
try

{

 // Convert input values to numeric and assign

 quantityInteger = int.Parse(quantityTextBox.Te

 try

 {

 priceDecimal = decimal.Parse(priceTextBox.

 // Calculate values.

 extendedPriceDecimal = quantityInteger * p

 discountDecimal = Decimal.Round(

 (extendedPriceDecimal * DISCOUNT_RATE_D

 amountDueDecimal = extendedPriceDecimal -

 totalAmountDecimal += amountDueDecimal;

 numberTransactionsInteger++;

 // Format and display answers.

 extendedPriceTextBox.Text = extendedPriceD

 C H A P T E R

2
 User Interface Design

 at the completion of this chapter, you will be able to . . .

 1. Use text boxes, masked text boxes, rich text boxes, group boxes, check boxes,

radio buttons, and picture boxes effectively.

 2. Set the BorderStyle property to make controls appear flat or three-dimensional.

 3. Select multiple controls and move them, align them, and set common properties.

 4. Make your projects easy for the user to understand and operate by defining access

keys, setting an Accept and a Cancel button, controlling the tab sequence, resetting

the focus during program execution, and causing ToolTips to appear.

 5. Clear the contents of text boxes and labels.

 6. Make a control visible or invisible at run time by setting its Visible property.

 7. Disable and enable controls at design time and run time.

 8. Change text color during program execution.

 9. Concatenate (join) strings of text.

 10. Download the Line and Shape controls, add them to the toolbox, and use the

controls on your forms.

bra17216_ch02_067-106.indd Page 67 7/27/08 11:20:28 AM user-s207bra17216_ch02_067-106.indd Page 67 7/27/08 11:20:28 AM user-s207 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

68 V I S U A L C# User Interface Design

 Introducing More Controls

 In Chapter 1 you learned to use labels and buttons. In this chapter you will
learn to use several more control types: text boxes, group boxes, check boxes,
radio buttons, and picture boxes. Figure 2.1 shows the toolbox with the tools for
these controls labeled. Figure 2.2 shows some of these controls on a form.
 Each class of controls has its own set of properties. To see a complete list of
the properties for any class of control, you can (1) place a control on a form and
examine the properties list or (2) click on a tool or a control and press F1 for
context-sensitive Help. Visual Studio will display the Help page for that control,
and you can view a list of the properties and an explanation of their use.

 F i g u r e 2 . 1

 The toolbox showing the controls

that are covered in this chapter.

RichTextBox

TextBox

MaskedTextBox

CheckBox

RadioButton

GroupBox

Click to open
or close tab

Click to open
or close tab

PictureBox

 Text Boxes

 Use a text box control when you want the user to type some input. The form in
 Figure 2.2 has two text boxes. The user can move from one box to the next, make

bra17216_ch02_067-106.indd Page 68 7/21/08 8:02:45 PM user-s172bra17216_ch02_067-106.indd Page 68 7/21/08 8:02:45 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 69

corrections, cut and paste if desired, and click the Display button when finished.
In your program code, you can use the Text property of each text box.

 Example

 nameLabel.Text = nameTextBox.Text;

 In this example, whatever the user enters into the text box is assigned to
the Text property of nameLabel. If you want to display some text in a text box
during program execution, assign a literal to the Text property:

 messageTextBox.Text = "Watson, come here.";

 You can set the TextAlign property of text boxes to change the align-
ment of text within the box. In the Properties window, set the property to Left,
Right, or Center. In code, you can set the property using these values:

 HorizontalAlignment.Left
 HorizontalAlignment.Right
 HorizontalAlignment.Center

 messageTextBox.TextAlign = HorizontalAlignment.Left;

 Example Names for Text Boxes

 titleTextBox

companyNameTextBox

 F i g u r e 2 . 2

 This form uses labels, text

boxes, a check box, radio

buttons, group boxes, and a

picture box.
Text boxes

ButtonsPicture
box

Group
boxes

Radio
buttons

Labels

Check box

bra17216_ch02_067-106.indd Page 69 7/21/08 8:02:45 PM user-s172bra17216_ch02_067-106.indd Page 69 7/21/08 8:02:45 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

70 V I S U A L C# User Interface Design

 Masked Text Boxes

 A specialized form of the TextBox control is the MaskedTextBox . You can
specify the format (the Mask property) of the data required of the user. For
 example, you can select a mask for a ZIP code, a date, a phone number, or a
social security number. Figure 2.3 shows the Input Mask dialog box, where you
can select the mask and even try it out. At run time, the user cannot enter char-
acters that do not conform to the mask. For example, the phone number and
social security number masks do not allow input other than numeric digits.

 Example Names for Masked Text Boxes

 dateMaskedTextBox

phoneMaskedTextBox

 Note: For a date or time mask, the user can enter only numeric digits but
may possibly enter an invalid value; for example, a month or hour greater than
12. The mask will accept any numeric digits, which could possibly cause your
program to generate a run-time error. You will learn to check the input values
in Chapter 4.

 Rich Text Boxes

 Another variety of text box is the RichTextBox control, which offers several
formatting features (Figure 2.4). In a regular text box, all of the text is formatted

 F i g u r e 2 . 3

 Select a format for the input mask in the Input Mask dialog box, which supplies the Mask property of the MaskedTextBox

control.

bra17216_ch02_067-106.indd Page 70 7/21/08 8:02:45 PM user-s172bra17216_ch02_067-106.indd Page 70 7/21/08 8:02:45 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 71

the same, but in a rich text box, the user can apply character and paragraph
formatting to selected text, much like using a word processor.
 One common use for a rich text box is for displaying URL addresses. In
a regular text box, the address appears in the default font color, but the rich
text box displays it as a link when the DetectUrl property is set to true . Note
that it is not an active link, but it does have the formatting to show the URL
as an address.
 You also can load formatted text into a rich text box from a file stored
in rich text format (rtf). Use the LoadFile method of the rich text box. In
 Figure 2.4 , the file “Rich Text Boxes.rtf” is stored in the bin\debug
folder, but you could include the complete path to load a file from another
location.

 sampleRichTextBox.LoadFile("Rich Text Boxes.rtf");

 Displaying Text on Multiple Lines

 Both the regular text box and the rich text box have properties that allow you to
display text on multiple lines. The WordWrap property determines whether
the contents should wrap to a second line if they do not fit on a single line. The
property is set to true by default. Both controls also have a Multiline prop-
erty , which is set to false by default on a text box and true by default on a rich
text box. Both WordWrap and Multiline must be set to true for text to wrap to a
second line.
 For a regular text box, you must set Multiline to true and then adjust the
height to accommodate multiple lines. If Multiline is false (the default), a text
box does not have resizing handles for vertical resizing. Be aware that a text
box will not automatically resize to display multiple lines even though Multi-
line is true ; you must make the height tall enough to display the lines.

Contents of .rtf file

Automatically formatted URL

Regular text box

 F i g u r e 2 . 4

 Using a RichTextBox control

you can apply font styles to

selected text, show formatted

URLs, and display text from

a formatted .rtf file.

bra17216_ch02_067-106.indd Page 71 7/21/08 8:02:45 PM user-s172bra17216_ch02_067-106.indd Page 71 7/21/08 8:02:45 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

72 V I S U A L C# User Interface Design

 You can set the Text property of a multiline text box (or rich text box) to a
very long value; the value will wrap to fit in the width of the box. You also can
enter multiple lines and choose the location of the line breaks; the techniques
differ depending on whether you set the Text property at design time or in code.
At design time, click on the Text property in the Properties window and click
on the Properties button (the down arrow); a small editing window pops up with
instructions to press Enter at the end of each line and Ctrl + Enter to accept
the text (Figure 2.5). In code, you can use a NewLine character (Environment.
NewLine) in the text string where you want the line to break. Joining strings of
text is called concatenation and is covered in the section “Concatenating Text”
later in this chapter.

 titleRichTextBox.Text = " Pamper Yourself" +

 Environment.NewLine + "All Your Favorite Books";

 Group Boxes

 Group boxes are used as containers for other controls. Usually, groups of
radio buttons or check boxes are placed in group boxes. Using group boxes to
group controls can make your forms easier to understand by separating the
controls into logical groups. You can find the GroupBox control in the
 Containers tab of the toolbox.
 Set a group box’s Text property to the words you want to appear on the top
edge of the box.

Properties
button

Editor for entering the
Text property

 F i g u r e 2 . 5

 Click the Properties button for

the Text property and a small

editing box pops up. To enter

multiple lines of text, press Enter

at the end of each line and

Ctrl + Enter to accept the text.

bra17216_ch02_067-106.indd Page 72 7/21/08 8:02:46 PM user-s172bra17216_ch02_067-106.indd Page 72 7/21/08 8:02:46 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 73

 Example Names for Group Boxes

 colorGroupBox

styleGroupBox

 You only need to change the name of a group box if you plan to refer to it in
code. One reason to use it in code is to set the Enabled property of the group
box to false, which disables all of the controls inside the box.

