
8-S1 

Chapter 8 Supplement

Mechanical Advantage

The mechanical advantage (MA) of a machine or tool is defined as the ratio of the 
output force (load) F2 to the applied or input force F1 exerted on the machine.

	 MA =
load

applied force
=

F2

F1
	 (8-S1)

In other words, the mechanical advantage is the factor by which the input force is amplified.
Ideally, if the machine itself does not store or dissipate energy, then the work output 

is equal in magnitude to the work input. Let dout = vout Δt be the displacement of the load 
during a time interval Δt caused by a displacement din during the same interval. Then
	 Foutdout = Findin	 (8-S2)

Combining Equations (8-S1) and (8-S2), we find

	 MA =
Fout

Fin
=

din

dout
=

vin

vout
	 (8-S3)

Equation (8-S3) shows that there is a trade-off involved: a machine can amplify 
a force only by reducing the displacement of the force by the same factor. However, 
force amplification is not the only reason to use a machine. Sometimes a reduction 
in speed is desired, in which case the mechanical advantage is less than 1.

For machines that rotate, we define the MA in terms of torques and angular speeds:

	 MA =
τ2

τ1
=

Δθ1

Δθ2
=

ω1

ω2
	 (8-S4)

Using Equations (8-S1) and (8-S4), we can find the mechanical advantage of 
various machines. Here are a few examples.

Lever  For an ideal lever, by using the fulcrum as the axis of rotation and setting the 
net torque on the lever equal to zero, we find F1ℓ1 = F2ℓ2. Therefore, the mechanical 
advantage is equal to the ratio of the lever arms of the two forces:

	 MA =
ℓ1

ℓ2
	 (8-S5)

Inclined Plane  An inclined plane (Fig. 8.S1) can be used to lift an object by slid-
ing it along an incline of length L instead of lifting it straight up to a height h. For 
an ideal, frictionless incline, the work done is the same either way. Then F1L = F2h, 
where F1 is the applied force and F2 is the weight of the object. If the incline is at 
an angle θ to the horizontal, then

	 MA =
L

h
=

1
sin θ

	 (8-S6)

Figure 8.S1  An inclined 
plane being used to lift a heavy 
crate. Ignoring friction, the 
magnitude of the applied force 
F
→

1 is equal to the component 
of the crate’s weight along the 
incline: F1 = F2 sin θ. The 
mechanical advantage is 
MA = F2/F1 = 1/(sin θ).
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Block and Tackle  In a block and tackle (Fig. 8.S2), one or more pulleys are assem-
bled on a single axle to form each block. One block is fixed in place and the other 
exerts the load force. A single rope is threaded through all the pulleys. Ignoring fric-
tion and the weight of the rope, the tension T of the rope is the same everywhere. If 
N rope segments support the load, the input force is T and the load is NT, so the 
mechanical advantage is N.

Gears and Belt Drives  The contact point of two meshing gears (Fig.  8.S3) has 
to move at the same speed. If r represents the radius of a gear to the contact point, 
then v  =  r1ω1  =  r2ω2. From Eq. (8-S4), we have MA  =  r2/r1. To mesh together 
properly, the tooth size has to be the same. If N is the number of teeth on each gear, 
then 2πr1/N1  =  2πr2/N2. The mechanical advantage can then be written in terms of 
the gear ratio N2/N1:

	 MA =
r2

r1
=

N2

N1
	 (8-S7)

The output torque can be greater or less than the input torque, depending on 
whether the gear ratio is greater than or less than 1.

A belt drive is similar: two pulleys of different radii (r1 and r2) are connected by 
a belt. The tangential speeds of the pulleys are equal if the belt is not slipping. Then 
v = r1ω1 = r2ω2 and

	 MA =
r2

r1
	 (8-S8)

Calculating Rotational Inertia

Four principles can be used along with Table 8.1 to find the rotational inertias for 
rigid objects about various axes: the sum and stretch rules and parallel and perpen-
dicular axis theorems

Sum Rule  Rotational inertia is defined as a sum: I = ΣN
n=1mnr

2
n. Therefore, an object 

can be broken into parts and the rotational inertia of the object is the sum of the 
rotational inertias of the parts.

Figure 8.S2  A block and 
tackle used on a sailboat. In 
this case, the load is the force 
exerted on the boom. Four rope 
segments pull on the block 
connected to the boom, so the 
mechanical advantage is 4 (the 
force exerted on the boom is  
4 times the applied force).

Boom

Load

Applied
force

Mast

Figure 8.S3  Two meshing 
gears. The input torque τ1  
is applied to gear 1, and  
gear 2 supplies the output 
torque τ2. The gear ratio is  
N2/N1 = 24/12 = 2. The 
mechanical advantage is 
MA = 2, so τ2 = 2τ1. Gear 2 
turns half as fast as gear 1: 
ω2/ω1 = 1

2.

r1 ω2r2

ω1
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Stretch Rule  The rotational inertia of a rigid object is not changed if the object is 
stretched or compressed in a direction parallel to the rotation axis. This rule follows 
directly from the definition of rotational inertia because moving a bit of mass parallel 
to the axis does not change its distance rn from the rotation axis.

For example, you might want to calculate the rotational inertia of a door about 
the axis through its hinges. Mentally “compress” the door vertically (parallel to the 
axis) into a horizontal rod with the same mass, as in Fig. 8.S5. The rotational inertia 
is unchanged by the compression, since every particle maintains the same distance 
from the axis of rotation. Thus, the formula for the rotational inertia of a rod (listed 
in Table 8.1) can be used for the door.

