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Linear Programming  

Linear programming is a mathematical technique used to determine 
the optimal solutions to certain specific problems. This tool is 
frequently used to find the least-cost combinations of inputs necessary 
to produce some desired level of output; that is, cost minimization 
problems. However, the same technique can be used to solve other 
types of optimization problems, such as the optimal level of inventory, 
the least-cost method of transporting commodities, and so on.  

Basic Concepts 
Let's begin with a practical problem: A firm produces two products, X1 
and X2, which it can sell at fixed prices, P1 and P2. The production of X1 
and X2 requires the use of three different types of machines, which can 
be used for eight hours a day. The firm currently owns three type-1 
machines, two type-2 machines, and five type-3 machines. Therefore, 
given the daily capacity of each machine, the firm has available 24 
type-1 machine-hours, 16 type-2 machine-hours, and 40 type-3 
machine-hours per period. In the short run, the firm cannot buy or sell 
any machines; but it can employ various amounts of labor or other 
inputs at prevailing market prices.1 

Since labor and other inputs are obtainable in unlimited supplies, the 
firm first calculates the gross profit on each product net of labor and 
other input costs from the market prices for X1 and X2. These net 
prices,  

p1 = P1 − Labor cost per unit of X1 − Other costs per unit of X1 

p2 = P2 − Labor cost per unit of X2 − Other costs per unit of X2 

are the accountant's measure of gross profit. The problem for the firm 
is to choose the output combination that maximizes total (gross) 
profit.  

To solve this problem, we must first know something about the actual 
productive capacity of each machine. Suppose that the number of 
type-1 machine-hours required per unit of X1 is six, while only three 
type-1 machine-hours are required to produce a unit of X2. Likewise, 
suppose each unit of X1 requires two type-2 machine-hours and X2 
requires four hours per unit. Finally, suppose that eight type-3 
machine-hours are required to produce a unit of either X1 or X2. Given 
the respective fixed quantities of machine-hours per period, these 
production relations may be written in the form of constraints:  
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6X1 + 3X2 = 24 
2X1 + 4X2 = 16 
8X1 + 8X2 = 40  

which show the possible combinations of X1 and X2, given machine 
availability. For example, the first constraint indicates that if no X2 is 
produced, the maximum daily production of X1 is 4 units because each 
unit of X1 requires 6 hours of a type-1 machine and only 24 hours of 
type-1 are available. Similarly from the first constraint, if 4 units of X2 
are produced, only 12 hours of type-1 machine time are left to 
produce X1; thus, only 2 units of X1 can be produced. The other two 
constraints are interpreted similarly. Thus, all three constraints put a 
limit on the combinations of X1 and X2 that the firm can produce daily.  

Suppose that the net prices of X1 and X2 are $12 and $8 per unit, 
respectively. The problem facing the firm is to choose the combination 
of X1 and X2 (X1 and X2 are the choice variables) that maximizes total 
gross income:  

p = 12X1 + 8X2 

subject to the physical constraints imposed by the production 
processes and the limited availability of machines.  

In general, we write this type of problem, a linear program, as 

max p = p1X1 + p2X2 
subject to a11X1 + a12X2 = r1 
                a21X1 + a22X2 = r2 
                a31X1 + a32X2 = r3 
                              X1, X2 = 0  

where aij (i = 1, 2, 3; j = 1, 2) is the required number of type-i 
machine-hours per unit of output j and ri represents the restrictions on 
the program—in our example, the fixed quantities of machine-hours 
available. Of course, it should be noted that there could be any 
number of choice variables and constraints in any given linear 
program.  

The first equation in the program, the total (gross) profit function, 
constitutes the objective function of the linear program; that is, it is 
the firm's objective to maximize total gross profits per production 
period. The three inequalities that follow are the constraints imposed 
on the linear program by the technological relation and the 
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restrictions. Finally, by the last two inequalities (X1, X2 = 0), referred 
to as the nonnegativity restrictions, we impose the restriction that 
negative outputs are impossible. Therefore, there are three essential 
ingredients to every linear program: an objective function, a set of 
constraints, and a set of nonnegativity restrictions.  

Returning to our specific example, we may write our problem in this 
general form:  

max p = 12X1 + 8X2 
subject to 6X1 + 3X2 = 24 
                2X1 + 4X2 = 16 
                8X1 + 8X2 = 40 
                       X1, X2 = 0  

Since our problem involves only two choice variables, X1 and X2, the 
linear program may be solved graphically. In Figure A.1 (23.0K) we 
plot X1 along the horizontal axis and X2 along the vertical axis. 
Because of the nonnegativity restrictions, we need concern ourselves 
only with the positive (nonnegative) quadrant.  

