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  C H A P T E R 

 3   SIMULATION BASICS  

3.1   Introduction 
  Simulation is much more meaningful when we understand what it is actually 
doing. Understanding how simulation works helps us to know whether we are 
applying it correctly and what the output results mean. Many books have been 
written that give thorough and detailed discussions of the science of simulation 
(see Banks et al. 2001; Hoover and Perry 1989; Law 2007; Pooch and Wall 1993; 
Ross 1990; Shannon 1975; Thesen and Travis 1992; and Widman, Loparo, and 
Nielsen 1989). This chapter attempts to summarize the basic technical issues 
related to simulation that are essential to understand in order to get the greatest 
benefi t from the tool. The chapter discusses the different types of simulation and 
how random behavior is simulated. A spreadsheet simulation example is given 
in this chapter to illustrate how various techniques are combined to simulate the 
behavior of a common system.   

3.2   Types of Simulation 
  The way simulation works is based largely on the type of simulation used. There 
are many ways to categorize simulation. Some of the most common include 

   •    Static or dynamic.  

   •    Stochastic or deterministic.  

   •    Discrete event or continuous.   

   “Zeal without knowledge is fi re without light.”  
 —Dr. Thomas Fuller    
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58 Part I  Study Chapters

The type of simulation we focus on in this book can be classifi ed as dynamic, 
stochastic, discrete-event simulation. To better understand this classifi cation, we 
will look at what these three different simulation categories mean. 

3.2.1   Static versus Dynamic Simulation 

 A  static  simulation is one that is not based on time. It often involves drawing 
random samples to generate a statistical outcome, so it is sometimes called Monte 
Carlo simulation. In fi nance, Monte Carlo simulation is used to select a portfolio 
of stocks and bonds. Given a portfolio, with different probabilistic payouts, it is 
possible to generate an expected yield. One material handling system supplier 
developed a static simulation model to calculate the expected time to travel from 
one rack location in a storage system to any other rack location. A random sample 
of 100 from–to relationships were used to estimate an average travel time. Had 
every from–to trip been calculated, a 1,000-location rack would have involved 
1,000 factorial calculations. 
   Dynamic  simulation includes the passage of time. It looks at state changes 
as they occur over time. A clock mechanism moves forward in time and state 
variables are updated as time advances. Dynamic simulation is well suited for 
analyzing manufacturing and service systems since they operate over time.  

3.2.2   Stochastic versus Deterministic Simulation 

 Simulations in which one or more input variables are random are referred to as 
 stochastic  or  probabilistic  simulations. A stochastic simulation produces output 
that is itself random and therefore gives only one data point of how the system 
might behave. 
  Simulations having no input components that are random are said to be 
  deterministic . Deterministic simulation models are built the same way as stochastic 
models except that they contain no randomness. In a deterministic simulation, all 
future states are determined once the input data and initial state have been defi ned. 
  As shown in Figure 3.1, deterministic simulations have constant inputs and 
produce constant outputs. Stochastic simulations have random inputs and produce 
random outputs. Inputs might include activity times, arrival intervals, and rout-
ing sequences. Outputs include metrics such as average fl ow time, fl ow rate, and 
resource utilization. Any output impacted by a random input variable is going to 
also be a random variable. That is why the random inputs and random outputs of 
Figure 3.1( b ) are shown as statistical distributions. 
  A deterministic simulation will always produce the exact same outcome no 
matter how many times it is run. In stochastic simulation, several randomized runs 
or replications must be made to get an accurate performance estimate because 
each run varies statistically. Performance estimates for stochastic simulations are 
obtained by calculating the average value of the performance metric across all of 
the replications. In contrast, deterministic simulations need to be run only once to 
get precise results because the results are always the same.  
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 Chapter 3  Simulation Basics 59

   3.2.3  Discrete-Event versus Continuous Simulation 

 A  discrete-event  simulation is one in which state changes occur at discrete points 
in time as triggered by events. Typical simulation events might include 

   •    The arrival of an entity to a workstation.  

   •    The failure of a resource.  

   •    The completion of an activity.  

   •    The end of a shift.   

State changes in a model occur when some event happens. The state of the model 
becomes the collective state of all the elements in the model at a particular point 
in time. State variables in a discrete-event simulation are referred to as  discrete-
change  state variables. A restaurant simulation is an example of a discrete-event 
simulation because all of the state variables in the model, such as the number of 
customers in the restaurant, are discrete-change state variables (see Figure 3.2). 
Most manufacturing and service systems are typically modeled using discrete-
event simulation. 
  In  continuous  simulation, state variables change continuously with respect to 
time and are therefore referred to as  continuous-change  state variables. An ex-
ample of a continuous-change state variable is the level of oil in an oil tanker that is 
being either loaded or unloaded, or the temperature of a building that is controlled 
by a heating and cooling system. Some readers are perhaps familiar with a set 
of nonlinear partial differential equations called Navier-Stokes equations used to 
model the continuous fl ow of liquids and other substances. Figure 3.3 compares a 
discrete-change state variable and a continuous-change state variable as they vary 
over time. 
  Continuous simulation products use either differential equations or differ-
ence equations to defi ne the rates of change in state variables over time. 
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FIGURE 3.1
    Examples of (a) a deterministic simulation and (b) a stochastic simulation.  
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FIGURE 3.3
    Comparison of a 
discrete-change 
state variable and a 
continuous-change 
state variable.  

  Differential Equations 
 The change that occurs in some continuous-change state variables is expressed in 
terms of the derivatives of the state variables. Equations involving derivatives of 
a state variable are referred to as  differential equations . The state variable �, for 
example, might change as a function of both � and time  t :    

   
d� (t)

 _____ 
dt

   � � 2(t) � t2

We then need a second equation to defi ne the initial condition of �:     

 � (0) � K

  On a computer, numerical integration is used to calculate the change in a par-
ticular response variable over time. Numerical integration is performed at the end 
of successive small time increments referred to as  steps . Numerical analysis tech-
niques, such as Runge-Kutta integration, are used to integrate the differential equa-
tions numerically for each incremental time step. One or more threshold values for 
each continuous-change state variable are usually defi ned that determine when some 
action is to be triggered, such as shutting off a valve or turning on a pump.  

har01307_ch03_057-086.indd   60har01307_ch03_057-086.indd   60 11/17/10   11:49 AM11/17/10   11:49 AM

CONFIRMING PAGES



 Chapter 3  Simulation Basics 61

  Difference Equations 
 Sometimes a continuous-change state variable can be modeled using difference 
equations. In such instances, the time is decomposed into periods of length  t . An 
algebraic expression is then used to calculate the value of the state variable at the 
end of period k � 1 based on the value of the state variable at the end of period  k . 
For example, the following difference equation might be used to express the rate 
of change in the state variable � as a function of the current value of �, a rate of 
change ( r ), and the length of the time period (�t):    

 � (k � 1) � � (k) � r�t

 Batch processing in which fl uids are pumped into and out of tanks can often 
be modeled using difference equations.  

  Combined Continuous and Discrete Simulation 
 Many simulation software products provide both discrete-event and continu-
ous simulation capabilities. This enables systems that have both discrete-event 
and continuous characteristics to be modeled, resulting in a hybrid simulation. 
Most processing systems that have continuous-change state variables also have 
 discrete-change state variables. For example, a truck or tanker arrives at a fi ll sta-
tion (a discrete event) and begins fi lling a tank (a continuous process). 
  Four basic interactions occur between discrete- and continuous-change variables: 

  1.   A continuous variable value may suddenly increase or decrease as the 
result of a discrete event (like the replenishment of inventory in an 
inventory model).  

