved for 
a member in compression, they cannot be physically realized in the case of 
a member in tension. It does not matter, whether or not an actual fixture can 
be realized and used to load a member so that the distribution of stresses in 
the member is uniform. The important thing is to imagine a model that will 
allow such a distribution of stresses and to keep this model in mind so that 
it can be compared with the actual loading conditions.

2.11 STRESS CONCENTRATIONS
As you saw in the preceding section, the stresses near the points of application 
of concentrated loads can reach values much larger than the average value of 
the stress in the member. When a structural member contains a discontinuity, 
such as a hole or a sudden change in cross section, high localized stresses can 
occur. Figures 2.50 and 2.51 show the distribution of stresses in critical sec-
tions corresponding to two situations. Figure 2.50 shows a flat bar with a cir-
cular hole and shows the stress distribution in a section passing through the 
center of the hole. Figure 2.51 shows a flat bar consisting of two portions of 
different widths connected by fillets; here the stress distribution is in the nar-
rowest part of the connection, where the highest stresses occur.
 These results were obtained experimentally through the use of a pho-
toelastic method. Fortunately for the engineer, these results are independent 
of the size of the member and of the material used; they depend only upon 
the ratios of the geometric parameters involved (i.e., the ratio 2ryD for a 
circular hole, and the ratios ryd and Dyd for fillets). Furthermore, the 
designer is more interested in the maximum value of the stress in a given 
section than the actual distribution of stresses. The main concern is to 
determine whether the allowable stress will be exceeded under a given load-
ing, not where this value will be exceeded. Thus, the ratio

K 5
smax

save
 (2.40)

is computed in the  critical (narrowest) section of the discontinuity. This ratio 
is the stress-concentration factor of the discontinuity. Stress- concentration fac-
tors can be computed in terms of the ratios of the geometric parameters 
involved, and the results can be expressed in tables or graphs, as shown  in 
Fig. 2.52. To determine the maximum stress occurring near a discontinuity in 
a given member subjected to a given axial load P, the designer needs to com-
pute the average stress save 5 PyA in the critical section and multiply the 
result obtained by the appropriate value of the stress-concentration factor K. 
Note that this procedure is valid only as long as smax does not exceed the 
proportional limit of the material, since the values of K plotted in Fig. 2.52 
were obtained by assuming a linear relation between stress and strain.

Fig. 2.50 Stress distribution near circular hole in 
flat bar under axial loading.

PP'

P'

r
D

d1
2

d1
2

�max

�ave

Fig. 2.51 Stress distribution near fillets in flat bar 
under axial loading.

PP'

P'

�max

�ave

dD

r
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118 Stress and Strain—Axial Loading

Fig. 2.52 Stress concentration factors for flat bars under axial loading. Note that the average stress must be computed across the narrowest 
section: save 5 P/td, where t is the thickness of the bar. (Source: W. D. Pilkey and D.F. Pilkey, Peterson’s Stress Concentration Factors, 3rd ed., 
John Wiley & Sons, New York, 2008.)
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(b) Flat bars with fillets

Concept Application 2.12

Determine the largest axial load P that can be safely supported by a 
flat steel bar consisting of two portions, both 10 mm thick and, respec-
tively, 40 and 60 mm wide, connected by fillets of radius r 5 8 mm. 
Assume an allowable normal stress of 165 MPa.
 First compute the ratios

D
d

5
60 mm

40 mm
5 1.50    r

d
5

8 mm

40 mm
5 0.20

Using the curve in Fig. 2.52b corresponding to Dyd 5 1.50, the value 
of the stress-concentration factor corresponding to ryd 5 0.20 is

K 5 1.82

Then carrying this value into Eq. (2.40) and solving for save,

save 5
smax

1.82

But smax cannot exceed the allowable stress sall 5 165 MPa. Substitut-
ing this value for smax, the average stress in the narrower portion 
(d 5 40 mm) of the bar should not exceed the value

save 5
165 MPa

1.82
5 90.7 MPa

Recalling that save 5 PyA,

P 5 Asave 5 140 mm2 110 mm2 190.7 MPa2 5 36.3 3 103 N

P 5 36.3 kN
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2.12 Plastic Deformations 119

2.12 PLASTIC DEFORMATIONS
The results in the preceding sections were based on the assumption of a 
linear stress-strain relationship, where the proportional limit of the mate-
rial was never exceeded. This is a reasonable assumption in the case of 
brittle materials, which rupture without yielding. For ductile materials, 
however, this implies that the yield strength of the material is not exceeded. 
The deformations will remain within the elastic range and the structural 
member will regain its original shape after all loads have been removed. 
However, if the stresses in any part of the member exceed the yield strength 
of the material, plastic deformations occur, and most of the results 
obtained in earlier sections cease to be valid. Then a more involved analy-
sis, based on a nonlinear stress-strain relationship, must be carried out.
 While an analysis taking into account the actual stress-strain relation-
ship is beyond the scope of this text, we gain considerable insight into plastic 
behavior by considering an idealized elastoplastic material for which the stress-
strain diagram consists of the two straight-line segments shown in Fig. 2.53. 
Note that the stress-strain diagram for mild steel in the elastic and plastic 
ranges is similar to this idealization. As long as the stress s is less than the yield 
strength sY, the material behaves elastically and obeys Hooke’s law, s 5 EP. 
When s reaches the value sY, the material starts yielding and keeps deforming 
plastically under a constant load. If the load is removed, unloading takes place 
along a straight-line segment CD parallel to the initial portion AY of the loading 
curve. The segment AD of the horizontal axis represents the strain  corresponding 
to the permanent set or plastic deformation resulting from the loading and 
unloading of the specimen. While no actual material behaves exactly as shown 
in Fig. 2.53, this stress-strain diagram will prove useful in discussing the plastic 
deformations of ductile materials such as mild steel.

Fig. 2.53 Stress-strain diagram for an idealized 
elastoplastic material.

D �A

C
Rupture

Y
�

�

Y

Concept Application 2.13

A rod of length L 5 500 mm and cross-sectional area A 5 60 mm2 is 
made of an elastoplastic material having a modulus of elasticity 
E 5 200 GPa in its elastic range and a yield point sY 5 300 MPa. The 
rod is subjected to an axial load until it is stretched 7 mm and the load 
is then removed. What is the resulting permanent set?
 Referring to the diagram of Fig. 2.53, the maximum strain repre-
sented by the abscissa of point C is

PC 5
dC

L
5

7 mm

500 mm
5 14 3 1023

However, the yield strain, represented by the abscissa of point Y, is

PY 5
sY

E
5

300 3 106 Pa

200 3 109 Pa
5 1.5 3 1023

The strain after unloading is represented by the abscissa PD of point D. 
Note from Fig. 2.53 that

 PD 5 AD 5 YC 5 PC 2 PY

 5 14 3 1023 2 1.5 3 1023 5 12.5 3 1023

The permanent set is the deformation dD corresponding to the strain PD . 
dD 5 PDL 5 112.5 3 10232 1500 mm2 5 6.25 mm
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120 Stress and Strain—Axial Loading

