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C H A P T E R  1 4

Simulation of 

Manufacturing Systems

Recommended sections for a fi rst reading: 14.1, 14.2, 14.4, 14.5

14.1 
INTRODUCTION

There continues to be widespread use of simulation to design and “optimize” manu-
facturing systems. As a matter of fact, it could arguably be said that simulation is 
more widely applied to manufacturing systems than to any other application area. 
Some reasons for this include the following:

• Increased competition in many industries has resulted in greater emphasis on 
automation to improve productivity and quality. Since automated systems are 
more complex, they typically can only be analyzed by simulation.

• The cost of equipment and facilities can be quite large. For example, a new semi-
conductor manufacturing plant can cost a billion dollars or even more.

• The cost of computing has decreased dramatically as a result of faster and 
cheaper PCs.

• Improvements in simulation software (e.g., graphical user interfaces) have reduced 
model-development time, thereby allowing for more timely manufacturing 
analyses.

• The availability of animation has resulted in greater understanding and use of 
simulation by manufacturing managers.

The remainder of this chapter is organized as follows. In Sec. 14.2 we discuss 
the types of manufacturing issues typically addressed by simulation. Section 14.3 
gives brief descriptions of FlexSim and ProModel, which are popular manufacturing-
oriented simulation packages. A simulation model of the small factory considered 
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14-2 simulation of manufacturing systems

in Chap. 3 is also given for each package. Modeling of manufacturing-system 
randomness, including machine downtimes, is discussed in Sec. 14.4. Sections 14.5 
and 14.6 show in considerable detail how simulation is actually used to design and 
analyze a manufacturing system.

A good reference on manufacturing systems in general is Hopp and Spearman 
(2011). Many actual applications of simulation in manufacturing can be found in 
the Proceedings of the Winter Simulation Conference, which is published every 
December (see www.wintersim.org).

14.2 
OBJECTIVES OF SIMULATION IN MANUFACTURING

Perhaps the greatest overall benefi t of using simulation in a manufacturing environ-
ment is that it allows a manager or an engineer to obtain a systemwide view of the 
effect of “local” changes to the manufacturing system. If a change is made at a 
particular workstation, its impact on the performance of this station may be predict-
able. On the other hand, it may be diffi cult, if not impossible, to determine ahead of 
time the impact of this change on the performance of the overall system.

E X A M P L E  1 4 . 1 .  Suppose that a workstation with one machine has insuffi cient process-
ing capacity to handle its workload (i.e., its processing rate is less than the arrival rate of 
parts). Suppose further that it has been determined that adding a second machine will 
alleviate the capacity shortage at this station. However, this additional machine will also 
increase the throughput of parts from this station. This increased throughput will, in 
turn, show up as increased arrival rates to downstream workstations, which may cause 
new capacity shortages to occur, etc.

In addition to the above general benefi t of simulation, there are a number of 
specifi c potential benefi ts from using simulation for manufacturing analyses, 
including:

• Increased throughput (parts produced per unit of time)
• Decreased times in system of parts
• Reduced in-process inventories of parts
• Increased utilizations of machines or workers
• Increased on-time deliveries of products to customers
• Reduced capital requirements (land, buildings, machines, etc.) or operating 

expenses
• Insurance that a proposed system design will, in fact, operate as expected
• Information gathered to build the simulation model will promote a greater under-

standing of the system, which often produces other benefi ts.
• A simulation model for a proposed system often causes system designers to 

think about certain signifi cant issues (e.g., system control logic) long before they 
normally would.

E X A M P L E  1 4 . 2 .  The information gathered for a simulation model of a food-packing 
plant showed that the control logic for the conveyor system was not implemented 
correctly.
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chapter fourteen 14-3

Simulation has successfully addressed a number of particular manufacturing 
issues, which we might classify into three general categories:

The need for and the quantity of equipment and personnel

• Number, type, and layout of machines for a particular objective (e.g., production 
of 1000 parts per week)

• Requirements for material-handling systems and other support equipment (e.g., 
pallets and fi xtures)

• Location and size of inventory buffers
• Evaluation of a change in product volume or mix (e.g., impact of new products)
• Evaluation of the effect of a new piece of equipment (e.g., a robot) on an existing 

manufacturing line
• Evaluation of capital investments
• Labor-requirements planning
• Number of shifts

Performance evaluation

• Throughput analysis
• Time-in-system analysis
• Bottleneck analysis [i.e., determining the location of the constraining resource(s)]

Evaluation of operational procedures

• Production scheduling (i.e., evaluating proposed policies for dispatching orders to 
the shop fl oor, choosing batch sizes, loading parts at a workstation, and sequenc-
ing of parts through the workstations in the system)

• Policies for component-part or raw-material inventory levels
• Control strategies [e.g., for a conveyor system or an automated guided vehicle 

system (AGVS)]
• Reliability analysis (e.g., effect of preventive maintenance)
• Quality-control policies (e.g., Six Sigma)
• Just-in-time (JIT) strategies

There are several common measures of performance obtained from a simula-
tion study of a manufacturing system, including:

• Throughput
• Time in system for parts (cycle time)
• Times parts spend in queues
• Times parts spend waiting for transport
• Times parts spend in transport
• Timeliness of deliveries (e.g., proportion of late orders)
• Sizes of in-process inventories (work-in-process or queue sizes)
• Utilization of equipment and personnel (i.e., proportion of time busy)
• Proportions of time that a machine is broken, starved (waiting for parts from a 

previous workstation), blocked (waiting for a fi nished part to be removed), or 
undergoing preventive maintenance

• Proportions of parts that are reworked or scrapped
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14-4 simulation of manufacturing systems

14.3 
SIMULATION SOFTWARE 
FOR MANUFACTURING APPLICATIONS

The simulation-software requirements for manufacturing applications are not fun-
damentally different from those for other simulation applications, with one excep-
tion. Most modern manufacturing facilities contain material-handling systems, 
which are often diffi cult to model correctly. Therefore, in addition to the software 
features discussed in Chap. 3, it is desirable for simulation packages used in manu-
facturing to have fl exible, easy-to-use material-handling modules. Important classes 
of material-handling systems are forklift trucks, AGVS with contention for guide 
paths, transport conveyors (equal distance between parts), accumulating (or queueing) 
conveyors, power-and-free conveyors, automated storage-and-retrieval systems 
(AS/RS), bridge cranes, and robots. Note that just because a particular software 
package contains conveyor constructs doesn’t necessarily mean that they are ap-
propriate for a given application. Indeed, real-world conveyor systems come in a 
wide variety of forms, and different software packages have varying degrees of 
conveyor capabilities.

In Chap. 3 we defi ned general-purpose and application-oriented simulation 
packages, and then we discussed three general-purpose packages in some detail. 
General-purpose packages usually offer considerable modeling fl exibility and 
are widely used to simulate manufacturing systems. Furthermore, some of these 
products (e.g., Arena and ExtendSim) provide modeling constructs (e.g., conveyors) 
specifi cally for manufacturing. There are also many simulation packages designed 
specifi cally for use in a manufacturing environment. In Secs. 14.3.1 and 14.3.2 
we give descriptions of FlexSim and ProModel, respectively, which are, at the 
time of this writing, two popular manufacturing-oriented simulation packages. In 
each case, we also show how to build a model of the small factory considered in 
Sec. 3.5. Section 14.3.3 lists some additional manufacturing-oriented simulation 
packages.

14.3.1 FlexSim

FlexSim [see Beaverstock et al. (2013) and FlexSim (2013)] is a true object-
oriented simulation package for manufacturing, material handling, warehousing, 
and fl ow processes marketed by FlexSim Software Products (Orem, Utah). A 
model is constructed by dragging and dropping “objects” into the “Model View” 
and then editing their parameters using dialog boxes. FlexSim can model a wide 
variety of manufacturing confi gurations, since existing objects can be fully cus-
tomized to meet specifi c requirements. These customized objects can then be 
placed in the library for reuse in current or future modeling applications. A model 
can also have an unlimited number of levels of hierarchy and use all aspects of 
object-oriented technology (i.e., encapsulation, inheritance, and polymorphism, as 
discussed in Sec. 3.6).
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FlexSim provides three-dimensional, prospective-projection model building 
and animation by default; however, the user has the option to switch to an ortho-
graphic view or display both views simultaneously.

Material-handling devices available in FlexSim include conveyors (transport 
and accumulating), forklift trucks, AGVS, AS/RS, cranes, elevators, robots, and 
operators. FlexSim provides preempting and priority processing for capturing de-
tails of product movement and processing.

The FlexSim software includes a cost model that allows one to account for the 
profi t for each part produced and also for the costs associated with machines, labor, 
work-in-process, etc.

There are an unlimited number of random-number streams available in FlexSim. 
Furthermore, the user has access to 24 standard theoretical probability distributions 
and also to empirical distributions. The time to failure of a machine can be based on 
busy time, calendar time, or a user-defi ned event.

There is an “Experimenter” that can be used to automatically make independent 
replications for each of a number of different scenarios, and to obtain point esti-
mates and confi dence intervals for performance measures of interest. Furthermore, 
the replications can be simultaneously executed across multiple processor cores. A 
number of plots are available, including time plots, histograms, bar charts, pie charts, 
and Gantt charts.

The ExpertFit distribution-fi tting software (see Sec. 6.7) is bundled with FlexSim, 
while the OptQuest “optimization” module (see Sec. 12.5.2) is available as an op-
tion. FlexSim Software Products also develops and markets the FlexSim Healthcare 
simulation package.