  2.   The initiation of a discrete event may occur as the result of reaching a 
threshold value in a continuous variable (like reaching a reorder point in 
an inventory model).  

  3.   The change rate of a continuous variable may be altered as the result of a 
discrete event (a change in inventory usage rate as the result of a sudden 
change in demand).  

  4.   An initiation or interruption of change in a continuous variable may 
occur as the result of a discrete event (the replenishment or depletion of 
inventory initiates or terminates a continuous change of the continuous 
variable).        

3.3   Random Behavior 
  Stochastic systems frequently have time or quantity values that vary within a 
given range and according to specifi ed density, as defi ned by a probability distri-
bution. Probability distributions are useful for predicting the next time, distance, 
quantity, and so forth when these values are random variables. For example, if an 
operation time varies between 2.2 minutes and 4.5 minutes, it would be defi ned 
in the model as a probability distribution. Probability distributions are defi ned 
by specifying the type of distribution (normal, exponential, or another type) and 
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the parameters that describe the shape or density and range of the distribution. 
For example, we might describe the time for a check-in operation to be normally 
distributed with a mean of 5.2 minutes and a standard deviation of 0.4 minute. 
During the simulation, values are obtained from this distribution for successive 
operation times. The shape and range of time values generated for this activity 
will correspond to the parameters used to defi ne the distribution. When we gener-
ate a value from a distribution, we call that value a  random variate . 
  Probability distributions from which we obtain random variates may be  either 
discrete (they describe the likelihood of specifi c values occurring) or continuous 
(they describe the likelihood of a value being within a given range). Figure 3.4 
shows graphical examples of a discrete distribution and a continuous distribution. 
  A discrete distribution represents a fi nite or countable number of possible 
values. An example of a discrete distribution is the number of items in a lot or 
individuals in a group of people. A continuous distribution represents a continuum 
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FIGURE 3.4
    Examples of (a) a 
discrete probability 
distribution and (b) a 
continuous probability 
distribution.  
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of values. An example of a continuous distribution is a machine with a cycle 
time that is uniformly distributed between 1.2 minutes and 1.8 minutes. An infi -
nite number of possible values exist within this range. Discrete and continuous 
distributions are further defi ned in Chapter 5. Appendix A describes many of the 
distributions used in simulation.   

3.4   Simulating Random Behavior 
  One of the most powerful features of simulation is its ability to mimic random be-
havior or variation that is characteristic of stochastic systems. Simulating random 
behavior requires that a method be provided to generate random numbers as well 
as routines for generating random variates based on a given probability distribu-
tion. Random numbers and random variates are defi ned in the next sections along 
with the routines that are commonly used to generate them. 

3.4.1   Generating Random Numbers 

 Random behavior is imitated in simulation by using a  random number genera-
tor . The random number generator operates deep within the heart of a simulation 
model, pumping out a stream of random numbers. It provides the foundation for 
simulating “random” events occurring in the simulated system such as the ar-
rival time of cars to a restaurant’s drive-through window; the time it takes the 
driver to place an order; the number of hamburgers, drinks, and fries ordered; and 
the time it takes the restaurant to prepare the order. The input to the procedures 
used to generate these types of events is a stream of numbers that are uniformly 
distributed between zero and one (0 �  x  � 1). The random number generator is 
responsible for producing this stream of independent and uniformly distributed 
numbers (Figure 3.5). 
  Before continuing, it should be pointed out that the numbers produced by 
a random number generator are not “random” in the truest sense. For example, 
the generator can reproduce the same sequence of numbers again and again, 
which is not indicative of random behavior. Therefore, they are often referred 
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FIGURE 3.5
    The uniform(0, 1) 
distribution of a 
random number 
generator.  
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to as  pseudo-random number generators  (pseudo comes from Greek and means 
false or fake). Practically speaking, however, “good” pseudo-random number 
generators can pump out long sequences of numbers that pass statistical tests for 
randomness (the numbers are independent and uniformly distributed). Thus the 
numbers approximate real-world randomness for purposes of simulation, and the 
fact that they are reproducible helps us in two ways. It would be diffi cult to debug 
a simulation program if we could not “regenerate” the same sequence of random 
numbers to reproduce the conditions that exposed an error in our program. We 
will also learn in Chapter 9 how reproducing the same sequence of random num-
bers is useful when comparing different simulation models. For brevity, we will 
drop the  pseudo  prefi x as we discuss how to design and keep our random number 
generator healthy. 

  Linear Congruential Generators 
 There are many types of established random number generators, and researchers 
are actively pursuing the development of new ones (L’Ecuyer 1998). However, 
most simulation software is based on linear congruential generators (LCG). The 
LCG is effi cient in that it quickly produces a sequence of random numbers with-
out requiring a great deal of computational resources. Using the LCG, a sequence 
of integers  Z  1 ,  Z  2 ,  Z  3 , . . . is defi ned by the recursive formula    

 Zi � (aZi�1 � c) mod (m)

where the constant  a  is called the multiplier, the constant  c  the increment, and 
the constant  m  the modulus (Law 2007). The user must provide a seed or starting 
value, denoted  Z  0 , to begin generating the sequence of integer values.  Z  0 ,  a ,  c , and 
 m  are all nonnegative integers. The value of  Z i   is computed by dividing ( aZ   i �1  �  c ) 
by  m  and setting  Z i   equal to the remainder part of the division, which is the result 
returned by the mod function. Therefore, the  Z i   values are bounded by 0 �  Z   i   � 
 m  � 1 and are uniformly distributed in the discrete case. However, we desire the 
continuous version of the uniform distribution with values ranging between a low 
of zero and a high of one, which we will denote as  U i   for  i  � 1, 2, 3, . . . . Accord-
ingly, the value of  U i   is computed by dividing  Z i   by  m . 
  In a moment, we will consider some requirements for selecting the values for 
 a ,  c , and  m  to ensure that the random number generator produces a long sequence 
of numbers before it begins to repeat them. For now, however, let’s assign the 
following values  a  � 21,  c  � 3, and  m  � 16 and generate a few pseudo-random 
numbers. Table 3.1 contains a sequence of 20 random numbers generated from the 
recursive formula     

 Zi � (21Zi�1 � 3) mod (16)

  An integer value of 13 was somewhat arbitrarily selected between 0 and 
 m  � 1 � 16 � 1 � 15 as the seed ( Z  0  � 13) to begin generating the sequence of 
numbers in Table 3.1. The value of  Z  1  is obtained as 

    Z  1  � ( aZ  0  �  c ) mod ( m ) � (21(13) � 3) mod (16) � (276) mod (16) � 4  
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 Note that 4 is the remainder term from dividing 16 into 276. The value of  U  1  is 
computed as

