Preface

This sixth edition of *Simulation with Arena* has the same goal as the first five editions: to provide an introduction to simulation using Arena. It is intended as an entry-level simulation text, most likely in a first course on simulation at the undergraduate or beginning graduate level. However, material from the later chapters could be incorporated into a second graduate-level course. The book can also be used to learn simulation independent of a formal course (more specifically, by Arena users). The objective is to present the concepts and methods of simulation using Arena as a vehicle to help the reader reach the point of being able to carry out effective simulation modeling, analysis, and projects using the Arena simulation system. While we'll cover most of the capabilities of Arena, the book is not meant to be an exhaustive reference on the software, which is fully documented in its extensive online reference and help system.

Included in Appendix D are instructions on how to download the latest academic version of Arena and all the examples in the text. The website for this download and for the book in general is www.mhhe.com/kelton. There is no CD supplied with the book; everything (including the Arena academic software and example files discussed in the book) is available from this site. We encourage all readers to visit this site to learn of any updates or errata for the book or example files, possible additional exercises, and other items of interest. At the time of this book's writing, the current version of Arena was 14.5, so the book is based on that. However, the book will continue to be useful for learning about later versions of Arena, the academic versions of which may be posted on the book's website as well for downloading. The site also contains material to support instructors who have adopted the book for use in class, including downloadable lecture slides and solutions to exercises; instructors who have adopted the book should contact their local McGraw-Hill representative for authorization (see www.mhhe.com to locate local representatives). Software support is supplied only to the registered instructor via the instructions provided at the book's website: www.mhhe.com/kelton. Instructors adopting this book for classroom use will receive a free lab license from Rockwell Automation; please visit the Arena website, www.arenasimulation.com, for more information on this program or contact Arena Support at arena-support@ra.rockwell.com.

We've adopted an informal, tutorial writing style centered around carefully crafted examples to aid the beginner in understanding the ideas and topics presented. Ideally, readers would build simulation models as they read through the chapters. We start by having the reader develop simple, well-animated, high-level models, and then progress to advanced modeling and analysis. Statistical analysis is not treated as a separate topic, but is integrated into many of the modeling chapters, reflecting the joint nature of these activities in good simulation studies. We've also devoted the last two chapters to statistical issues and project planning to cover more advanced issues not treated in our modeling chapters. We believe that this approach greatly enhances the learning process by placing it in a more realistic and (frankly) less boring setting. We assume neither prior knowledge of simulation nor computer-programming experience. We do assume basic familiarity with computing in general (files, folders, basic editing operations, etc.), but nothing advanced. A fundamental understanding of probability and statistics is needed, though we provide a self-contained refresher of these subjects in Appendices B and C.

Here's a quick overview of the topics and organization. We start in Chapter 1 with a general introduction, a brief history of simulation, and modeling concepts. Chapter 2 addresses the simulation process using a simple simulation executed by hand and briefly discusses using spreadsheets to simulate very simple models (primarily static rather than dynamic simulations). In Chapter 3, we acquaint readers with Arena by examining a completed simulation model of the problem simulated by hand in Chapter 2, rebuilding it from scratch, going over the Arena user interface, and providing an overview of Arena's capabilities; we also provide a small case study illustrating how knowledge of just these basic building blocks of Arena allows one to address interesting and realistic issues.

Chapters 4 and 5 advance the reader's modeling skills by considering one "core" example per chapter, in increasingly complex versions to illustrate a variety of modeling and animation features; the statistical issue of selecting input probability distributions is also covered in Chapter 4 using the Arena Input Analyzer, and a non-queueing (inventory) model is at the end of Chapter 5.

Chapter 6 uses one of the models in Chapter 5 to illustrate the basic Arena capabilities of statistical analysis of output, including single-system analysis, comparing multiple scenarios (configurations of a model), and searching for an optimal scenario; this material uses the Arena Output and Process Analyzers, as well as OptQuest for Arena.

In Chapter 7, we introduce another "core" model, again in increasingly complex versions, and then use it to illustrate statistical analysis of long-run (steady-state) simulations. Alternate ways in which simulated entities can move around is the subject of Chapter 8, including material-handling capabilities, building on the models in Chapter 7. Chapter 9 digs deeper into Arena's extensive modeling constructs, using a sequence of small, focused models to present a wide variety of special-purpose capabilities; this is for more advanced simulation users and would probably not be covered in a beginning course.