The FlexSim model of the manufacturing system consists of the six objects 
shown in Fig. 14.1, which is the orthographic view of the model. The dialog box 

FIGURE 14.1
FlexSim model for the manufacturing system, as shown in the orthographic view.
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14-6 simulation of manufacturing systems

for the “Source” object named “PartsArrive” (the left-most object in Figure 14.1) 
is shown in Fig. 14.2; here we specify that the interarrival times of parts (called 
“fl owitems” in FlexSim) are exponentially distributed with a mean of 1 (and a loca-
tion parameter of 0) and use random-number stream 1 (see Chap. 7). (The time unit 
for the simulation model is set to minutes at the beginning of the model-building 
process.) The statistical-distribution dialog box displays a histogram of 1000 gener-
ated interarrival times.

The next object is a “Queue” object named “MachineQ,” whose dialog box is 
shown in Fig. 14.3. The dialog box for the “Processor” object named “Machine” is 

FIGURE 14.2
Dialog box for the FlexSim Source object “PartsArrive.”
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chapter fourteen 14-7

shown in Fig. 14.4, where we specify that processing times are uniformly distributed 
with a minimum value of 0.65 and a maximum value of 0.70, and we use random-
number stream 2.

The dialog box for the Queue object named “InspectorQ” is similar to that 
for the MachineQ object and is not shown. The dialog box for the Processor 

FIGURE 14.3
Dialog box for the FlexSim Queue object “MachineQ.”
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14-8 simulation of manufacturing systems

 object named “Inspector,” which is similar to that for the Machine object, is 
shown in Fig. 14.5. Here we specify that inspection times are uniformly distrib-
uted with a minimum value of 0.75 and a maximum value of 0.80, and we use 
random-number stream 3. Also, if we click on the “Flow” tab near the top of the 
screen, we can access the dialog box shown in Fig. 14.6. Here we specify that 

FIGURE 14.4
Dialog box for the FlexSim Processor object “Machine.”
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chapter fourteen 14-9

90 percent of the fl owitems (i.e., those that are good) go to output port 1 (using 
random-number stream 4), which is connected to the “Sink” object named 
“PartsDepart” (its dialog box is not shown). The remaining 10 percent of the 
parts (i.e., those that are bad) go to output port 2, where they are sent back to the 
MachineQ object to be reworked. The simulation run length is specifi ed to be 

FIGURE 14.5
Dialog box for the FlexSim Processor object “Inspector.”
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14-10 simulation of manufacturing systems

100,000 time units by using a dialog box (see Fig. 14.7) that is accessed from the 
“Run Time” pull-down menu at the top of the screen. The results from running 
the simulation model are shown in Table 14.1, and a perspective-projection view 
is given in Fig. 14.8.

FIGURE 14.6
FlexSim dialog box for specifying the routing of parts from “Inspector.”
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FIGURE 14.7
FlexSim dialog box for specifying the 
simulation run length.

TABLE 14.1

Simulation results for the FlexSim model of the 
manufacturing system

Output statistic Observed value

Average time in system 4.42
Machine utilization 0.75
Inspector utilization 0.86
Average delay in machine queue 1.01
Average number in machine queue 1.12
Average delay in inspector queue 1.52
Average number in inspector queue 1.68

14.3.2 ProModel

ProModel [see Harrell et al. (2012) and ProModel (2013)] is a manufacturing-
oriented simulation package developed and marketed by ProModel Corporation 
(Orem, Utah). The following are some of the basic modeling constructs, the fi rst 
four of which must be in every model:

Locations Used to model machines, queues, conveyors, or tanks (see below)

Entities  Used to represent parts, raw materials, or information

Arrivals Used to specify how parts enter the system

Processes Used to defi ne the routing of parts through the system and to specify 
what operations are performed for each part at each location

Resources Used to model static or dynamic resources such as workers or forklift 
trucks

A model can be constructed graphically (e.g., routings for parts can be defi ned 
by clicking on graphical locations), by fi lling in data fi elds, and by “programming” 
with an internal pseudo-language. It is also possible to call external subroutines 
written in, say, C or C++. Customized front- and back-end interfaces can be developed 
using ProModel’s ActiveX capability. For example, an Excel interface can easily be 
set up for creating or modifying models. ProModel provides two-dimensional anima-
tion, which is created automatically when the model is developed. Three-dimensional 
animation is available using ProModel’s 3D Animator.
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14-12 simulation of manufacturing systems

Material-handling capabilities in ProModel include manual handling, trans-
port conveyors, accumulating conveyors, forklift trucks, AGVS, and bridge cranes. 
ProModel also has a tank construct for modeling continuous-fl ow systems. ProModel 
includes a costing feature that allows one to assign costs to locations, resources, and 
entities that are then tracked over time.

There are 100 different random-number streams available in ProModel. Further-
more, the user has access to 15 standard theoretical probability distributions and also to 
empirical distributions. The time to failure of a machine may be based on busy time, 
calendar time, the number of completed parts, or a signal from another part of the model.

There is a “Scenario Manager” that can be used to automatically make indepen-
dent replications for each of a number of different scenarios. The results from the 
simulation runs are displayed in ProModel’s “Output Viewer” in the form of tables 
and graphs, including state graphs (e.g., whether a machine is busy, idle, down, 
etc.), time plots, histograms, and pie charts. Point estimates and confi dence inter-
vals for performance measures of interest can also be displayed. Custom reports can 
be created that display a specifi c set of tables and graphs.

In addition to providing the ability to export data to Excel, ProModel also links 
and integrates with Minitab to provide users with a Six Sigma analysis capability. 
For each scenario of interest, two charts are automatically generated in Minitab for 
each Six Sigma metric, namely, the Capability Analysis Chart and the Capability 
Sixpack Chart. The SimRunner optimization module is also included with ProModel. 
ProModel Corporation also develops and markets the MedModel, ServiceModel, 
and ProcessSimulator (a Microsoft Visio add-in) simulation packages.

FIGURE 14.8
FlexSim model for the manufacturing system, as shown in perspective-projection view.
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The ProModel model for the manufacturing system uses “Locations,” “Enti-
ties,” “Arrivals,” and “Processes” modeling constructs. Locations, which will be 
used to represent the machine, the inspector, and their queues, are selected from 
the “Build” drop-down menu, or by selecting the Locations icon on the toolbar. 
The resulting “Locations Module,” which consists of three windows, is shown in 
Fig. 14.9. The “Locations Graphics” window is shown in the lower-left portion of 
the screen, the “Locations Edit” table across the top of the screen, and the “Layout” 
window in the lower-right portion of the screen. For each desired model location, a 
location icon is selected from the Locations Graphics window and placed in the 
Layout window. A new record corresponding to this location is automatically added 
to the Locations Edit table, whose fi elds (Name, Capacity, etc.) can then be edited 
in an appropriate way. The Locations Edit table and Layout window for the manu-
facturing system are shown in Fig. 14.10. In particular, the fi elds for the “Machine” 
record in the Edit table are as follows:

Cap. The capacity of the Machine location (i.e., the number of parallel ma-
chines) is 1.

Units The number of separate units of this location (each having the same char-
acteristics) is 1.

DTs There are no downtimes for this location.

Stats Only “Basic” statistics (i.e., machine utilization and average processing 
time) will be computed for this location.

Rules The Machine, when available, will pick that part in the queue that has been 
waiting the longest (i.e., the “Oldest”).

The horizontal rectangles in the Layout window represent the machine and the 
inspector queues. Below each queue is a counter, which displays the current number 
of parts in the queue as the model is running.

FIGURE 14.9
Locations Module for ProModel.
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Entities, which are used to represent parts in this model, are selected from the 
Build menu, or by selecting the Entities icon on the toolbar. This results in the dis-
play of the “Entities Module,” which consists of an “Entities Graphics” window, an 
“Entities Edit” table, and the Layout window. An entity is specifi ed graphically by 
selecting an icon from the Entities Graphics window and then editing the record that 
automatically appears in the Entities Edit table. The Entities Edit table for this model 
is shown in Fig. 14.11. The “Speed” of an entity is not relevant for this model.

Arrivals, which are used to specify how entities arrive to the system, are also 
selected from the Build menu or from the toolbar. This results in the display of the 
“Arrivals Module,” which consists of an “Arrivals Tools” window, an “Arrivals Edit” 
table, and the Layout window. To specify the manner in which an entity arrives, 
select the desired entity (“Part” for this model) from those listed in the Arrivals 
Tools window, and click in the Layout window on the location at which entities are 
to arrive (“MachineQ” for our model). The Arrivals Edit table for the model is 
shown in Fig. 14.12. The “E(1,1)” in the “Frequency” fi eld specifi es that parts have 
exponentially distributed (denoted “E”) interarrival times with a mean of 1 minute 
(the default time unit), and that random-number stream 1 is being used (see Chap. 7). 

FIGURE 14.10
Locations Edit table and Layout window for the ProModel model.

FIGURE 14.11
Entities Edit table for the ProModel model.

FIGURE 14.12
Arrivals Edit table for the ProModel model.
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The “Logic” fi eld could be used to execute certain logic at the instant that each entity 
arrives (e.g., assigning attribute values to the entity).

Selecting “Processing” from the Build menu (or selecting its icon on the toolbar) 
displays the “Processing Module,” which consists of the “Process Edit” table, the 
“Routing Edit” table, the “Process Tools” window, and the Layout window. To specify 
the routing (processing) of an entity graphically, complete the following steps:

1. Select an entity (Part for our model) from the entity list in the Process Tools 
window. The record for the location at which the entity arrives (MachineQ for 
our model) is highlighted in the Process Edit table.

