
 BRIEF REVIEW OF DERIVATIVES AND OPTIMIZATION 
 
In business decision making, the concept of a derivative can be used to find solutions to optimization 
problems—either maximization or minimization problems in either unconstrained or constrained 
situations.  This review briefly covers the basic skills of taking derivatives and using derivatives to find 
solutions to optimization problems. 
 
 
THE CONCEPT OF A DERIVATIVE 

When y is a continuous, differentiable function of x—denoted as y = f (x)—the derivative of this 
function gives the rate of change in y as x changes.  Derivatives are generally denoted using either 
one of following conventions:  
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dy d

f x f x f
dx dx

′ ′≡ ≡ ≡  

If, for example, at x =1,000, = !200, then y changes 200 times as much as x changes, but y 
changes in the opposite direction of the change in x.

( )f x′
1  Since the derivative is evaluated at x = 

1,000, the rate of change, !200, applies to changes in x that occur “in the neighborhood” of x = 
1,000; that is, changes in x that are “small” relative to x = 1,000. An increase in x of 2 units 
results in a decrease in y of (approximately) 400 units.2  In the figure below, the function y = 

 = !0.5x( )f x 2 + 800x is graphed.  For this function, the rate of change in y with respect to x 
(= dy dx ) is equal to !200 at x = 1,000 (see point A).  The blow up at point A shows that a 2-unit 
increase in x from 1,000 to 1,002 does indeed cause y to decrease by (approximately) 400 units—
in this case, the precise decrease is 402 units.  (Later in this review we will show you how to find 
the derivative of a function and the numerical value of the derivative at any particular value of x.) 
 Since derivatives measure the rate of change in y as x changes, derivatives can also be 
interpreted as the slope of curve at a point on the curve.  As you may recall from a course in 
algebra, the slope of a curve is measured by constructing a line tangent to the curve at the point of 
measure.  The slope of the tangent line is then equal to the slope of the curve at the point of 
measure.  In the figure below, the slope of the curve at point A is !200, which is the slope of the 
tangent line TTN.  The procedure in calculus of taking a derivative of a function and evaluating 
that derivative at a point is equivalent to the procedure in geometry of constructing a line tangent 
to a curve and measuring its slope. 
 Without using calculus to find the derivative of a function, it is possible to determine 
visually, rather than mathematically, whether the derivative is positive, negative, or zero at points 
along a curve.  In the figure above, you can visually verify—just “see” the tangent line at a point 
on the curve—that the derivative of the function y =  = !0.5x( )f x 2 + 800x is positive over the 
range of x from 0 to 800.  At x = 800 (point M), y reaches its maximum value of 320,000, and the 
derivative is equal to zero.  At either maximum or minimum points on a curve, the slope of the 
curve is zero at these points.  The “blow up at M” shows how you can visualize the slope of  ( )f x

                                                 

 1When a derivative is positive (negative), the variables y and x are directly (inversely) related.  When the 
variables are directly related, y and x move in the same direction.  When the variables are inversely related, y and x 
move in opposite directions. 

 

 2Actually, the 800 unit decrease in y is only approximately correct because, strictly speaking, derivatives 
measure rate of change in y for tiny or “infinitesimal” changes in x.  Since a 2-unit change in x is a rather small 
change when x is equal to 1,000, the actual change in y will be quite close to !400 but not exactly !400.  The 
smaller is the change in x, the more precisely the change in y is approximated. 



at x = 800.  For values of x greater than 800, the derivative is negative. 
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CALCULUS RULES FOR TAKING DERIVATIVES 

This section presents six fundamental rules for taking derivatives.  These six rules provide the 
tools for finding the derivatives of the polynomial functions typically encountered in business 
decision making.  An application of the rule is given for each rule. 

 
Power function rule: 

For any n, 
1n nd

x nx
dx

−=  
 
Example:  Let y =  = x( )f x 3.  Using the power function rule, the derivative is dy dx  = 
3x2.  At x = 0.5, dy  = 3(0.5)dx 2 =0.75, which means that the slope of the tangent at x = 5 
is 0.75.  In other words, for very small changes in x in the neighborhood of x = 0.5, y 
changes only 3/4 as much as x changes (and in the same direction). 