 Check Boxes

 Check boxes allow the user to select (or deselect) an option. In any group of
check boxes, any number can be selected. The Checked property of a check
box is set to false if unchecked or true if checked.
 You can write an event handler for the CheckedChanged event, which ex-
ecutes when the user clicks in the box. In Chapter 4, when you learn about if
statements, you can take one action when the box is checked and another
 action when it is unchecked.
 Use the Text property of a check box for the text you want to appear next to
the box.

 Example Names for Check Boxes

 boldCheckBox

italicCheckBox

 Radio Buttons

 Use radio buttons when only one button of a group may be selected. Any radio
buttons that you place directly on the form (not in a group box) function as a
group. A group of radio buttons inside a group box function together. The best
method is to first create a group box and then create each radio button inside
the group box.
 When you need separate lists of radio buttons for different purposes, you
must include each list in a separate group box. You can find an example pro-
gram later in this chapter that demonstrates using two groups of radio but-
tons, one for setting the background color of the form and a second set for
selecting the color of the text on the form. See “Using Radio Buttons for
 Selecting Colors.”
 The Checked property of a radio button is set to true if selected or to
 false if unselected. You can write an event handler to execute when the user
selects a radio button using the control’s CheckedChanged event. In
 Chapter 4 you will learn to determine in your code whether or not a button
is selected.
 Set a radio button’s Text property to the text you want to appear next to the
button.

 Example Names for Radio Buttons

 yellowRadioButton

blueRadioButton

bra17216_ch02_067-106.indd Page 73 8/12/08 1:24:59 AM user-s208bra17216_ch02_067-106.indd Page 73 8/12/08 1:24:59 AM user-s208 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

74 V I S U A L C# User Interface Design

 Picture Boxes

 A PictureBox control can hold an image. You can set a picture box’s Image
property to a graphic file with an extension of .bmp, .gif, .jpg, .jpeg, .png, .ico,
.emf, or .wmf. You first add your images to the project’s resources; then you can
assign the resource to the Image property of a PictureBox control.
 Place a PictureBox control on a form and then select its Image property in
the Properties window. Click on the Properties button (Figure 2.6) to display a
 Select Resource dialog box, where you can select images that you have
 already added or add new images (Figure 2.7).

 F i g u r e 2 . 6

 Click on the Image property

for a PictureBox control, and

a Properties button appears.

Click on the Properties button

to view the Select Resource

dialog box.

Properties
button

 F i g u r e 2 . 7

 The Select Resource dialog

box. Make your selection here

for the graphic file you want

to appear in the PictureBox

control; click Import to add an

image to the list.

bra17216_ch02_067-106.indd Page 74 7/21/08 8:02:46 PM user-s172bra17216_ch02_067-106.indd Page 74 7/21/08 8:02:46 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 75

 Click on the Import button of the Select Resource dialog box to add images.
An Open dialog box appears (Figure 2.8), where you can navigate to your image
files. A preview of the image appears in the preview box.
 Note : To add files with an .ico extension, drop down the File Type list and
select All Files in the Open dialog box.
 You can use any graphic file (with the proper format) that you have avail-
able. You will find many graphic files in the StudentData\Images folder from
the textbook Web site: www.mhhe.com/csharp2008 .
 PictureBox controls have several useful properties that you can set at design
time or run time. For example, set the SizeMode property to StretchImage to
make the graphic resize to fill the control. You can set the Visible property to
 false to make the picture box disappear.
 For example, to make a picture box invisible at run time, use this code
statement:

 logoPictureBox.Visible = false;

 F i g u r e 2 . 8

 In the Open dialog box, you

can browse to find the image

file to add to the project

resources.

Drop down
File-type list

bra17216_ch02_067-106.indd Page 75 7/21/08 8:02:46 PM user-s172bra17216_ch02_067-106.indd Page 75 7/21/08 8:02:46 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

76 V I S U A L C# User Interface Design

Assigning an Image to a Picture Box
 To assign a graphic from the Resources folder at run time, you refer to the proj-
ect name (ChangePictures in the following example), the Resources folder in
the project’s properties, and the name of the graphic resource:

 samplePictureBox.Image = ChangePictures.Properties.Resources.Water_Lilies;

 Clearing a Picture Box
 Sometimes you may wish to keep the picture box visible but remove the pic-
ture. To accomplish this, set the Image property to null, which means empty.

 samplePictureBox.Image = null;

 Adding and Removing Resources
 In Figure 2.7 you saw the easiest way to add a new graphic to the Resources
folder, which you perform as you set the Image property of a PictureBox control.
You also can add, remove, and rename resources using the Visual Studio Proj-
ect Designer . From the Project menu, select ProjectName Properties (which al-
ways shows the name of the selected project). The Project Designer opens in the
main Document window; click on the Resources tab to display the project re-
sources (Figure 2.9). You can use the buttons at the top of the window to add
and remove images, or right-click an existing resource to rename or remove it.

 F i g u r e 2 . 9

 Click on the Resources tab of

the Project Designer to work

with project resources. You can

add, remove, and rename

resources on this page.

 Using Smart Tags

 You can use smart tags to set the most common properties of many controls.
When you add a PictureBox or a TextBox to a form, for example, you see a
small arrow in the upper-right corner of the control. Click on the arrow to open

bra17216_ch02_067-106.indd Page 76 7/21/08 8:02:46 PM user-s172bra17216_ch02_067-106.indd Page 76 7/21/08 8:02:46 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 77

the smart tag for that control (Figure 2.10). The smart tag shows a few proper-
ties that you can set from there, which is just a shortcut for making the changes
from the Properties window.

 Using Images for Forms and Controls

 You can use an image as the background of a form or a control. For a form, set
the BackgroundImage property to a graphic resource; also set the form’s Back-
groundImageLayout property to Tile , Center , Stretch , or Zoom .
 Controls such as buttons, check boxes, and radio buttons have an Image
property that you can set to a graphic from the project’s resources.

 Setting a Border and Style

 Most controls can appear to be three-dimensional or flat. Labels, text boxes,
and picture boxes all have a BorderStyle property with choices of None ,
 FixedSingle , or Fixed3D . Text boxes default to Fixed3D ; labels and picture boxes
default to None . Of course, you can change the property to the style of your
choice.

 F i g u r e 2 . 1 0

 Point to the smart tag arrow to

open the smart tag for a control.

For this PictureBox control, you

can set the Image, SizeMode,

and Dock properties in the

smart tag.
Popup
smart tag

Smart tag arrow

➤ Feedback 2.1
 Create a picture box control that displays an enlarged icon and appears in a 3D
box. Make up a name that conforms to this textbook’s naming conventions.

 Property Setting

 Name

 BorderStyle

 SizeMode

 Visible

bra17216_ch02_067-106.indd Page 77 7/21/08 8:02:47 PM user-s172bra17216_ch02_067-106.indd Page 77 7/21/08 8:02:47 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

78 V I S U A L C# User Interface Design

 Drawing a Line

 You can draw a line on a form by using the Label control. You may want to in-
clude lines when creating a logo or you may simply want to divide the screen
by drawing a line. To create the look of a line, set the AutoSize property of your
label to false , set the Text property to blank, change the BorderStyle to None ,
and change the Backcolor to the color you want for the line. You can control the
size of the line with the Width and Height properties, located beneath the Size
property.
 Another way to draw a line on a form is to use the LineShape control,
which you can download and install into Visual Studio. See “Downloading and
Using the Line and Shape Controls” later in this chapter.
 You also can draw a line on the form using the graphics methods. Drawing
graphics is covered in Chapter 13.

 Working with Multiple Controls

 You can select more than one control at a time, which means that you can move the
controls as a group, set similar properties for the group, and align the controls.

 Selecting Multiple Controls

 There are several methods of selecting multiple controls. If the controls are
near each other, the easiest technique is to use the mouse to drag a selection
box around the controls. Point to a spot that you want to be one corner of a box
surrounding the controls, press the mouse button, and drag to the opposite
corner (Figure 2.11). When you release the mouse button, the controls will all
be selected (Figure 2.12). Note that selected labels and check boxes with
 AutoSize set to true do not have resizing handles; other selected controls do
have resizing handles.
 You also can select multiple controls, one at a time. Click on one control to
select it, hold down the Ctrl key or the Shift key, and click on the next control.
You can keep the Ctrl or Shift key down and continue clicking on controls you
wish to select. Ctrl–click (or Shift–click) on a control a second time to deselect
it without changing the rest of the group.

Drag
to here

Start
here

 F i g u r e 2 . 1 1

 Use the pointer to drag a

selection box around the

controls you wish to select.

bra17216_ch02_067-106.indd Page 78 7/21/08 8:02:47 PM user-s172bra17216_ch02_067-106.indd Page 78 7/21/08 8:02:47 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 79

 When you want to select most of the controls on the form, use a combina-
tion of the two methods. Drag a selection box around all of the controls to select
them and then Ctrl–click on the ones you want to deselect. You also can select
all of the controls using the Select All option on the Edit menu or its keyboard
shortcut: Ctrl + A.

 Deselecting a Group of Controls

 When you are finished working with a group of controls, it’s easy to deselect
them. Just click anywhere on the form (not on a control) or select another previ-
ously unselected control.