2. Click on this location in the Layout window and a rubber-banding routing line 
appears starting at this location.

3. Click on the destination (succeeding) location for the entity (Machine for our model).

The Layout window for the simulation model after the routing from MachineQ to 
Machine has been specifi ed is shown in Fig. 14.13. The corresponding Process Edit 
table and Routing Edit table are shown in Fig. 14.14. For our model, Part is both the 
entity arriving to and departing from the MachineQ location. (In a more complicated 
model, a raw-material entity could arrive to a machine and a completed-part entity 
could depart from the machine.) After the modeling for MachineQ is completed, the 
routing from Machine to “InspectorQ” is specifi ed in a similar manner. For the Machine 
record in the Process Edit table (see Fig. 14.15), we must specify that processing times 
(see the “Operation” fi eld) are uniformly distributed on the interval [0.65, 0.70] minute, 
which is denoted by “WAIT U(0.675, 0.025, 2).” (The random-number stream is 2.) 
The routing from InspectorQ to “Inspector” is then specifi ed in a similar manner.

Finally, we must specify the routing out of the Inspector location, which is a 
little bit more complicated. The Process Edit table and Routing Edit table for this 
step are shown in Fig. 14.15. There are two routes out of Inspector. Either parts 

FIGURE 14.13
Layout window showing the route from “MachineQ” to “Machine” for the ProModel model.

FIGURE 14.14
Process Edit table and Routing Edit table with the “MachineQ record” selected for the 
ProModel model.
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14-16 simulation of manufacturing systems

leave the system by specifying “EXIT” as the “Destination” with a probability of 
0.9, or parts go back to MachineQ with a probability of 0.1. This probabilistic rout-
ing is defi ned by double-clicking on the “Rule” fi eld for each of the routings, select-
ing “Probability” in the resulting “Routing Rule” dialog box, and then entering the 
appropriate probability value (see Fig. 14.16). (Note we have also specifi ed that 
inspection times are uniformly distributed on the interval [0.75, 0.80] minute and 
use stream 3.)

We specify that the simulation run length is 100,000 minutes by using the 
“Options” option (see Fig. 14.17) in the “Simulation” drop-down menu. After the 
simulation has been run, we can look at the results in the Output Viewer. The “Entity 
Summary” table (Fig. 14.18) shows that the average time in system for the entities 
called Part is 4.47 minutes.

FIGURE 14.15
Process Edit table and Routing Edit table with the “Inspector record” selected for the 
ProModel model.

FIGURE 14.16
Routing Rule dialog box for the ProModel model.
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FIGURE 14.17
Simulation Options dialog box for the ProModel model.

FIGURE 14.18
Entity Summary table for the ProModel model of the manufacturing system.

14.3.3 Other Manufacturing-Oriented Simulation Packages

There are a number of other well-known, manufacturing-oriented simulation pack-
ages, including AutoMod [Banks (2004) and Applied (2013)], Enterprise Dynamics 
[INCONTROL (2013)], Plant Simulation [Siemens (2013)], and WITNESS [Lanner 
(2013)].
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14-18 simulation of manufacturing systems

14.4 
MODELING SYSTEM RANDOMNESS

In Chap. 6 we presented a general discussion of how to choose input probability 
distributions for simulation models, and those ideas are still relevant here. We now 
discuss some additional topics related to modeling system randomness that are 
particularly germane to manufacturing systems, with our major emphasis being the 
representation of machine downtimes.

14.4.1 Sources of Randomness

We begin with a discussion of common sources of randomness in manufacturing 
systems. In particular, the following are possible examples of continuous distribu-
tions in manufacturing:

• Interarrival times of orders, parts, or raw materials
• Processing, assembly, or inspection times
• Times to failure of a machine (see Sec. 14.4.2)
• Times to repair a machine
• Loading and unloading times
• Setup times to change a machine over from one part type to another
• Rework
• Product yields

Note that in some cases the above quantities might be constant. For example, pro-
cessing times for an automated machine might not vary appreciably. Also, automo-
bile engines might arrive to a fi nal assembly area with constant interarrival times of 
1 minute.

There are actually two other common ways in which parts “enter” a manufac-
turing system. In some systems (e.g., a subassembly manufacturing line), it is often 
assumed that there is an unlimited supply of raw parts or materials in front of the 
line’s fi rst machine. Thus, the rate at which parts enter the system is the effective 
processing rate of the fi rst machine, i.e., accounting for downtimes, blockage, etc. 
Jobs or orders may also arrive to a system in accordance with a production schedule, 
which specifi es the time of arrival, the part type, and the order size for each order. 
In a simulation model, the production schedule might be read from an external fi le.

Histograms of observed processing (or assembly) times, times to failure, and 
repair times each tend to have a distinctive shape, and examples of these three 
types of data are given in Figs. 14.19 through 14.21. Note that the times to failure in 
Fig. 14.20 have an exponential-like shape, with the mode (most likely value) near 
zero. However, the exponential distribution itself does not provide a good model for 
these data; see the discussion in Sec. 14.4.2. Observe also that the other two histo-
grams have their mode at a positive value and are skewed to the right (i.e., the right 
tail is longer).

Discrete distributions seem, in general, to be less common than continuous distri-
butions in manufacturing systems. However, two examples of discrete distributions 
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FIGURE 14.19
Histogram of 52 processing times for an automotive manufacturer.
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FIGURE 14.20
Histogram of 1603 times to failure for a household-products manufacturer.
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14-20 simulation of manufacturing systems

are the outcome of inspecting a part (say, good or bad), and the size of an order 
arriving to a factory (the possible values are 1, 2, . . .).

14.4.2 Machine Downtimes

The most important source of randomness for many manufacturing systems is that 
associated with machine breakdowns or unscheduled downtime. Random down-
time results from such events as actual machine failures, part jams, and broken 
tools. The following example illustrates the importance of modeling machine down-
time correctly.

E X A M P L E  1 4 . 3 .  A company is going to buy a new machine tool from a vendor who 
claims that the machine will be down 10 percent of the time. However, the vendor has 
no data on how long the machine will operate before breaking down or on how long it 
will take to repair the machine. Some simulation analysts have accounted for random 
breakdowns by simply reducing the machine processing rate by 10 percent. We will see, 
however, that this can produce results that are quite inaccurate.
 Suppose that the single-machine-tool system (see, for example, Example 4.32) will 
actually operate according to the following assumptions when installed by the purchasing 
company:

• Jobs arrive with exponential interarrival times with a mean of 1.25 minutes.
• Processing times for a job at the machine are a constant 1 minute.
• The times to failure for the machine have an exponential distribution (based on calendar 

time, as discussed later) with mean 540 minutes (9 hours).
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FIGURE 14.21
Histogram of 88 repair times for an aluminum-products manufacturer.
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• The repair times for the machine have a gamma distribution (shape parameter equal 
to 2) with mean 60 minutes (1 hour).

• The machine is, thus, broken 10 percent of the time, since the mean length of the 
up–down cycle is 10 hours.

 In column 2 of Table 14.2 are results from fi ve independent simulation runs of 
length 160 hours (20 eight-hour days) for the above system; all times are in minutes. In 
column 4 of the table are results from fi ve simulation runs of length 160 hours for the 
machine-tool system with no breakdowns, but with the processing (cycle) rate reduced 
from 1 job per minute to 0.9 job per minute, as has sometimes been the approach in 
practice.
 Note fi rst that the average weekly throughput is almost identical for the two simula-
tions. [For a system with no capacity shortages (see Prob. 14.1) that is simulated for a 
long period of time, the average throughput for a 40-hour week must be equal to the 
arrival rate for a 40-hour week, which is 1920 here.] On the other hand, note that mea-
sures of performance such as average time in system for a job and maximum number of 
jobs in queue are vastly different for the two cases. Thus, the deterministic adjustment 
of the processing rate produces results that differ greatly from the correct results based 
on actual breakdowns of the machine.
 In column 3 of Table 14.2 are results from fi ve simulation runs of length 160 hours 
for the machine-tool system with breakdowns, but with a mean time to failure of 54 min-
utes and a mean repair time of 6 minutes; thus, the machine is still broken 10 percent of 
the time. Note that the average time in system and the maximum number in queue are 
quite different for columns 2 and 3. Therefore, when explicitly accounting for break-
downs in a simulation model, it is also important to have an accurate assessment of 
mean time to failure and mean repair time for the actual system.
 This example also shows that the required amount of model detail depends on the 
desired measure of performance. All three models produce accurate estimates of (ex-
pected) throughput, but this is clearly not the case for the other performance measures.

Despite the importance of modeling machine breakdowns correctly, as demon-
strated by the above example, there has been little discussion of this subject in the 
simulation literature. Thus, we now discuss modeling random machine downtimes 
in some detail. Deterministic downtimes such as breaks, shift changes, and sched-
uled maintenance are relatively easy to model and are not treated here.

TABLE 14.2

Simulation results for the single-machine-tool system

 Breakdowns Breakdowns
 mean 5 mean 5 No
Measure of performance 540 minutes 54 minutes breakdowns

Average throughput per week* 1908.8 1913.8 1914.8
Average time in system* 35.1 10.3 5.6
Maximum time in system† 256.7 76.1 39.1
Average number in queue* 27.2 7.3 3.6
Maximum number in queue† 231.0 67.0 35.0

* Average over fi ve runs.
† Maximum over fi ve runs.
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14-22 simulation of manufacturing systems

A machine goes through a sequence of cycles, with the ith cycle consisting of 
an up (“operating”) segment of length Ui followed by a down segment of length Di. 
During an up segment, a machine will process parts if any are available and if the 
machine is not blocked. The fi rst two up–down cycles for a machine are shown in 
Fig. 14.22. Let Bi and Ii be the amounts of time during Ui that the machine is busy 
processing parts and that the machine is idle (either starved for parts or blocked by 
the current fi nished part), respectively. Thus, Ui 5 Bi 1 Ii. Note that Bi and Ii may 
each correspond to a number of separated time segments and, thus, are not repre-
sented in Fig. 14.22.