    U  1  �  Z  1 �16 � 4�16 � 0.2500  

The process continues using the value of  Z  1  to compute  Z  2  and then  U  2 . 
  Changing the value of  Z  0  produces a different sequence of uniform(0, 1) num-
bers. However, the original sequence can always be reproduced by setting the 
seed value back to 13 ( Z  0  � 13). The ability to repeat the simulation experiment 
under the exact same “random” conditions is very useful, as will be demonstrated 
in Chapter 9 with a technique called common random numbers. 
  Note that in ProModel the sequence of random numbers is not generated 
in advance and then read from a table as we have done. Instead, the only value 
saved is the last  Z i   value that was generated. When the next random number in the 
sequence is needed, the saved value is fed back to the generator to produce the 
next random number in the sequence. In this way, the random number generator 
is called each time a new random event is scheduled for the simulation. 
  Due to computational constraints, the random number generator cannot go on 
indefi nitely before it begins to repeat the same sequence of numbers. The LCG in 
Table 3.1 will generate a sequence of 16 numbers before it begins to repeat itself. 
You can see that it began repeating itself starting in the 17th position. The value 

     i      21 Z   i �1  � 3      Z   i       U i  � Z i  /16  

     0          13       
     1     276     4     0.2500  
     2     87     7     0.4375  
     3     150     6     0.3750  
     4     129     1     0.0625  
     5     24     8     0.5000  
     6     171     11     0.6875  
     7     234     10     0.6250  
     8     213     5     0.3125  
     9     108     12     0.7500  
    10     255     15     0.9375  
    11     318     14     0.8750  
    12     297     9     0.5625  
    13     192     0     0.0000  
    14     3     3     0.1875  
    15     66     2     0.1250  
    16     45     13     0.8125  
    17     276     4     0.2500  
    18     87     7     0.4375  
    19     150     6     0.3750  
    20     129     1     0.0625    

             TABLE 3.1                  Example LCG  Z i   � (21 Z   i �1  � 3) mod (16), 
with  Z  0  � 13        
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of 16 is referred to as the cycle length of the random number generator, which is 
disturbingly short in this case. A long cycle length is desirable so that each replica-
tion of a simulation is based on a different segment of random numbers. This is 
how we collect independent observations of the model’s output. 
  Let’s say, for example, that to run a certain simulation model for one replica-
tion requires that the random number generator be called 1,000 times during the 
simulation and we wish to execute fi ve replications of the simulation. The fi rst 
replication would use the fi rst 1,000 random numbers in the sequence, the second 
replication would use the next 1,000 numbers in the sequence (the number that 
would appear in positions 1,001 to 2,000 if a table were generated in advance), 
and so on. In all, the random number generator would be called 5,000 times. Thus 
we would need a random number generator with a cycle length of at least 5,000. 
  The maximum cycle length that an LCG can achieve is  m.  To realize the 
maximum cycle length, the values of  a ,  c , and  m  have to be carefully selected. A 
guideline for the selection is to assign (Pritsker 1995) 

  1.    m  � 2  b  , where  b  is determined based on the number of bits per word on 
the computer being used. Many computers use 32 bits per word, making 
31 a good choice for  b .  

  2.    c  and  m  such that their greatest common factor is 1 (the only positive 
integer that exactly divides both  m  and  c  is 1).  

  3.    a  � 1 � 4 k , where  k  is an integer.   

Following this guideline, the LCG can achieve a full cycle length of over 2.1 bil-
lion (2 31  to be exact) random numbers. 
  Frequently, the long sequence of random numbers is subdivided into smaller 
segments. These subsegments are referred to as  streams . For example, Stream 1 
could begin with the random number in the fi rst position of the sequence and 
continue down to the random number in the 200,000th position of the sequence. 
Stream 2, then, would start with the random number in the 200,001st position of 
the sequence and end at the 400,000th position, and so on. Using this approach, 
each type of random event in the simulation model can be controlled by a unique 
stream of random numbers. For example, Stream 1 could be used to generate the 
arrival pattern of cars to a restaurant’s drive-through window and Stream 2 could 
be used to generate the time required for the driver of the car to place an order. 
This assumes that no more than 200,000 random numbers are needed to simulate 
each type of event. The practical and statistical advantages of assigning unique 
streams to each type of event in the model are described in Chapter 9. 
  To subdivide the generator’s sequence of random numbers into streams, you 
fi rst need to decide how many random numbers to place in each stream. Next, you 
begin generating the entire sequence of random numbers (cycle length) produced 
by the generator and recording the  Z i   values that mark the beginning of each 
stream. Therefore, each stream has its own starting or seed value. When using the 
random number generator to drive different events in a simulation model, the pre-
viously generated random number from a particular stream is used as input to the 
generator to generate the next random number from that stream. For convenience, 
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you may want to think of each stream as a separate random number generator to 
be used in different places in the model. For example, see Figure 9.5 in Chapter 9. 
  There are two types of linear congruential generators: the mixed congruential 
generator and the multiplicative congruential generator.  Mixed congruential gen-
erators  are designed by assigning  c  > 0.  Multiplicative congruential generators  are 
designed by assigning  c  � 0. The multiplicative generator is more effi cient than the 
mixed generator because it does not require the addition of  c . The maximum cycle 
length for a multiplicative generator can be set within one unit of the maximum 
cycle length of the mixed generator by carefully selecting values for  a  and  m . From 
a practical standpoint, the difference in cycle length is insignifi cant considering 
that both types of generators can boast cycle lengths of more than 2.1 billion. 
  ProModel uses the following multiplicative generator:

    Z i   � (630,360,016 Z   i �1 ) mod (2 31  � 1)  

Specifi cally, it is a prime modulus multiplicative linear congruential generator 
(PMMLCG) with  a  � 630,360,016,  c  � 0, and  m  � 2 31  � 1. It has been exten-
sively tested and is known to be a reliable random number generator for simu-
lation (Law and Kelton 2000). The ProModel implementation of this generator 
divides the cycle length of 2 31  � 1 � 2,147,483,647 into 100 unique streams.  

  Testing Random Number Generators 
 When faced with using a random number generator about which you know very 
little, it is wise to verify that the numbers emanating from it satisfy the two impor-
tant properties defi ned at the beginning of this section. The numbers produced by 
the random number generator must be (1) independent and (2) uniformly distrib-
uted between zero and one (uniform(0, 1)). To verify that the generator satisfi es 
these properties, you fi rst generate a sequence of random numbers  U  1 ,  U  2 ,  U  3 , . . . 
and then subject them to an appropriate test of hypothesis. 
  The hypotheses for testing the independence property are 

  H 0 :  U i   values from the generator are independent  

  H 1 :  U i   values from the generator are not independent   

Several statistical methods have been developed for testing these hypotheses at 
a specifi ed signifi cance level �. One of the most commonly used methods is the 
runs test. Banks et al. (2001) review three different versions of the runs test for 
conducting this independence test. Additionally, two runs tests are implemented in 
Stat::Fit—the Runs Above and Below the Median Test and the Runs Up and Runs 
Down Test. Chapter 5 contains additional material on tests for independence. 
  The hypotheses for testing the uniformity property are 

  H 0 :  U i   values are uniform(0, 1)  

  H 1 :  U i   values are not uniform(0, 1)   

Several statistical methods have also been developed for testing these hypoth-
eses at a specifi ed signifi cance level �. The Kolmogorov-Smirnov test and the 
chi-square test are perhaps the most frequently used tests. (See Chapter 5 for 
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a description of the chi-square test.) The objective is to determine if the uni-
form(0, 1) distribution fi ts or describes the sequence of random numbers produced 
by the random number generator. These tests are included in the Stat::Fit software 
and are further described in many introductory textbooks on probability and sta-
tistics (see, for example, Johnson 1994).   