In Chapter 10, we describe a number of topics in the area of customizing Arena and integrating it with other applications like spreadsheets and databases; this includes using Visual Basic for Applications (VBA) with Arena. Also included in this chapter is an introduction to Arena's string functionality as well as a brief overview of Arena's new Visual Designer Application. Chapter 11 shows how Arena can handle continuous and combined discrete/continuous models, such as fluid flow. Chapter 12 covers more advanced statistical concepts underlying and applied to simulation analysis, including random-number generators, variate and process generation, variance-reduction techniques, sequential sampling, and designing simulation experiments. Chapter 13 provides a broad overview of the simulation process and discusses more specifically the issues of managing and disseminating a simulation project.

Appendix A describes a complete modeling specification from a project for *The Washington Post* newspaper. Appendix B gives a complete but concise review of the basics of probability and statistics couched in the framework of their role in simulation modeling and analysis. The probability distributions supported by Arena are detailed in Appendix C. Installation instructions for the Arena academic software can be found in Appendix D. All references are collected in a single References section at the end of the book. The index is extensive, to aid readers in locating topics and seeing how they relate to each other; the index includes authors cited.

As mentioned, the presentation is in "tutorial style," built around a sequence of carefully crafted examples illustrating concepts and applications, rather than in the conventional style of stating concepts first and then citing examples as an afterthought. So it probably makes sense to read (or teach) the material essentially in the order presented. A one-semester or one-quarter first course in simulation could cover all the material in Chapters 1–8, including the statistical material. Time permitting, selected modeling and computing topics from Chapters 9–11 could be included, or some of the more advanced statistical issues from Chapter 12, or the project-management material from Chapter 13, according to the instructor's tastes. A second course in simulation could assume most of the material in Chapters 1-8, then cover the more advanced modeling ideas in Chapters 9–11, followed by topics from Chapters 12 and 13. For self-study, we'd suggest going through Chapters 1–6 to understand the basics, getting at least familiar with Chapters 7 and 8, then regarding the rest of the book as a source for more advanced topics and reference. Regardless of what's covered, and whether the book is used in a course or independently, it will be helpful to follow along in Arena on a computer while reading this book.

The academic version of Arena (see Appendix D for instructions on downloading and installing the software), has all the modeling and analysis capabilities of the complete commercial version, but limits model size. All the examples in the book, as well as all the exercises at the ends of the chapters, will run with this academic version of Arena. The download also contains files for all the example models in the book, as well as other support materials. This software can be installed on any university computer as well as on students' computers. It is intended for use in conjunction with this book for the purpose of learning simulation and Arena. It is not authorized for use in commercial environments.

In revising the book to this sixth edition, several important aspects changed. We've moved to Arena version 14.5 (from version 12.0 in the prior edition), which contains many new and useful features; all text and screenshots have been accordingly updated, as have all of the example files (in the Book Examples folder that's available for download as a *.zip*-file archive from the book's website, www.mhhe.com/kelton). There are now additional end-of-chapter Exercises, but we've retained all of the prior Exercises using the same numbering as before so the new Exercises just continue in the numbering scheme within each chapter; many prior Exercises have been updated and improved. As before, solutions to the Exercises are available to instructors who've adopted the book for use in a formal course, as are PowerPoint slides that have also

been updated to go along with this sixth edition. The most extensive changes in the book are in Chapter 10, which discusses the new Arena 14.5 capabilities for direct Read/ Write from external files, as well as the Visual Designer application, which includes the Dashboarding and 3D animation tools. Appendix D, on downloading and installing the academic version of Arena 14.5, has also been mostly rewritten to describe the new and simplified procedures; Rockwell Automation will again provide the academic version free of charge, and there is no CD/DVD for the book. Of course, all known errata from the prior edition have been corrected and implemented.