Concept Application 2.14

A 30-in.-long cylindrical rod of cross-sectional area Ar 5 0.075 in2 is 
placed inside a tube of the same length and of cross-sectional area 
At 5 0.100 in2. The ends of the rod and tube are attached to a rigid 
support on one side, and to a rigid plate on the other, as shown in the 
longitudinal section of Fig. 2.54a. The rod and tube are both assumed 
to be elastoplastic, with moduli of elasticity Er 5 30 3 106 psi and 
Et 5 15 3 106 psi, and yield strengths (sr)Y 5 36 ksi and (st)Y 5 45 ksi. 
Draw the load-deflection diagram of the rod-tube assembly when a 
load P is applied to the plate as shown.
 Determine the internal force and the elongation of the rod as it 
begins to yield

 1Pr2Y 5 1sr2YAr 5 136 ksi2 10.075 in22 5 2.7 kips

 1dr2Y 5 1Pr2YL 5
1sr2Y

Er
L 5

36 3 103 psi

30 3 106 psi
 130 in.2

 5 36 3 1023 in.

Since the material is elastoplastic, the force-elongation diagram of the 
rod alone consists of oblique and horizontal straight lines, as shown 
in Fig. 2.54b. Following the same procedure for the tube,

 1Pt2Y 5 1st2YAt 5 145 ksi2 10.100 in22 5 4.5 kips

 1dt2Y 5 1Pt2YL 5
1st2Y

Et
L 5

45 3 103 psi

15 3 106 psi
 130 in.2

 5 90 3 1023 in.

The load-deflection diagram of the tube alone is shown in Fig. 2.54c. 
Observing that the load and deflection of the rod-tube combination are

P 5 Pr 1 Pt  d 5 dr 5 dt

we draw the required load-deflection diagram by adding the ordinates 
of the diagrams obtained for both the rod and the tube (Fig. 2.54d). 
Points Yr and Yt correspond to the onset of yield.

Tube

Plate

30 in.

Rod
P

(a)

Pr (kips)

2.7

0 36

Yr

�r (10–3 in.)
(b)

Fig. 2.54 (a) Concentric rod-tube assembly 
axially loaded by rigid plate. (b) Load-
deflection response of the rod. (c) Load-
deflection response of the tube. (d) Combined 
load-deflection response of the rod-tube 
assembly.

P (kips)

4.5

7.2

0 36 90

Yr

Yt

� (10–3 in.)
(d)

Pt (kips)

1.8

4.5

0 36 90 �t (10–3 in.)
(c)

Yt
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2.12 Plastic Deformations 121

Concept Application 2.15

If the load P applied to the rod-tube assembly of Concept Application 
2.14 is increased from zero to 5.7 kips and decreased back to zero, 
determine (a) the maximum elongation of the assembly and (b) the 
permanent set after the load has been removed.

 a. Maximum Elongation. Referring to Fig. 2.54d, the load 
Pmax 5 5.7 kips corresponds to a point located on the segment YrYt of 
the load-deflection diagram of the assembly. Thus, the rod has reached 
the plastic range with Pr 5 (Pr)Y 5 2.7 kips and sr 5 (sr)Y 5 36 ksi. 
However the tube is still in the elastic range with

 Pt 5 P 2 Pr 5 5.7 kips 2 2.7 kips 5 3.0 kips

 st 5
Pt

At
5

3.0 kips

0.1 in2 5 30 ksi

 dt 5 PtL 5
st

Et
L 5

30 3 103 psi

15 3 106 psi
 130 in.2 5 60 3 1023 in.

The maximum elongation of the assembly is

dmax 5 dt 5 60 3 1023 in.

 b. Permanent Set. As the load P decreases from 5.7 kips to zero, 
the internal forces Pr and Pt both decrease along a straight line, as 
shown in Fig. 2.55a and b. The force Pr decreases along line CD paral-
lel to the initial portion of the loading curve, while the force Pt decreases 
along the original loading curve, since the yield stress was not exceeded 
in the tube. Their sum P will decrease along a line CE parallel to the 
portion 0Yr of the load-deflection curve of the assembly (Fig. 2.55c). 
Referring to Fig. 2.55c, the slope of 0Yr (and thus of CE) is

m 5
4.5 kips

36 3 1023 in.
5 125 kips/in.

The segment of line FE in Fig. 2.55c represents the deformation d9 of 
the assembly during the unloading phase, and the segment 0E is the 
permanent set dp after the load P has been removed. From triangle 
CEF,

d¿ 5 2 
Pmax

m
5 2 

5.7 kips

125 kips/in.
5 245.6 3 1023 in.

The permanent set is

 dP 5 dmax 1 d¿ 5 60 3 1023 2 45.6 3 1023

 5 14.4 3 1023 in.

Pr (kips)

2.7

0 60

Yr C

D

�r (10–3 in.)

(a)

Pt (kips)

3.0

0 60

Yt

C

C

FE

�

�

t (10–3 in.)

0

� 60 � 10–3 in.

� (10–3 in.)

(b)

P (kips)

4.5

5.7
Yr

Yt

(c)

'�

�

p

Pmax

max

Fig. 2.55 (a) Rod load-deflection response 
with elastic unloading (red dashed line). 
(b) Tube load-deflection response; note that 
the given loading does not yield the tube, so 
unloading is along the original elastic loading 
line. (c) Combined rod-tube assembly 
load-deflection response with elastic 
unloading (red dashed line).
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122 Stress and Strain—Axial Loading

Stress Concentrations. Recall that the discussion of stress concentra-
tions of Sec. 2.11 was carried out under the assumption of a linear stress-
strain relationship. The stress distributions shown in Figs. 2.50 and 2.51, 
and the stress-concentration factors plotted in Fig. 2.52 cannot be used 
when plastic deformations take place, i.e., when smax exceeds the yield 
strength sY.
 Consider again the flat bar with a circular hole of Fig. 2.50, and 
let us assume that the material is elastoplastic, i.e., that its stress-strain 
diagram is as shown in Fig. 2.53. As long as no plastic deformation takes 
place, the distribution of stresses is as indicated in Sec. 2.11 (Fig. 2.50a). 
The area under the stress-distribution curve represents the integral 
es dA, which is equal to the load P. Thus this area and the value of smax 
must increase as the load P increases. As long as smax # sY, all of the 
stress distributions obtained as P increases will have the shape shown 
in Fig. 2.50 and repeated in Fig. 2.56a. However, as P is increased 
beyond PY corresponding to smax 5 sY (Fig. 2.56b), the stress-distribu-
tion curve must flatten in the vicinity of the hole (Fig. 2.56c), since the 
stress cannot exceed the value sY. This indicates that the material is 
yielding in the vicinity of the hole. As the load P is increased, the plastic 
zone where yield takes place keeps expanding until it reaches the edges 
of the plate (Fig. 2.56d). At that point, the distribution of stresses across 
the plate is uniform, s 5 sY, and the corresponding value P 5 PU of 
the load is the largest that can be applied to the bar without causing 
rupture.
 It is interesting to compare the maximum value PY of the load that 
can be applied if no permanent deformation is to be produced in the bar 
with the value PU that will cause rupture. Recalling the average stress, 
save 5 PyA, where A is the net cross-sectional area and the stress concen-
tration factor, K 5 smaxysave, write