3.4.2   Generating Random Variates 

 This section introduces common methods for generating observations (random 
variates) from probability distributions other than the uniform(0, 1) distribution. 
For example, the time between arrivals of cars to a restaurant’s drive-through 
window may be exponentially distributed, and the time required for drivers to 
place orders at the window might follow the lognormal distribution. Observations 
from these and other commonly used distributions are obtained by transform-
ing the observations generated by the random number generator to the desired 
distribution. The transformed values are referred to as variates from the specifi ed 
distribution. 
  There are several methods for generating random variates from a de-
sired distribution, and the selection of a particular method is somewhat de-
pendent on the characteristics of the desired distribution. Methods include the 
inverse transformation method, the acceptance/rejection method, the com-
position method, the convolution method, and the methods employing special 
properties. The inverse transformation method, which is commonly used to 
generate variates from both discrete and continuous distributions, is described 
starting fi rst with the continuous case. For a review of the other methods, 
see Law and Kelton (2007). 

  Continuous Distributions 
 The application of the inverse transformation method to generate random variates 
from continuous distributions is straightforward and effi cient for many continu-
ous distributions. For a given probability density function  f ( x ), fi nd the cumula-
tive distribution function of  X . That is,  F ( x ) �  P ( X  �  x ). Next, set  U  �  F ( x ), 
where  U  is uniform(0, 1), and solve for  x . Solving for  x  yields  x  �  F  �1 ( U ). The 
equation  x  �  F  �1 ( U ) transforms  U  into a value for  x  that conforms to the given 
distribution  f ( x ). 
  As an example, suppose that we need to generate variates from the expo-
nential distribution with mean �. The probability density function  f ( x ) and cor-
responding cumulative distribution function  F ( x ) are    

f(x) �  �     1 __ 
�

    e �x/� 

     
0
       for x � 0

  
elsewhere

F(x) �  �  1�  e �x/� 
     

0
      for x � 0

  elsewhere
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Setting  U  �  F ( x ) and solving for  x  yields

    U  � 1 �   e   � x /�    

     e   � x ��   � 1 �  U   

   ln (  e    �x ��  ) � ln (1 �  U )  where ln is the natural logarithm  

   � x �� � ln (1 �  U )  

    x  � �� ln (1 �  U )  

The random variate  x  in the above equation is exponentially distributed with mean 
� provided  U  is uniform(0, 1). 
  Suppose three observations of an exponentially distributed random variable 
with mean � � 2 are desired. The next three numbers generated by the random 
number generator are  U  1  � 0.27,  U  2  � 0.89, and  U  3  � 0.13. The three numbers 
are transformed into variates  x  1 ,  x  2 , and  x  3  from the exponential distribution with 
mean � � 2 as follows:

    x  1  � �2 ln (1 �  U  1 ) � �2 ln (1 � 0.27) � 0.63  

    x  2  � �2 ln (1 �  U  2 ) � �2 ln (1 � 0.89) � 4.41  

    x  3  � �2 ln (1 �  U  3 ) � �2 ln (1 � 0.13) � 0.28   

  Figure 3.6 provides a graphical representation of the inverse transformation 
method in the context of this example. The fi rst step is to generate  U , where  U  is 
uniform(0, 1). Next, locate  U  on the  y  axis and draw a horizontal line from that 
point to the cumulative distribution function [ F ( x ) � 1 �  e  � x /2 ]. From this point 
of intersection with  F ( x ), a vertical line is dropped down to the  x  axis to obtain 
the corresponding value of the variate. This process is illustrated in Figure 3.6 for 
generating variates  x  1  and  x  2  given  U  1  � 0.27 and  U  2  � 0.89.  
  Application of the inverse transformation method is straightforward as long 
as there is a closed-form formula for the cumulative distribution function, which 

F(x)

1.00

0.50

U2 = 1 – e–x2/ 2 = 0.89

U1 = 1 – e–x1/ 2 = 0.27

x1 = –2 ln (1 – 0.27) = 0.63 x2 = –2 ln (1 – 0.89) = 4.41

FIGURE 3.6
   Graphical 
representation of 
inverse transformation 
method for continuous 
variates. 
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is the case for many continuous distributions. However, the normal distribution 
is one exception. Thus it is not possible to solve for a simple equation to gener-
ate normally distributed variates. For these cases, there are other methods that 
can be used to generate the random variates. See, for example, Law (2007) for a 
description of additional methods for generating random variates from continuous 
distributions.  

  Discrete Distributions 
 The application of the inverse transformation method to generate variates from 
discrete distributions is basically the same as for the continuous case. The differ-
ence is in how it is implemented. For example, consider the following probability 
mass function:    

 
p(x) � P(X � x) �  �   0.10  for x � 1          

0.30  for x � 2
 
          

0.60  for x � 3
    

The random variate  x  has three possible values. The probability that  x  is equal to 1 
is 0.10,  P ( X  � 1) � 0.10;  P ( X  � 2) � 0.30; and  P ( X  � 3) � 0.60. The cumulative 
distribution function  F ( x ) is shown in Figure 3.7. The random variable  x  could be 
used in a simulation to represent the number of defective components on a circuit 
board or the number of drinks ordered from a drive-through window, for example.  
  Suppose that an observation from the above discrete distribution is desired. 
The fi rst step is to generate  U , where  U  is uniform(0, 1). Using Figure 3.7, the 
value of the random variate is determined by locating  U  on the  y  axis, drawing 
a horizontal line from that point until it intersects with a step in the cumulative 
function, and then dropping a vertical line from that point to the  x  axis to read the 

F(x)

U2 = 0.89

U1 = 0.27

U3 = 0.05

1.00

0.40

0.10

1
x3 = 1

2
x1 = 2

3
x2 � 3

FIGURE 3.7
   Graphical 
explanation of inverse 
transformation method 
for discrete variates. 
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value of the variate. This process is illustrated in Figure 3.7 for  x  1 ,  x  2 , and  x  3  given 
 U  1  � 0.27,  U  2  � 0.89, and  U  3  � 0.05. Equivalently, if 0 �  U i   � 0.10, then  x i   � 1; 
if 0.10 <  U i   � 0.40, then  x i   � 2; if 0.40 <  U i   � 1.00, then  x i   � 3. Note that should 
we generate 100 variates using the above process, we would expect a value of 3 to 
be returned 60 times, a value of 2 to be returned 30 times, and a value of 1 to be 
returned 10 times. 
  The inverse transformation method can be applied to any discrete distribution 
by dividing the  y  axis into subintervals as defi ned by the cumulative distribution 
function. In our example case, the subintervals were [0, 0.10], (0.10, 0.40], and 
(0.40, 1.00]. For each subinterval, record the appropriate value for the random 
variate. Next, develop an algorithm that calls the random number generator to re-
ceive a specifi c value for  U , searches for and locates the subinterval that contains 
 U , and returns the appropriate value for the random variate. 
  Locating the subinterval that contains a specifi c  U  value is relatively straight-
forward when there are only a few possible values for the variate. However, the 
number of possible values for a variate can be quite large for some discrete distri-
butions. For example, a random variable having 50 possible values could require 
that 50 subintervals be searched before locating the subinterval that contains  U . 
In such cases, sophisticated search algorithms have been developed that quickly 
locate the appropriate subinterval by exploiting certain characteristics of the dis-
crete distribution for which the search algorithm was designed. A good source of 
information on the subject can be found in Law (2007).   

3.4.3   Generating Random Variates from 
Common Continuous Distributions 

 Section 3.4.2 introduced methodologies for generating random variates. In this 
section, specifi c equations derived mostly from those methodologies are presented 
for generating random variates from some common continuous distributions. 

