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Chapter 15 Supplement

A Reversible Engine Has the Maximum Possible Efficiency

We can prove that no real engine can have a higher efficiency than a reversible engine 
using the same two reservoirs by the following thought experiment. Imagine two 
engines using the same hot and cold reservoirs that do the same amount of work per 
cycle (Fig.  15.S1a). Suppose engine 1 is reversible and hypothetical engine 2 has a 
higher efficiency than engine 1 (e2  >  e1). The more efficient engine does the same 
amount of work per cycle but takes in a smaller quantity of heat from the hot reser-
voir per cycle (QH2  <  QH1). Energy conservation for a cyclical engine requires that 
QC = QH − Wnet, so the more efficient engine also exhausts a smaller quantity of heat 
to the cold reservoir (QC2 < QC1).

Now imagine reversing the energy flow directions for engine 1, turning it into a heat 
pump. Engine 1 is reversible, so the magnitudes of the energy transfers per cycle do not 
change. Connect this heat pump to engine 2, using the work output of the engine as the 
work input for the heat pump (Fig. 15.S1b). Since QC1 > QC2 and QH1 > QH2, the net 
effect of the two devices is a flow of heat from the cold reservoir to the hot reservoir 
without the input of work, which is impossible—it violates the second law of thermody-
namics. The conclusion is that according to the second law, no engine can have an 
efficiency greater than that of a reversible engine that uses the same two reservoirs.

Furthermore, every reversible engine exchanging heat with the same two reser-
voirs, no matter what the details of its construction, has the same efficiency. (To see 
why, use the same thought experiment with two reversible engines such that e2 > e1.) 
Therefore, the efficiency of such an engine can depend only on the temperatures of 
the hot and cold reservoirs.

Details of the Carnot Cycle

The four steps in the Carnot cycle are (Fig. 15.S2):

	 1 → 2: �Isothermal expansion. Take in heat QH from the hot reservoir, keeping the gas 
at constant temperature TH.

	 2 → 3: �Adiabatic expansion. The gas does work without any heat flow in, so the 
temperature decreases. Continue until the gas temperature is TC.

	 3 → 4: Isothermal compression. Heat QC is exhausted at constant temperature TC.
	 4 → 1: Adiabatic compression until the temperature is back to TH.

Figure 15.S1  (a) Two engines 
that take in heat from the same 
hot reservoir and exhaust heat to 
the same cold reservoir. The two 
engines do the same amount of 
net work per cycle. Engine 1 is 
reversible, whereas hypothetical 
engine 2 is assumed to have an 
efficiency higher than that of 
engine 1, which we will show to 
be impossible. (b) Engine 1 is 
reversed, making it into a revers-
ible heat pump. The work output 
of hypothetical engine 2 is used 
to run the heat pump. The net 
effect of the two connected 
devices is heat flow from the 
cold reservoir to the hot reservoir 
without any work input.
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Figure 15.S2  The Carnot cycle.
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Therefore,

W3→4 = −QC = −
TC

TH
QH = −

300.0 K
1000.0 K

× −25 J

= −7.5 J (per cycle) 

Discussion  We will not prove it here, but the total work 
done during the two adiabatic processes is zero. Then the net 
work done by the engine per cycle is

25 J + (−7.5 J) = 17.5 J
The efficiency is then

e =
17.5 J
25 J

= 0.70

This should equal

er = 1 −
TC

TH
= 1 −

300.0 K
1000.0 K

= 0.7000

Conceptual Practice Problem 15.S1  Adiabatic 
Process in Carnot Cycle

Since there is no heat flow during the adiabatic processes and the 
work done during them adds to zero, why do we need adiabatic 
processes in the Carnot cycle? Why not just eliminate them?

Example 15.S1

Carnot Engine

A Carnot engine using 0.020 mol of an ideal gas operates 
between reservoirs at 1000.0 K and 300.0 K. The engine 
takes in 25 J of heat from the hot reservoir per cycle. Find the 
work done by the engine during each of the two isothermal 
steps in the cycle.

Strategy  During the isothermal processes, the internal en-
ergy of the ideal gas stays the same, so

ΔU = Q + W = 0  ⇒  ∣W ∣ = ∣Q∣

Solution  1  →  2: During the isothermal expansion, the 
work done by the gas is equal to the heat input—otherwise 
the temperature of the gas would change.

W1→2 = +25 J (per cycle)

3 → 4: During the isothermal compression, the gas does 
negative work as it is compressed.

W3→4 = −QC

The heats are proportional to the temperatures:

QC

QH
=

TC

TH
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Entropy and Statistics

Thermodynamic systems are collections of huge numbers of atoms or molecules. How 
these atoms or molecules behave statistically determines the disorder in the system. 
In other words, the second law of thermodynamics is based on the statistics of systems 
with extremely large numbers of atoms or molecules.

As an analogy, suppose we take four identical coins, number them, and toss them. 
We could report the outcome in two different ways: either by specifying the outcome 
of each coin toss individually (e.g., coin 1 is heads, coin 2 is tails, coin 3 is heads, 
and coin 4 is heads), or just by reporting the overall outcome as the number of heads.