 P 5 save A 5
smax A

K
 (2.41)

for any value of smax that does not exceed sY . When smax 5 sY (Fig. 2.56b), 
P 5 PY, and Eq. (2.40) yields

PY 5
sYA

K
 (2.42)

On the other hand, when P 5 PU (Fig. 2.56d), save 5 sY and

 PU 5 sYA (2.43)

Comparing Eqs. (2.42) and (2.43),

 PY 5
PU

K
 (2.44)

*2.13 RESIDUAL STRESSES
In Concept Application 2.13 of the preceding section, we considered a rod 
that was stretched beyond the yield point. As the load was removed, the 
rod did not regain its original length; it had been permanently deformed. 

Fig. 2.56 Distribution of stresses in elastic-
perfectly plastic material under increasing load.

(a)

(b)

(c)

�

� �max Y

Y

�max

  � 

� �ave � (d)

PY

P

PU

P

Y
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*2.13 Residual Stresses 123

However, after the load was removed, all stresses disappeared. You should 
not assume that this will always be the case. Indeed, when only some of 
the parts of an indeterminate structure undergo plastic deformations, as 
in Concept Application 2.15, or when different parts of the structure 
undergo different plastic deformations, the stresses in the various parts of 
the structure will not return to zero after the load has been removed. 
Stresses called residual stresses will remain in various parts of the 
structure.
 While computation of residual stresses in an actual structure can be 
quite involved, the following concept application provides a general 
understanding of the method to be used for their determination.

Concept Application 2.16

Determine the residual stresses in the rod and tube of Fig. 2.54a 
after the load P has been increased from zero to 5.7 kips and 
decreased back to zero.
 Observe from the diagrams of Fig. 2.57 (similar to those 
in the previous concept application) that, after the load P has 
returned to zero, the internal forces Pr and Pt are not equal to 
zero. Their values have been indicated by point E in parts a 
and b. The corresponding stresses are not equal to zero either 
after the assembly has been unloaded. To determine these 
residual stresses, first determine the reverse stresses s9r and 
s9t caused by the unloading and add them to the maximum 
stresses sr 5 36 ksi and st 5 30 ksi found in part a of Concept 
Application 2.15.
 The strain caused by the unloading is the same in both 
the rod and the tube. It is equal to d9yL, where d9 is the defor-
mation of the assembly during unloading found in Concept 
Application 2.15:

P¿ 5
d¿
L

5
245.6 3 1023 in.

30 in.
5 21.52 3 1023 in./in.

The corresponding reverse stresses in the rod and tube are

 s¿r 5 P¿Er 5 121.52 3 10232 130 3 106 psi2 5 245.6 ksi

 s¿t 5 P¿Et 5 121.52 3 10232 115 3 106 psi2 5 222.8 ksi

Then the residual stresses are found by superposing the 
stresses due to loading and the reverse stresses due to 
unloading.

 1sr2res 5 sr 1 s¿r 5 36 ksi 2 45.6 ksi 5 29.6 ksi

 1st2res 5 st 1 s¿t 5 30 ksi 2 22.8 ksi 5 17.2 ksi

Pr (kips)

2.7

0 60

Yr C

D
E

E

�r (10–3 in.)

(a)(a)

Pt (kips)

3.0

0 60

Yt

C

C

FE

�

�

t (10–3 in.)

0
� (10–3 in.)

(b)

P (kips)

4.5

5.7
Yr

Yt

(c)

'�p

Pmax

Fig. 2.57 (a) Rod load-deflection response with 
elastic unloading (red dashed line). (b) Tube 
load-deflection response; the given loading does 
not yield the tube, so unloading is along elastic 
loading line with residual tensile stress. (c) 
Combined rod-tube assembly load-deflection 
response with elastic unloading (red dashed line).
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124 Stress and Strain—Axial Loading

Temperature Changes. Plastic deformations caused by temperature 
changes can also result in residual stresses. For example, consider a small 
plug that is to be welded to a large plate (Fig. 2.58). The plug can be 

Fig. 2.58 Small rod welded 
to a large plate. 

A B

considered a small rod AB to be welded across a small hole in the plate. 
During the welding process, the temperature of the rod will be raised to 
over 10008C, at which point its modulus of elasticity, stiffness, and stress 
will be almost zero. Since the plate is large, its temperature will not be 
increased significantly above room temperature (208C). Thus, when the 
welding is completed, rod AB is at T 5 10008C with no stress and is 
attached to the plate, which is at 208C.
 As the rod cools, its modulus of elasticity increases. At about 5008C, 
it will approach its normal value of about 200 GPa. As the temperature 
of the rod decreases further, a situation similar to that considered in 
Sec. 2.3 and illustrated in Fig. 2.26 develops. Solving Eq. (2.15) for DT, 
making s equal to the yield strength, assuming sY 5 300 MPa for the 
steel used, and a 5 12 3 1026/8C, the temperature change that causes 
the rod to yield is

¢T 5 2 
s

Ea
5 2 

300 MPa

1200 GPa2 112 3 1026/8C2 5 21258C

So the rod starts yielding at about 3758C and keeps yielding at a fairly 
constant stress level as it cools down to room temperature. As a result of 
welding, a residual stress (approximately equal to the yield strength of the 
steel used) is created in the plug and in the weld.
 Residual stresses also occur as a result of the cooling of metals that 
have been cast or hot rolled. In these cases, the outer layers cool more 
rapidly than the inner core. This causes the outer layers to reacquire their 
stiffness (E returns to its normal value) faster than the inner core. When 
the entire specimen has returned to room temperature, the inner core will 
contract more than the outer layers. The result is residual longitudinal 
tensile stresses in the inner core and residual compressive stresses in the 
outer layers.
 Residual stresses due to welding, casting, and hot rolling can be 
quite large (of the order of magnitude of the yield strength). These stresses 
can be removed by reheating the entire specimen to about 6008C and then 
allowing it to cool slowly over a period of 12 to 24 hours.
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*2.13 Residual Stresses 125

Sample Problem 2.6
The rigid beam ABC is suspended from two steel rods as shown and 
is initially horizontal. The midpoint B of the beam is deflected 10 mm 
downward by the slow application of the force Q, after which the force 
is slowly removed. Knowing that the steel used for the rods is elasto-
plastic with E 5 200 GPa and sY 5 300 MPa, determine (a) the required 
maximum value of Q and the corresponding position of the beam and 
(b) the final position of the beam.

STRATEGY: You can assume that plastic deformation would occur 
first in rod AD (which is a good assumption—why?), and then check 
this assumption.