Let Wi be the amount of time from the ith “failure” of the machine until its subse-
quent repair begins, and let Ri be the length of this ith repair time. Thus, Di 5 Wi 1 Ri, 
as shown in Fig. 14.22.

We will assume for simplicity that cycles are independent of each other and are 
probabilistically identical. This implies that each of the six sequences of random 
variables defi ned above (e.g., U1, U2, . . . and D1, D2, . . .) are IID within themselves 
(see Prob. 14.2). We will also assume that Ui and Di are independent for all i (see 
Prob. 14.3).

We now discuss how to model machine-up segments in a simulation model as-
suming that “appropriate” breakdown data are available. The following two methods 
are widely used (see also Prob. 14.4):

Calendar Time

Assume that the uptime data U1, U2, . . . are available and that we can fi t a stan-
dard probability distribution (e.g., exponential) FU to these data using the tech-
niques of Chap. 6. Alternatively, if no distribution provides a good fi t, assume that 
an empirical distribution is used to model the Ui’s. Then, starting at time 0, we 
generate a random value u1 from FU and 0 1 u1 5 u1 is the time of the fi rst failure 
of the machine in the simulation. When the machine actually fails at time u1, note 
that it may either be busy or idle (see Prob. 14.5). Suppose that d1 is determined to 
be the fi rst downtime (to be discussed below) for the machine. Then the machine 
goes back up at time u1 1 d1. (If the machine was processing a part when it failed 
at time u1, then it is usually assumed that the machine fi nishes this part’s remaining 
processing time starting at time u1 1 d1.) At time u1 1 d1, another value u2 is 
randomly generated from FU and the machine is up during the time interval [u1 1 d1, 
u1 1 d1 1 u2). If d2 is the second downtime, then the machine is down during the 
time interval [u1 1 d1 1 u2, u1 1 d1 1 u2 1 d2), etc.

0

U1

W1 R1 W2 R2

D1 U2 D2
Time

End of
cycle 2

End of
cycle 1

FIGURE 14.22
Up–down cycles for a machine.
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There are two drawbacks of the calendar-time approach. First, it allows the 
machine to break down when it is idle, which may not be realistic. Also, assume that 
the machine in question is part of a larger system and has machines both upstream 
and downstream of it. If we simulate two different versions of the overall system 
using the FU distribution to break down the specifi ed machine (and also synchronize 
the downtimes), then the machine will break down at the same points in simulated 
(calendar) time for both simulations. However, due to different amounts of starving 
from the upstream machines and blocking from the downstream machines in the 
two simulation runs, the specifi ed machine could have signifi cantly less actual busy 
time for one confi guration than for the other. This also may not be very realistic.

Busy Time

Assume that the busy-time data B1, B2, . . . are available and that we can fi t a 
distribution FB to these data. (Alternatively, an empirical distribution can be used.) 
Then, starting at time 0, we generate a random value b1 from FB. Then the machine 
is up until its total accumulated busy (processing) time reaches a value of b1, at which 
point the busy machine fails. (For example, suppose that b1 is equal to 60.7 minutes 
and each processing time is a constant 1 minute. Then the machine fails while pro-
cessing its 61st part.) If f1 is the simulated time at which the machine fails for the 
fi rst time ( f1 $ b1) and d1 is the fi rst downtime, then the machine goes back up at 
time f1 1 d1, etc.

In general, the busy-time approach is more natural than the calendar-time ap-
proach. We would expect the next time of failure of a machine to depend more on 
total busy time since the last repair than on calendar time since the last repair. How-
ever, in practice, the busy-time approach may not be feasible, since uptime data 
(U1, U2, . . .) may be available but not busy-time data (Bl, B2, . . .). In many factories, 
only the times that the machine fails and the times that the machine goes back up 
(completes repair) are recorded. Thus, the uptimes U1, U2, . . . may be easily com-
puted, but the actual busy times B1, B2, . . . may be unknown (see Prob. 14.6). (In 
computing the Ui’s, time intervals where the machine is off, e.g., idle shifts, should 
be subtracted out.) Note that if a machine is never starved or blocked, then Bi 5 Ui 
and the two approaches are equivalent.

There is a third method that is sometimes used to model machine-up segments 
in a simulation model, namely, the number of completed parts. For example, after a 
machine has completed 100 parts, it might be necessary to perform maintenance on 
the machine.

We now discuss how to model machine-down segments, assuming that factory 
data are available. Assume fi rst that the waiting time to repair, Wi, for the ith cycle 
is zero or negligible relative to the repair time Ri (for i 5 1, 2, . . .). Then we fi t a 
distribution (e.g., gamma) FD to the observed downtime data D1, D2, . . . . Each time 
the machine fails, we generate a new random value from FD and use it as the subse-
quent downtime (repair time).

Suppose that the Wi’s may sometimes be “large,” due to waiting for a repairman 
to arrive. If only Di’s are available (and not the Wi’s and Ri’s separately), as is often 
the case in practice, then fi t a distribution FD to the Di’s and randomly sample from 
FD each time a downtime is needed in the simulation model. The reader should be 
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14-24 simulation of manufacturing systems

aware, however, that FD is a valid downtime distribution for only the current num-
ber of repairmen and the maintenance requirements of the system from which the 
Di’s were collected.

Finally, assume that the Wi’s may be signifi cant and that the Wi’s and Ri’s are 
individually available. Then one approach is to model the waiting time for a repair-
man as a maintenance resource with a fi nite number of units and to fi t a distribution 
FR to the Ri’s. If a repairman is available when the machine fails, the waiting time is 
zero unless there is a travel time, and the repair time is generated from FR. If a 
repairman is not available, the broken machine joins a queue of machines waiting 
for a repairman, etc.

Suppose that factory data are not available to support either the calendar-time 
or busy-time breakdown models previously discussed. This often occurs when sim-
ulating a proposed manufacturing facility, but may also be the case for an existing 
plant when there is inadequate time for data collection and analysis. We now present 
a tentative model for this no-data case, which is likely to be more accurate than 
many of the approaches used in practice (see Example 14.3).

We will fi rst assume that the amount of machine busy time, B, before a failure 
has a gamma distribution with shape parameter aB 5 0.7 and scale parameter bB to be 
specifi ed. Note that the exponential distribution (gamma distribution with aB 5 1.0) 
does not appear, in general, to be a good model for machine busy times, even though 
it is often used in simulation models for this purpose.

E X A M P L E  1 4 . 4 .  In Fig. 14.23 we show the histogram of machine times to failure 
(actually busy times) from Fig. 14.20 with the best-fi tting exponential distribution su-
perimposed over it. It is visually clear that the exponential distribution does not provide 

FIGURE 14.23
Density-histogram plot for the time-to-failure data and the exponential distribution.
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a very good fi t for the data, since its density lies above the histogram for moderate 
values of x. Furthermore, it was rejected by the goodness-of-fi t tests of Sec. 6.6.2.

We chose the gamma distribution because of its fl exibility (i.e., its density can 
assume a wide variety of shapes) and because it has the general shape of many busy-
time histograms when aB # 1. (The Weibull distribution could also have been used, 
but its mean is harder to compute.) The particular shape parameter aB 5 0.7 for the 
gamma distribution was determined by fi tting a gamma distribution to seven dif-
ferent sets of busy-time data, with 0.7 being the average shape parameter obtained. 
In only one case was the estimated shape parameter close to 1.0 (the exponential 
distribution). The density function for a gamma distribution with shape and scale 
parameters 0.7 and 1.0, respectively, is shown in Fig. 14.24.

We will assume that machine downtime (or repair time) has a gamma distribu-
tion with shape parameter aD 5 1.3 and a scale parameter bD to be determined. This 
particular shape parameter was determined by fi tting a gamma distribution to 11 dif-
ferent sets of downtime data, with 1.3 being the average shape parameter obtained. 
The density function for a gamma distribution with shape and scale parameters 1.3 
and 1.0, respectively, is shown in Fig. 14.25. This density function has the same 
general shape as downtime histograms often experienced in practice (see Fig. 14.21).

In order to complete our model of machine downtimes in the absence of data, 
we need to specify the scale parameters bB and bD. This can be done by soliciting 
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FIGURE 14.24
Gamma(0.7, 1.0) distribution.

Law01323_ch14_001-047.indd Page 14-25  23/10/13  5:13 PM user-f-w-198 Law01323_ch14_001-047.indd Page 14-25  23/10/13  5:13 PM user-f-w-198 /203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles/203/MH02090/Law01323_disk1of1/0073401323/Law01323_pagefiles



14-26 simulation of manufacturing systems

two pieces of information from system “experts” (e.g., engineers or vendors). We 
have found it convenient and typically feasible to obtain an estimate of mean down-
time mD 5 E(D) and an estimate of machine effi ciency e, which we now defi ne. The 
effi ciency e is defi ned to be the long-run proportion of potential processing time 
(i.e., parts present and machine not blocked) during which the machine is actually 
processing parts, and is given by

 e 5
mB

mB 1 mD

where mB 5 E(B) is the mean amount of machine busy time before a failure. If the 
machine is never starved or blocked, then mB 5 mU 5 E(U) and e is the long-run 
proportion of time during which the machine is processing parts. Using the values 
of mD and e (and also the fact that the mean of a gamma distribution is the product 
of its shape and scale parameters), it is easy to show that the required scale param-
eters are given by

 bB 5
emD

0.7(1 2 e)

and

 bD 5
mD

1.3

FIGURE 14.25
Gamma(1.3, 1.0) distribution.
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Thus, our model for machine downtimes when no data are available has been com-
pletely specifi ed.

We have discussed above models for the breaking down and repair of machines. 
However, in practice there are a number of additional complications that often 
occur, such as multiple independent causes of machine failure. Some of these com-
plexities are discussed in the problems at the end of this chapter.