 Moving Controls as a Group

 After selecting multiple controls, you can move them as a group. To do this,
point inside one of the selected controls, press the mouse button, and drag the
entire group to a new location (Figure 2.13).

Resizing
handlesSelection

handles

 F i g u r e 2 . 1 2

 When multiple controls are

selected, each has resizing

handles (if resizable).

 M ake sure to read Appendix C for
tips and shortcuts for working with
controls. ■

 TIP

 F i g u r e 2 . 1 3

 Drag a group of selected

controls to move the entire

group to a new location.

bra17216_ch02_067-106.indd Page 79 7/21/08 8:02:47 PM user-s172bra17216_ch02_067-106.indd Page 79 7/21/08 8:02:47 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

80 V I S U A L C# User Interface Design

 Setting Properties for Multiple Controls

 You can set some common properties for groups of controls. After selecting the
group, look at the Properties window. Any properties that appear in the window
are shared by all of the controls and can be changed all at once. For example,
you may want to set the BorderStyle property for a group of controls to three-
dimensional or change the font used for a group of labels. Some properties
 appear empty; even though those properties are common to all the selected
controls, they do not share a common value. You can enter a new value that will
apply to all selected controls.

 Aligning Controls

 After you select a group of controls, it is easy to resize and align them using the
buttons on the Layout toolbar (Figure 2.14) or the corresponding items on the
 Format menu. Select your group of controls and choose any of the resizing but-
tons. These can make the controls equal in width, height, or both. Then select
another button to align the tops, bottoms, or centers of the controls. You also
can move the entire group to a new location.
 Note: The alignment options align the group of controls to the control that
is active (indicated by white sizing handles). Referring to Figure 2.13 , the
lower text box is the active control. To make another selected control the active
control, simply click on it.
 To set the spacing between controls, use the buttons for horizontal and/or
vertical spacing. These buttons enable you to create equal spacing between
controls or to increase or decrease the space between controls.
 Note: If the Layout toolbar is not displaying, select View / Toolbars / Layout .

 S etting the font for the form changes
the default font for all controls on
the form. ■

 TIP

 F i g u r e 2 . 1 4

 Resize and align multiple controls using the Layout toolbar.

Tab Order

M
erge Cells

Send To Back

Bring To Front

Center Vertically

Center H
orizontally

Rem
ove Vertical Spacing

Decrease Vertical Spacing

Increase Vertical Spacing

M
ake Vertical Spacing Equal

Rem
ove H

orizontal Spacing

Decrease H
orizontal Spacing

Increase H
orizontal Spacing

M
ake H

orizontal Spacing Equal

Size To Grid

M
ake Sam

e Size

M
ake Sam

e H
eight

M
ake Sam

e W
idth

Align Bottom
s

Align M
iddles

Align Tops

Align Rights

Align Centers

Align Lefts

Align to Grid

 Designing Your Applications for User Convenience

 One of the goals of good programming is to create programs that are easy to
use. Your user interface should be clear and consistent. One school of thought
says that if users misuse a program, it’s the fault of the programmer, not the us-
ers. Because most of your users will already know how to operate Windows
programs, you should strive to make your programs look and behave like other
Windows programs. Some of the ways to accomplish this are to make the

bra17216_ch02_067-106.indd Page 80 7/21/08 8:02:47 PM user-s172bra17216_ch02_067-106.indd Page 80 7/21/08 8:02:47 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 81

 controls operate in the standard way, define keyboard access keys, set an
 Accept button, and make the Tab key work correctly. You also can define
ToolTips, which are those small labels that pop up when the user pauses the
mouse pointer over a control.

 Designing the User Interface

 The design of the screen should be easy to understand and “comfortable” for
the user. The best way that we can accomplish these goals is to follow industry
standards for the color, size, and placement of controls. Once users become
accustomed to a screen design, they will expect (and feel more familiar with)
applications that follow the same design criteria.
 You should design your applications to match other Windows applications.
Microsoft has done extensive program testing with users of different ages, gen-
ders, nationalities, and disabilities. We should take advantage of this research
and follow their guidelines. Take some time to examine the screens and dialog
boxes in Microsoft Office as well as those in Visual Studio.
 One recommendation about interface design concerns color. You have
probably noticed that Windows applications are predominantly gray. A reason
for this choice is that many people are color blind. Also, research shows that
gray is easiest for the majority of users. Although you may personally prefer
brighter colors, you will stick with gray, or the system palette the user chooses,
if you want your applications to look professional.
 Note: By default the BackColor property of forms and controls is set to
 Control , which is a color included in the operating system’s palette. If the user
changes the system theme or color, your forms and controls will conform to
their settings.
 Colors can indicate to the user what is expected. Use a white background
for text boxes to indicate that the user should input information. Use a gray
background for labels, which the user cannot change. Labels that will display
a message should have a border around them; labels that provide text on the
screen should have no border (the default).
 Group your controls on the form to aid the user. A good practice is to create
group boxes to hold related items, especially those controls that require user
input. This visual aid helps the user understand the information that is being
presented or requested.
 Use a sans serif font on your forms, such as the default MS Sans Serif, and
do not make them boldface. Limit large font sizes to a few items, such as the
company name.

 Defining Keyboard Access Keys

 Many people prefer to use the keyboard, rather than a mouse, for most opera-
tions. Windows is set up so that most functions can be done with either the
keyboard or a mouse. You can make your projects respond to the keyboard by
defining access keys , also called hot keys . For example, in Figure 2.15 you
can select the OK button with Alt + o and the Exit button with Alt + x.
 You can set access keys for buttons, radio buttons, and check boxes when
you define their Text properties. Type an ampersand (&) in front of the charac-
ter you want for the access key; Visual Studio underlines the character. You

bra17216_ch02_067-106.indd Page 81 8/12/08 1:25:03 AM user-s208bra17216_ch02_067-106.indd Page 81 8/12/08 1:25:03 AM user-s208 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

82 V I S U A L C# User Interface Design

also can set an access key for a label; see “Setting the Tab Order for Controls”
later in this chapter.
 For examples of access keys on buttons, type the following for the button’s
Text property:

 &OK for OK
 E&xit for Exit

 When you define access keys, you need to watch for several pitfalls. First,
try to use the Windows standard keys whenever possible. For example, use the
x of Exit and the S of Save. Second, make sure you don’t give two controls the
same access key. It confuses the user and doesn’t work correctly. Only the next
control (from the currently active control) in the tab sequence is activated when
the user presses the access key.
 Note : To view the access keys on controls or menus in Windows 2000, Win-
dows XP, or Windows Vista, you may have to press the Alt key, depending on
your system settings. You can set Windows Vista to always show underlined
shortcuts in the Control Panel’s Ease of Access Center . Select Change how your
keyboard works and check the box for Underline keyboard shortcuts and access keys
in the Make the keyboard easier to use dialog .

 Setting the Accept and Cancel Buttons

 Are you a keyboard user? If so, do you mind having to pick up the mouse and
click a button after typing text into a text box? Once a person’s fingers are on
the keyboard, most people prefer to press the Enter key, rather than to click the
mouse. If one of the buttons on the form is the Accept button, pressing Enter is
the same as clicking the button.
 You can make one of your buttons the Accept button by setting the
 AcceptButton property of the form to the button name. The Accept button
is visually indicated to the user by a thicker border (in default color scheme,
it’s black) around the button. When the user presses the Enter key, that button
is automatically selected.
 You also can select a Cancel button. The Cancel button is the button that
is selected when the user presses the Esc key. You can make a button the

 U se two ampersands when you
want to make an ampersand appear
in the Text property: &Health &&
Welfare for “Health & Welfare”. ■

 TIP

 F i g u r e 2 . 1 5

 The underlined character

defines an access key. The user

can select the OK button by

pressing Alt + x and the Exit
 button with Alt + o.

bra17216_ch02_067-106.indd Page 82 8/12/08 1:25:09 AM user-s208bra17216_ch02_067-106.indd Page 82 8/12/08 1:25:09 AM user-s208 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 83

Cancel button by setting the form’s CancelButton property . An example of
a good time to set the CancelButton property is on a form with OK and Cancel
buttons. You may want to set the form’s AcceptButton to okButton and the
CancelButton property to cancelButton.

 Setting the Tab Order for Controls

 In Windows programs, one control on the form always has the focus . You can
see the focus change as you tab from control to control. For many controls,
such as buttons, the focus appears as a thick border. Other controls indicate
the focus by a dotted line or a shaded background. For text boxes, the insertion
point (also called the cursor) appears inside the box.
 Some controls can receive the focus; others cannot. For example, text boxes
and buttons can receive the focus, but labels and picture boxes cannot.