MODELING AND ANALYSIS: 

Statics.  Since Q is applied at the midpoint of the beam (Fig. 1),

PAD 5 PCE  and  Q 5 2PAD

Elastic Action (Fig. 2). The maximum value of Q and the maximum 
elastic deflection of point A occur when s 5 sY in rod AD.

 1PAD2max 5 sYA 5 1300 MPa2 1400 mm22 5 120 kN

  Qmax 5 21PAD2max 5 21120 kN2 Qmax 5 240 kN ◀

  dA1
5 PL 5

sY

E
 L 5 a300 MPa

200 GPa
b 12 m2 5 3 mm

2 m

2 m

5 m

2 m

Q

B

D

E

CA

AD 5 400 mm2

CE 5 500 mm2

Areas:

2 m 2 m

Q

PAD PCE
B

CA

Fig. 1 Free-body 
diagram of rigid beam. 

PAD (kN)

120

0 3 0 611 14 mm
Rod AD Rod CE

mm

120

PCE (kN)
HY Y

J

Fig. 2 Load-deflection diagrams for 
steel rods. 
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126 Stress and Strain—Axial Loading

Since PCE 5 PAD 5 120 kN, the stress in rod CE is

sCE 5
PCE

A
5

120 kN

500 mm2 5 240 MPa

The corresponding deflection of point C is

dC1
5 PL 5

sCE

E
 L 5 a240 MPa

200 GPa
b15 m2 5 6 mm

The corresponding deflection of point B is

dB1
5

1
2 1dA1

1 dC1
2 5

1
2 13 mm 1 6 mm2 5 4.5 mm

Since dB 5 10 mm, plastic deformation will occur.

Plastic Deformation. For Q 5 240 kN, plastic deformation occurs 
in rod AD, where sAD 5 sY 5 300 MPa. Since the stress in rod CE is 
within the elastic range, dC remains equal to 6 mm. From Fig. 3, the 
deflection dA for which dB 5 10 mm is obtained by writing

dB2
5 10 mm 5

1
2 1dA2

1 6 mm2  dA2
5 14 mm

3 mm 6 mm4.5 mm
A1 B1 C1

Q = 240 kN

14 mm
6 mm10 mm

A2
B2

C1

Q = 240 kN

Deflections for    B 5 10 mmd

Fig. 3 Deflection of fully-loaded 
beam.

d

11 mm

3 mm

6 mm

A2

A3
B2

C2

B3

C3

Q = 0

Final deflections

C = 0

Fig. 4 Beam’s final deflections 
with load removed.

Unloading.  As force Q is slowly removed, the force PAD decreases 
along line HJ parallel to the initial portion of the load-deflection dia-
gram of rod AD. The final deflection of point A is

dA3
5 14 mm 2 3 mm 5 11 mm

Since the stress in rod CE remained within the elastic range, note that 
the final deflection of point C is zero. Fig. 4 illustrates the final position 
of the beam.

REFLECT and THINK: Due to symmetry in this determinate problem, 
the axial forces in the rods are equal. Given that the rods have identical 
material properties and that the cross-sectional area of rod AD is 
smaller than rod CE, you would therefore expect that rod AD would 
reach yield first (as assumed in the STRATEGY step).
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Problems
 2.93 Knowing that, for the plate shown, the allowable stress is 125 MPa, 

determine the maximum allowable value of P when (a) r 5 12 mm, 
(b) r 5 18 mm.

 2.94 Knowing that P 5 38 kN, determine the maximum stress when 
(a) r 5 10 mm, (b) r 5 16 mm, (c) r 5 18 mm.

 2.95 A hole is to be drilled in the plate at A. The diameters of the bits 
available to drill the hole range from 12 to 11

2 in. in 14-in. increments. 
If the allowable stress in the plate is 21 ksi, determine (a) the 
diameter d of the largest bit that can be used if the allowable load 
P at the hole is to exceed that at the fillets, (b) the corresponding 
allowable load P.

Fig. P2.93 and P2.94

120 mm

60 mm r

P

15 mm

Fig. P2.95 and P2.96

A

d rf �

P

1
2 in.

1
83    in.

3
8 in.11

164    in.

Fig. P2.97

P

9 mm

9 mm

9 mm

96 mm 60 mm

A

rf

Fig. P2.98

rA 5 20 mm

rB 5 15 mm

B

A

64 mm

88 mm

P

t

2.96 (a) For P 5 13 kips and d 5 1
2 in., determine the maximum stress 

in the plate shown. (b) Solve part a, assuming that the hole at A 
is not drilled.

 2.97 Knowing that the hole has a diameter of 9 mm, determine (a) the 
radius rf of the fillets for which the same maximum stress occurs 
at the hole A and at the fillets, (b) the corresponding maximum 
allowable load P if the allowable stress is 100 MPa.

 2.98 For P 5 100 kN, determine the minimum plate thickness t
required if the allowable stress is 125 MPa.
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 2.99 (a) Knowing that the allowable stress is 20 ksi, determine the 
maximum allowable magnitude of the centric load P. (b) Deter-
mine the percent change in the maximum allowable magnitude 
of P if the raised portions are removed at the ends of the 
specimen.

Fig. P2.99

P

P

t 5

2 in.

3 in.

5
8 in.

r 5 1
4 in.

Fig. P2.100

3
4 in.

1
2 in.

1
2 in.

5 in.

1 in.

6

rf 5

P

L

B

A

P

Fig. P2.101 and P2.102

 2.100 A centric axial force is applied to the steel bar shown. Knowing 
that sall 5 20 ksi, determine the maximum allowable load P.

 2.101 The cylindrical rod AB has a length L 5 5 ft and a 0.75-in. diam-
eter; it is made of a mild steel that is assumed to be elastoplastic 
with E 5 29 3 106 psi and sY 5 36 ksi. A force P is applied to the 
bar and then removed to give it a permanent set dP . Determine 
the maximum value of the force P and the maximum amount dm 
by which the bar should be stretched if the desired value of dP is 
(a) 0.1 in., (b) 0.2 in.

 2.102 The cylindrical rod AB has a length L 5 6 ft and a 1.25-in. diam-
eter; it is made of a mild steel that is assumed to be elastoplastic 
with E 5 29 3 106 psi and sY 5 36 ksi. A force P is applied to the 
bar until end A has moved down by an amount dm. Determine 
the maximum value of the force P and the permanent set of the 
bar after the force has been removed, knowing (a) dm 5 0.125 in., 
(b) dm 5 0.250 in.

bee98233_ch02_054-145.indd   128bee98233_ch02_054-145.indd   128 11/15/13   4:55 PM11/15/13   4:55 PM



129

2.103 Rod AB is made of a mild steel that is assumed to be elastoplastic 
with E 5 200 GPa and sY 5 345 MPa. After the rod has been 
attached to the rigid lever CD, it is found that end C is 6 mm too 
high. A vertical force Q is then applied at C until this point has 
moved to position C9. Determine the required magnitude of Q
and the deflection d1 if the lever is to snap back to a horizontal 
position after Q is removed.