14.5 
AN EXTENDED EXAMPLE

We now illustrate how simulation can be used to improve the performance of a 
manufacturing system. We will simulate a number of different confi gurations of a 
system consisting of workstations and forklift trucks, with the simulation output 
statistics from one confi guration being used to determine the next confi guration to 
be simulated. This procedure will be continued until a system design is obtained 
that meets our performance requirements.

14.5.1 Problem Description and Simulation Results

A company is going to build a new manufacturing facility consisting of an input/
output (or receiving/shipping) station and fi ve workstations as shown in Fig. 14.26. 
The machines in a particular station are identical, but the machines in different 
stations are dissimilar. (This system is an embellishment of the job-shop model in 
Sec. 2.7.) One of the goals of the simulation study is to determine the number of 
machines needed in each workstation. It has been decided that the distances (in feet) 

Workstation 2 Workstation 3

Workstation 1

Workstation 4

Workstation 5Receiving/shipping

6

In Out

Forklift truck

FIGURE 14.26
Layout for the manufacturing system.
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14-28 simulation of manufacturing systems

between the six stations will be as shown in Table 14.3 (the input/output station is 
numbered 6).

Assume that jobs arrive at the input/output station with interarrival times that 
are independent exponential random variables with a mean of 1/15 hour. Thus, 15 jobs 
arrive in a “typical” hour. There are three types of jobs, and jobs are of types 1, 2, 
and 3, with respective probabilities 0.3, 0.5, and 0.2. Job types 1, 2, and 3 require 4, 
3, and 5 operations to be done, respectively, and each operation must be done at a 
specifi ed workstation in a prescribed order. Each job begins at the input/output sta-
tion, travels to the workstations on its routing, and then leaves the system at the 
input/output station. The routings for the different job types are given in Table 14.4.

A job must be moved from one station to another by a forklift truck, which 
moves at a constant speed of 5 feet per second. Another goal of the simulation study 
is to determine the number of forklift trucks required. When a forklift becomes 
available, it processes requests by jobs in increasing order of the distance between 
the forklift and the requesting job (i.e., the rule is shortest distance fi rst). If more 
than one forklift is idle when a job requests transport, then the closest forklift is 
used. When the forklift fi nishes moving a job to a workstation, it remains at that 
station if there are no pending job requests (see Prob. 14.12).

If a job is brought to a particular workstation and all machines there are already 
busy or blocked (see the discussion below), the job joins a single FIFO queue at that 
station. The time to perform an operation at a particular machine is a gamma ran-
dom variable with a shape parameter of 2, whose mean depends on the job type and 
the workstation to which the machine belongs. The mean service time for each job 
type and each operation is given in Table 14.5. Thus, the mean total service time aver-
aged over all jobs is 0.77 hour (see Prob. 14.13). When a machine fi nishes processing 

TABLE 14.3

Distances (in feet) between the six stations

Station 1 2 3 4 5 6

 1 0 150 213 336 300 150
 2 150 0 150 300 336 213
 3 213 150 0 150 213 150
 4 336 300 150 0 150 213
 5 300 336 213 150 0 150
 6 150 213 150 213 150 0

TABLE 14.4

Routings for the three job types

Job type Workstations in routing

 1 3, 1, 2, 5
 2 4, 1, 3
 3 2, 5, 1, 4, 3
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a job, the job blocks that machine (i.e., the machine cannot process another job) 
until the job is removed by a forklift (see Prob. 14.14).

We will simulate the proposed manufacturing facility to determine how many 
machines are needed at each workstation and how many forklift trucks are needed 
to achieve an expected throughput of 120 jobs per 8-hour day, which is the maxi-
mum possible (see Prob. 14.15). Among those system designs that can achieve the 
desired throughput, the best system design will be chosen on the basis of measures 
of performance such as average time in system, maximum input queue sizes, pro-
portion of time each workstation is busy, proportion of time the forklift trucks are 
moving, etc.

For each proposed system design, 10 replications of length 920 hours will be 
made (115 eight-hour days), with the fi rst 120 hours (15 days) of each replication 
being a warmup period. (See Sec. 14.5.2 for a discussion of warmup-period deter-
mination.) We will also use the method of common random numbers (see Sec. 11.2) 
to simulate the various system designs. This will guarantee that a particular job will 
arrive at the same point in time, be of the same job type, and have the same sequence 
of service-time values for all system designs on a particular replication. Job charac-
teristics will, of course, be different on different replications.

To determine a starting point for our simulation runs (i.e., to determine system 
design 1), we will do a simple queueing-type analysis of our system. In particular, 
for workstation i (where i 5 1, 2, . . . , 5) to be well defi ned (have suffi cient processing 
capacity) in the long run, its utilization factor ri 5 liy(sivi) (see App. 1B for nota-
tion) must be less than 1. For example, the arrival rate to station 1 is l1 5 15 per hour, 
since all jobs visit station 1. Using conditional probability [see, for example, Ross 
(2003, chap. 3)], the mean service time at station 1 is

 0.3(0.15 hour) 1 0.5(0.20 hour) 1 0.2(0.35 hour) 5 0.215 hour

which implies that the service rate (per machine) at station 1 is v1 5 4.65 jobs per 
hour. Therefore, if we solve the equation r1 5 1, we obtain that the required number 
of machines at station 1 is s1 5 3.23, which we round up to 4. (What is wrong with 
this analysis? See Prob. 14.16.) A summary of the calculations for all fi ve stations is 
given in Table 14.6, from which we see that 4, 1, 4, 2, and 2 machines are supposedly 
required for stations 1, 2, . . . , 5, respectively.

We can do a similar analysis for forklifts. Type 1 jobs arrive to the system at a 
rate of 4.5 (0.3 times 15) jobs per hour. Furthermore, the mean travel time for a 
type 1 job is 0.06 hour (along the route 6–3–1–2–5–6). Thus, 0.27 forklift will be 
required to move type 1 jobs. Similarly, 0.38 and 0.24 forklift will be required for 

TABLE 14.5

Mean service time for each job type and each operation

 Mean service time for successive
Job type operations (hours)

 1 0.25, 0.15, 0.10, 0.30
 2 0.15, 0.20, 0.30
 3 0.15, 0.10, 0.35, 0.20, 0.20
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type 2 and type 3 jobs, respectively. Thus, a total of 0.89 forklift is required, which 
we round up to 1. (What is missing from this analysis? See Prob. 14.17.) A summary 
of the forklift calculations is given in Table 14.7, from which we see that the mean 
travel time averaged over all job types is 0.06 hour.

A summary of the 10 simulation runs for system design 1, which was specifi ed 
by the above analysis, is given in Table 14.8 (all times are in hours). Note, for ex-
ample, that the average utilization (proportion of time busy) of the four machines in 

TABLE 14.6

Required number of machines for each workstation

 Arrival rate Service rate Required number
Workstation (jobs/hour) [( jobs/hour)/machine] of machines

 1 15.0 4.65 3.23 S 4
 2  7.5 8.33 0.90 S 1
 3 15.0 3.77 3.98 S 4
 4 10.5 6.09 1.72 S 2
 5  7.5 4.55 1.65 S 2

TABLE 14.7

Required number of forklift trucks

 Arrival rate Mean travel time Required number
Job type (jobs/hour) [(hour/job)/forklift] of forklifts

 1 4.5 0.06 0.27
 2 7.5 0.05 0.38
 3 3.0 0.08 0.24
 All   0.89 S 1

TABLE 14.8

Simulation results for system design 1

Number of machines: 4, 1, 4, 2, 2
Number of forklifts: 1

 Station 1 2 3 4 5
Performance measure

Proportion machines busy  0.72 0.74 0.83 0.73 0.66
Proportion machines blocked  0.21 0.26 0.17 0.27 0.33
Average number in queue  3.68 524.53 519.63 569.23 32.54
Maximum number in queue  32.00 1072.00 1026.00 1152.00 137.00

Average daily throughput   94.94
Average time in system   109.20
Average total time in queues   107.97
Average total wait for transport   0.42
Proportion forklifts moving loaded  0.77
Proportion forklifts moving empty  0.22
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station 1 (over the 10 runs) is 0.72, the time-average number of jobs in the queue 
feeding station 1 is 3.68, and the maximum number of jobs in this queue (over the 
10 runs) is 32. More important, observe that the average daily throughput is 94.94, 
which is much less than the expected throughput of 120 for a well-defi ned system; 
it follows that this design must suffer from capacity shortages (i.e., machines or 
forklifts). The average time in system for a job is 109.20 hours (107.97 hours for all 
queues visited and 0.42 hour for all transporter waits), which is excessive given that 
the mean total service time is less than 1 hour. Note that the total forklift utilization 
is 0.99. The high forklift utilization along with the large machine-blockage propor-
tions strongly suggest that one or more additional forklifts are needed. Finally, ob-
serve that stations 2, 3, and 4 are each either busy or blocked 100 percent of the time, 
and their queue statistics are quite large. (See also Fig. 14.27, where the number in 
queue 2 is plotted in time increments of 1 hour for the fi rst 200 hours of replication 1.) 
We will therefore add a single machine to each of stations 2, 3, and 4. (We will not add 
a forklift at this time, although it certainly seems warranted; see system design 3.)

The results from simulating system design 2 (4, 2, 5, 3, and 2 machines for sta-
tions 1, 2, . . . , 5 and 1 forklift) are given in Table 14.9. The average daily through-
put has gone from 94.94 to 106.77, but is still considerably less than that expected 
for a well-defi ned system. Likewise the average time in system has been reduced 
from 109.20 to 55.84 hours. Even though we added three machines to the system, 
the queue statistics at station 5 have actually become considerably worse. (Why? 
See Prob. 14.20.) In fact, station 5 is now busy or blocked 100 percent of the time. 
Also, the blockage proportions have increased for four out of the fi ve stations.