 
Constant function rule: 

For any constant function y = k, where k is any constant value, 
 

0
d

k
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Example:  Let y = 20.  Since y takes the value 20 for all values of x, dy dx  must equal 
zero. 

 

  



Sum (difference) of functions rule: 
For any two functions,  and , the derivative of the sum or difference of the two 
functions, , is simply the sum or difference of the derivatives of the 
individual functions:  
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Example:  Let  and C q .  If  

 then the derivative of , is 
( )R q

(P q

210 2q q+ ( )P q =
( ) ( ),R q C q− ) dP dq = ( ) ( )R q C q′ ′− =  (–1.5q +200) 
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Product rule: 

For any two functions,  and , the derivative of the product of the two func-
tions, , is:  

( )f x ( )g x
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[ ]( ) ( ) ( ) ( ) ( ) ( )

dy d
f x g x f x g x g x f x

dx dx
′ ′= = +

2( ) 10f x x= ( ) 2g x x=

 
 
Example:  Let  and .  The derivative of the product, 

, is ( ) ( )y f x g x= ⋅ dy dx  = 20x(2x) + 2(10x2) = 60x2 . 
 
Quotient rule: 

For any two functions,  and , the derivative of the quotient of the two 
functions, 

( )f x ( )g x
( ) (y f x g= )x  is:  
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Example:  Let  and .  The derivative of the quotient ( )f x

( ) ( )y f x g x= , is dy dx = [20x(2x) ! 2(10x2)]/(2x)2 = (40x2 ! 20x2)/4x2 = 5.  Note that it 
is much easier to find the derivative of the quotient when the quotient is first simplified 
algebraically: ( ) ( ) 5 ,g x x=f x  so dy dx  = 5. 

 
Chain rule: 

Let one function be composed of another function: and .  The 
derivative 

( )y f z= ( )z g x=
dy dx  is found by applying the chain rule: 

 dy dy dz
dx dx

= ⋅

( ) 2L= −

 
dz 

Example:  Let and Q L .  The rate of change in R as L 
changes, 

2( ) 500 20R Q Q Q= − 3 15L+ 2

dR dL , is easily found using the chain rule: dR dL = (500 ! 40Q)(!6L2 + 30L).  
In order to express the derivative as a function of L only, substitute Q(L) = !2L3 + 15L2 
into the derivative and simplify algebraically to obtain dR dL  = !480L5 + 6,000L4 
!18,000L3 !3,000L2 + 15,000L. 

As a final example, find the derivative of the function in the figure above.  Recall 
from the discussion of the figure that the curve is a plot of the function y = !0.5x2 + 800x 
(over the range of x from 0 to 1,600).  The derivative is dy dx  = !x + 800.  At point A, x 
= 1,000, and dy dx  = !1,000 + 800 = !200.  At point M, x = 800, and dy dx  = !800 + 
800 = 0. 

 
 

 



UNCONSTRAINED OPTIMIZATION  
Derivatives of functions can be used to find the value of x that maximizes or minimizes the value 
of y.  The procedure involves two steps:  

(1) The derivative of , which is denoted by , is set equal to zero and solved 
for the value(s) of x that satisfy the condition .  The values of x for which 

 are called extreme points because these are the points on a curve at which the 
curve reaches either a maximum or minimum value.  A function may have multiple 
extreme points.  The condition , then, identifies values of x that may be either 
maximum points or minimum points, and this condition is generally referred to as the 
first-order (necessary) condition for either a maximum point or minimum point. 

( )y f x= ( )f x′
( )f x′ = 0

( ) 0f x′ =

( ) 0f x′ =

(2) Both kinds of extreme points — maximum points and minimum points — occur where 
the derivative is zero.  In order to determine whether an extreme point is a maximum or 
minimum point, the second derivative of the function, which is the derivative of  
and denoted by , must be examined.  The second derivative of a function indicates 
the rate at which the slope of the curve—the first-derivative —is changing.  At a 
maximum point, increasing x causes  to change from a value of zero to a negative 
value; i.e. moving in a rightward direction from a maximum point necessarily causes 

 to decrease.  Consequently, the second derivative is negative when evaluated at a 
maximum point.  Conversely, the second derivative is positive when evaluated at a 
minimum point.  The condition required of the second derivative to establish either a 
maximum point or a minimum point is generally referred to as the second-order 
(sufficient) condition. 