Fig. P2.103

6 mm

9-mm diameter

0.4 m
0.7 m

1.25 m

C B
D

A

C�

1d

P

40-mm
diameter

30-mm
diameter

1.2 m

0.8 m

C

B

A

Fig. P2.105 and P2.106

2.104 Solve Prob. 2.103, assuming that the yield point of the mild steel 
is 250 MPa.

 2.105 Rod ABC consists of two cylindrical portions AB and BC; it is 
made of a mild steel that is assumed to be elastoplastic with 
E 5 200 GPa and sY 5 250 MPa. A force P is applied to the rod 
and then removed to give it a permanent set dP 5 2 mm. Deter-
mine the maximum value of the force P and the maximum 
amount dm by which the rod should be stretched to give it the 
desired permanent set.

 2.106 Rod ABC consists of two cylindrical portions AB and BC; it is 
made of a mild steel that is assumed to be elastoplastic with 
E 5 200 GPa and sY 5 250 MPa. A force P is applied to the rod 
until its end A has moved down by an amount dm 5 5 mm. Deter-
mine the maximum value of the force P and the permanent set 
of the rod after the force has been removed.
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 2.107 Rod AB consists of two cylindrical portions AC and BC, each with 
a cross-sectional area of 1750 mm2. Portion AC is made of a mild 
steel with E 5 200 GPa and sY 5 250 MPa, and portion BC is 
made of a high-strength steel with E 5 200 GPa and sY 5 345 
MPa. A load P is applied at C as shown. Assuming both steels to 
be elastoplastic, determine (a) the maximum deflection of C if P 
is gradually increased from zero to 975 kN and then reduced back 
to zero, (b) the maximum stress in each portion of the rod, (c) the 
permanent deflection of C.

 2.108 For the composite rod of Prob. 2.107, if P is gradually increased 
from zero until the deflection of point C reaches a maximum 
value of dm 5 0.3 mm and then decreased back to zero, deter-
mine, (a) the maximum value of P, (b) the maximum stress in 
each portion of the rod, (c) the permanent deflection of C after 
the load is removed.

 2.109 Each cable has a cross-sectional area of 100 mm2 and is made of 
an elastoplastic material for which sY 5 345 MPa and E 5 200 
GPa. A force Q is applied at C to the rigid bar ABC and is gradu-
ally increased from 0 to 50 kN and then reduced to zero. Knowing 
that the cables were initially taut, determine (a) the maximum 
stress that occurs in cable BD, (b) the maximum deflection of 
point C, (c) the final displacement of point C. (Hint: In part c, 
cable CE is not taut.)

Fig. P2.107

190 mm

190 mm

C

B

A

P

Fig. P2.109

1 m

A
B C

Q

D E

1 m

2 m

2.110 Solve Prob. 2.109, assuming that the cables are replaced by rods of 
the same cross-sectional area and material. Further assume that the 
rods are braced so that they can carry compressive forces.

 2.111 Two tempered-steel bars, each 3
16 in. thick, are bonded to a 1

2-in. 
mild-steel bar. This composite bar is subjected as shown to a cen-
tric axial load of magnitude P. Both steels are elastoplastic with 
E 5 29 3 106 psi and with yield strengths equal to 100 ksi and 
50 ksi, respectively, for the tempered and mild steel. The load P 
is gradually increased from zero until the deformation of the bar 
reaches a maximum value dm 5 0.04 in. and then decreased back 
to zero. Determine (a) the maximum value of P, (b) the maxi-
mum stress in the tempered-steel bars, (c) the permanent set 
after the load is removed.Fig. P2.111

P

14 in.

2.0 in.

P'

in.

1
2 in.

3
16 3

16

in.
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 2.112 For the composite bar of Prob. 2.111, if P is gradually increased 
from zero to 98 kips and then decreased back to zero, determine 
(a) the maximum deformation of the bar, (b) the maximum stress 
in the tempered-steel bars, (c) the permanent set after the load 
is removed.

 2.113 The rigid bar ABC is supported by two links, AD and BE, of uni-
form 37.5 3 6-mm rectangular cross section and made of a mild 
steel that is assumed to be elastoplastic with E 5 200 GPa and 
sY 5 250 MPa. The magnitude of the force Q applied at B is 
gradually increased from zero to 260 kN. Knowing that a 5 0.640 m, 
determine (a) the value of the normal stress in each link, (b) the 
maximum deflection of point B.

Fig. P2.113

1.7 m

1 m

2.64 m

C

B

E

D

A

Q
a

Fig. P2.116
L

BA

 2.114 Solve Prob. 2.113, knowing that a 5 1.76 m and that the magni-
tude of the force Q applied at B is gradually increased from zero 
to 135 kN.

 *2.115 Solve Prob. 2.113, assuming that the magnitude of the force Q
applied at B is gradually increased from zero to 260 kN and then 
decreased back to zero. Knowing that a 5 0.640 m, determine 
(a) the residual stress in each link, (b) the final deflection of point 
B. Assume that the links are braced so that they can carry com-
pressive forces without buckling.

 2.116 A uniform steel rod of cross-sectional area A is attached to 
rigid  supports and is unstressed at a temperature of 458F. The 
steel is assumed to be elastoplastic with sY 5 36 ksi and 
E 5 29 3 106 psi. Knowing that a 5 6.5 3 1026/8F, determine the 
stress in the bar (a) when the temperature is raised to 3208F, 
(b) after the temperature has returned to 458F.
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 *2.122 Bar AB has a cross-sectional area of 1200 mm2 and is made of a 
steel that is assumed to be elastoplastic with E 5 200 GPa and sY

5 250 MPa. Knowing that the force F increases from 0 to 520 kN 
and then decreases to zero, determine (a) the permanent deflec-
tion of point C, (b) the residual stress in the bar.

Fig. P2.121

Fig. P2.122

440 mm

a � 120 mm

F

C BA

 *2.123 Solve Prob. 2.122, assuming that a 5 180 mm.

 2.117 The steel rod ABC is attached to rigid supports and is unstressed 
at a temperature of 258C. The steel is assumed elastoplastic 
with E 5 200 GPa and sY 5 250 MPa. The temperature of both 
portions of the rod is then raised to 1508C. Knowing that 
a 5 11.7 3 1026/8C, determine (a) the stress in both portions of 
the rod, (b) the deflection of point C.

 *2.118 Solve Prob. 2.117, assuming that the temperature of the rod is 
raised to 150°C and then returned to 258C.

 *2.119 For the composite bar of Prob. 2.111, determine the residual 
stresses in the tempered-steel bars if P is gradually increased 
from zero to 98 kips and then decreased back to zero.

 *2.120 For the composite bar in Prob. 2.111, determine the residual 
stresses in the tempered-steel bars if P is gradually increased 
from zero until the deformation of the bar reaches a maximum 
value dm 5 0.04 in. and is then decreased back to zero.