FIGURE 14.27
Number in queue 2 in time increments of 1 hour for system design 1 (replication 1).
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TABLE 14.9

Simulation results for system design 2

Number of machines: 4, 2, 5, 3, 2
Number of forklifts: 1

 Station 1 2 3 4 5
Performance measure

Proportion machines busy  0.75 0.45 0.76 0.54 0.66
Proportion machines blocked  0.25 0.26 0.23 0.30 0.34
Average number in queue  106.04 0.53 46.15 1.17 747.33
Maximum number in queue  364.00 11.00 182.00 17.00 1521.00

Average daily throughput   106.77
Average time in system   55.84
Average total time in queues   54.34
Average total wait for transport   0.69
Proportion forklifts moving loaded  0.84
Proportion forklifts moving empty  0.16

TABLE 14.10

Simulation results for system design 3

Number of machines: 4, 2, 5, 3, 2
Number of forklifts: 2

 Station 1 2 3 4 5
Performance measure

Proportion machines busy  0.81 0.45 0.80 0.58 0.83
Proportion machines blocked  0.06 0.06 0.04 0.06 0.07
Average number in queue  3.37 0.24 2.18 0.47 6.65
Maximum number in queue  39.00 10.00 27.00 17.00 85.00

Average daily throughput   120.29
Average time in system   1.76
Average total time in queues   0.86
Average total wait for transport   0.08
Proportion forklifts moving loaded  0.44
Proportion forklifts moving empty  0.27

This example reinforces the statement that it may not be easy to predict the effect of 
local changes on systemwide behavior. Since the total forklift utilization is 1.00, we 
now add a second forklift to the system.

The results from simulating system design 3 (4, 2, 5, 3, and 2 machines and 
2 forklifts) are given in Table 14.10. The average daily throughput is now 120.29, 
which is not signifi cantly different from 120 as shown in Sec. 14.5.2. Thus, system 
design 3 is apparently stable in the long run. In addition, the average time in sys-
tem has been decreased from 55.84 to 1.76 hours. Notice also that the average total 
utilization of the two forklifts is an acceptable 0.71 (see Prob. 14.21), and the sta-
tion blockage proportions are now small. Finally, the statistics for all fi ve stations 
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FIGURE 14.28
Number in queue 2 in time increments of 1 hour for system design 3 (replication 1).
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seem reasonable (see also Fig. 14.28), with the possible exception of the maximum 
queue sizes for stations 1 and 5. Whether queue sizes of 39 and 85 are acceptable 
depends on the particular application. These maximum queue sizes could be made 
smaller by adding additional machines to stations 1 and 5, respectively. Finally, 
note that average time in system (1.761) is equal to the sum of average total time 
in queues (0.861), average total wait for transport (0.075), average transport time 
(0.059), and average total service time (0.766)—the last two times are not shown 
in Table 14.10.

In going from system design 1 to system design 2, we added machines to sta-
tions 2, 3, and 4 simultaneously. Therefore, it is reasonable to ask whether all three 
machines are actually necessary to achieve an expected throughput of 120. We fi rst 
removed one machine from station 2 for system design 3 (total number of machines 
is now 15) and obtained an average daily throughput of 119.38, which is signifi -
cantly different from 120 (see Sec. 14.5.2 for the methodology used). Thus, two 
machines are required for station 2. Next, we removed one machine from station 3 
for system design 3 (total number of machines is 15) and obtained an average daily 
throughput of 115.07, which is once again signifi cantly different from 120. Thus, 
we need fi ve machines for station 3. Finally, we removed one machine from station 4 
for system design 3 and obtained system design 4, whose simulation results are 
given in Table 14.11. The throughput is unchanged, but the average time in system 
has increased from 1.76 to 2.61. This latter difference is statistically signifi cant as 
shown in Sec. 14.5.2. Note also that the average and maximum numbers in queue 
for station 4 are larger for system design 4, as expected.
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TABLE 14.11

Simulation results for system design 4

Number of machines: 4, 2, 5, 2, 2
Number of forklifts: 2

 Station 1 2 3 4 5
Performance measure

Proportion machines busy  0.81 0.45 0.80 0.87 0.83
Proportion machines blocked  0.06 0.06 0.04 0.08 0.07
Average number in queue  2.89 0.25 1.88 14.31 6.50
Maximum number in queue  32.00 11.00 27.00 90.00 81.00

Average daily throughput   120.29
Average time in system   2.61
Average total time in queues   1.72
Average total wait for transport   0.07
Proportion forklifts moving loaded  0.44
Proportion forklifts moving empty  0.27

TABLE 14.12

Simulation results for system design 5

Number of machines: 4, 2, 5, 3, 2
Number of forklifts: 2
FIFO queue for forklifts

 Station 1 2 3 4 5
Performance measure

Proportion machines busy  0.81 0.45 0.80 0.58 0.83
Proportion machines blocked  0.08 0.08 0.06 0.08 0.08
Average number in queue  4.77 0.29 2.70 0.58 8.28
Maximum number in queue  51.00 11.00 33.00 17.00 95.00

Average daily throughput   120.33
Average time in system   2.03
Average total time in queues   1.11
Average total wait for transport   0.10
Proportion forklifts moving loaded  0.44
Proportion forklifts moving empty  0.31

System designs 3 and 4 both seem to be stable in the long run. The design that 
is preferable depends on factors such as the cost of an additional machine for sta-
tion 4 (design 3), the cost of extra fl oor space (design 4), the cost associated with a 
larger average time in system (design 4), and the cost associated with a larger average 
work-in-process (design 4).

We now consider another variation of system design 3. It involves, for the 
fi rst time, a change in the control logic for the system. In particular, jobs waiting 
for the forklifts are processed in a FIFO manner, rather than shortest distance fi rst 
as before. The results for system design 5 are given in Table 14.12. Average time 
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in system has gone from 1.76 to 2.03 hours, an apparent 15 percent increase. 
(Histograms of time in system for system designs 3 and 5, based on all 10 runs 
of each, are given in Fig. 14.29.) The queue statistics for station 1 have also 
increased by an appreciable amount, and the forklifts now spend more time 
moving empty. It takes a forklift more time to get to a waiting job, since the clos-
est one is not generally chosen. We therefore do not recommend the new forklift-
dispatching rule.

Finally, we discuss another variation of system design 3 (shortest-distance-fi rst 
forklift-dispatching rule), where certain machines break down. In particular, we 
assume that each machine in stations 1 and 5 breaks down independently with an 
effi ciency of 0.9 (see Sec. 14.4.2). The amount of busy time that a machine operates 
before failure is exponentially distributed with a mean of 4.5 hours, and repair times 
have a gamma distribution with a shape parameter of 2 and a mean of 0.5 hour. The 
simulation output for the resulting system design 6 is given in Table 14.13. The 
average daily throughput is now 119.88, but this is not signifi cantly different from 
120 (see Sec. 14.5.2). On the other hand, average time in system has gone from 1.76 
to 5.31, an increase of 202 percent. The queue statistics for stations 1 and 5 are also 
appreciably larger. Thus, breaking down only stations 1 and 5 caused a signifi cant 
degradation in system performance; breaking down all fi ve stations would probably 
have an even greater impact. In summary, we have once again seen the importance 
of modeling machine breakdowns correctly.
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FIGURE 14.29
Histograms of time in system for system designs 3 and 5.
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14.5.2 Statistical Calculations

In this section we perform some statistical calculations related to the manufacturing 
system of Sec. 14.5.1. We begin by constructing a 90 percent confi dence interval for 
the steady-state mean daily throughput for system design 3, n3, using the replication/
deletion approach of Sec. 9.5.2. Let

  Xj 5 average throughput on days 16 through 115 on
  replication j for j 5 1, 2, . . . , 10

where the warmup period is l 5 15 days or 120 hours. Then the desired confi dence 
interval is

 120.29 6 t9, 0.95 B
1.20

10
  or  120.29 6 0.63

which contains 120. Similarly, we get the following 90 percent confi dence interval 
for the steady-state mean daily throughput for system design 6, n6:

 119.88 6 t9, 0.95 B
0.60

10
  or  119.88 6 0.45

which also contains 120.
System designs 3 and 4 are both well defi ned in the sense of having steady-state 

mean daily throughputs that cannot be distinguished from 120. However, our esti-
mates of the steady-state mean time in system for these system designs are 1.76 and 
2.61, respectively, which appear to be somewhat different. To see if this difference 
is statistically signifi cant, we construct a 90 percent confi dence interval for n93 2 n94 

TABLE 14.13

Simulation results for system design 6

Number of machines: 4, 2, 5, 3, 2
Number of forklifts: 2
Machines in stations 1 and 5 have effi ciencies of 0.9

 Station 1 2 3 4 5
Performance measure

Proportion machines busy  0.81 0.45 0.80 0.58 0.82
Proportion machines blocked  0.06 0.06 0.04 0.06 0.07
Proportion machines down  0.09 0.00 0.00 0.00 0.09
Average number in queue  16.55 0.25 2.15 0.49 46.73
Maximum number in queue  111.00 11.00 32.00 14.00 262.00

Average daily throughput   119.88
Average time in system   5.31
Average total time in queues   4.37
Average total wait for transport   0.07
Proportion forklifts moving loaded  0.44
Proportion forklifts moving empty  0.27
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using the replication/deletion approach (see Example 10.5), where n9i is the steady-
state mean time in system for system design i (where i 5 3, 4). We get

 20.85 6 t9, 0.95 B
0.22

10
  or  20.85 6 0.27

which does not contain 0. Thus, n93 is signifi cantly different from n94.
The results presented in Sec. 14.5.1 (and here) assume a warmup period of 

120 hours or 15 days. This warmup period was obtained by applying Welch’s pro-
cedure (Sec. 9.5.1) to the 920 hourly throughputs in each of the 10 replications 
for system design 3 (where Yji is the throughput in the ith hour of the jth run). The 
moving average Yi(20) (using a window of w 5 20) is plotted in Fig. 14.30, from 
which we obtained a warmup period of l 5 120 hours. We performed similar 
analyses for system designs 4, 5, and 6, and a warmup period of 120 hours seemed 
adequate for these systems as well.