As with any labor like this, there are a lot of people and institutions that supported us in a lot of different ways. First and foremost, Lynn Barrett, formerly of Rockwell Automation, really made all five of the prior editions of this book happen by reading and then fixing our semi-literate drafts, orchestrating the composing and production, reminding us of what month (and year) it was, and tolerating our tardiness and fussiness and quirky personal-hyphenation habits; her husband, Doug, also deserves our thanks for putting up with her putting up with us. Rockwell Automation provided resources in the form of time, software, hardware, technical assistance, and moral encouragement; we'd particularly like to thank the Arena development team-Mark Glavach, Cynthia Kasales, Ivo Peterka, Zdenek Kodejs, Jon Qualey, Martin Skalnik, Martin Paulicek, Hynek Frauenberg, and Karen Rempel—as well as Judy Jordan, Jonathan C. Phillips, Nathan Ivey, Darryl Starks, Rob Schwieters, Gail Kenny, Tom Hayson, Carley Jurishica, Susan Strickling, and Ted Matwijec. Thanks also to previous development members, including David Sturrock, Norene Collins, Cory Crooks, Glenn Drake, Tim Haston, Judy Kirby, Frank Palmieri, David Takus, Christine Watson, Vytas Urbonavicius, Steven Frank, Gavan Hood, Scott Miller, and Dennis Pegden. And a special note of thanks goes to David Sturrock for his writing and influence as a co-author of the third and fourth editions, and to Deborah Sadowski for her co-authoring of the first two editions.

We are also grateful to Gary Lucke and Olivier Girod of The Washington Post for allowing us to include a simulation specification that was developed for them by Rockwell Automation as part of a larger project. Special thanks go to Peter Kauffman for his designs of the covers of the first five editions, and to Jim McClure for his cartoon and illustration design. And we appreciate the skillful motivation and gentle nudging by our editors at McGraw-Hill, Raghu Srinivasan and Lorraine Buczek. Reviewers of earlier editions, including Bill Harper, Mansooreh Mollaghasemi, Barry Nelson, Ed Watson, and King Preston White Jr., provided extremely valuable input and help, ranging from overall organization and content all the way to the downright subatomic. Thanks are also due to the many individuals who have used part or all of the early material in classes (as well as to their students who were subjected to early drafts), as well as a host of other folks who provided all kinds of input, feedback and help: Christos Alexopoulos, Ken Bauer, Diane Bischak, Sherri Blaszkiewicz, Eberhard Blümel, Mike Branson, Jeff Camm, Colin Campbell, John Charnes, Chun-Hung Chen, Hong Chen, Jack Chen, Russell Cheng, Christopher Chung, Frank Ciarallo, John J. Clifford, Mary Court, Tom Crowe, Halim Damerdji, Pat Delaney, Mike Dellinger, Darrell Donahue, Ken Ebeling, Neil Eisner, Gerald Evans, Steve Fisk, Michael Fu, Shannon Funk, Fred Glover, Dave Goldsman, Byron Gottfried, Frank Grange, Don Gross, John Gum, Nancy

Markovitch Gurgiolo, Tom Gurgiolo, Jorge Haddock, Bill Harper, Joe Heim, Michael Howard, Arthur Hsu, Alberto Isla, Eric Johnson, Elena Joshi, Keebom Kang, Parastu Kasaie, Elena Katok, Jim Kelly, Teri King, Gary Kochenberger, Patrick Koelling, David Kohler, Wendy Krah, Bradley Kramer, Michael Kwinn Jr., Averill Law, Larry Leemis, Marty Levy, Vladimir Leytus, Bob Lipset, Tom Lucas, Gerald Mackulak, Deb Mederios, Brian Melloy, Mansooreh Mollaghasemi, Ed Mooney, Jack Morris, Jim Morris, Charles Mosier, Marvin Nakayama, Dick Nance, Barry Nelson, James Patell, Cecil Peterson, Dave Pratt, Mike Proctor, Madhu Rao, James Reeve, Steve Roberts, Paul Rogers, Ralph Rogers, Tom Rohleder, Jerzy Rozenblit, Salim Salloum, G. Sathyanarayanan, Bruce Schmeiser, Carl Schultz, Thomas Schulze, Marv Seppanen, Michael Setzer, David Sieger, Robert Signorile, Wenjing Song, Julie Ann Stuart, Jim Swain, Mike Taaffe, Laurie Travis, Reha Tutuncu, Wayne Wakeland, Ed Watson, Michael Weng, King Preston White Jr., Jim Wilson, Irv Winters, Chih-Hang (John) Wu, James Wynne, and Stefanos Zenios.

W. DAVID KELTON University of Cincinnati david.kelton@uc.edu

RANDALL P. SADOWSKI Happily Retired, Inc. randy.sadowski@gmail.com

NANCY B. ZUPICK Rockwell Automation nbzupick@ra.rockwell.com