 *2.121 Narrow bars of aluminum are bonded to the two sides of a thick 
steel plate as shown. Initially, at T1 5 708F, all stresses are zero. 
Knowing that the temperature will be slowly raised to T2 and then 
reduced to T1, determine (a) the highest temperature T2 that does 
not result in residual stresses, (b) the temperature T2 that will 
result in a residual stress in the aluminum equal to 58 ksi. Assume 
aa 5 12.8 3 1026/8F for the aluminum and as 5 6.5 3 1026/8F for 
the steel. Further assume that the aluminum is elastoplastic with 
E 5 10.9 3 106 psi and aY 5 58 ksi. (Hint: Neglect the small 
stresses in the plate.)

Fig. P2.117

BA C

A � 500 mm2
A� 300 mm2

150 mm 250 mm 
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Review and Summary
Normal Strain
Consider a rod of length L and uniform cross section, and its deformation d
under an axial load P (Fig. 2.59). The normal strain P in the rod is defined 
as the deformation per unit length:

P 5
d

L
  (2.1)

B B

C
C

L

A

P

d

(a) (b)

Fig. 2.59 Undeformed and deformed 
axially-loaded rod.

In the case of a rod of variable cross section, the normal strain at any given 
point Q is found by considering a small element of rod at Q:

 P 5 lim
¢xy0

 
¢d
¢x

5
dd
dx

 (2.2)

Stress-Strain Diagram
A stress-strain diagram is obtained by plotting the stress s versus the strain P
as the load increases. These diagrams can be used to distinguish between 
brittle and ductile materials. A brittle material ruptures without any notice-
able prior change in the rate of elongation (Fig. 2.60), while a ductile material 

Fig. 2.60 Stress-strain diagram for a typical 
brittle material.

Rupture

�

B�U ��

�
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yields after a critical stress sY (the yield strength) has been reached (Fig. 2.61). 
The specimen undergoes a large deformation before rupturing, with a 
relatively small increase in the applied load. An example of brittle material 
with different properties in tension and compression is concrete.

Hooke’s Law and Modulus of Elasticity
The initial portion of the stress-strain diagram is a straight line. Thus, for 
small deformations, the stress is directly proportional to the strain:

s 5 EP (2.6)

This relationship is Hooke’s law, and the coefficient E is the modulus of 
elasticity of the material. The proportional limit is the largest stress for 
which Eq. (2.4) applies.

Properties of isotropic materials are independent of direction, while prop-
erties of anisotropic materials depend upon direction. Fiber-reinforced 
composite materials are made of fibers of a strong, stiff material embedded 
in layers of a weaker, softer material (Fig. 2.62).

Elastic Limit and Plastic Deformation
If the strains caused in a test specimen by the application of a given load 
disappear when the load is removed, the material is said to behave elasti-
cally. The largest stress for which this occurs is called the elastic limit of 
the material. If the elastic limit is exceeded, the stress and strain decrease 
in a linear fashion when the load is removed, and the strain does not 
return to zero (Fig. 2.63), indicating that a permanent set or plastic defor-
mation of the material has taken place.

Fig. 2.61 Stress-strain diagrams of two typical ductile metal materials.

Yield Strain-hardening

Rupture

0.02

(a) Low-carbon steel
 0.0012

0.2 0.25
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Rupture

(b) Aluminum alloy
 0.004

0.2

60

40

20

�

Y�(k
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)
�
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Fig. 2.62 Layer of fiber-reinforced 
composite material.
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material

Fibers

y
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x

Fig. 2.63 Stress-strain response of ductile 
material loaded beyond yield and unloaded.

C
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Fatigue and Endurance Limit
Fatigue causes the failure of structural or machine components after a 
very large number of repeated loadings, even though the stresses remain 
in the elastic range. A standard fatigue test determines the number n of 
successive loading-and-unloading cycles required to cause the failure 
of a specimen for any given maximum stress level s and plots the 
resulting s-n curve. The value of s for which failure does not occur, 
even for an indefinitely large number of cycles, is known as the endur-
ance limit.

Elastic Deformation Under Axial Loading
If a rod of length L and uniform cross section of area A is subjected at its 
end to a centric axial load P (Fig. 2.64), the corresponding deformation is

 d 5
PL

AE
 (2.9)

Fig. 2.64 Undeformed and 
deformed axially-loaded rod.

�

L

C
C

A

B B

P

If the rod is loaded at several points or consists of several parts of various 
cross sections and possibly of different materials, the deformation d of the 
rod must be expressed as the sum of the deformations of its component 
parts:

d 5 a
i

PiLi

AiEi
 (2.10)

Statically Indeterminate Problems
Statically indeterminate problems are those in which the reactions and the 
internal forces cannot be determined from statics alone. The equilibrium 
equations derived from the free-body diagram of the member under con-
sideration were complemented by relations involving deformations and 
obtained from the geometry of the problem. The forces in the rod and in 
the tube of Fig. 2.65, for instance, were determined by observing that their 
sum is equal to P, and that they cause equal deformations in the rod 
and in the tube. Similarly, the reactions at the supports of the bar of 

Fig. 2.65 Statically indeterminate problem where 
concentric rod and tube have same strain but 
different stresses.

P

Tube (A2, E2)

Rod (A1, E1)

End plate 
L
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Fig. 2.66 could not be obtained from the free-body diagram of the bar 
alone, but they could be determined by expressing that the total elonga-
tion of the bar must be equal to zero.

Problems with Temperature Changes
When the temperature of an unrestrained rod AB of length L is increased 
by DT, its elongation is

dT 5 a1¢T2  L  (2.13)

where a is the coefficient of thermal expansion of the material. The cor-
responding strain, called thermal strain, is

PT 5 a¢T   (2.14)

and no stress is associated with this strain. However, if rod AB is restrained by 
fixed supports (Fig. 2.67), stresses develop in the rod as the temperature 
increases, because of the reactions at the supports. To determine the magni-
tude P of the reactions, the rod is first detached from its support at B (Fig. 2.68a). 

Fig. 2.66 (a) Axially-loaded statically-indeterminate 
member. (b) Free-body diagram.

P

L1

L2

RA

RB

(a) (b)

L

A

B

A

B

C C

P

Fig. 2.67 Fully restrained bar of length L.

L

A B

Fig. 2.68 Determination of reactions for bar of Fig. 2.67 
subject to a temperature increase. (a) Support at B removed. 
(b) Thermal expansion. (c) Application of support reaction to 
counter thermal expansion.

L

(b)

(c)

L

A

A B

B

P

(a)
T�

A B

P�
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The deformation dT of the rod occurs as it expands due to of the temperature 
change (Fig. 2.68b). The deformation dP caused by the force P is required to 
bring it back to its original length, so that it may be reattached to the support 
at B (Fig. 2.68c).