  Uniform 
 The continuous uniform distribution is used to generate random variates from all 
other distributions. By itself, it is used in simulation models when the modeler 
wishes to make all observations equally likely to occur. It is also used when little 
is known about the activity being simulated other than the activity’s lowest and 
highest values. 
  The continuous uniform probability density function is given by    

f (x) �  �    1 _____ 
b � a

    for a � x � b
            

0          elsewhere
     

with min �  a  and max �  b . Using the inverse transformation method, the resulting 
equation for generating variate  x  from the uniform( a ,  b ) distribution is given by    

x � a � (b � a) U

where  U  is uniform(0, 1).  
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72 Part I  Study Chapters

  Triangular 
 Like the uniform distribution, the triangular distribution is used when little is 
known about the activity being simulated other than the activity’s lowest value, 
highest value, and most frequently occurring value—the mode. 
  The triangular probability density function is given by    

f (x) �

  �     
2(x � a)

 _____________  
(b � a)(m � a)

    for a � x � m
                  

  
2(b � x)

 _____________  
(b � a)(b � m)

    for m 	 x � b
 

                  
0          elsewhere

     
with min �  a , max �  b , and mode �  m . Using the inverse transformation method, 
the resulting equation for generating variate  x  from the triangular( a ,  m ,  b ) distri-
bution is given by    

x �  �  a �  �
_______________

  (b � a)(m � a)U        for 0 � U �   
(m � a)

 _______ 
(b � a)

  
                             

b �  �
____________________

  (b � a)(b � m)(1 � U)    for   
(m � a)

 _______ 
(b � a)

   	 U � 1
     

where  U  is uniform(0, 1). Note that when the probability density function of the 
random variable  x  is defi ned over separate subintervals with respect to  x , then 
the equation for generating a variate will be defi ned over separate subintervals 
with respect to  U . Therefore, step one is to generate  U . Step two is to determine 
which subinterval the value of  U  falls within. And step three is to plug  U  into the 
 corresponding equation to generate variate  x  for that subinterval.  

  Normal 
 The normal distribution is used to simulate errors such as the diameter of a pipe 
with respect to its design specifi cation. Some use it to model time such as process-
ing times. However, if this is done, negative values should be discarded. 
  The normal probability density function is given by    

f (x) �  �   1 _______ 
 �

_____
 2� � 2   
      e �(x�� ) 2 /(2 � 2 )   for all real x

with mean  �  and variance  �  2 . A method developed by Box and Muller and re-
ported in Law (2007) involves generating a variate  x  from the standard normal 
distribution (mean  �  � 0 and variance  �  2  � 1) and then converting it into a vari-
ate  x 
 from the normal distribution with the desired mean and variance using the 
equation  x 
 �  �  � � x . 
  The method generates two standard normally(  �  � 0,  �  2  � 1) distributed vari-
ates x1 and x2 and then converts them into normally(  � ,  �  2 ) distributed variates x1
 
and x2
. The method is given by    

 x1 �  �
________

 �2 ln U1
   cos 2�U2

 x1
 � � � �x1
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and

 x2 �  �
________

 �2 ln U1
   sin 2�U2

 x2
 � � � �x2

where  U 1   and  U 2   are independent observations from the uniform(0, 1) distribution.   

3.4.4.   Generating Random Variates from 
Common Discrete Distributions 

 Section 3.4.2 introduced methodologies for generating random variates. In this 
section specifi c equations derived from those methodologies are presented for 
generating random variates from some common discrete distributions. 

  Uniform 
 Like its continuous cousin, the discrete (consecutive integers) uniform distribu-
tion is used in simulation models when the modeler wishes to make all obser-
vations equally likely to occur. The difference is that the observations from a 
discrete uniform distribution are integer values such as the values achieved by 
rolling a single die. It is also used when little is known about the activity being 
simulated other than the activity’s lowest and highest values. 
  The discrete uniform probability mass function is given by    

p ( x) �  �     1 _________ 
b � a � 1

  
      

0
       

for x � a, a � 1, . . . , b

        
elsewhere

with min �  a  and max �  b . Using the inverse transformation method, the result-
ing equation for generating discrete uniform( a, b ) variate  x  is given by    

x � a � Ñ(b � a � 1)UÅ

where  U  is continuous uniform(0, 1) and ÑtÅ denotes the largest integer �  t .  

  Bernoulli 
 The bernoulli distribution is used to model random events with two possible out-
comes (e.g., a failure or a success). It is defi ned by the probability of getting a suc-
cess  p . If, for example, the probability that a machine produces a good part (one 
that meets specifi cations) is  p  each time the machine makes a part, the bernoulli 
distribution would be used to simulate if a part is good or bad. 
  The bernoulli probability mass function is given by    

p (x) �
  �   1 � p  for x � 0

           
p      for x � 1

  
           

0      elsewhere
    

with probability of success  p . Motivated by the inverse transformation method, 
the equation for generating bernoulli(  p ) variate  x  is given by    

x �  �  1  for U � p
          

0  elsewhere
    

where  U  is uniform(0, 1).  
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  Geometric 
 The geometric distribution is used to model random events in which the modeler 
is interested in simulating the number of independent bernoulli trials with prob-
ability of success  p  on each trial needed before the fi rst success occurs. In other 
words if  x  represents failures, how many failures will occur before the fi rst suc-
cess? In the context of an inspection problem with a success denoted as a bad 
item, how many good items will be built before the fi rst bad item is produced? 
  The geometric probability mass function is given by    

p (x) �  �  p (1 � p ) x   for x � 0, 1, . . .
                

0      elsewhere
     

with  x  number of independent bernoulli trials each with probability of success  p  
occurring before the fi rst success is realized. Motivated by the inverse transforma-
tion method, the equation for generating geometric(  p ) variate  x  is given by    

x � Ñln U�ln (1 � p)Å

where  U  is uniform(0, 1).     

  3.5 Simple Spreadsheet Simulation 
  This chapter has covered some really useful information, and it will be construc-
tive to pull it all together for our fi rst dynamic, stochastic simulation model. The 
simulation will be implemented as a spreadsheet model because the example sys-
tem is not so complex as to require the use of a commercial simulation software 
product. Furthermore, a spreadsheet will provide a nice tabulation of the random 
events that produce the output from the simulation, thereby making it ideal for 
demonstrating how simulations of dynamic, stochastic systems are often accom-
plished. The system to be simulated follows. 
  Customers arrive to use an automatic teller machine (ATM) at a mean inter-
arrival time of 3.0 minutes exponentially distributed. When customers arrive to 
the system they join a queue to wait for their turn on the ATM. The queue has the 
capacity to hold an infi nite number of customers. Customers spend an average of 
2.4 minutes exponentially distributed at the ATM to complete their transactions, 
which is called the service time at the ATM. Simulate the system for the arrival 
and processing of 25 customers and estimate the expected waiting time for cus-
tomers in the queue (the average time customers wait in line for the ATM) and the 
expected time in the system (the average time customers wait in the queue plus 
the average time it takes them to complete their transaction at the ATM). 
  Using the systems terminology introduced in Chapter 2 to describe the ATM 
system, the entities are the customers that arrive to the ATM for processing. The 
resource is the ATM that serves the customers, which has the capacity to serve 
one customer at a time. The system controls that dictate how, when, and where 
activities are performed for this ATM system consist of the queuing discipline, 
which is fi rst-in, fi rst-out (FIFO). Under the FIFO queuing discipline the entities 
(customers) are processed by the resource (ATM) in the order that they arrive to 
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the queue. Figure 3.8 illustrates the relationships of the elements of the system 
with the customers appearing as dark circles.  
  Our objective in building a spreadsheet simulation model of the ATM system 
is to estimate the average amount of time the 25 customers will spend waiting in 
the queue and the average amount of time the customers will spend in the sys-
tem. To accomplish our objective, the spreadsheet will need to generate random 
numbers and random variates, to contain the logic that controls how customers 
are processed by the system, and to compute an estimate of system performance 
measures. The spreadsheet simulation is shown in Table 3.2 and is divided into 
three main sections: Arrivals to ATM, ATM Processing Time, and ATM Simula-
tion Logic. The Arrivals to ATM and ATM Processing Time provide the founda-
tion for the simulation, while the ATM Simulation Logic contains the spreadsheet 
programming that mimics customers fl owing through the ATM system. The last 
row of the Time in Queue column and the Time in System column under the ATM 
Simulation Logic section contains one observation of the average time customers 
wait in the queue, 1.94 minutes, and one observation of their average time in the 
system, 4.26 minutes. The values were computed by averaging the 25 customer 
time values in the respective columns.    
  Do you think customer number 17 (see the Customer Number column) 
became upset over having to wait in the queue for 6.11 minutes to conduct a 
0.43 minute transaction at the ATM (see the Time in Queue column and the 
 Service Time column under ATM Simulation Logic)? Has something like this 
ever happened to you in real life? Simulation can realistically mimic the behavior 
of a system. More time will be spent interpreting the results of our spreadsheet 
simulation after we understand how it was put together. 