14.6 
A SIMULATION CASE STUDY OF A METAL-PARTS 
MANUFACTURING FACILITY

In this section we describe the results of a successful simulation study of a manufac-
turing and warehousing system [see Law and McComas (1988)]. The facility de-
scribed is fi ctitious for reasons of confi dentiality, but is similar to the system actually 

FIGURE 14.30
Moving average (w 5 20) of hourly throughputs for system design 3.
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modeled for a Fortune 500 company. The project objectives, the simulation steps, 
and the benefi ts that we describe are also very similar to the actual ones.

14.6.1 Description of the System

The manufacturing facility (see Fig. 14.31) produces several different metal parts, 
each requiring three distinct subassemblies. Subassemblies corresponding to a 
particular part are produced in large batches on one of two subassembly manufac-
turing lines, and then moved by conveyor to a loader where they are placed into 
empty containers. Each container holds only one type of subassembly at a time. 
The containers are stored in a warehouse until all three of the part subassemblies 
are available for assembly. Containers of the three subassemblies corresponding 
to a particular part are brought to an unloader/assembler (henceforth called the 
assembler), where they are unloaded and assembled into the fi nal product, which 
is then sent to shipping. The resulting empty containers are temporarily stored in 
a fi nite-capacity accumulating conveyor (not shown in the fi gure) at the back of 
the assembler. They are then taken to the loaders, if needed; otherwise, they are 
transported to the warehouse. Full and empty containers are moved by forklift 
trucks.

The assembler operates only 5 days a week, while the remainder of the system 
is in operation three shifts a day for 7 days a week. Also, the subassembly lines, the 
loaders, and the assembler are subject to random breakdowns.

14.6.2 Overall Objectives and Issues to Be Investigated

The subassembly lines already existed at the time of the study. However, the load-
ers, the warehouse, and the assembler were in the process of being designed. (They 
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FIGURE 14.31
Layout of the system.
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were to replace existing technology that had certain throughput limitations.) As a 
result, the major objectives of the study were to see if the proposed system compo-
nents would interact with each other effectively to produce the desired throughput, 
and also to determine the optimal system resource levels, such as the number of 
containers.

The specifi c issues investigated in the study included the following:

• Number of containers required
• Number of forklift trucks required and their control logic
• Number of “staged” containers desired in the input queues of the loaders and the 

assembler (cannot be exceeded)
• Number of output queue positions for the loaders
• Number of required shifts for the assembler

Containers are staged in an input queue to keep the corresponding machine 
from becoming starved. In the case of a starved loader, the attached subassembly 
line is also stopped. If the output queue for a loader is full when a container com-
pletes being loaded, then the loader is blocked and the corresponding subassembly 
line is also stopped.

14.6.3 Development of the Model

The study described here took 3 person-months to complete. An important part of 
the model-building process was the following series of meetings:

• Three-day initial meeting to defi ne project objectives, delineate model assump-
tions, and specify data requirements

• One-day meeting (before programming) to perform a structured walk-through of 
the model assumptions (see Sec. 5.4.3) before an audience of the client’s engineers 
and managers

• One-day meeting to review initial simulation results and to make changes to 
model assumptions

As a result of the initial meeting, the company supplied us with a large amount 
of data that already existed in its computer databases and reports; however, a signifi -
cant effort was required by both parties to get the data into a usable format. The 
UniFit statistical package (the predecessor of ExpertFit as described in Sec. 6.7) 
was used to analyze the data and to determine the appropriate probability distribu-
tion for each source of system randomness. Highlights of our fi ndings are given in 
Table 14.14. In some cases standard distributions such as lognormal or Weibull 
were used; in other cases, an empirical distribution (see Sec. 6.2.4) based on the 
actual data was necessary.

The simulation model was programmed in the SIMAN (the predecessor of 
Arena as discussed in Sec. 3.5.1) simulation package, although other simulation 
packages could have been used as well. SIMAN was selected because of its fl exibility 
and material-handling features. The model consisted of approximately 2000 lines 
of code, 75 percent of which consisted of FORTRAN event routines. This model 
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complexity was necessitated by a complicated set of rules (not described here) for 
each part that specify when its corresponding subassemblies are sent to the assembler.

14.6.4 Model Verifi cation and Validation

Verifi cation is concerned with determining if the simulation computer program is 
working as intended, and the initial verifi cation efforts included the following:

• The model was programmed and debugged in steps.
• An interactive debugger was used to verify that each program path was correct.
• Model output results were checked for reasonableness.
• Model summary statistics for the values generated from the input probability 

distributions were compared with historical-data summary statistics.

In addition, two more “defi nitive” verifi cation checks were performed. From 
the historical average busy times and average repair times, it was possible to com-
pute the theoretical effi ciency (see Sec. 14.4.2) for each line. These effi ciencies and 
comparable ones produced by the simulation model (for scenario 1 in Table 14.17) 
are given in Table 14.15. The closeness of the effi ciencies indicates that the program 
for the subassembly lines was probably correct.

Using the simulation effi ciencies from Table 14.15 and three shifts for the 
assembler, it was possible to compute a theoretical effi ciency of 0.643 for the 
assembler. On the other hand, the simulation model actually produced an assembler 
effi ciency of 0.630. The closeness of these two effi ciencies indicates that the pro-
gram for the assembler is probably correct.

TABLE 14.14

Probability distributions for the model

Source of randomness Distribution type

Subassembly line busy times Empirical
Subassembly line repair times Empirical
Subassembly line setup times Triangular
Loader busy times Empirical
Loader repair times Lognormal
Assembler busy times Weibull
Assembler repair times Lognormal
Assembler setup times Uniform

TABLE 14.15

Verifi cation comparison of subassembly-line effi ciencies

Line Theoretical effi ciency Simulation effi ciency

 1 0.732 0.741
 2 0.724 0.727
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Validation is concerned with determining how closely the simulation model 
represents the actual system, and the following were some of the validation proce-
dures performed:

• All model assumptions were reviewed and agreed upon by company personnel.
• Different data sets for the same type of randomness (e.g., subassembly busy times 

for the two lines) were tested for homogeneity and merged only if appropriate 
(see Sec. 6.13).

• All fi tted probability distributions (e.g., lognormal) were tested for correctness 
using the techniques of Chap. 6.

It is generally impossible to validate a simulation model completely, since some 
part of the actual system will not currently exist. However, building a simulation 
model of a similar existing system and comparing model and system outputs will 
often be the most defi nitive validation technique available. In our case, the sub-
assembly lines were already in operation, while the rest of the system was in the 
design phase. In Table 14.16 is a comparison for each subassembly line of the his-
torical effi ciency and the simulation effi ciency. The historical effi ciencies were 
taken from system output data available in a company report and were not used in 
building the model. (The theoretical effi ciencies in Table 14.15 were computed 
from historical system input data.) The agreement of the effi ciencies in Table 14.16 
indicates that the model of the subassembly lines is “valid.”

14.6.5 Results of the Simulation Experiments

We fi rst simulated seven different scenarios (system designs), which are described 
in Table 14.17. Each of these scenarios assumed 3000 containers and used the fol-
lowing company-specifi ed priority rule for dispatching forklift trucks:

1. Take empty containers to loaders.
2. Pick up full containers from loaders.
3. Take full containers to assembler.
4. Pick up empty containers from assembler.

Five independent simulation runs were made for each scenario, with each run 
being 23 weeks in length and having a 3-week warmup period during which no 
statistics were gathered. The length of the warmup period was determined by plotting 
the average number of empty containers (over the fi ve runs) in time increments of 
1 hour for scenario 1, which is shown in Fig. 14.32; initially, all containers were empty. 
Note that this empty-containers stochastic process does not have a steady-state 

TABLE 14.16

Validation comparison of subassembly line effi ciencies

Line Historical effi ciency Simulation effi ciency

 1 0.738 0.741
 2 0.746 0.727
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distribution for scenarios 1 through 6 because the assembler does not operate on 
weekends. What about scenario 7 (see Prob. 14.25)?

A summary (average across the fi ve runs) of the seven sets of simulation runs 
appears in Table 14.18. Note that the throughput (in parts per week) for scenario 2 
(two shifts) is considerably less than that for scenario 1 (three shifts). Also, scenario 
2 has a high starvation proportion for the loaders. These results are due to a shortage 
of empty containers for scenario 2 caused by the assembler not operating enough. 
Observe for scenario 3 (two forklift trucks) that the throughput is again less than 
that for scenario 1 and, in addition, the blockage proportion is high for the assem-
bler. This is due to the unavailability of forklift trucks to remove empty containers 
from the assembler’s conveyor caused by the nonoptimal priority rule (i.e., pick up at 
the assembler has the lowest priority); see Table 14.20. Note that queue sizes of one 
(scenario 4) cause a small degradation in throughput. Finally, the high forklift-truck 

TABLE 14.17

Scenarios for the initial simulation runs

Scenario Forklift trucks Queue sizes Assembler shifts

 1 3 2 3
 2 3 2 2
 3 2 2 3
 4 3 1 3
 5 3 3 3
 6 3, 2 (weekend) 2 3
 7 3 2 2 (all 7 days)
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FIGURE 14.32
Average number of empty containers (over the fi ve runs) in time increments of 1 hour 
for scenario 1.
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idle proportions in Table 14.18 are caused by the periods of inactivity for the loaders 
and the assembler.