Lateral Strain and Poisson’s Ratio
When an axial load P is applied to a homogeneous, slender bar 
(Fig. 2.69), it causes a strain, not only along the axis of the bar but in any 
transverse direction. This strain is the lateral strain, and the ratio of the 
lateral strain over the axial strain is called Poisson’s ratio:

 n 5 2  

lateral strain

axial strain
 (2.17)

Multiaxial Loading
The condition of strain under an axial loading in the x direction is

 Px 5
sx

E
       Py 5 Pz 5 2 

nsx

E
 (2.19)

A multiaxial loading causes the state of stress shown in Fig. 2.70. The 
resulting strain condition was described by the generalized Hooke’s law for 
a multiaxial loading.

 Px 5 1
sx

E
2
nsy

E
2
nsz

E

  Py 5 2 

nsx

E
1
sy

E
2
nsz

E
 (2.20)

 Pz 5 2 

nsx

E
2
nsy

E
1
sz

E

Dilatation
If an element of material is subjected to the stresses sx , sy , sz , it will 
deform and a certain change of volume will result. The change in volume 
per unit volume is the dilatation of the material:

e 5
1 2 2n

E
 1sx 1 sy 1 sz2 (2.22)

Bulk Modulus
When a material is subjected to a hydrostatic pressure p,

 e 5 2 
p

k
 (2.25)

where k is the bulk modulus of the material:

k 5
E

311 2 2n2  (2.24)

Fig. 2.69 A bar in uniaxial tension.

z

y

xP

A

Fig. 2.70 State of stress for multiaxial loading.
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z�
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Shearing Strain: Modulus of Rigidity
The state of stress in a material under the most general loading condition 
involves shearing stresses, as well as normal stresses (Fig. 2.71). The 
shearing stresses tend to deform a cubic element of material into an 
oblique parallelepiped. The stresses txy and tyx shown in Fig. 2.72 cause 
the angles formed by the faces on which they act to either increase or 
decrease by a small angle gxy. This angle defines the shearing strain cor-
responding to the x and y directions. Defining in a similar way the shear-
ing strains gyz and gzx , the following relations were written:

txy 5 Ggxy  tyz 5 Ggyz  tzx 5 Ggzx (2.27, 28)

Fig. 2.71 Positive stress components at 
point Q for a general state of stress.

zy�
yz� yx�

zx�z� x�

y�

z

y

x

xy�

xz�

Q

Fig. 2.72 Deformation of unit cubic 
element due to shearing stress.

1

1

z

y

x

yx�

xy�

xy
� �2 	

xy
� �2 


which are valid for any homogeneous isotropic material within its propor-
tional limit in shear. The constant G is the modulus of rigidity of the mate-
rial, and the relationships obtained express Hooke’s law for shearing stress 
and strain. Together with Eqs. (2.20), they form a group of equations rep-
resenting the generalized Hooke’s law for a homogeneous isotropic mate-
rial under the most general stress condition.

While an axial load exerted on a slender bar produces only normal 
strains—both axial and  transverse—on an element of material oriented 
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along the axis of the bar, it will produce both normal and shearing strains 
on an element rotated through 458 (Fig. 2.73). The three constants E, n, 
and G are not independent. They satisfy the relation

E

2G
5 1 1 n (2.34)

This equation can be used to determine any of the three constants in terms 
of the other two.

Saint-Venant’s Principle
Saint-Venant’s principle states that except in the immediate vicinity of the 
points of application of the loads, the distribution of stresses in a given 
member is independent of the actual mode of application of the loads. This 
principle makes it possible to assume a uniform distribution of stresses in 
a member subjected to concentrated axial loads, except close to the points 
of application of the loads, where stress concentrations will occur.

Stress Concentrations
Stress concentrations will also occur in structural members near a discon-
tinuity, such as a hole or a sudden change in cross section. The ratio of 
the maximum value of the stress occurring near the discontinuity over the 
average stress computed in the critical section is referred to as the stress-
concentration factor of the discontinuity:

K 5
smax

save
  (2.40)

Plastic Deformations
Plastic deformations occur in structural members made of a ductile material 
when the stresses in some part of the member exceed the yield strength of 
the material. An idealized elastoplastic material is characterized by the 
stress-strain diagram shown in Fig. 2.74. When an indeterminate structure 

Fig. 2.73 Representations of strain in an 
axially-loaded bar: (a) cubic strain element with 
faces aligned with coordinate axes; (b) cubic strain 
element with faces rotated 45° about z-axis.

y

x1

1

1 	 x�

1 
 x��

(a)

P

(b)

� �22 '� ' 
� 	

PP'
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Fig. 2.74 Stress-strain diagram for an 
idealized elastoplastic material.
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Rupture

Y
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�

Y

undergoes plastic deformations, the stresses do not, in general, return to 
zero after the load has been removed. The stresses remaining in the various 
parts of the structure are called residual stresses and can be determined by 
adding the maximum stresses reached during the loading phase and the 
reverse stresses corresponding to the unloading phase.
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Review Problems
 2.124 The uniform wire ABC, of unstretched length 2l, is attached to 

the supports shown and a vertical load P is applied at the mid-
point B. Denoting by A the cross-sectional area of the wire and 
by E the modulus of elasticity, show that, for d << l, the deflec-
tion at the midpoint B is

d 5 l B3
P

AE

Fig. P2.124

P

l l

C
B

A�

Fig. P2.125

B

d

C

A

12 in.

18 in.

1.5 in.

2.25 in.

28 kips

E

D

28 kips

Fig. P2.126

C

B

A

3 in.

2 in.
30 kips 30 kips

P � 40 kips

40 in.

30 in.

 2.125 The aluminum rod ABC (E 5 10.1 3 106 psi), which consists 
of two cylindrical portions AB and BC, is to be replaced with 
a cylindrical steel rod DE (E 5 29 3 106 psi) of the same over-
all length. Determine the minimum required diameter d of the 
steel rod if its vertical deformation is not to exceed the defor-
mation of the aluminum rod under the same load and if the 
allowable stress in the steel rod is not to exceed 24 ksi.

2.126 Two solid cylindrical rods are joined at B and loaded as shown. 
Rod AB is made of steel (E 5 29 3 106 psi), and rod BC of brass 
(E 5 15 3 106 psi). Determine (a) the total deformation of the 
composite rod ABC, (b) the deflection of point B.
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 2.127 The brass strip AB has been attached to a fixed support at A 
and rests on a rough support at B. Knowing that the coeffi-
cient of friction is 0.60 between the strip and the support at B,
determine the decrease in temperature for which slipping will 
impend.

Fig. P2.127

3 mm

A

B

40 mm
100 kg

20 mm

Brass strip:
    E � 105 GPa
    � � 20 
 10
6/�C

 2.128 The specimen shown is made from a 1-in.-diameter cylindrical 
steel rod with two 1.5-in.-outer-diameter sleeves bonded to the 
rod as shown. Knowing that E 5 29 3 106 psi, determine (a) 
the load P so that the total deformation is 0.002 in., (b) the cor-
responding deformation of the central portion BC.