3.5.1   Simulating Random Variates 

 The interarrival time is the elapsed time between customer arrivals to the ATM. 
This time changes according to the exponential distribution with a mean of 

5

Arriving customers
(entities)

Interarrival time
4.8 minutes

7th customer
arrives at
21.0 min.

6th customer
arrives at
16.2 min.

ATM queue
(FIFO)

ATM server
(resource)

Departing
customers
(entities)

8 7 6 4 3 2 1

FIGURE 3.8
   Descriptive drawing of the automatic teller machine (ATM) system. 
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3.0 minutes. That is, the time that elapses between one customer arrival and the 
next is not the same from one customer to the next but averages out to be 3.0 
minutes. This is illustrated in Figure 3.8 in that the interarrival time between cus-
tomers 7 and 8 is much smaller than the interarrival time of 4.8 minutes between 
customers 6 and 7. The service time at the ATM is also a random variable fol-
lowing the exponential distribution and averages 2.4 minutes. To simulate this 
stochastic system, a random number generator is needed to produce observations 
(random variates) from the exponential distribution. The inverse transformation 
method was used in Section 3.4.2 just for this purpose. 
  The transformation equation is    

 Xi � �� ln (1 � Ui)  for i � 1, 2, 3, . . . , 25

where  X i   represents the  i th value realized from the exponential distribution with 
mean �, and  U i   is the  i th random number drawn from a uniform(0, 1) distribu-
tion. The  i  � 1, 2, 3, . . . , 25 indicates that we will compute 25 values from the 
transformation equation. However, we need to have two different versions of 
this equation to generate the two sets of 25 exponentially distributed random 
variates needed to simulate 25 customers because the mean interarrival time of 
� � 3.0 minutes is different than the mean service time of � � 2.4 minutes. 
Let X1i  denote the interarrival time and X2i   denote the service time generated 
for the  i th customer simulated in the system. The equation for transforming 
a random number into an interarrival time observation from the exponential 
 distribution with mean � � 3.0 minutes becomes    

 X1i � �3.0 ln (1 � U1i)  for i � 1, 2, 3, . . . , 25

where U1i denotes the  i th value drawn from the random number generator using 
Stream 1. This equation is used in the Arrivals to ATM section of Table 3.2 under 
the Interarrival Time (X1i) column. 
  The equation for transforming a random number into an ATM service time 
observation from the exponential distribution with mean � � 2.4 minutes becomes    

 X2i � �2.4 ln (1 � U2i)  for i � 1, 2, 3, . . . , 25

where U2i denotes the  i th value drawn from the random number generator using 
Stream 2. This equation is used in the ATM Processing Time section of Table 3.2 
under the Service Time (X2i) column. 
  Let’s produce the sequence of U1i values that feeds the transformation equa-
tion (X1i) for interarrival times using a linear congruential generator (LCG) 
 similar to the one used in Table 3.1. The equations are    

Z1i � (21Z1i�1 � 3) mod (128)

 U1i � Z1i �128  for i � 1, 2, 3, . . . , 25

The authors defi ned Stream 1’s starting or seed value to be 3. So we will use 
Z10 � 3 to kick off this stream of 25 random numbers. These equations are used 
in the Arrivals to ATM section of Table 3.2 under the Stream 1 (Z1i) and Random 
Number (U1i) columns. 
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  Likewise, we will produce the sequence of U2i values that feeds the transfor-
mation equation (X2i) for service times using    

Z2i � (21Z2i�1 � 3) mod (128)

 U2i � Z2i �128  for i � 1, 2, 3, . . . , 25

and will specify a starting seed value of Z20 � 122, Stream 2’s seed value, to kick 
off the second stream of 25 random numbers. These equations are used in the 
ATM Processing Time section of Table 3.2 under the Stream 2 (Z2i) and Random 
Number (U2i) columns. 
  The spreadsheet presented in Table 3.2 illustrates 25 random variates for both 
the interarrival time, column (X1i), and service time, column (X2i). All time values 
are given in minutes in Table 3.2. To be sure we pull this together correctly, let’s 
compute a couple of interarrival times with mean � � 3.0 minutes and compare 
them to the values given in Table 3.2.     

Given Z10 � 3

Z11 � (21Z10 � 3) mod (128) � (21(3) � 3) mod (128)

� (66) mod (128) � 66

U11 � Z11�128 � 66�128 � 0.516

 X11 � �� ln (1 � U11) � �3.0 ln (1 � 0.516) � 2.18 minutes

  The value of 2.18 minutes is the fi rst value appearing under the column, 
Interarrival Time (X1i) To compute the next interarrival time value X12, we start 
by using the value of Z11 to compute Z12.     

Given Z11 � 66

Z12 � (21Z11 � 3) mod (128) � (21(66) � 3) mod (128) � 109

U12 � Z12 �128 � 109�128 � 0.852

 X12 � �3 ln (1 � U12) � �3.0 ln (1 � 0.852) � 5.73 minutes

 Figure 3.9 illustrates how the equations were programmed in Microsoft Excel for 
the Arrivals to ATM section of the spreadsheet. Note that the U1i   and X1i   values 
in Table 3.2 are rounded to three and two places to the right of the decimal, 
respectively. The same rounding rule is used for U2i  and  X2i.
   It would be useful for you to verify a few of the service time values with 
mean � � 2.4 minutes appearing in Table 3.2 using     

Z20 � 122

Z2i � (21Z2i�1 � 3) mod (128)

U2i � Z2i  �128

X2i � �2.4 ln (1 � U2i)   for i � 1, 2, 3, . . .