Parallel Axis Theorem  Suppose the rotational inertia of an object about an axis 
that passes through the center of mass is ICM. Then the rotational inertia I about any 
axis parallel to that axis is

	 I = ICM + Md2	 (8-S9)

where M the object’s mass and d is the perpendicular distance between the two axes 
(Fig. 8.S6).

Perpendicular Axis Theorem  Suppose a flat rigid object lies entirely within the 
xy-plane. Define three mutually perpendicular rotation axes that pass through a single 

Since there are two such halves, the total rotational inertia is 
twice that:

I = Ihalf + Ihalf = 1
12ML2

Discussion  The rotational inertia is less than 1
3ML2, as 

expected. That it is 1
4 as much is a result of the distances rn 

being squared in the definition of rotational inertia. The 
various particles that compose the rod are at distances that 
range from 0 to 1

2L to from the rotation axis, instead of 
from 0 to L. Think of it as if the rod were compressed to 
half its length, still pivoting about the endpoint. All the 
distances rn are half as much as before; since each rn is 
squared in the sum, the rotational inertia is (1

2)2 = 1
4 times 

its former value.

Example 8S.1

Rotational Inertia of a Rod About Its Midpoint

The rotational inertia of a thin rod with the axis of rotation 
perpendicular to its length and passing through one end is 
I = 1

3ML2. From this expression, derive the rotational inertia 
of a rod with mass M and length L that rotates about a perpen-
dicular axis through its midpoint (Fig. 8.S4).

Strategy  In general, the same object rotating about a dif-
ferent axis has a different rotational inertia. With the axis at 
the midpoint, the rotational inertia is smaller than for the 
axis at the end, since the mass is closer to the axis, on aver-
age. Imagine performing the sum ΣN

n=1mnr
2
n; for the axis at 

the end, the values of rn range from 0 to L, whereas with the 
axis at the midpoint, rn is never larger than 1

2L.
Imagine cutting the rod in half; then there are two rods, 

each with its axis of rotation at one of its ends. Then, since 
rotational inertia is additive, the rotational inertia for two 
such rods is just twice the value for one rod.

Solution  Each of the halves has mass 1
2M and length 1

2L
and rotates about an axis at its endpoint. We know that 
I = 1

3ML2 for a rod with mass M and length L rotating about 
its end, so each of the halves has

Ihalf = 1
3 × mass of half × (length of half)2

	 = 1
3 × (1

2M) × (1
2L)2 = 1

3 × 1
2 × 1

4 × ML2 = 1
24ML2

Figure 8.S4  (a) A rod rotating about a vertical axis through its 
center. (b) The same rod, viewed as two rods, each half as long, 
rotating about an axis through an end.

L

(a)
Axis Axis

(b)

Figure 8.S5  The rotational 
inertias of a door and a rod are 
both given by 1

3ML2.

Axis of
rotation

Axis of
rotation
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to a rod

LL
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point in the xy-plane, one parallel to each of the x-, y-, and z-axes (Fig. 8.S7). Call 
the rotational inertias of the object about these axes Ix,  Iy, and Iz. Then

	 Iz = Ix + Iy	 (8-S10)

Figure 8.S6  From Table 8.1, 
the rotational inertia of a disk 
about an axis through the cen-
ter of mass and perpendicular 
to the disk is ICM = 1

2MR2. 
Then, using the parallel axis 
theorem, the rotational inertia 
of the disk about an axis 
through the edge and  
perpendicular to the disk is  
I �= ICM + Md2 = 1

2MR2 + MR2 
= 3

2MR2.

RR

ICM =    MR21
2 I =    MR23

2

(a) (b)

Figure 8.S7  The perpendicular axis theorem relates the rotational inertias of a flat 
object about three mutually perpendicular axes that all pass through the same point in 
the plane of the object and one of which is perpendicular to the plane of the object.

z

Iz = Ix + Iy

x

y

Problems

	 1.	 Alex uses a lever to lift a 230 kg stone. She applies a 
280  N force to the end of the lever while moving it 
15 cm.  How far does the stone move? 

	 2.	 In its “highest gear”, the chain on Trey’s bike goes around 
a gear connected to the pedals that has 44 teeth and a  
radius of 10 cm. The chain also goes around a gear con-
nected to the rear wheel that has 11 teeth. Trey’s feet ap-
ply a net torque of 65 N·m to the pedals. (a) What is the 
tension in the chain? Note that only the upper part of the 
chain is under tension; the lower part is slack. (b) What is 
the torque applied by the chain to the rear wheel?

	 3.	 Find the rotational inertia of a uniform thin rod (mass 
M, length L) about a perpendicular axis a distance L/3 
from one end.

	 4.	 What is the rotational inertia of a uniform circular disk 
(mass M, radius R) about a diameter?

	 5.	  The pendulum in a grandfather clock is a rod (mass M, 
length L) suspended at one end with a uniform solid 
sphere (mass 2M, radius L/4) attached to the other end. 
(The total length of the pendulum is the length of the 
rod plus the diameter of the sphere, which is 3L/2.) 
What is the rotational inertia of the pendulum?

Answers to Problems

1.  1.9 cm

3. 
7
36

 ML2

5. 
49
30

 ML2
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