( )f x′
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( )f x′
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These two conditions for finding a maximum or minimum point can be summarized as follows: 

 First-order condition Second-order condition 

Maximum point f N(x) = 0 f O(x0) < 0, where x0 is an extreme point of f(x) 

Minimum point f N(x) = 0 f O(x0) > 0, where x0 is an extreme point of f(x) 
 

To illustrate finding the value of x that maximizes a function , consider again the 
function graphed in the figure above: .  Setting the first-derivative 
equal to zero gives the first-order condition: 

( )y f x=
x2( ) 0.5 800y f x x= = − +
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Solving the first-order condition for x reveals that x = 800 is an extreme point.  To determine 
whether 800 is a maximum point or a minimum point—even though you can see that it is a 
maximum point in the figure—the second derivative is evaluated at x = 800: 

 

 ( )800 ( ) 1
d

x f x
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Since  is a constant function equal to !1, the second-order condition for a maximum is met 
at x = 800. 

( )f x′′

 
 

  



CONSTRAINED OPTIMIZATION  
In some situations, decision makers face constraints on the values of the decision variables (also 
called choice variables) that prevent reaching the absolute maximum or minimum point of an 
objective function (the function that is to be maximized or minimized).  A typical constrained 
optimization problem might involve choosing values of x and y either to maximize or to minimize 
the function subject to the constraint that , where k is any constant value.  
One technique of solving this type of constrained optimization problem is called the Lagrange 
multiplier method.  In this review, we will focus exclusively on the first-order conditions for 
optimization—which are the same for maximization and minimization problems—and leave the 
more challenging second-order conditions for a course in mathematical economics. 

( , )z f x y= ( , )g x y k=

The Lagrangian multiplier method of solving constrained optimization problems involves 
maximizing (or minimizing) the following “Lagrangian function”: 

  [ ]( , , ) ( , ) ( , )L L x y f x y k g x yλ λ= = + −

where 8 is called the Lagrange multiplier and is treated as a variable in the Lagrangian function.  
To obtain the first-order conditions for constrained optimization, partial derivatives of the 
Lagrangian function must be set equal to zero:3   

( , , ) ( , ) ( , ) 0x x xL x y f x y g x yλ λ= − =
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The optimal values of x, y, and 8 are found by solving the system of first-order equations 
simultaneously.  Notice that the first-order condition associated with the partial derivative of 8 
forces the constraint to be satisfied when x*, y*, and 8* are found by solving the system of first-
order equations simultaneously. 
 To illustrate the Lagrange multiplier technique, find the values of x and y that maximize 
the function subject to the constraint that where 

.  The Lagrangian function for this constrained optimization problem is: 
( , ) 5 2 10z f x y xy y x= = + + +
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The first-order conditions for maximization (or minimization, for that matter) are: 

( , , ) 5 2 0

( , , ) 15 2 0
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Solving for x*, y*, and 8* using either substitution or Cramer’s rule produces the solution: 

 

( , )f x y

( , )f x y ( , )f x y

 3The partial derivative of with respect to x measures the rate of change in z as x changes, holding y 
constant.  Similarly, the partial derivative of  with respect to y is the rate of change in z with respect to y, 
holding x constant.  Partial derivatives are denoted either by using the partial differentiation symbol “M” in Mz/Mx and 
Mz/My or by using a subscript to indicate partial differentiation in and . 

( , )f x y

x y

 

 To find a partial derivative with respect to a particular variable, employ the usual rules for differentiation, 
but treat all other variables in the function as constants.  For example, the partial derivatives of z = = 5x( , )f x y 2 ! 
2xy2 + 3y3 are = 10x ! 2y( , )xf x y 2 and = !4xy + 6y( , )yf x y 2. 
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The maximum value for z can be found by substitution: . * * *( , ) 7 4 5 4 2 7 10 72z f x y= = ⋅ + ⋅ + ⋅ + =
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