 The Tab Order
 Two properties determine whether the focus stops on a control and the order in
which the focus moves. Controls that are capable of receiving focus have a
 TabStop property , which you can set to true or false . If you do not want the
focus to stop on a control when the user presses the Tab key, set the TabStop
property to false .
 The TabIndex property determines the order the focus moves as the Tab
key is pressed. As you create controls on your form, Visual Studio assigns the
TabIndex property in sequence. Most of the time that order is correct, but if
you want to tab in some other sequence or if you add controls later, you will
need to modify the TabIndex properties of your controls.
 When your program begins running, the focus is on the control with the
lowest TabIndex (usually 0). Since you generally want the insertion point to
appear in the first control on the form, its TabIndex should be set to 0. The next
control should be set to 1; the next to 2; and so forth.
 You may be puzzled by the properties of labels, which have a TabIndex prop-
erty but not a TabStop. A label cannot receive focus, but it has a location in the
tab sequence. This fact allows you to create keyboard access keys for text boxes.
When the user types an access key that is in a label, such as Alt + N, the focus
jumps to the first TabIndex following the label (the text box). See Figure 2.16 .

 F i g u r e 2 . 1 6

 To use a keyboard access key

for a text box, the TabIndex of

the label must precede the

TabIndex of the text box.
TabIndex�1

TabIndex�3

TabIndex�4

TabIndex�5

TabIndex�0

TabIndex�2

bra17216_ch02_067-106.indd Page 83 7/21/08 8:02:48 PM user-s172bra17216_ch02_067-106.indd Page 83 7/21/08 8:02:48 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

84 V I S U A L C# User Interface Design

 When you have finished setting the TabIndex for all controls, the white
numbered boxes change to blue. Select View / Tab Order again to hide the
 sequence numbers or press the Esc key. If you make a mistake and want
to change the tab order, turn the option off and on again, and start over with
TabIndex zero again, or you can keep clicking on the control until the number
wraps around to the desired value.

 Setting the Form’s Location on the Screen

 When your project runs, the form appears in the upper-left corner of the screen
by default. You can set the form’s screen position by setting the StartPosition
property of the form. Figure 2.18 shows your choices for the property setting.
To center your form on the user’s screen, set the StartPosition property to
 CenterScreen .

 By default, buttons, text boxes, and radio buttons have their TabStop prop-
erty set to true. Be aware that the behavior of radio buttons in the tab sequence
is different from other controls: The Tab key takes you only to one radio button
in a group (the selected button), even though all buttons in the group have their
TabStop and TabIndex properties set. If you are using the keyboard to select
radio buttons, you must tab to the group and then use your Up and Down arrow
keys to select the correct button.

 Setting the Tab Order
 To set the tab order for controls, you can set each control’s TabIndex property in
the Properties window. Or you can use Visual Studio’s great feature that helps
you set TabIndexes automatically. To use this feature, make sure that the Design
window is active and select View / Tab Order or click the Tab Order button on the
Layout toolbar. (The Tab Order item does not appear on the menu and is not avail-
able on the Layout toolbar unless the Design window is active.) Small numbers
appear in the upper-left corner of each control; these are the current TabIndex
properties of the controls. Click first in the control that you want to be TabIndex
zero, then click on the control for TabIndex one, and then click on the next con-
trol until you have set the TabIndex for all controls (Figure 2.17).

 To set the tab order for a group of
controls, first set the TabIndex prop-
erty for the group box and then set
the TabIndex for controls inside the
group. ■

 TIP

 F i g u r e 2 . 1 7

 Click on each control, in

sequence, to set the TabIndex

property of the controls

automatically.

 M ake sure to not have duplicate
numbers for the TabIndex properties
or duplicate keyboard access keys.
The result varies depending on the
location of the focus and is very
confusing. ■

 TIP

bra17216_ch02_067-106.indd Page 84 7/21/08 8:02:48 PM user-s172bra17216_ch02_067-106.indd Page 84 7/21/08 8:02:48 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 85

 Creating ToolTips

 If you are a Windows user, you probably appreciate and rely on ToolTips ,
those small labels that pop up when you pause your mouse pointer over a tool-
bar button or control. You can easily add ToolTips to your projects by adding a
 ToolTip component to a form. After you add the component to your form,
each of the form’s controls has a new property: ToolTip on toolTip1 , assum-
ing that you keep the default name, toolTip1, for the control.
 To define ToolTips, select the ToolTip tool from the toolbox (Figure 2.19)
and click anywhere on the form or double-click the ToolTip tool in the toolbox.
The new control appears in the component tray that opens at the bottom of the
Form Designer (Figure 2.20). The component tray holds controls that do not
have a visual representation at run time. You will see more controls that use the
component tray later in this text.

 F i g u r e 2 . 1 8

 Set the StartPosition property

of the form to CenterScreen to

make the form appear in the

center of the user’s screen when

the program runs.

 F i g u r e 2 . 1 9

 Add a ToolTip component to

your form; each of the form’s

controls will have a new

property to hold the text of

the ToolTip.

 After you add the ToolTip component, examine the properties list for
other controls on the form, such as buttons, text boxes, labels, radio buttons,
check boxes, and even the form itself. Each has a new ToolTip on toolTip1
property.
 Try this example: Add a button to any form and add a ToolTip compo-
nent. Change the button’s Text property to Exit and set its ToolTip on toolTip1
property to Close and Exit the program . Now run the project, point to the Exit
button, and pause; the ToolTip will appear (Figure 2.21).
 You also can add multiline ToolTips. In the ToolTip on ToolTip1 property,
click the drop-down arrow. This drops down a white editing box in which you
enter the text of the ToolTip. Type the first line and press Enter to create a

bra17216_ch02_067-106.indd Page 85 7/21/08 8:02:49 PM user-s172bra17216_ch02_067-106.indd Page 85 7/21/08 8:02:49 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

86 V I S U A L C# User Interface Design

 second line; press Ctrl + Enter to accept the text (or click somewhere outside
the Property window).
 You can modify the appearance of a ToolTip by setting properties of the
ToolTip component. Select the ToolTip component in the component tray and
try changing the BackColor and ForeColor properties. You also can set the
 IsBalloon property to true for a different appearance and include an icon in the
ToolTips by selecting an icon for the ToolTipIcon property (Figure 2.22). Once
you set properties for a ToolTip component, they apply to all ToolTips displayed
with that component. If you want to create a variety of appearances, the best

 F i g u r e 2 . 2 0

 The new ToolTip component

goes in the component tray

at the bottom of the Form

Designer window.

 F i g u r e 2 . 2 1

 Use the ToolTip on toolTip1

property to define a ToolTip.

bra17216_ch02_067-106.indd Page 86 7/21/08 8:02:49 PM user-s172bra17216_ch02_067-106.indd Page 86 7/21/08 8:02:49 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 87

approach is to create multiple ToolTip components, giving each a unique name.
For example, you might create three ToolTip components, in which case you
would have properties for ToolTip on toolTip1, ToolTip on toolTip2, and ToolTip
on toolTip3 for the form and each control.

 F i g u r e 2 . 2 2

 A ToolTip with properties

modified for IsBalloon,

ToolTipIcon, BackColor, and

ForeColor.

 Coding for the Controls

 You already know how to set initial properties for controls at design time. You
also may want to set some properties in code, as your project executes. You can
clear out the contents of text boxes and labels; reset the focus (the active con-
trol); change the color of text, or change the text in a ToolTip.

 Clearing Text Boxes and Labels

 You can clear out the contents of a text box or label by setting the property
to an empty string . Use "" (no space between the two quotation marks).
This empty string is also called a null string or zero-length string . You also
can clear out a text box using the Clear method or setting the Text property
to string.Empty . Note that the Clear method works for text boxes but not
for labels.

 Examples

 // Clear the contents of text boxes and labels.

nameTextBox.Text = "";

messageLabel.Text = "";

dataTextBox.Clear();

messageLabel.Text = string.Empty;

bra17216_ch02_067-106.indd Page 87 7/21/08 8:02:49 PM user-s172bra17216_ch02_067-106.indd Page 87 7/21/08 8:02:49 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

88 V I S U A L C# User Interface Design

 Resetting the Focus

 As your program runs, you want the insertion point to appear in the text box
where the user is expected to type. The focus should therefore begin in the first
text box. But what about later? If you clear the form’s text boxes, you should
reset the focus to the first text box. The Focus method handles this situation.
Remember, the convention is Object.Method, so the statement to set the inser-
tion point in the text box called nameTextBox is as follows:

 // Make the insertion point appear in this text box.

nameTextBox.Focus();

 Note: You cannot set the focus to a control that has been disabled. See
“Disabling Controls” later in the text.

 Setting the Checked Property of Radio Buttons
and Check Boxes

 Of course, the purpose of radio buttons and check boxes is to allow the user to
make selections. However, at times you need to select or deselect a control in
code. You can select or deselect radio buttons and check boxes at design time
(to set initial status) or at run time (to respond to an event).
 To make a radio button or check box appear selected initially, set its
Checked property to true in the Properties window. In code, assign true to its
Checked property:

 // Make button selected.

redRadioButton.Checked = true;

// Make box checked.

displayCheckBox.Checked = true;

// Make box unchecked.

displayCheckBox.Checked = false;

 At times, you need to reset the selected radio button at run time, usually
for a second request. You only need to set the Checked property to true for
one button of the group; the rest of the buttons in the group will set to false
automatically. Recall that only one radio button of a group can be selected at
one time.

 Setting Visibility at Run Time

 You can set the visibility of a control at run time.