To see what the constraints look like graphically, first treat them as 
equalities and plot them as straight lines as in Panel A. Since each 
constraint is of the "less-than-or-equal-to" type, only the points lying 
on the line or below it will satisfy the constraint. To satisfy all three 
constraints simultaneously, we can accept only those points that lie 
interior to all three constraint lines. The collection of all points that 
satisfy all three constraints simultaneously is called the feasible region, 
shown as the shaded region in Panel B. Each individual point in that 
region is known as feasible solution. It should be noted that the 
feasible region includes the points on the boundary, or the heavy line 
in Panel B. Note that in the present (two-dimensional) case, the corner 
points on the boundary are called extreme points. They occur either at 
the intersection of two constraints [(2, 3) and (3, 2)] or at the 
intersection of one constraint and one of the axes [(0, 4) and (4, 0)].  

The feasible region contains all output combinations satisfying all three 
constraints and the nonnegativity restrictions. However, some of these 
points may entail a lower level of total profits than others. To 
maximize profits, we must consider the objective function. To plot the 
profit function in (X1, X2) space we rewrite it as  

X2 = p/8 − 3/2 X1 
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This equation represents a family of parallel straight lines 
corresponding to different levels of profits or values of p. Since each of 
these lines is associated with a specific value of p, they are sometimes 
called isoprofit curves. Three isoprofit curves are shown in Figure A.2 
(24.0K) as dashed lines, labeled I, II, and III.  

The firm's objective is, of course, to attain the highest possible 
isoprofit curve while still remaining in the feasible region. In Figure 
A.2 (24.0K) , isoprofit curve II satisfies this objective. While isoprofit 
curve III represents the highest level of profits, the combinations of X1 
and X2 on this line are not in the feasible region, so this level of profit 
cannot be attained. Combinations on isoprofit line I clearly lie in the 
feasible region; however, a higher level of profit can be reached. 
Isoprofit line II represents the highest possible profit level that still 
incorporates a point in the feasible region. It coincides with the output 
combination of 3 units of X1 and 2 units of X2. Thus, the point (3, 2) is 
the optimal solution to our linear program. Total profits for this optimal 
output combination can easily be obtained by using the values X1 = 3 
and X2 = 2 in the objective function to yield the maximum profit, p = 
$52 per production period.  

Note that the optimal solution is an extreme point. In fact, the optimal 
solution to any linear program is always an extreme point. This fact 
will prove useful in developing a general solution methodology for 
linear programs.  

General Solution Method 
With two choice variables, the graphical method provided an optimal 
solution with little difficulty. This situation holds regardless of the 
number of constraints; additional constraints simply increase the 
number of extreme points, not the dimension of the diagram. When 
there are more than three choice variables, however, the graphical 
method becomes intractable, since we cannot draw a four-dimensional 
graph. Therefore, we need an analytical method to find the optimal 
solution to linear programs involving any number of choice variables.  

As suggested above, the optimal solution of a linear program is one of 
the extreme points. Given a two-dimensional feasible region, it is 
relatively easy to find its extreme points, but finding them for the 
nongraphable n-variable case is more complex. Before considering the 
n-variable case, it will be instructive to return to our example. In 
Figure A.2 (24.0K) , note that there are five extreme points—(0, 4), 
(2, 3), (3, 2), (4, 0), and (0, 0)—all of which can be placed in one of 
three general categories.  
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The first category consists of those extreme points occurring at the 
intersection of two constraints. In our example, these points are (3, 2) 
and (2, 3). While such points exactly fulfill two of the three 
constraints, the remaining constraint is inexactly fulfilled. Consider the 
output combination (3, 2). While the type-1 and type-3 machine 
constraints are exactly fulfilled, (3, 2) lies inside the type-2 machine 
constraint and hence there is slack (or underutilization) in the use of 
type-2 machines.  

Extreme points in the second category, illustrated by (0, 4) and (4, 0), 
occur at the intersection of a constraint and one of the axes. Because 
they are located on only one of the constraints, these points exactly 
fulfill only one constraint; therefore, at such points there will be slack 
in the two remaining constraints. Last, the third category of extreme 
points consists of a single output combination, the origin (0, 0), where 
there exists slack in all the constraints.  