  The equations started out looking a little diffi cult to manipulate but turned 
out not to be so bad when we put some numbers in them and organized them in a 
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spreadsheet—though it was a bit tedious. The important thing to note here is that al-
though it is transparent to the user, ProModel uses a very similar method to produce 
exponentially distributed random variates, and you now understand how it is done. 
  The LCG just given has a maximum cycle length of 128 random numbers 
(you may want to verify this), which is more than enough to generate 25 interar-
rival time values and 25 service time values for this simulation. However, it is a 
poor random number generator compared to the one used by ProModel. It was 
chosen because it is easy to program into a spreadsheet and to compute by hand 
to facilitate our understanding. The biggest difference between it and the random 
number generator in ProModel is that the ProModel random number generator 
manipulates much larger numbers to pump out a much longer stream of numbers 
that pass all statistical tests for randomness. 
  Before moving on, let’s take a look at why we chose Z10 � 3 and Z20 � 122. 
Our goal was to make sure that we did not use the same uniform(0, 1)  random 
 number to generate both an interarrival time and a service time. If you look 
 carefully at Table 3.2, you will notice that the seed value Z20 � 122 is the Z125 
value from random number Stream 1. Stream 2 was merely defi ned to start where 
Stream 1 ended. Thus our spreadsheet used a unique random number to  generate 
each interarrival and service time. Now let’s add the necessary logic to our 
 spreadsheet to conduct the simulation of the ATM system.  

  3.5.2 Simulating Dynamic, Stochastic Systems 

 The heart of the simulation is the generation of the random variates that drive the 
stochastic events in the simulation. However, the random variates are simply a list 
of numbers at this point. The spreadsheet section labeled ATM Simulation Logic 
in Table 3.2 is programmed to coordinate the execution of the events to mimic the 

FIGURE 3.9
   Microsoft Excel 
snapshot of the ATM 
spreadsheet 
illustrating the 
equations for the 
 Arrivals to ATM  
section. 
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processing of customers through the ATM system. The simulation program must 
keep up with the passage of time to coordinate the events. The word  dynamic  
 appearing in the title for this section refers to the fact that the simulation tracks 
the passage of time. 
  The fi rst column under the ATM Simulation Logic section of Table 3.2, 
 labeled Customer Number, is simply to keep a record of the order in which the 
25 customers are processed, which is FIFO. The numbers appearing in parentheses 
under each column heading are used to illustrate how different columns are added 
or subtracted to compute the values appearing in the simulation. 
  The Arrival Time column denotes the moment in time at which each  customer 
arrives to the ATM system. The fi rst customer arrives to the system at time 2.18 min-
utes. This is the fi rst interarrival time value (X11 � 2.18) appearing in the  Arrival to 
ATM section of the spreadsheet table. The second customer arrives to the system at 
time 7.91 minutes. This is computed by taking the arrival time of the fi rst customer 
of 2.18 minutes and adding to it the next interarrival time of X12 � 5.73 minutes that 
was generated in the Arrival to ATM section of the spreadsheet table. The  arrival 
time of the second customer is 2.18 � 5.73 � 7.91 minutes. The process continues 
with the third customer arriving at 7.91 � 7.09 � 15.00 minutes. 
  The trickiest piece to program into the spreadsheet is the part that determines 
the moment in time at which customers begin service at the ATM after waiting in 
the queue. Therefore, we will skip over the Begin Service Time column for now 
and come back to it after we understand how the other columns are computed. 
  The Service Time column simply records the simulated amount of time re-
quired for the customer to complete their transaction at the ATM. These values 
are copies of the service time  X 2  i   values generated in the ATM Processing Time 
section of the spreadsheet. 
  The Departure Time column records the moment in time at which a customer 
departs the system after completing their transaction at the ATM. To compute the 
time at which a customer departs the system, we take the time at which the cus-
tomer gained access to the ATM to begin service, column (3), and add to that the 
length of time the service required, column (4). For example, the fi rst customer 
gained access to the ATM to begin service at 2.18 minutes, column (3). The ser-
vice time for the customer was determined to be 0.10 minutes in column (4). So, 
the customer departs 0.10 minutes later or at time 2.18 � 0.10 � 2.28 minutes. 
This customer’s short service time must be because they forgot their PIN number 
and could not conduct their transaction. 
  The Time in Queue column records how long a customer waits in the queue 
before gaining access to the ATM. To compute the time spent in the queue, we 
take the time at which the ATM began serving the customer, column (3), and sub-
tract from that the time at which the customer arrived to the system, column (2). 
The fourth customer arrives to the system at time 15.17 and begins getting service 
from the ATM at 18.25 minutes; thus, the fourth customer’s time in the queue is 
18.25 � 15.17 � 3.08 minutes. 
  The Time in System column records how long a customer was in the system. 
To compute the time spent in the system, we subtract the customer’s departure 
time, column (5), from the customer’s arrival time, column (2). The fi fth customer 
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arrives to the system at 15.74 minutes and departs the system at 24.62 minutes. 
Therefore, this customer spent 24.62 � 15.74 � 8.88 minutes in the system. 
  Now let’s go back to the Begin Service Time column, which records the time 
at which a customer begins to be served by the ATM. The very fi rst customer 
to arrive to the system when it opens for service advances directly to the ATM. 
There is no waiting time in the queue; thus the value recorded for the time that 
the fi rst customer begins service at the ATM is the customer’s arrival time. With 
the exception of the fi rst customer to arrive to the system, we have to capture the 
logic that a customer cannot begin service at the ATM until the previous customer 
using the ATM completes his or her transaction. One way to do this is with an IF 
statement as follows:

   IF (Current Customer’s Arrival Time < Previous Customer’s 
  Departure Time) 
  THEN (Current Customer’s Begin Service Time � Previous Customer’s 
  Departure Time) 
  ELSE (Current Customer’s Begin Service Time � Current Customer’s 
  Arrival Time)   

  Figure 3.10 illustrates how the IF statement was programmed in Microsoft 
Excel. The format of the Excel IF statement is 

    IF (logical test, use this value if test is true, else use this 
  value if test is false)  

  The Excel spreadsheet cell L10 (column L, row 10) in Figure 3.10 is the Begin 
Service Time for the second customer to arrive to the system and is programmed 
with IF(K10<N9,N9,K10). Since the second customer’s arrival time (Excel cell 
K10) is not less than the fi rst customer’s departure time (Excel cell N9), the logical 
test evaluates to “false” and the second customer’s time to begin service is set to 
his or her arrival time (Excel cell K10). The fourth customer shown in Figure 3.10 
provides an example of when the logical test evaluates to “true,” which results in 
the fourth customer beginning service when the third customer departs the ATM.  

FIGURE 3.10
   Microsoft Excel 
snapshot of the 
ATM spreadsheet 
illustrating the IF 
statement for the 
Begin Service Time 
column. 
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  3.5.3 Simulation Replications and Output Analysis 

 The spreadsheet model makes a nice simulation of the fi rst 25 customers to arrive 
to the ATM system. And we have a simulation output observation of 1.94 minutes 
that could be used as an estimate for the average time that the 25 customers waited 
in the queue (see the last value under the Time in Queue column, which represents 
the average of the 25 individual customer queue times). We also have a simulation 
output observation of 4.26 minutes that could be used as an estimate for the aver-
age time the 25 customers were in the system. These results represent only one 
possible value of each performance measure. Why? If at least one input variable 
to the simulation model is random, then the output of the simulation model will 
also be random. The interarrival times of customers to the ATM system and their 
service times are random variables. Thus the output of the simulation model of 
the ATM system is also a random variable. Before we bet that the average time 
customers spend in the system each day is 4.26 minutes, we may want to run the 
simulation model again with a new sample of interarrival times and service times 
to see what happens. This would be analogous to going to the real ATM on a sec-
ond day to replicate our observing the fi rst 25 customers processed to compute a 
second observation of the average time that the 25 customers spend in the system. 
In simulation, we can accomplish this by changing the values of the seed numbers 
used for our random number generator. 
  Changing the seed values Z10  and Z20 causes the spreadsheet program to re-
compute all values in the spreadsheet. When we change the seed values Z10 and 
Z20 appropriately, we produce another replication of the simulation. When we run 
replications of the simulation, we are driving the simulation with a set of random 
numbers never used by the simulation before. This is analogous to the fact that the 
arrival pattern of customers to the real ATM and their transaction times at the ATM 
will not likely be the same from one day to the next. If Z10 � 29 and Z20 � 92 are 
used to start the random number generator for the ATM simulation model, a new rep-
lication of the simulation will be computed that produces an average time in queue 
of 0.84 minutes and an average time in system of 2.36 minutes. Review question 
number eight at the end of the chapter asks you to verify this second replication. 
  Table 3.3 contains the results from the two replications. Obviously, the 
results from this second replication are very different than those produced by 
the fi rst replication. Good thing we did not make bets on how much time cus-
tomers spend in the system based on the output of the simulation for the fi rst 