 // Make label invisible.

messageLabel.Visible = false;

 You may want the visibility of a control to depend on the selection a user
makes in a check box or radio button. This statement makes the visibility

bra17216_ch02_067-106.indd Page 88 7/21/08 8:02:49 PM user-s172bra17216_ch02_067-106.indd Page 88 7/21/08 8:02:49 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 89

match the check box: When the check box is checked (Checked = true), the
label is visible (Visible = true).

 // Make the visibility of the label match the setting in the check box.

messageLabel.Visible = displayCheckBox.Checked;

 Disabling Controls

 The Enabled property of a control determines whether the control is avail-
able or “grayed out.” The Enabled property for controls is set to true by default,
but you can change the value at either design time or run time. You might want
to disable a button or other control initially and enable it in code, depending on
an action of the user. If you disable a button control (Enabled = false) at design
time, you can use the following code to enable the button at run time.

 displayButton.Enabled = true;

 When you have a choice to disable or hide a control, it’s usually best to
disable it. Having a control disabled is more understandable to a user than
having it disappear.
 To disable radio buttons, consider disabling the group box holding the but-
tons, rather than the buttons themselves. Disabling the group box grays all of
the controls in the group box.

 departmentGroupBox.Enabled = false;

 Note: Even though the control has the TabStop property set to true and
the TabIndex is in the proper order, you cannot tab to a control that has
been disabled.

 Setting Properties Based on User Actions

 Often you need to change the Enabled or Visible property of a control based on
an action of the user. For example, you may have controls that are disabled or
invisible until the user signs in. In the following example, when the user logs in
and clicks the Sign In button, a rich text box becomes visible and the radio but-
tons are enabled:

 private void signInButton_Click(object sender, EventArgs e)

{

 // Set visibility and enable controls.

 welcomeRichTextBox.Visible = true;

 clothingRadioButton.Enabled = true;

 equipmentRadioButton.Enabled = true;

 juiceBarRadioButton.Enabled = true;

 membershipRadioButton.Enabled = true;

 personalTrainingRadioButton.Enabled = true;

}

bra17216_ch02_067-106.indd Page 89 7/21/08 8:02:49 PM user-s172bra17216_ch02_067-106.indd Page 89 7/21/08 8:02:49 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

90 V I S U A L C# User Interface Design

➤ Feedback 2.2
 1. Write the statements to clear the text box called companyTextBox and

reset the insertion point into the box.
 2. Write the statements to clear the label called customerLabel and place

the insertion point into a text box called orderTextBox.
 3. What will be the effect of each of these C# statements?

 (a) printCheckBox.Checked = true;
 (b) colorRadioButton.Checked = true;
 (c) drawingPictureBox.Visible = false;
 (d) locationLabel.BorderStyle = BorderStyle.Fixed3D;
 (e) cityLabel.Text = cityTextBox.Text;
 (f) redRadioButton.Enabled = true;

 Changing the Color of Text

 You can change the color of text by changing the ForeColor property of a
control. Actually, most controls have a ForeColor and a BackColor property.
The ForeColor property changes the color of the text; the BackColor property
determines the color around the text.

 The Color Constants
 C# provides an easy way to specify a large number of colors. These color
constants are in the Color class. If you type the keyword Color and a
 period in the editor, you can see a full list of colors. Some of the colors are
listed below.

 Color.AliceBlue

Color.AntiqueWhite

Color.Bisque

Color.BlanchedAlmond

Color.Blue

 Examples

 nameTextBox.ForeColor = Color.Red;

messageLabel.ForeColor = Color.White;

 Using Radio Buttons for Selecting Colors
 Here is a small example (Figure 2.23) that demonstrates using two groups of
radio buttons to change the color of the form (the form’s BackColor property)
and the color of the text (the form’s ForeColor property). The radio buttons
in each group box operate together, independently from those in the other
group box.

bra17216_ch02_067-106.indd Page 90 7/21/08 8:02:49 PM user-s172bra17216_ch02_067-106.indd Page 90 7/21/08 8:02:49 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 91

 /* Project: Ch02RadioButtons

 * Programmer: Bradley/Millspaugh

 * Date: Jan 2009

 * Description: This project demonstrates changing a form’s background

 * and foreground colors using two groups of radio buttons.

 */

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

namespace Ch02RadioButtons

{

 public partial class ColorsForm : Form

 {

 public ColorsForm()

 {

 InitializeComponent();

 }

 private void beigeRadioButton_CheckedChanged(object sender,

 EventArgs e)

 {

 // Set the form color to beige.

 this.BackColor = Color.Beige;

 }

 private void blueRadioButton_CheckedChanged(object sender,

 EventArgs e)

 {

 // Set the form color to light blue.

 this.BackColor = Color.LightBlue;

 }

 F i g u r e 2 . 2 3

 The radio buttons in each group box function independently from the other group. Each button changes a property of the

form: BackColor to change the background of the form itself or ForeColor to change the color of the text on the form.

One group of
radio buttons

Another group
of radio buttons Button control with

the Image property
set

bra17216_ch02_067-106.indd Page 91 7/21/08 8:02:50 PM user-s172bra17216_ch02_067-106.indd Page 91 7/21/08 8:02:50 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

92 V I S U A L C# User Interface Design

 private void yellowRadioButton_CheckedChanged(object sender,

 EventArgs e)

 {

 // Set the form color to yellow.

 this.BackColor = Color.LightGoldenrodYellow;

 }

 private void grayRadioButton_CheckedChanged(object sender,

 EventArgs e)

 {

 // Set the form color to the default color.

 this.BackColor = SystemColors.Control;

 }

 private void blackRadioButton_CheckedChanged(object sender,

 EventArgs e)

 {

 // Set the Text color to black.

 this.ForeColor = Color.Black;

 }

 private void whiteRadioButton_CheckedChanged(object sender,

 EventArgs e)

 {

 // Set the Text color to white.

 this.ForeColor = Color.White;

 }

 private void exitButton_Click(object sender, EventArgs e)

 {

 // End the project.

 this.Close();

 }

 }

}

 Concatenating Text

 At times you need to join strings of text. For example, you may want to join a literal
and a property. You can “tack” one string of characters to the end of another in the
process called concatenation . Use a plus sign (+) between the two strings.

 Examples

 messageLabel.Text = "Your name is: " + nameTextBox.Text;

nameAndAddressLabel.Text = nameTextBox.Text + " " + addressTextBox.Text;

 You also can concatenate a NewLine character (Environment.NewLine) into
a long line to set up multiple lines:

 welcomeRichTextBox.Text = "Welcome Member #" + memberIDMaskedTextBox.Text

 + Environment.NewLine + nameTextBox.Text;

bra17216_ch02_067-106.indd Page 92 7/21/08 8:02:50 PM user-s172bra17216_ch02_067-106.indd Page 92 7/21/08 8:02:50 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 93

 Downloading and Using the Line and Shape Controls

 You can add graphic shapes to your forms using a set of controls that Microsoft
makes available in a PowerPack, which is a separate and free download. After
you download the PowerPack, you run the installation file, which installs the
controls into Visual Studio. Once installed, you can add the controls to the
 Visual Studio toolbox. Note that although the set of controls is called Visual
Basic PowerPacks, the controls work just fine in C# and are a great new addi-
tion for creating Windows Forms applications.

 Download and Install the Controls
 The first step is to download from Microsoft’s site, msdn2.microsoft.com/en-us/
vbasic/bb735936.aspx , and follow the links to download.
 It’s best to download the file VisualBasicPowerPacks3Setup.exe to your
hard drive (save it somewhere easy to find, such as the Desktop). After the
download is complete, make sure that Visual Studio is not running and double-
click the setup filename to run the setup.
 If you are using the Professional Edition or above and Visual Studio is
closed, the new tools are automatically added to a new section of the toolbox.
You can find the new section, called Visual Basic Power Packs 3.0, at the bot-
tom of the toolbox (Figure 2.24).
 For the Express Edition, or the Professional Edition if the IDE was open when
you ran setup, you must manually add the controls to the toolbox. Open Visual
Studio or Visual C# Express and start a new project so that you can see the
Form Designer and the toolbox. Right-click in the toolbox and select Add Tab .
Type “Visual Basic Power Packs 3.0” as the Tab name, then right-click on the

 F i g u r e 2 . 2 4

 The Line, Shape, and PrintForm controls in the toolbox, with some sample controls on the form.

bra17216_ch02_067-106.indd Page 93 8/12/08 1:52:06 AM user-s208bra17216_ch02_067-106.indd Page 93 8/12/08 1:52:06 AM user-s208 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

94 V I S U A L C# User Interface Design

new tab, and select Choose Items from the context menu. The Choose Toolbox Items
dialog box appears with the list of all available tools. You can save some time by
typing “Power” in the Filter box, which will limit the list to the PowerPack con-
trols. Then select LineShape , OvalShape , RectangleShape , and PrintForm . If you
have multiple versions of the controls listed, choose the highest version number
(9.0.0.0 as of this writing). Then click OK to return to the toolbox. The new tools
should appear in the Visual Basic PowerPacks 3.0 tab of the toolbox.
 Note : The controls appear in the section of the toolbox that is active when
you select Choose Toolbox Items .