The point is that whenever the number of constraints exceeds the 
number of choice variables, every extreme point will involve slack in at 
least one of the constraints. Furthermore, as is evident from Panel A of 
Figure A.1 (23.0K) , the magnitude of the slack in any particular 

constraint can be calculated. Therefore, when we choose a particular 
extreme point as the optimal solution, we are choosing not only the 
optimal output combination (X1, X2) but also the optimal amount of 
slack in at least one constraint. Let us consider these slacks explicitly 
and denote the slack in the ith constraint (i = 1, 2, 3 in our example) 
by Si. We call these Si's slack variables. Since we now explicitly 
consider the possible slack in each constraint, we can transform each 
inequality constraint into a strict equality by adding these Si's to the 
left-hand side of the ith constraint.  

Returning to our example and adding a slack variable to each 
constraint, we may rewrite our linear program as  

max p = 12X1 + 8X2 

subject to 6X1 + 3X2 + S1 = 24 
                2X1 + 4X2 + S2 = 16 
               8X1 + 8X2 + S3 = 40 
             X1, X2, S1, S2, S3 = 0  

There are now five choice variables: X1, X2, S1, S2, and S3. When Si > 
0, there is slack in the ith constraint (a nonbinding constraint); if Si = 
0, there is no slack and the ith constraint is exactly fulfilled (a binding 
constraint). Slack in a constraint for this particular problem could best 
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be thought of as excess capacity or overcapitalization of a certain type 
of machine.  

It is easy to determine the values of the slacks implied by each 
extreme point. If we start with the origin (0, 0), we substitute X1 = 0 
and X2 = 0 into the transformed constraints and find that S1 = 24, S2 
= 16, and S3 = 40. Thus, the extreme point (0, 0) in output space can 
be mapped into solution space as the point  

(X1, X2, S1, S2, S3) = (0, 0, 24, 16, 40)  

Similarly, we may map each extreme point in outer space into solution 
space. The results are presented in Table A.1 (44.0K) .  

From Table A.1 (44.0K) the profit contribution at each extreme point 
can be calculated by inserting the values for X1 and X2 into the 
objective function. The point that yields the maximum profit is the 
constrained profit-maximizing output point—the solution to our linear 
programming problem. The profit contributions of each point in 
solution space are shown in Table A.2 (27.0K) . Again, we confirm 
that output combination (3, 2) is the profit-maximizing point. Note 
that S2 > 0 at the optimum indicates that the constraint on the type-2 
machine is nonbinding.  

The procedure described above is used in solving more complex linear 
programming problems. Computer programs are available which find 
solution values for the variables at all extreme points, evaluate total 
profits at each potential extreme point, and then determine the 
extreme point at which the objective function is maximized.  

The Dual in Linear Programming 
For every maximization problem in linear programming there exists a 
symmetrical minimization problem and vice versa. The original 
programming problem is referred to as the primal program, and its 
symmetrical counterpart is referred to as the dual program. The 
concept of this duality is quite significant because the optimal values of 
the objective functions in the primal and in the dual are always 
identical. Therefore, the analyst can pick the program, the primal or 
the dual, that is easiest to solve.  

The linear program we have been using as an illustration—our primal—
is a maximization problem: we wish to maximize total (gross) profit 
subject to the constraints imposed by the technology and machine 
time availability:  



 7

Primal 
 
max p = 12X1 + 8X2 
subject to 6X1 + 3X2 = 24 
 
                2X1 + 4X2 = 16 
                8X1 + 8X2 = 40 
                       X1, X2 = 0  

Corresponding to this maximization problem there exists a dual 
minimization problem: minimize the (opportunity) cost of using 
available machine-hours for the three machines subject to the 
constraints imposed by the production process and (gross) profitability 
of the two outputs:  

Dual 
 
min p° = 24y1 + 16y2 + 40y3 
subject to 6y1 + 2y2 + 8y3 = 12 
 
                 3y1 + 4y2 + 8y3 = 8 
                            y1, y2, y3 = 0  

In the primal, the choice variables X1 and X2 are the output levels of 
the two products. In the dual, the choice variables y1, y2, and y3 
represent the shadow prices (or premiums) for the inputs. For 
example, the variable y1 is the shadow price of using one hour of 
machine type-1, and since we have 24 type-1 hours, the total cost of 
using machine type-1 is 24y1. A shadow price can be viewed as the 
implicit value to the firm of having 1 more unit of the input; that is, 
the marginal profit contribution of the input. We then attempt to 
determine minimum values, or shadow prices, for each of the inputs, 
such that these shadow prices will be just sufficient to absorb the 
firm's total profit. In other words, we seek to assign values to each 
input so as to minimize the total inputted value of the firm's resources.  