Specifying the outcome of each coin toss individually is analogous to describing 
the microstate of a thermodynamic system. A microstate specifies the state of each 
constituent particle. For instance, in a monatomic ideal gas with N atoms, a microstate 
is specified by the position and velocity of each of the N atoms. As the atoms move 
about and collide, the system changes from one microstate to another. The total num-
ber of heads for coin tossing is analogous to a macrostate of a thermodynamic sys-
tem. A  macrostate of an ideal gas is determined by the values of the macroscopic 
state variables (the pressure, volume, temperature, and internal energy).

In the four-coin model, each of the microstates is equally likely to occur on any 
toss. Each of the coins has equal probability of landing heads or tails. Since each of 
4  coins has 2 possible outcomes, there are 24  =  16 different but equally probable 
microstates. There are only five macrostates: the number of heads can range from 
zero to four. The macrostates are not equally likely. A good guess would be that 
2  heads is much more likely than 4 heads. To find the probability of a macrostate, 
we count up the number of microstates corresponding to that macrostate and divide 
by the total number of microstates for all the possible macrostates. From Table  15.
S1, the probability of the most likely macrostate (2 heads) is 6/16 = 0.375. The prob-
ability of 4 heads is only 1/16 = 0.0625.

probability of macrostate =
number of microstates corresponding to the macrostate
total number of microstates for all possible macrostates

EVERYDAY PHYSICS DEMO

Repeatedly toss a collection of 10 identical coins. After each toss, count and 
record the number of heads. After a large number of tosses, are your results 
similar to the results of a statistical analysis (see Fig.  15.S3)? Why are your 
results not exactly the same?

Table 15.S1	 Possible Results of Tossing Four Coins

Macrostate Microstates
Number of 
Microstates

Probability of 
Macrostate

4 heads HHHH 1 1
16

3 heads HHHT HHTH HTHH THHH 4 4
16

2 heads HHTT HTHT HTTH THHT THTH TTHH 6 6
16

1 head HTTT THTT TTHT TTTH 4 4
16

0 heads TTTT 1 1
16

Total number of microstates = 16
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Unlike our four-coin model, thermodynamic systems have huge numbers of par-
ticles (for instance, there are 6  ×  1023 particles in one mole). What happens to the 
coin-tossing problem if the number of coins gets large? In Fig. 15.S3, we have graphed 
the number of microstates for the various macrostates for systems with N = 4 coins, 
10  coins, 100 coins, and 1 mole of coins. The horizontal axes for the four graphs 
specify the macrostate as the fractional number of heads, which ranges from 0 to 1. 
The probability of obtaining any macrostate is proportional to the number of micro-
states since the microstates are equally likely.

Notice what happens to the probability peak: as N gets large, the probability of 
obtaining a macrostate having a number of heads significantly different (say, more 
than 0.01%) from 1

2 N gets smaller and smaller. With 4, 10, or 100 coins, it is pos-
sible to toss the coins and observe a decrease in entropy—that is, the observed 
macrostate after the toss can be one that is less probable than the macrostate before 
the toss. What if there were 6  ×  1023 coins? The probability of getting anything 
more than 0.01% away from 3 × 1023 heads is so small that we can call it zero—it 
is impossible.

This kind of statistical analysis is the basis for the second law of thermodynam-
ics. The entropy S of a macrostate is proportional to the number of microstates Ω that 
correspond to that macrostate:

	 S = k ln Ω	 (15-S1)

where k is Boltzmann’s constant.
The relationship between S and Ω has to be logarithmic because entropy is 

additive: if system 1 has entropy S1 and system 2 has entropy S2, then the total 
entropy is S1  +  S2. However, the number of microstates is multiplicative. Think 
of dice: if die 1  has 6 microstates and die 2 also has 6, the total number of 
microstates is not 12, but 6  ×  6  =  36. The entropy is additive since ln 
6 +  ln  6 =  ln  36.

Entropy never decreases because the macrostate with the highest entropy is the 
one with the greatest number of microstates, and thus the highest probability. (Recall 
that since the microstates are equally likely, the probability of a macrostate is propor-
tional to Ω.) The probability peak is so sharp and narrow in thermodynamic systems 
that the probability of finding a macrostate not in that peak is effectively zero. The 
equilibrium macrostate is the one with the largest number of microstates. Since the 
macrostate with the highest probability has the highest entropy, a system will always 
evolve toward the highest entropy.

Figure 15.S3  Graphs of the number of microstates versus n/N  (n =   
0,  1,  .  .  .  , N), where n = number of heads, for N = 4 coins, 10 coins,  
100 coins, 6 × 1023 coins.
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Since ln 2N = N ln 2,

Ωf

Ωf
= 2N

Discussion  To get an idea of how large the increase in the 
number of microstates is, let N = NA (1 mol of gas). To write 
the number 2N in ordinary base 10 notation, we would need 
2 × 1023 digits.

The temperature is the same before and after, so the 
number of velocity states, rotational states, and vibrational 
states before and after is the same. But each molecule has 
twice as much volume in which it can be found, so the num-
ber of microstates is multiplied by 2 for each molecule, or by 
2N overall.