The system description and simulation results described above were presented 
to approximately 20 of the company’s employees including the plant manager. As a 
result of this meeting, it was decided to simulate the six additional scenarios de-
scribed in Table 14.19. Each of these scenarios had queue sizes of 2, three assembler 
shifts, and the same run length and number of runs as before.

A summary of the simulation results for these scenarios (and also scenario 1 
from Table 14.18) is given in Table 14.20. Note that the throughput does not change 
signifi cantly when the number of containers is varied between 2250 and 3000. This 
can be seen more clearly in Fig. 14.33, where throughput is plotted as a function of 
the number of containers. Observe also that the shortest-distance-fi rst dispatching 
rule (scenario 13) gives somewhat better results for two forklift trucks than the 
original rule (compare scenarios 13 and 3).

14.6.6 Conclusions and Benefi ts

Based on the simulation results presented above and several conversations with the 
client, the following project conclusions were reached:

• The company will probably buy 2250 containers rather than the 3000 containers 
originally budgeted.

• Three assembler shifts (Monday through Friday) are required.

TABLE 14.18

Summary of simulation results for initial set of runs

 Avg. empty Parts Loader Assembler Forklift
Scenario containers per week starved blocked idle

 1 1229 15,019 0.000 0.001 0.370
 2  241 11,405 0.157 0.001 0.489
 3  442 13,109 0.050 0.133 0.210
 4 1218 14,666 0.001 0.001 0.381
 5 1233 15,050 0.000 0.001 0.386
 6 1234 15,050 0.000 0.001 0.317
 7 1123 15,079 0.000 0.001 0.369

TABLE 14.19

Scenarios for the second set of simulation runs

Scenario Number of containers Forklift trucks

  8 2750 3
  9 2500 3
 10 2250 3
 11 2000 3
 12 1750 3
 13 3000 2*

* Dispatching rule is shortest distance fi rst.
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• Two or three forklift trucks are required for Monday through Friday (further in-
vestigation is needed), and two are required for Saturday and Sunday.

• Two containers should be staged in the input queues of the loaders and the 
assembler.

• The output queues of the loaders should have a capacity of two.
• The system can achieve the desired throughput with the above specifi cations.

The company received several defi nite benefi ts as a result of the simulation 
study. First, they gained the assurance (before building the system) that the pro-
posed design for the loaders, warehouse, and assembler would actually meet their 

TABLE 14.20

Summary of simulation results for second set of runs

 Avg. empty Parts Loader Assembler Forklift
Scenario containers per week starved blocked idle

  1 1229 15,019 0.000 0.001 0.370
  8  941 14,959 0.006 0.001 0.379
  9  640 14,798 0.014 0.001 0.384
 10  402 14,106 0.053 0.001 0.411
 11  209 11,894 0.192 0.000 0.487
 12   80   8758 0.374 0.000 0.597
 13 1410 14,306 0.005 0.002 0.265
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FIGURE 14.33
Throughput (parts per week) as a function of the number of containers.
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specifi ed throughput requirements. If a simulation study had not been performed 
and if a bottleneck were discovered after system installation, the cost of retrofi tting 
the system could have been signifi cant.

The company will probably buy 2250 containers rather than the 3000 originally 
in the budget, since the throughputs for scenarios 1, 8, 9, and 10 are all suffi cient for 
the projected product demand. Since containers cost $400 each, this is a savings of 
$300,000. In addition, each container occupies 20.3 square feet of fl oor space, and 
the company expects to rent fl oor space at a cost of $15 per square foot per year. 
Thus, by using 750 fewer containers, they will save $228,375 a year in fl oor-space 
rental. Therefore, the total fi rst-year savings are $528,375.

PROBLEMS

 14.1. For the system with no breakdowns in Example 14.3, show that the machine tool has 
suffi cient processing capacity.

 14.2. Consider a machine with uptimes U1, U2, . . . and downtimes D1, D2, . . . as described 
in Sec. 14.4.2. Is it completely correct to assume that the Ui’s and the Di’s are each 
IID within themselves? Why or why not?

 14.3. For the machine in Prob. 14.2, is it completely correct to assume that Ui and Di are 
independent? Why or why not?

 14.4. Consider a machine that operates continuously until a part jams; i.e., it is never 
starved or blocked. Suppose that a part has a probability p of jamming, independently 
of all other parts. What is the probability distribution of the number of parts produced 
before the fi rst jam and what is its mean? Thus, if the average number of parts pro-
duced before a jam is known for an actual machine, the above model can be used to 
specify p for a simulation model.

 14.5. Consider the calendar-time approach for modeling the up segments of a machine in 
Sec. 14.4.2. Suppose that a machine breaks down when it is starved. (Perhaps it was 
idling at the time.) Do you think that the breakdown would be discovered immediately 
(and repair begun) or when the next part actually arrives? Assume that availability of 
a repairman is not an issue.

 14.6. Consider a machine that “operates” 24 hours a day for 7 days a week. The uptimes 
U1, U2, . . . and downtimes D1, D2, . . . are available, but not the corresponding busy 
times B1, B2, . . . . Suppose, for simplicity, that an exponential distribution fi ts the Ui’s. 
The average number of parts produced per 8-hour shift is known, as well as the aver-
age processing time for parts. Assuming that the exponential distribution is also a 
good model for the Bi’s, what mean should be used for a machine-breakdown model 
based on busy time?

 14.7. Consider a machine that is never starved or blocked. Suppose shop-fl oor personnel 
estimate that the machine has an effi ciency e 5 0.9 and typically fails twice in an 
8-hour shift. What values of E(U) and E(D) should be used in modeling this machine?
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 14.8. Suppose that a machine will fail when either of two independent components fails. 
Describe how you would model breakdowns for the machine for each of the follow-
ing two cases:
(a) The uptime of each machine is based on busy time.
(b) The uptime of each machine is based on calendar time.

 14.9. Consider a machine that is never starved or blocked. It will fail when either compo-
nent A or component B fails. These components fail independently of each other, and 
one component does not “age” while the other component is down. The mean busy 
time before failure and the mean repair (down) time for these components (in hours) 
are as follows:

Component Mean busy time Mean repair time

 A  46.5 1.5
 B 250.0 6.0

Compute the effi ciency e of the machine.

14.10. Use a different method to compute the effi ciency in Prob. 14.9 if busy time before 
failure and repair time are both exponentially distributed.

14.11. Consider a machine that has two types of failure. Type 1 is a minor problem, which 
is corrected by the machine operator with a “short” repair (down) time. A type 2 
failure, on the other hand, is a major problem requiring a maintenance person and a 
“long” repair time. Suppose that n observations on repair times are available for the 
machine and ni of them are of type i (where i 5 1, 2), with n1 1 n2 5 n. Give two 
possible approaches for representing repair times in a simulation model. What are 
you implicitly assuming about the relationship between Ui and Di (equal to Ri here)?

14.12. Simulate system design 3 in Sec. 14.5 with the change that an idle forklift has station 
6 (input/output) as its home base. That is, an idle forklift will travel to station 6 to 
wait for its next job. Which of the two system designs is preferable?

14.13. For the manufacturing system in Sec. 14.5, why is the mean total service time aver-
aged over all jobs equal to 0.77?

14.14. Using simulation, determine the required number of machines for each workstation 
and the required number of forklifts for the manufacturing system in Sec. 14.5 
(original version) if each workstation has an infi nite-capacity output queue. Thus, no 
blocking occurs.

14.15. For the manufacturing system in Sec. 14.5, why can the expected throughput not 
exceed 120 jobs per 8-hour day?

14.16. What is missing in Sec. 14.5 from the analytic calculations to determine the number 
of machines for each station? Hint: Can a machine always process a waiting part?

14.17. What is missing in Sec. 14.5 from the analytic calculations to determine the number 
of forklifts?
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14.18. Why is the plot of Fig. 14.27 approximately linear? Give an expression for the slope.

14.19. What would you expect a moving average for system design 1’s hourly throughputs 
(Sec. 14.5) to look like? See Fig. 14.30 for a similar type of plot.

14.20. For system design 2 (Sec. 14.5), why did the congestion level at station 5 get worse?

14.21. For system design 3 (Sec. 14.5), the proportion of forklifts moving loaded is 0.443 
(to three decimal places). Thus, the average number of forklifts moving loaded is 
0.886. Does this number look familiar?

14.22. Suppose for system design 3 (Sec. 14.5) that jobs arrive exactly 4 minutes apart. The 
arrival rate is still 15 per hour. Will the expected throughput be less than, equal to, or 
greater than 120? What will happen to the expected time in system?

14.23. For system design 3 (with exponential interarrival times), suppose that a job’s service 
time is a constant equal to the mean service time in the original problem. For exam-
ple, the service time of a type 1 job at station 3 is always 0.25 hour. How will the 
expected throughput and the expected time in system compare to the comparable 
performance measures for the original version of system design 3?

14.24. Perform a 2622
IV  fractional factorial design (see Sec. 12.3) for the manufacturing sys-

tem of Sec. 14.5, using the following factors and levels:

 The response of interest is the average time in system. For each of the 16 design 
points, make 10 replications of length 920 hours, with the fi rst 120 hours of each 
replication being a warmup period; use common random numbers (see Sec. 11.2). 
Compute point estimates for the expected main effects and two-factor interaction 
effects. What are your conclusions?

14.25. Does the empty-containers stochastic process discussed in Sec. 14.6.5 have a steady-
state distribution for scenario 7? Why or why not?

Factor 2 1

Machines in station 1 4 5
Machines in station 2 2 3
Machines in station 3 5 6
Machines in station 4 3 4
Machines in station 5 2 3
Forklift trucks 2 3
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