In the primal, the constraints reflected the fact that the total hours of 
each type of machine used in the production of X1 and X2 could not 
exceed the available number of hours of each type of machine. In the 
dual, the constraints state that the value assigned the inputs used in 
the production of 1 unit of X1 or 1 unit of X2 must not be less than the 
profit contribution provided by a unit of these products. Recall that $12 
is the (gross) profit per unit of X1 and $8 is the profit per unit of X2. 
The constraints require that the shadow prices of the different types of 
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machines times the hours of each type required to produce a unit of X1 
or X2 must be greater than or equal to the gross (unit) profit of X1 or 
X2.  

To solve the dual, we again introduce slack variables, which allow us to 
write the constraint inequalities as strict equalities. Notice that in 
constrained minimization problems the constraints are of the "greater 
than or equal to" variety. Therefore, we introduce slack variables to 
the left-hand side of the constraints with a negative sign. (These 
negative Si's used in the solution of minimization programs are often 
referred to as surplus variables.) We can then write the dual program 
as:  

min p° = 24y1 + 16y2 + 40y3 
subject to 6y1 + 2y2 + 8y3 − S1 = 12 
 
                3y1 + 4y2 + 8y3 − S2 = 8 
                       y1, y2, y3, S1, S2 = 0  

Since there are three choice variables (y1, y2, and y3), a graphical 
solution would require a three-dimensional figure. Instead of such a 
complex diagram let's use the general techniques described above to 
find the solution space, evaluate the objective function for each 
feasible solution, and find that solution which minimizes the objective 
function.  

A general rule illustrated in Table A.1 is that the maximum number of 
nonzero values in any solution is equal to the number of constraints. 
(In Table A.1 (44.0K) , the number of constraints is three; so the 
maximum number of nonzero values in any solution is three.) Since 
there are two constraints in this dual problem, a maximum of two 
nonzero-valued variables define any solution point. Therefore, we can 
solve for the solutions by setting three of the variables—y1, y2, y3, S1, 
S2—equal to zero and solving the constraint equations for the values of 
the remain-ing two.  

For example, we can set y1, y2, and y3 equal to zero and solve for S1 
and S2. Using the first constraint,  

6 * 0 + 2 * 0 + 8 * 0 − S1 = 12  

so S1 = − 12. Likewise, using the second constraint,  

3 * 0 + 4 * 0 + 8 * 0 − S2 = 8  
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and S2 = − 8. However, since S1 and S2 cannot be negative, this 
solution is outside the feasible region. Alternatively, setting y1, y2, and 
S1 equal to zero, y3 = 1.5 and S2 = 4. Since all the values in this 
solution are positive, the solution lies in the feasible region. All the 
potential solutions are presented in Table A.3 (41.0K) .  

It is apparent from the table that not all the solutions lie within the 
feasible region. Only solutions 3, 5, 7, 9, and 10 meet the 
nonnegativity restrictions; that is, these are the only feasible solutions.  

Each of the feasible solutions is then used to calculate a corresponding 
value of the objective function. For example, using solution 3, the 
value of the objective function is  

p° = 24 * 0 + 16 * 0 + 40 * 1.5 = 60  

All these values are summarized in Table A.4 (34.0K) .  

With solution 9, the objective function—the total value inputed to the 
different types of machines—is minimized. As mentioned earlier, and 
confirmed in this example, the optimal value of the dual objective 
function is equal to the optimal value of the primal objective function 
(see Table A.2 (27.0K) ).  

Note that at the optimum, the shadow price of type-2 machine-hours 
is zero. A zero shadow price implies that the input in question has a 
zero marginal value to the firm; adding another type-2 machine-hour 
adds nothing to the firm's maximum attainable profit. Thus, a zero 
shadow price for type-2 machines is consistent with our findings in the 
solution to the primal: the type-2 machine constraint is nonbinding. 
Excess capacity exists with respect to type-2 machines, so additional 
hours will not result in increased production of either X1 or X2. 
Analogously, we see that the shadow prices of type-1 and type-3 
machines are positive. A positive shadow indicates that the fixed 
number of these machines' hours imposes a binding constraint on the 
firm and that, if an additional hour of type-1 (type-3) machine work is 
added, the firm can increase its total profit by $1.33 ($0.50).  