Practice Problem 15.S2  Change in Entropy for 
10 Coins

What is the change in entropy (expressed as a multiple of 
the Boltzmann constant) if a box of 10 coins starts with 
8 heads showing and then is shaken until 4 heads are show-
ing? [Hint: See Fig. 15.S3.]

Example 15.S2

Increased Number of Microstates in Free 
Expansion

Refer to the free expansion of an ideal gas (Example 15.9). 
How does the number of microstates change when the vol-
ume of the gas (containing N molecules) is doubled?

Strategy  Since in Example 15.9 we found the entropy 
change for this process, we can now use the entropy change 
to find how the number of microstates changes. Since the 
relationship between S and Ω is logarithmic, an increase in S 
will tell us by what factor Ω increases.

Solution  The entropy change for n moles was found to be
ΔS = −nR ln 1

2 = nR ln 2
Since nR = Nk, the entropy increase can be written in terms 
of N:

ΔS = Nk ln 2
If Ωi and Ωf are the initial and final number of microstates, 
then

ΔS = k ln Ωf − k ln Ωi = k (ln Ωf − ln Ωi) = k ln
Ωf

Ωi

Equating these last two expressions for ΔS, we find

N ln 2 = ln 
Ωf

Ωi

Problems

	 1.	 Imagine that a car engine could be replaced by a Carnot 
engine with an ideal gas as the working substance. 
When the car is traveling at 65 mi/h, the Carnot engine 
goes through its cycle 2000 times per minute. The 
engine’s hot reservoir is at 1000°C (the temperature of 
the exploding gas in a real car engine) and the cold res-
ervoir is at 20°C (the outside temperature). During the 
isothermal expansion part of each cycle, the volume of 
the ideal gas increases by a factor of 10.0. The cylinders 
contain 0.223 mol of gas. What is the power output of 
the engine?

	 2.	 Plot the temperature versus entropy for the four stages 
of the Carnot engine discussed in Example 15.S1. [Hint: 
First plot the constant temperature stages and then fill in 
the adiabatic stages.]

	 3.	 Suppose there are four balls in a box; three balls are yel-
low and one is blue. The blue ball is marked with the 
number 1. The yellow balls are numbered 2, 3, and 4. 
You are blindfolded and choose two balls from the box, 

removing them one at a time. (a) List all possible ways 
that you can choose two balls such that one is blue and 
one yellow. (b) List all possible ways that you can 
choose two balls such that both are yellow. (c) Of these 
two outcomes, is one more probable than the other?

	 4.	 Suppose the macrostate of a system of 100 identical 
coins is specified by the number of heads. What is the 
entropy of the state with one head (in terms of 
Boltzmann’s constant, k)?

	 5.	 For a system composed of two identical cubical dice, let 
the macrostate be defined by the sum of the numbers 
showing on the top faces. What is the maximum entropy 
of this system in units of Boltzmann’s constant, k?

	 6.	   (a) What is the number of ways that five identical 
coins can be arranged so one of them shows heads?  
(b) What is the entropy of this state in units of 
Boltzmann’s constant, k? (c) Repeat parts (a) and (b) for 
five identical coins with two showing heads.

	 7.	   Two identical cubical dice are thrown. A macrostate 
is specified by the sum of the two numbers that come up 
on the dice. (a) How is a microstate specified for this 
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system? (b) How many different microstates are there? 
(c) How many different macrostates are there? (d) What 
is the most probable macrostate? (e) What is the proba-
bility of getting this result? (f) What is the probability of 
rolling “snake eyes” (two 1s)?

	 8.	   Six identical coins are tossed simultaneously. The 
macrostate is specified by the number of “heads.” 
(a) What is/are the most probable macrostate(s)? (b) What 
is/are the least probable macrostate(s)? (c)  What is the 
probability of obtaining the most probable macrostate?

	 9.	 If 1.0 g of ice at 0.0° C melts into liquid water at 0.0° C, 
by what factor has the number of microstates increased?

	10.	 If the number of microstates for a thermodynamic system 
doubles, how much has the system’s entropy increased?

11.	   Rank these in order of increasing entropy: (a) 1000 
He atoms moving at random velocities with an aver-
age speed of 400 m/s; (b) 1000 He atoms all moving at  
400 m/s in the same direction; (c) 1000 He atoms all 
moving at 400 m/s in random directions.

Answers to Practice Problems

15.S1  The adiabatic processes are needed to change the 
temperature of the working substance in the engine back and 
forth between TC and TH.

15.S2  k ln
210
45

≈ + 1.54k

Answers to Problems

15.S1  140 kW (190 hp) 
15.S3  (a) 12, 13, 14, 21, 31, 41 (b) 23, 24, 34, 32, 42, 43 
(c) no, they are equal
15.S5  1.79k

15.S7  (a) the number on each die (b) 36 (c) 11 (d) 7 (e) 1/6 
(f) 1/36
15.S9  by a factor of en, where n = 8.9 × 1022

15.S11  (b), (c), (a)
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