 Place the Controls on a Form
 To place a control on the form, click on the tool in the toolbox and use the
mouse pointer to draw the shape that you want on the form. Alternately, you
can double-click one of the tools to create a default size control that you can
move and resize as desired.
 The Line and Shape controls have many properties that you can set, as well as
events, such as Click and DoubleClick, for which you can write event handlers.
 Properties of a Line include BorderStyle (Solid , Dot , Dash , and a few more),
BorderWidth (the width of the line, in pixels), BorderColor, and the locations
for the two endpoints of the line (X1, X2, X3, X4). Of course, you can move
and resize the line visually, but it sometimes is more precise to set the pixel
location exactly.
 The properties of the Shape controls are more interesting. You can set
transparency with the BackStyle property and the border with BorderColor,
BorderStyle, and BorderWidth. Set the interior of the shape using FillColor,
FillGradientColor, FillGradientStyle, and FillStyle. You can make a rectangle
have rounded corners by setting the CornerRadius, which defaults to zero for
square corners.

 Printing a Form

 Would you like to print an image of a form while the application is running?
You can use the new PrintForm component that you added to the toolbox in the
preceding section (refer to Figure 2.24). When you add the PrintForm compo-
nent to your form, it appears in the component tray, as it has no visual repre-
sentation on the form. Note that this is similar to the ToolTip component that
you used earlier in this chapter.
 You can choose to send the printer output to the printer or to the Print Pre-
view window, which saves paper while you are testing your program.
 To add printing to a Windows Form, add a PrintForm component and a
 Print button to the form so that the user can select the print option. You can
leave the default name of the component as printForm1 and change the name
of the button to printButton. In the printButton_Click event handler, use the
PrintForm’s Print method to send the form to the printer:

// Print the form on the printer.

printForm1.Print();

 To send the output to the Print Preview window, set the PrintForm’s Print-
Action property before executing the Print method. Allow IntelliSense to help
you select the PrintAction property.

bra17216_ch02_067-106.indd Page 94 7/21/08 8:02:50 PM user-s172bra17216_ch02_067-106.indd Page 94 7/21/08 8:02:50 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 95

 // Print to the Print Preview window.

printForm1.PrintAction = System.Drawing.Printing.PrintAction.PrintToPreview;

printForm1.Print();

 Your Hands-On Programming Example

 Create a login for members to view specials for Look Sharp Fitness Center. The
member name is entered in a text box and the member ID in a masked text box
that allows five numeric digits. Include three buttons, one for Sign In, one for
Print, and one for Exit. Set the AcceptButton to the Sign In button and use the
 E xit button for the CancelButton. Include keyboard shortcuts as needed.
 Use a group box of radio buttons for each of the departments; the buttons
should be disabled when the program begins.
 A check box allows the user to choose whether an image should display for
the selected department. You will need an image to display for each depart-
ment. You can use any images that you have available, find them on the Web,
or use images from the StudentData\Images folder.
 Place a line below the company name.
 When the user clicks on the Sign In button, the data entry boxes and labels
should disappear, the promotions box should appear, and the radio buttons
should be enabled. The special for the selected department displays in a rich
text box concatenated to the member name.
 Add a ToolTip to the member ID text box that says, “Your 5 digit member
number.”
 Allow the user to print the form to the Print Preview window.

 Planning the Project
 Sketch a form (Figure 2.25), which your users sign off as meeting their needs.

 F i g u r e 2 . 2 5

 A planning sketch of the form for the hands-on programming example.

imageVisibleCheckBox

Look Sharp Fitness Center

Department

label1

lineShape1

nameTextBox

welcomeRichTextBox

promotionsTextBox

signInButton

exitButton

printButton

memberIDMaskedTextBox

memberIDLabel

nameLabelClothing

Equipment/Accessories

Juice Bar

Membership

Personal Training

Name

Member ID

Sign In

Exit

Print

groupBox1

clothingRadioButton

equipmentRadioButton

juiceBarRadioButton

membershipRadioButton

personalTrainingRadioButton

departmentPictureBox

Image Visible

bra17216_ch02_067-106.indd Page 95 7/21/08 8:02:50 PM user-s172bra17216_ch02_067-106.indd Page 95 7/21/08 8:02:50 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

96 V I S U A L C# User Interface Design

 Plan the Objects and Properties
 Plan the property settings for the form and for each control.

 Object Property Setting

 PromotionForm Name PromotionForm
 Text blank
 AcceptButton signInButton
 CancelButton exitButton
 StartPosition CenterScreen

 label1 Text Look Sharp Fitness Center Hint: Do not change the
 name of labels not
 referenced in code.

 ForeColor Select a shade of blue
 Font.Size 14 Point

 lineShape1 BorderColor Select a shade of blue
 BorderWidth 5

 nameLabel Text &Name

 nameTextBox Name nameTextBox
 Text (blank)

 memberIDLabel Text Member &ID

 memberIDMaskedTextBox Name memberIDMaskedTextBox
 Mask 00000
 Text (blank)
 ToolTip on toolTip1 Your 5 digit member number.

 groupBox1 Text Department

 clothingRadioButton Name clothingRadioButton
 Enabled false
 Text &Clothing

 equipmentRadioButton Name equipmentRadioButton
 Enabled false
 Text &Equipment/Accessories

 juiceBarRadioButton Name juiceBarRadioButton
 Enabled false
 Text &Juice Bar

 membershipRadioButton Name membershipRadioButton
 Enabled false
 Text &Membership

 personalTrainingRadioButton Name personalTrainingRadioButton
 Enabled false
 Text Personal &Training

 departmentPictureBox Image (none)
 Visible false

 imageVisibleCheckBox Name imageVisibleCheckBox
 Text Image &Visible
 Visible false
 Checked false

bra17216_ch02_067-106.indd Page 96 7/21/08 8:02:50 PM user-s172bra17216_ch02_067-106.indd Page 96 7/21/08 8:02:50 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 97

 welcomeRichTextBox Text welcomeRichTextBox
 Multiline true
 Visible false

 promotionsTextBox Name promotionsTextBox
 BorderStyle FixedSingle
 TabStop false
 Visible false

 signInButton Name signInButton
 Text &Sign In

 printButton Name printButton
 Text &Print

 exitButton Name exitButton
 Text E&xit

 Plan the Event-Handling Methods You will need event handlers for each
 button, radio button, and check box.

 Method Actions—Pseudocode

 signInButton_Click Display a welcome in the welcomeRichTextBox concatenating the member
 name and number.
 Set the sign-in controls Visible � false.
 Set the promotions and welcome Visible � true.
 Display the image and the image visible check box.
 Enable the radio buttons.

 printButton_Click Set the PrintAction to PrintToPreview.
 Print the form.

 exitButton_Click End the project.

 clothingRadioButton_CheckedChanged Set the image and promotion for the clothing department.

 equipmentRadioButton_CheckedChanged Set the image and promotion for the equipment department.

 juiceBarRadioButton_CheckedChanged Set the image and promotion for the juice bar.

 membershipRadioButton_CheckedChanged Set the image and promotion for the membership department.

 personalTrainingRadioButton_CheckedChanged Set the image and promotion for the personal training department.

 imageVisibleCheckBox_CheckedChanged Make picture box visibility match that of check box.

 Write the Project Follow the sketch in Figure 2.25 to create the form. Figure
2.26 shows the completed form.

 • Set the properties of each object, as you have planned. Make sure to set the
tab order of the controls.

 • Working from the pseudocode, write each event-handling method.

 • When you complete the code, thoroughly test the project. Make sure to
select every department, with the image check box both selected and not
selected.

bra17216_ch02_067-106.indd Page 97 7/21/08 8:02:51 PM user-s172bra17216_ch02_067-106.indd Page 97 7/21/08 8:02:51 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

98 V I S U A L C# User Interface Design

 F i g u r e 2 . 2 6

 The form for the hands-on

programming example.

 The Project Coding Solution

 /*

 * Project: Ch02HandsOn

 * Programmer: Bradley/Millspaugh

 * Date: Jan 2009

 * Description: Allow the user to sign in and display

 * current sales promotions.