The dual solution has thus far not indicated the optimal output 
combination (X1, X2); however, it does provide all the information we 
need to determine these optimal values. Note first that the solution to 
the dual tells us that the type-2 machine constraint is nonbinding. 
Furthermore, it tells us that, at the optimal output combination, p = p° 
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= $52. Now consider the three constraints in the primal, which we 
rewrite here for convenience:  

6X1 + 3X2 + S1 = 24 type-1 
2X1 + 4X2 + S2 = 16 type-2 
8X1 + 8X2 + S3 = 40 type-3  

From the solution to the dual we know that the type-1 and type-3 
constraints are binding, because the dual found these inputs to have 
positive shadow prices. Accordingly, S1 and S3 equal zero in the primal 
program, and the binding constraints can be rewritten as  

6X1 + 3X2 = 24 
8X1 + 8X2 = 40  

These two equations may be solved simultaneously to determine the 
optimal output combination. In this example, the solution is X1 = 3 
and X2 = 2, the same output combination that was obtained in the 
primal problem.  

Let us stress the two major points of this discussion and example. 
First, the choice between solving the primal or the dual of a linear 
programming problem is arbitrary, since both yield the same optimal 
value for the objective function. Second, the optimal solution obtained 
from the dual provides the information necessary to obtain the solution 
for the primal and vice versa. Thus, as we mentioned at the outset, 
one can elect to solve either the primal or the dual, depending on 
which one is easier to solve.  

Activity Analysis: Linear Programming and Production Planning 
for a Single Output 
As emphasized in Chapters 9 and 10, a decision problem faced by all 
firms is how to determine the least-cost combination of inputs needed 
to produce a particular product. If the production process satisfies 
certain regularity conditions, linear programming may be applied to 
solve the cost minimization problem.  

Suppose that a firm produces a single product, Q, using two inputs, 
capital (K) and labor (L). As long as the production processes are 
subject to fixed proportions and constant returns to scale, we can 
characterize the relation between input usage and output as linear 
functions and thereby use linear programming to obtain a solution.  
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To illustrate how this is accomplished, consider the four production 
processes depicted in Figure A.3 (66.0K) . Since production is 
characterized by fixed proportions, the relations between input usage 
and output are shown by a straight line from the origin. These lines 
are referred to as activity rays—hence the title activity analysis. 

In Figure A.3 (66.0K) , production process A requires 4 units of K and 
4 units of L to produce 1 unit of Q. This requirement is illustrated by 
point A1. Process B uses 4 units of L and 2 units of K to produce 1 unit 
of output. Similarly, process C uses 1.5 units of K and 5 units of L, 
while process D requires 8 units of L and 1 unit of K to produce 1 unit 
of output. These input-output relations are illustrated by B1, C1, and 
D1, respectively. If we recall the definition of an isoquant, that is, 
different input combinations for which the level of output is constant, 
we can connect points A1 through D1 and derive an isoquant 
corresponding to a level of output equal to 1 unit of Q. In Figure A.3 
this piecewise linear isoquant is labeled Q1. With constant returns to 
scale, doubling the amount of both inputs employed results in output 
also doubling. In our graph, this doubling of inputs is illustrated by 
points A2, B2, C2, and D2. Connecting these points, we derive an 
isoquant corresponding to 2 units of output; it is labeled Q2. Similarly, 
we may find isoquants Q3 and Q4 for 3 and 4 units of output, 
respectively.  

Suppose that you are asked to determine the least-cost combination of 
L and K for an output level of 4 units when a unit of labor costs $4 
(say the hourly wage rate is $4) and a unit of capital costs $8 (say it 
costs $8 to run a machine for one hour). This problem is simply a 
constrained minimization problem; that is, we want to minimize the 
total cost of producing 4 units of output. Accordingly, we may translate 
the problem into a linear programming problem. For illustrative 
purposes we will solve this program first graphically and then solve it 
using our general algebraic method developed above.  

The isoquant for 4 units of output is reproduced in Figure A.4 (10.0K) 
. Since we know the price of a unit of K is $8 and the price of a unit of 
labor is $4, we can plot on this graph a family of isocost curves 
corresponding to different levels of total cost. These curves are derived 
by solving the total cost function C = 8K + 4L to obtain  

L = 
C 

---- 
4 

− 2K 



 12

Recall from Chapter 10 that we used a tangency rule to find the least-
cost combination of inputs: we find the isocost curve that is just 
tangent to the isoquant and, therefore, the closest to the origin. At 
that point of tangency, corresponding to a particular combination of 
inputs, total cost of production is minimized. In linear programming, 
the same process is used.  