TABLE 3.3  Summary of ATM System Simulation Output 

   Replication   Average Time in Queue   Average Time in System 

   1  1.94 minutes  4.26 minutes 
   2  0.84 minutes  2.36 minutes 

   Average  1.39 minutes  3.31 minutes 
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replication only. Statistically speaking, we should get a better estimate of the 
average time customers spend in queue and the average time they are in the 
system if we combine the results from the two replications into an overall aver-
age. Doing so yields an estimate of 1.39 minutes for the average time in queue 
and an estimate of 3.31 minutes for the average time in system (see Table 3.3). 
However, the large variation in the output of the two simulation replications in-
dicates that more replications are needed to get reasonably accurate estimates. 
How many replications are enough? You will know how to answer the question 
upon completing Chapter 8.    
  While spreadsheet technology is effective for conducting Monte Carlo simu-
lations and simulations of simple dynamic systems, it is ineffective and ineffi cient 
as a simulation tool for complex systems. Discrete-event simulation software 
technology was designed especially for mimicking the behavior of complex sys-
tems and is the subject of Chapter 4.      

  3.6 Summary 
 Modeling random behavior begins with transforming the output produced by a 
random number generator into observations (random variates) from an appropri-
ate statistical distribution. The values of the random variates are combined with 
logical operators in a computer program to compute output that mimics the per-
formance behavior of stochastic systems. Performance estimates for stochastic 
simulations are obtained by calculating the average value of the performance met-
ric across several replications of the simulation. Models can realistically simulate 
a variety of systems.  

  3.7 Review Questions  
   1.    What is the difference between a stochastic model and a deterministic 

model in terms of the input variables and the way results are 
interpreted?  

   2.    Give an example of a discrete-change state variable and a continuous-
change state variable.  

   3.    For each of the following simulation applications identify one discrete- 
and one continuous-change state variable.  

   a.   Inventory control of an oil storage and pumping facility.  
   b.   Study of beverage production in a soft drink production facility.  
   c.    Study of congestion in a busy traffi c intersection.    

   4.    Give a statistical description of the numbers produced by a random 
number generator.  

   5.    What are the two statistical properties that random numbers must 
satisfy?  
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   6.   Given these two LCGs:

   Z i   � (9 Z   i �1  � 3) mod (32)  

   Z i   � (12 Z   i �1  � 5) mod (32)   

   a.    Which LCG will achieve its maximum cycle length? Answer the 
question without computing any  Z i   values.  

   b.    Compute  Z  1  through  Z  5  from a seed of 29 ( Z  0  � 29) for the 
second LCG.     

   7.   What is a random variate, and how are random variates generated?  

   8.    Apply the inverse transformation method to generate three variates from 
the following distributions using  U  1  � 0.10,  U  2  � 0.53, and  U  3  � 0.15.  

   a.   Probability density function:    

   f (x) �  �    1 ______ 
� � �

  

     
0
        

for � � x � �

        
elsewhere

   where � � 7 and � � 4.  
   b.   Probability mass function:        

   p (x) � P (X � x) �  �    x ___ 
15

  
   

0
       

for x � 1, 2, 3, 4, 5

         
elsewhere

   9.    How would a random number generator be used to simulate a 12 percent 
chance of rejecting a part because it is defective?  

  10.    Reproduce the spreadsheet simulation of the ATM system presented 
in Section 3.5. Set the random numbers seeds Z10 � 29 and Z20 � 92 
to compute the average time customers spend in the queue and in the 
system.  

   a.    Verify that the average time customers spend in the queue and in the 
system match the values given for the second replication in Table 3.3.  

   b.    Verify that the resulting random number Stream 1 and random 
number Stream 2 are completely different than the corresponding 
streams in Table 3.2. Is this a requirement for a new replication of 
the simulation?    

  11.     Using the spreadsheet simulation from problem 10 above, replace the 
exponentially distributed interarrival time with mean 3.0 minutes with 
an interarrival time that is uniformly distributed (continuous case) with 
mean 3.0 minutes by setting the uniform distribution’s minimum value 
to 1.0 minute and the maximum value to 5.0 minutes. How did the 
change infl uence the average time in queue and average time in system 
as compared to the second replication results shown in Table 3.3, which 
are based on the exponentially distributed interarrival time with mean 
3.0 minutes?  
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  12.    Given  U  t  � 0.23 and  U  z  � 0.61 from a uniform(0, 1) distribution, 
generate two random variates from each of the distributions following.  

   a.   Uniform(12, 20) continuous case  
   b.   Triangular(12, 20, 16)  
   c.    Normal(16, 10)  
   d.   Uniform(12, 20) discrete case  
   e.    Bernoulli(0.50)      

  References 
  Banks, Jerry; John S. Carson II; Barry L. Nelson; and David M. Nicol.  Discrete-Event 

System Simulation.  Englewood Cliffs, NJ: Prentice Hall, 2001.  
  Hoover, Stewart V., and Ronald F. Perry.  Simulation: A Problem-Solving Approach.  

Reading, MA: Addison-Wesley, 1989.  
Johnson, R. A. Miller and Freund’s Probability and Statistics for Engineers. 8th ed. 

 Englewood Cliffs, NJ: Prentice Hall, 2010.
  Law, Averill M.  Simulation Modeling and Analysis  4th ed. New York: McGraw-Hill, 2007.  
  L’Ecuyer, P. “Random Number Generation.” In  Handbook of Simulation: Principles, 

Methodology, Advances, Applications, and Practice,  ed. J. Banks, pp. 93–137. New 
York: John Wiley & Sons, 1998.  

  Pooch, Udo W., and James A. Wall.  Discrete Event Simulation: A Practical Approach . 
Boca Raton, FL: CRC Press, 1993.  

  Pritsker, A. A. B.  Introduction to Simulation and SLAM II . 4th ed. New York: John Wiley 
& Sons, 1995.  

Ross, Sheldon M.A. Simulation. 4th ed. Burlington, MA: Elsevier Academic Press, 2006.
  Shannon, Robert  E. System Simulation:   The Art and Science.  Englewood Cliffs, NJ: 

Prentice Hall, 1975.  
  Thesen, Arne, and Laurel E. Travis.  Simulation for Decision Making . Minneapolis, MN: 

West Publishing, 1992.  
  Widman, Lawrence E.; Kenneth A. Loparo; and Norman R. Nielsen.  Artifi cial Intelligence, 

Simulation, and Modeling . New York: John Wiley & Sons, 1989.          

har01307_ch03_057-086.indd   85har01307_ch03_057-086.indd   85 11/17/10   11:49 AM11/17/10   11:49 AM

CONFIRMING PAGES