 */

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

namespace Ch02HandsOn

{

 public partial class PromotionForm : Form

 {

 public PromotionForm()

 {

 InitializeComponent();

 }

 private void signInButton_Click(object sender, EventArgs e)

 {

 // Display the specials, set the visibility of the controls.

 welcomeRichTextBox.Text = "Welcome Member #"

 + memberIDMaskedTextBox.Text

 + Environment.NewLine + nameTextBox.Text;

bra17216_ch02_067-106.indd Page 98 7/21/08 8:02:51 PM user-s172bra17216_ch02_067-106.indd Page 98 7/21/08 8:02:51 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 99

 // Set visibility properties.

 memberIDLabel.Visible = false;

 memberIDMaskedTextBox.Visible = false;

 nameLabel.Visible = false;

 nameTextBox.Visible = false;

 welcomeRichTextBox.Visible = true;

 promotionsTextBox.Visible = true;

 imageVisibleCheckBox.Visible = true;

 departmentPictureBox.Visible = true;

 // Enable the radio buttons.

 departmentGroupBox.Enabled = true;

 }

 private void printButton_Click(object sender, EventArgs e)

 {

 // Print the form as a print preview.

 printForm1.PrintAction =

 System.Drawing.Printing.PrintAction.PrintToPreview;

 printForm1.Print();

 }

 private void exitButton_Click(object sender, EventArgs e)

 {

 // End the project.

 this.Close();

 }

 private void clothingRadioButton_CheckedChanged(object sender,

 EventArgs e)

 {

 // Display the clothing image and show the special.

 departmentPictureBox.Image =

 Ch02HandsOn.Properties.Resources.GymClothing;

 promotionsTextBox.Text = "30% off clearance items.";

 }

 private void equipmentRadioButton_CheckedChanged(object sender,

 EventArgs e)

 {

 // Display the equipment image and show the special.

 departmentPictureBox.Image =

 Ch02HandsOn.Properties.Resources.GymEquipment2;

 promotionsTextBox.Text = "25% off all equipment.";

 }

 private void juiceBarRadioButton_CheckedChanged(object sender,

 EventArgs e)

 {

 // Display the juice bar image and show the special.

 departmentPictureBox.Image =

 Ch02HandsOn.Properties.Resources.JuiceBar2;

 promotionsTextBox.Text = "Free serving of WheatBerry Shake.";

 }

bra17216_ch02_067-106.indd Page 99 7/21/08 8:02:51 PM user-s172bra17216_ch02_067-106.indd Page 99 7/21/08 8:02:51 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

 private void membershipRadioButton_CheckedChanged(object sender,

 EventArgs e)

 {

 // Display the membership image and show the special.

 departmentPictureBox.Image =

 Ch02HandsOn.Properties.Resources.Fitness1;

 promotionsTextBox.Text = "Free Personal Trainer for 1st month.";

 }

 private void personalTrainingRadioButton_CheckedChanged(object sender,

 EventArgs e)

 {

 // Display the personal training image and show the special.

 departmentPictureBox.Image =

 Ch02HandsOn.Properties.Resources.PersonalTrainer;

 promotionsTextBox.Text = "3 free sessions with membership renewal.";

 }

 private void imageVisibleCheckBox_CheckedChanged(object sender,

 EventArgs e)

 {

 // Set the visibility of the department image.

 departmentPictureBox.Visible = imageVisibleCheckBox.Checked;

 }

 }

}

100 V I S U A L C# User Interface Design

 Good Programming Habits

 1. Always test the tab order on your forms. Fix it if necessary by changing
the TabIndex properties of the controls.

 2. Provide visual separation for input fields and output fields and always
make it clear to the user which are which.

 3. Make sure that your forms can be navigated and entered from the
keyboard. Always set a default button (AcceptButton property) for
 every form.

 4. To make a label maintain its size regardless of the value of the Text
property, set AutoSize to false .

 5. To make the text in a text box right justified or centered, set the
 TextAlign property.

 6. You can use the Checked property of a check box to set other properties
that must be true or false .

 S u m m a r y

 1. Text boxes are used primarily for user input. The Text property holds the
value input by the user. You also can assign a literal to the Text property
during design time or run time.

 2. A MaskedTextBox has a Mask property that allows you to specify the data
type and format of the input data.

bra17216_ch02_067-106.indd Page 100 7/21/08 8:02:51 PM user-s172bra17216_ch02_067-106.indd Page 100 7/21/08 8:02:51 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 101

 3. A RichTextBox is a specialized text box that allows additional formatting
to the text.

 4. Both text boxes and rich text boxes have Multiline and WordWrap proper-
ties that can allow a long Text property to wrap to multiple lines. The text
will wrap to the width of the control, which must be tall enough to display
multiple lines. A NewLine character can be included in the text to specify
the location to split the line.

 5. Group boxes are used as containers for other controls and to group like
items on a form.

 6. Check boxes and radio buttons allow the user to make choices. In a group
of radio buttons, only one can be selected; but in a group of check boxes,
any number of the boxes may be selected.

 7. The current state of check boxes and radio buttons is stored in the Checked
property; the CheckedChanged event occurs when the user clicks on one
of the controls.

 8. Picture box controls hold a graphic, which is assigned to the Image prop-
erty. Set the SizeMode property to StretchImage to make the image resize to
fit the control.

 9. The Resources tab of the Project Designer can be used to add, remove, and
rename images in the project Resources folder.

 10. The BorderStyle property of many controls can be set to None , FixedSingle , or
 Fixed3D , to determine whether the control appears flat or three-dimensional.

 11. Forms and controls can display images from the project’s resources. Use
the form’s BackgroundImage property and a control’s Image property.

 12. To create a line on a form, you can use a Label control or use the new
 LineShape control included in the Power Packs.

 13. You can select multiple controls and treat them as a group, including
 setting common properties at once, moving them, or aligning them.

 14. Make your programs easier to use by following Windows standard guide-
lines for colors, control size and placement, access keys, Accept and Can-
cel buttons, and tab order.

 15. Define keyboard access keys by including an ampersand (&) in the Text
property of buttons, radio buttons, check boxes, and labels. Use a double
ampersand (&&) when you want an ampersand to actually display.

 16. Set the AcceptButton property of the form to the desired button so that the
user can press Enter to select the button. If you set the form’s CancelBut-
ton property to a button, that button will be selected when the user presses
the Esc key.

 17. The focus moves from control to control as the user presses the Tab key.
The sequence for tabbing is determined by the TabIndex properties of the
controls. The Tab key stops only on controls that have their TabStop prop-
erty set to true and are enabled.

 18. Set the form’s location on the screen by setting the StartPosition property.
 19. Add a ToolTip control to a form and then set the ToolTip on toolTip1 prop-

erty of a control to make a ToolTip appear when the user pauses the mouse
pointer over the control. You can set properties of the ToolTip component to
modify the background, foreground, shape, and an icon for the ToolTips.

 20. Clear the Text property of a text box or a label by setting it to an empty
string. Text boxes also can be cleared using the Clear method.

 21. To make a control have the focus, which makes it the active control, use the
 Focus method. Using the Focus method of a text box makes the insertion
point appear in the text box. You cannot set the focus to a disabled control.

bra17216_ch02_067-106.indd Page 101 7/21/08 8:02:51 PM user-s172bra17216_ch02_067-106.indd Page 101 7/21/08 8:02:51 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

102 V I S U A L C# User Interface Design

 22. You can set the Checked property of a radio button or check box at run
time and also set the Visible property of controls in code.

 23. Controls can be disabled by setting the Enabled property to false .
 24. Change the color of text in a control by changing its ForeColor property.
 25. You can use the color constants to change colors during run time.
 26. Joining two strings of text is called concatenation and is accomplished by

placing a plus sign between the two elements.
 27. You can download and use PowerPack controls for LineShape, OvalShape,

RectangleShape, and a PrintForm component.

 K e y T e r m s
 AcceptButton property 82
 access key 81
 BorderStyle property 77
 CancelButton property 83
 check box 73
 Checked property 73
 color constant 90
 component tray 85
 concatenation 92
 container 72
 empty string 87
 Enabled property 89
 focus 83
 Focus method 88
 ForeColor property 90
 GroupBox 72
 Image property 74
 MaskedTextBox 70
 Multiline property 71

 NewLine character 72
 PictureBox control 74
 Project Designer 76
 radio button 73
 RichTextBox 70
 Select Resource dialog box 74
 SizeMode property 75
 StartPosition property 84
 StretchImage 75
 TabIndex property 83
 TabStop property 83
 text box 68
 Text property 69
 TextAlign property 69
 ToolTip 85
 ToolTip component 85

 ToolTip on toolTip1 property 85
 Visible property 75
 WordWrap property 71

 R e v i e w Q u e s t i o n s

 1. You can display program output in a text box or a label. When should you
use a text box? When is a label appropriate?

 2. What would be the advantage of using a masked text box rather than a
text box?

 3. When would it be appropriate to use a rich text box instead of a text box?
 4. What properties of a TextBox and RichTextBox must be set to allow a long

Text property to wrap to multiple lines?
 5. How does the behavior of radio buttons differ from the behavior of check

boxes?
 6. If you want two groups of radio buttons on a form, how can you make the

groups operate independently?
 7. Explain how to make a graphic appear in a picture box control.
 8. Describe how to select several labels and set them all to 12-point font size

at once.

bra17216_ch02_067-106.indd Page 102 7/21/08 8:02:51 PM user-s172bra17216_ch02_067-106.indd Page 102 7/21/08 8:02:51 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 103

 9. What is the purpose of keyboard access keys? How can you define them in
your project? How do they operate at run time?

 10. Explain the purpose of the AcceptButton and CancelButton properties of
the form. Give an example of a good use for each.

 11. What is the focus? How can you control which object has the focus?
 12. Assume you are testing your project and don’t like the initial position of

the insertion point. Explain how to make the insertion point appear in a
different text box when the program begins.

 13. During program execution, you want to return the insertion point to a
text box called addressTextBox. What statement will you use to make
that happen?