In Figure A.4 (10.0K) isocost curves (I1, I2, I3, I4) are drawn through 
points B4, C4, D4, and A4. It is easy to see that isocost I1 through point 
B4 (8, 16) is closest to the origin and, therefore, represents the least 
cost possible of producing 4 units of output. If we use 8 units of K and 
16 of L in our cost equation, we obtain a minimum total cost of 
production of $128.  

We can use our algebraic method to solve the same problem. First 
note that there is only one constraint—the isoquant representing 4 
units of output. Therefore, at the optimum there will be no slack or 
surplus in the constraint, and we can determine the solution simply by 
substituting the values for the extreme points into the cost function 
(our objective function in this program). The results are shown in 
Table A.5 (5.0K) . Since our objective is to minimize total cost, we pick 
the input combination that does just that. Again we confirm our result 
from the graphical solution; the combination of 8 units of capital and 
16 units of labor minimizes the total cost of producing 4 units of Q. 

APPENDIX 

Statistical Tables 

Student's t-Distribution (53.0K)  
The table on page 725 provides critical values of the t-distribution at 
four levels of significance—0.10, 0.05, 0.02 and 0.01. It should be 
noted that these values are based on a two-tailed test for significance: 
a test to determine if an estimated coefficient is significantly different 
from zero. For a discussion of one-tailed hypothesis tests, a topic not 
covered in this text, the reader is referred to Terry Sincich, A Course in 
Modern Business Statistics, 2d ed. (New York: Dellen/Macmillan 
College Publishing, 1994).  

To illustrate the use of this table, consider a multiple regression that 
uses 30 observations to estimate three coefficients, a, b, and c. 
Therefore, there are 30 − 3 = 27 degrees of freedom. If the level of 
significance is chosen to be 0.05 (the confidence level is 0.95 = 1 − 
0.05), the critical t-value for the test of significance is found in the 
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table to be 2.052. If a lower level of significance (a higher confidence 
level) is required, a researcher can use the 0.01 level of significance 
(0.99 level of confidence) to obtain a critical value of 2.771. 
Conversely, if a higher significance level (lower level of confidence) is 
acceptable, the researcher can use the 0.10 significance level (0.90 
confidence level) to obtain a critical value of 1.703.  

The F-Distribution (138.0K)  
The table on pages 726−727 provides critical values of the F-
distribution at 0.05 and 0.01 levels of significance (or the 0.95 and 
0.99 levels of confidence, respectively). To illustrate how the table is 
used, consider a multiple regression that uses 30 observations to 
estimate three coefficients; that is, n = 30 and k = 3. The appropriate 
F-statistic has k − 1 degrees of freedom for the numerator and n − k 
degrees of freedom for the denominator. Thus, in the example, there 
are 2 and 27 degrees of freedom. From the table the critical F-value 
corresponding to a 0.05 level of significance (or 0.95 level of 
confidence) is 3.35. If a 0.01 significance level is desired, the critical 
F-value is 5.49.  

1Outputs and inputs are assumed to be infinitely divisible, and the 
outputs are produced according to fixed proportions, constant-returns-
to-scale processes.  

TECHNICAL PROBLEMS 

1. Solve the following linear programming problem graphically:  

maximize p = 2X1 + 3X2 
subject to                X1 = 8 
 
                               X2 = 6 
                     X1 + 4X2 = 16 
                          X1, X2 = 0 

2. In problem 1, how would the optimal solution change if the 
restrictions imposed (i.e., the ri's) were all cut in half?  

3. Solve the following linear programming problem using the 
general solution method:  

minimize C = 3X1 + 4X2 
subject to                X1 + X2 = 2 
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                           2X1 + 4X2 = 5 
                                 X1, X2 = 0 

4. Form the dual to the linear programming problem presented in 
problem 3; then solve it to obtain the optimal values of X1 and 
X2.  

5. Provide an explanation of the nonnegativity constraints for the 
problem of minimizing cost subject to a desired level of output.  

6. Give some examples of managerial decisions for which linear 
programming can provide useful information. For each of these, 
suggest the type of analysis that would be employed.  

7. Suppose you were hired by a firm that produces several 
products. This firm needs to know the amounts of the different 
products it should produce to maximize total profit. What 
information would you require? How would you analyze this 
problem? 

 