 2.129 Each of the four vertical links connecting the two rigid hori-
zontal members is made of aluminum (E 5 70 GPa) and has a 
uniform rectangular cross section of 10 3 40 mm. For the load-
ing shown, determine the deflection of (a) point E, (b) point F,
(c) point G.

Fig. P2.128

2 in.

2 in.

3 in.

C

D

A

B

P'

P

1  -in. diameter

1-in. diameter

1
2

1  -in. diameter1
2

 2.130 A 4-ft concrete post is reinforced with four steel bars, each 
with a 3

4-in. diameter. Knowing that Es 5 29 3 106 psi and 
Ec 5 3.6 3 106 psi, determine the normal stresses in the steel 
and in the concrete when a 150-kip axial centric force P is 
applied to the post.

Fig. P2.129

24 kN

F

E

A
B

C

D

300 mm

250 mm

400 mm

250 mm

40 mm

G

Fig. P2.130

4 ft

8 in.
8 in.

P
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 2.131 The steel rods BE and CD each have a 16-mm diameter 
(E 5 200 GPa); the ends of the rods are single-threaded with a 
pitch of 2.5 mm. Knowing that after being snugly fitted, the nut 
at C is tightened one full turn, determine (a) the tension in rod 
CD, (b) the deflection of point C of the rigid member ABC.

Fig. P2.131

100 mm

2 m

A

CD

B E

3 m

150 mm

Fig. P2.132

8 in.

Aluminum shell

1.25 in.
Steel
core

0.75 in.

Fig. P2.133

3.5 in.

5.5 in. 2.2 in.

P

2.132 The assembly shown consists of an aluminum shell (Ea 5

10.6 3 106 psi, aa 5 12.9 3 1026/8F) fully bonded to a steel 
core (Es 5 29 3 106 psi, as 5 6.5 3 1026/8F) and is unstressed. 
Determine (a) the largest allowable change in temperature if 
the stress in the aluminum shell is not to exceed 6 ksi, (b) the 
corresponding change in length of the assembly.

 2.133 The plastic block shown is bonded to a fixed base and to a hori-
zontal rigid plate to which a force P is applied. Knowing that for 
the plastic used G 5 55 ksi, determine the deflection of the plate 
when P 5 9 kips.
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2.134 The aluminum test specimen shown is subjected to two equal 
and opposite centric axial forces of magnitude P. (a) Knowing 
that E 5 70 GPa and sall 5 200 MPa, determine the maximum 
allowable value of P and the corresponding total elongation of 
the specimen. (b) Solve part a, assuming that the specimen has 
been replaced by an aluminum bar of the same length and a 
uniform 60 3 15-mm rectangular cross section.

Fig. P2.134

150

300

75

150

P�

75

Dimensions in mm

P

15

r 5 6
60 

Fig. P2.135

L

C
P

P
k

m

B

B'
C'

 2.135 The uniform rod BC has cross-sectional area A and is made of a 
mild steel that can be assumed to be elastoplastic with a modu-
lus of elasticity E and a yield strength sY. Using the block-and-
spring system shown, it is desired to simulate the deflection of 
end C of the rod as the axial force P is gradually applied and 
removed, that is, the deflection of points C and C9 should be the 
same for all values of P. Denoting by m the coefficient of friction 
between the block and the horizontal surface, derive an expres-
sion for (a) the required mass m of the block, (b) the required 
constant k of the spring.
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Computer Problems
The following problems are designed to be solved with a computer. Write 
each program so that it can be used with either SI or U.S. customary units 
and in such a way that solid cylindrical elements may be defined by either 
their diameter or their cross-sectional area.

 2.C1 A rod consisting of n elements, each of which is homogeneous and 
of uniform cross section, is subjected to the loading shown. The length of 
element i is denoted by Li, its cross-sectional area by Ai, modulus of elas-
ticity by Ei, and the load applied to its right end by Pi, the magnitude Pi of 
this load being assumed to be positive if Pi is directed to the right and 
negative otherwise. (a) Write a computer program that can be used to 
determine the average normal stress in each element, the deformation of 
each element, and the total deformation of the rod. (b) Use this program 
to solve Probs. 2.20 and 2.126.

 2.C2 Rod AB is horizontal with both ends fixed; it consists of n elements, 
each of which is homogeneous and of uniform cross section, and is sub-
jected to the loading shown. The length of element i is denoted by Li, its 
cross-sectional area by Ai, its modulus of elasticity by Ei, and the load 
applied to its right end by Pi, the magnitude Pi of this load being assumed 
to be positive if Pi is directed to the right and negative otherwise. (Note 
that P1 5 0.) (a) Write a computer program that can be used to determine 
the reactions at A and B, the average normal stress in each element, 
and the deformation of each element. (b) Use this program to solve Probs. 
2.41 and 2.42.

 2.C3 Rod AB consists of n elements, each of which is homogeneous and 
of uniform cross section. End A is fixed, while initially there is a gap d0 
between end B and the fixed vertical surface on the right. The length of 
element i is denoted by Li, its cross-sectional area by Ai, its modulus of 
elasticity by Ei, and its coefficient of thermal expansion by ai. After the 
temperature of the rod has been increased by DT, the gap at B is closed 
and the vertical surfaces exert equal and opposite forces on 
the rod. (a) Write a computer program that can be used to determine the 
magnitude of the reactions at A and B, the normal stress in each element, 
and the deformation of each element. (b) Use this program to solve Probs. 
2.59 and 2.60.

 2.C4 Bar AB has a length L and is made of two different materials of 
given cross-sectional area, modulus of elasticity, and yield strength. The 
bar is subjected as shown to a load P that is gradually increased from zero 
until the deformation of the bar has reached a maximum value dm and 
then decreased back to zero. (a) Write a computer program that, for each 
of 25 values of dm equally spaced over a range extending from 0 to a value 
equal to 120% of the deformation causing both materials to yield, can be 
used to determine the maximum value Pm of the load, the maximum 
normal stress in each material, the permanent deformation dp of the bar, 
and the residual stress in each material. (b) Use this program to solve 
Probs. 2.111 and 2.112.
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 2.C5 The plate has a hole centered across the width. The stress concen-
tration factor for a flat bar under axial loading with a centric hole is

K 5 3.00 2 3.13 a2r

D
b 1 3.66 a2r

D
b2

2 1.53 a2r

D
b3

where r is the radius of the hole and D is the width of the bar. Write a 
computer program to determine the allowable load P for the given values 
of r, D, the thickness t of the bar, and the allowable stress sall of the mate-
rial. Knowing that t 5

1
4 in., D 5 3.0 in. and sall 5 16 ksi, determine the 

allowable load P for values of r from 0.125 in. to 0.75 in., using 0.125 in. 
increments.

 2.C6 A solid truncated cone is subjected to an axial force P as shown. 
The exact elongation is (PL)y(2pc2E). By replacing the cone by n circular 
cylinders of equal thickness, write a computer program that can be used 
to calculate the elongation of the truncated cone. What is the percentage 
error in the answer obtained from the program using (a) n 5 6, 
(b) n 5 12, (c) n 5 60?
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