 14. What is a ToolTip? How can you make a ToolTip appear?
 15. What statements will clear the current contents of a text box and a label?
 16. What is concatenation and when would it be useful?

 P r o g r a m m i n g E x e r c i s e s

 Graphics Files: The StudentData folder, which is available on the text
Web site (www.mhhe.com/csharp2008), holds many graphic files. You
also can use any graphics that you have available or find on the Web.

 2.1 Create a project for the Pamper Your Soles Shoe Sales catalog. Allow the
user to select either women’s or men’s shoes. Have a group box for each,
which contains radio buttons for shoe styles. The styles for women are
dress shoes, running shoes, boots, and sandals. Men’s styles are dress
shoes, work boots, western boots, tennis shoes, and sandals. (Hint : When
the user selects the radio button for women’s shoes, make the group box
of women’s styles visible; the radio button for men’s shoes displays the
men’s styles.)

 Download two appropriate pictures from the Web for each style and
give a name to the style. Display the name of the style in a text box below
the image for the shoes along with the category. For example, the Cinderella-
style heels should display the concatenated style: “Women’s Dress Shoe
Cinderella”.

 Include an Exit button that is set as both the Cancel and Accept but-
tons of the form. A Clear button should set the user interface to display
only a logo and the options for Men’s or Women’s shoes. A Print button
should send the form to the Print Preview window. Use keyboard access
keys and include ToolTips.

 2.2 Write a project to display the flags of four different countries, depending
on the setting of the radio buttons. In addition, display the name of the
country in the large label under the flag picture box. The user also can
choose to display or hide the form’s title, the country name, and the name
of the programmer. Use check boxes for the display/hide choices.

 Include keyboard access keys for all radio buttons, check boxes, and
buttons. Make the Exit button the Cancel button. Include a Print button
and ToolTips.

 You can choose the countries and flags. (The StudentData\Images\
MicrosoftIcons folder holds flag icons for four countries, which you can
use if you wish.)

bra17216_ch02_067-106.indd Page 103 7/21/08 8:02:51 PM user-s172bra17216_ch02_067-106.indd Page 103 7/21/08 8:02:51 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

104 V I S U A L C# User Interface Design

 Hints : When a project begins running, the focus goes to the control
with the lowest TabIndex. Because that control likely is a radio button,
one button will appear selected. You must either display the first flag to
match the radio button or make the focus begin in a different control. You
might consider beginning the focus on a button.

 Set the Visible property of a control to the Checked property of the
corresponding check box. That way when the check box is selected, the
control becomes visible.

 Because all three selectable controls will be visible when the project
begins, set the Checked property of the three check boxes to true at
 design time.

 2.3 Write a project to display a weather report for a Sporting Goods Store.
The user will input his or her name in a text box and can choose one of
the radio buttons for the weather—rain, snow, cloudy, and sunny. Display
an image and a message. The message should give the weather report in
words and include the person’s name (taken from the text box at the top of
the form). For example, if the user chooses the Sunny button, you might
display “It looks like a good day for golf, John” (assuming that the user
entered John in the text box).

 Include keyboard access keys for the buttons and radio buttons. Make
the Exit button the Cancel button and include a Print button and
ToolTips.

 Note : The StudentData\Images\MicrosoftIcons folder has icon files that
you can use, if you wish. Available are Cloud.ico, Rain.ico, Snow.ico, and
Sun.ico.

 2.4 BratPack BackPacks needs an application to display products. The cat-
egories are school bags, sling backpacks, daypacks, weekend hiking
backpacks, and cycling backpacks. When the user selects a category,
display an image of the appropriate style. Include a Print button, a Clear
button, and an Exit button.

 2.5 Create a project that allows the user to input name and address informa-
tion and then display the lines of output for a mailing label in a rich text
box.

 Use text boxes for entry of the first name, last name, street address,
city, and state, and a masked text box for the ZIP code. Give meaningful
names to the text boxes and set the initial Text properties to blank. Add
appropriate labels to each text box to tell the user which data will be
 entered into each box and also provide ToolTips.

 Use buttons for Display Label Info , Clear , Print , and Exit . Make the Display
button the Accept button and the Clear button the Cancel button.

 When the user clicks on the Display Label Info button, display the fol-
lowing in a rich text box:

 Line 1—The first name and last name concatenated together, with a
space between the two.

 Line 2—The street address.
 Line 3—The city, state, and ZIP code concatenated together. (Make sure

to concatenate a comma and a space between the city and state, using
 "," and two spaces between the state and ZIP code.)

bra17216_ch02_067-106.indd Page 104 7/21/08 8:02:52 PM user-s172bra17216_ch02_067-106.indd Page 104 7/21/08 8:02:52 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

C H A P T E R 2 105

 Case Studies

 Custom Supplies Mail Order

 Design and code a project that displays shipping in-
formation.
 Use an appropriate image in a picture box in the
upper-left corner of the form.
 Use text boxes with identifying labels for Catalog
Code, Page Number, and Part Number.
 Use two groups of radio buttons on the form; en-
close each group in a group box. The first group box
should have a Text property of Shipping and contain
radio buttons for Express and Ground. Make the sec-
ond group box have a Text property of Payment Type
and include radio buttons for Charge, COD, and
Money Order.
 Use a check box for New Customer.

 Create a group box for Order Summary. The group
box will contain a rich text box to display the catalog
information and labels for the other details. Have a
new customer label that is visible when the box is
checked. Display the shipping method and payment
type in labels when a radio button is selected.
 Add buttons for Display Catalog Information, Clear,
Print , and Exit. Make the Display Catalog Information
button the Accept button and the Clear button the
Cancel button.
 The Display Catalog Information button should dis-
play the Catalog Code, page number, and part number
in a text box.
 Add ToolTips as appropriate.

 Modify the project from the Chapter 1 Car Center case
study, replacing the buttons with images in picture
boxes. (See “Copy and Move Projects” in Appendix C
for help in making a copy of the Chapter 1 project to
use for this project.) Above each picture box, place a
label that indicates which department or command
the graphic represents. A click on a picture box will
 produce the appropriate information in the special
 notices label.
 Add an image in a picture box that clears the spe-
cial notices label. Include a ToolTip for each picture
box to help the user understand the purpose of the
graphic.
 Add radio buttons that will allow the user to view
the special notices label in different colors.

 Christopher’s Car Center

 Include a check box labeled Hours. When the check
box is selected, a new label will display the message
“Open 24 Hours—7 days a week”. Include a Print button
that displays the form in the Print Preview window.

 Department/Command Suggested Image for
 Picture box (Available in
 Images\MicrosoftIcons)

 Auto Sales Cars.ico

 Service Center Wrench.ico

 Detail Shop Water.ico

 Employment Opportunities Mail12.ico

 Exit Msgbox01.ico

bra17216_ch02_067-106.indd Page 105 7/21/08 8:02:52 PM user-s172bra17216_ch02_067-106.indd Page 105 7/21/08 8:02:52 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

106 V I S U A L C# User Interface Design

 Xtreme Cinema

 Design and code a project that displays the location of
videos using radio buttons. Use a radio button for each
of the movie categories and a label to display the aisle
number. A check box will allow the user to display or
hide a message for members. When the check box is
selected, a message stating “All Members Receive a
10% Discount” will appear.
 Include buttons (with keyboard access keys) for
 Clear , Print , and Exit . The Clear button should be set as
the Accept button and the Exit as the Cancel button.
 Place a label on the form in a 24-point font that
reads Xtreme Cinema . Use a line to separate the label
from the rest of the user interface. Include an image in
a picture box.

 Radio Button Location

 Comedy Aisle 1

 Drama Aisle 2

 Action Aisle 3

 Sci-Fi Aisle 4

 Horror Aisle 5

 New Releases Back wall

 Cool Boards

 Create a project to display an advertising screen for
Cool Boards. Include the company name, programmer
name, a slogan (use “The very best in boards” or make
up your own slogan), and a graphic image for a logo.
You may use the graphic Skateboard.gif from
 StudentData\Images or use one of your own.
 Allow the user to select the color for the slogan
text using radio buttons. Additionally, the user may
choose to display or hide the company name, the
slogan, and the logo. Use check boxes for the dis-
play options so that the user can select each option
independently.
 Include keyboard access keys for the radio but-
tons and the buttons. Make the Exit button the Cancel

button; the Print button should display the form in the
Print Preview window. Create ToolTips for the com-
pany name (“Our company name”), the slogan (“Our
slogan”), and the logo (“Our logo”).
 When the project begins execution, the slogan
text should be red and the Red radio button selected.
When the user selects a new color, change the color of
the slogan text to match.
 Each of the check boxes must appear selected ini-
tially, since the company name, slogan, logo, and pro-
grammer name display when the form appears. Each
time the user selects or deselects a check box, make
the corresponding item display or hide.
 Make the form appear in the center of the screen.

bra17216_ch02_067-106.indd Page 106 7/21/08 8:02:52 PM user-s172bra17216_ch02_067-106.indd Page 106 7/21/08 8:02:52 PM user-s172 /Volumes/201/MHDQ081/mhbra3%0/bra3ch02/Volumes/201/MHDQ081/mhbra3%0/bra3ch02

