
Visual Basic (VB) has become such a popular programming language for sev-
eral reasons. VB is easy to learn, which makes it an excellent tool for under-
standing elementary programming concepts. In addition, it has evolved into
such a powerful and popular product that skilled Visual Basic programmers are
in demand in the job market.

Visual Basic is fully object-oriented and compatible with many other
languages using the .NET Framework. This book incorporates object-oriented
concepts throughout, as well as the syntax and terminology of the language.

Visual Basic is designed to allow the programmer to develop applications
that run under Windows and/or in a Web browser without the complexity gener-
ally associated with programming. With very little effort, the programmer can
design a screen that holds standard elements such as buttons, check boxes, radio
buttons, text boxes, and list boxes. Each of these objects operates as expected,
producing a “standard” Windows or Web user interface.

About This Text

This textbook is intended for use in an introductory programming course, which
assumes no prior knowledge of computer programming. The later chapters are
also appropriate for professional programmers who are learning a new language
to upgrade their skills.

This text assumes that the student is familiar with the Windows operating
environment and can use an Internet browser application.

Approach

This text incorporates the basic concepts of programming, problem solving and
programming logic, as well as the design techniques of an object-oriented,
event-driven language. VB is a fully object-oriented language, which includes
inheritance and polymorphism. Object-oriented programming (OOP) is intro-
duced in Chapter 1, and its features appear in every chapter of the book.

Chapter topics are presented in a sequence that allows the programmer to
learn how to deal with a visual interface while acquiring important program-
ming skills such as creating projects with objects, decisions, loops, and data
management.

A high priority is given to writing applications that are easy for the user to
understand and to use. Students are presented with interface design guidelines
throughout the text.

iii

PREFACE

bra17259_fm_i-xxvi.qxd 6/12/10 8:19 AM Page iii

Text Features

Object-Oriented Concepts
are presented throughout the text to offer
students an introduction to object-oriented
design before learning to create their own
classes.

Try
' Convert quantity to numeric variable.
QuantityInteger = Integer.Parse(QuantityTex
Try

' Convert price if quantity was successf
PriceDecimal = Decimal.Parse(PriceTextBo
' Calculate values for sale.
ExtendedPriceDecimal = QuantityInteger *
DiscountDecimal = Decimal.Round((Extende
DiscountedPriceDecimal = ExtendedPriceDe
‘ Calculate summary values.
QuantitySumInteger += QuantityInteger
DiscountSumDecimal += DiscountDecimal
DiscountedPriceSumDecimal += DiscountedP
SaleCountInteger += 1
AverageDiscountDecimal = DiscountSumDeci

C H A P T E R

2
User Interface
Design

at the completion of this chapter, you will be able to . . .

1. Use text boxes, masked text boxes, rich text boxes, group boxes, check boxes,

radio buttons, picture boxes, and line and shape controls effectively.

2. Set the BorderStyle property to make controls appear flat or three-dimensional.

3. Select multiple controls and move them, align them, and set common properties.

4. Make your projects easy for the user to understand and operate by defining

access keys, setting an Accept and a Cancel button, controlling the tab

sequence, resetting the focus during program execution, and causing

ToolTips to appear.

5. Clear the contents of text boxes and labels.

6. Make a control visible or invisible at run time by setting its Visible property.

7. Disable and enable controls at design time and run time.

8. Change text color during program execution.

9. Code multiple statements for one control using the With and End With

statements.

10. Concatenate (join) strings of text.

11. Continue long program lines using implicit continuation or explicit line-

continuation characters.

Good Programming Habits

1. Always test the tab order on your forms. Fix it if necessary by changing

the TabIndex properties of the controls.

2. Provide visual separation for input fields and output fields and always

make it clear to the user which are which.

3. Make sure that your forms can be navigated and entered from the key-

board. Always set an Accept button (AcceptButton property) for every

form.

4. To make a label maintain its size regardless of the value of the Text

property, set AutoSize to False.

5. To make the text in a text box right justified or centered, set the

TextAlign property.

6. You can use the Checked property of a check box to set other properties

that must be True or False.

Interface Guidelines
are presented to offer students a better
understanding of meeting user needs
and employing industry standards.

Bradley_Walkthru.indd Page 2 11/06/10 3:16 PM user-f501 /Volumes/211/MHRL042_clipuseonly%0/0073530123_Fresh/hiL30123_pagefiles/hiL301...
bra17259_fm_i-xxvi.qxd 6/12/10 8:19 AM Page iv

Feedback Questions
give students time to reflect on the
current topic and to evaluate their
understanding of details.

Tips
in the margins help students avoid
potential trouble spots in their
programs and encourage them to
develop good programming
habits.

172 V I S U A L B A S I C Decisions and Conditions

variable. It’s usually a good idea to create a variable for the message and format

the message before calling the Show method; if nothing else, it makes your code

easier to read and follow.

Combining Values into a Message String
You can concatenate a literal such as “Total Sales:” with the value from a vari-

able. You may need to include an extra space inside the literal to make sure

that the value is separated from the literal.

Dim MessageString As String

MessageString = "Total Sales: " & TotalSalesDecimal.ToString("C")
MessageBox.Show(MessageString, "Sales Summary", MessageBoxButtons.OK)

Creating Multiple Lines of Output
If your message is too long for one line, VB wraps it to a second line. But if you

would like to control the line length and position of the split, you can insert a

NewLine character into the string message. Use the Visual Studio intrinsic con-

stant Environment.NewLine to determine line endings. You can concatenate

this constant into a message string to set up multiple lines.

In this example, a second line is added to the MessageBox from the previ-

ous example.

Specify only the message for a
“quick and dirty” message box for
debugging purposes. It will display
an OK button and an empty title
bar: MessageBox.Show("I'm
here.") �

TIP �

168 V I S U A L B A S I C Decisions and Conditions

Feedback 4.2
Assume that FrogsInteger = 10, ToadsInteger = 5, and PolliwogsInteger
= 6. What will be displayed for each of the following statements?

1. If FrogsInteger > PolliwogsInteger Then
FrogsRadioButton.Checked = True

Else
FrogsRadioButton.Checked = False

End If
2. If FrogsInteger > ToadsInteger + PolliwogsInteger Then

ResultTextBox.Text = "It's the frogs."
Else

ResultTextBox.Text = "It's the toads and the polliwogs."
End If

3. If PolliwogsInteger > ToadsInteger And
FrogsInteger <> 0 Or ToadsInteger = 0 Then

ResultTextBox.Text = "It's true."
Else

ResultTextBox.Text = "It's false."
End If

4. Write the statements necessary to compare the numeric values stored

in ApplesTextBox.Text and OrangesTextBox.Text. Display in Most-

TextBox.Text which has more, the apples or the oranges.

5. Write the Basic statements that will test the current value of Bal-

anceDecimal. When BalanceDecimal is greater than zero, the check

box for Funds Available, called FundsCheckBox, should be selected,

the BalanceDecimal set back to zero, and CountInteger incremented by

one. When BalanceDecimal is zero or less, FundsCheckBox should not

be selected (do not change the value of BalanceDecimal or increment

the counter).

Using If Statements with Radio Buttons
and Check Boxes

In Chapter 2 you used the CheckedChanged event for radio buttons and check

boxes to carry out the desired action. Now that you can use If statements, you

should not take action in the CheckedChanged event procedures for these con-

Indentation can help you catch er-
rors. Visual Basic always matches
an Else with the last unmatched
If regardless of the indentation. �

TIP

� Feedback 2.2
1. Write the Basic statements to clear the text box called CompanyTextBox

and reset the insertion point into the box.

2. Write the Basic statements to clear the label called CustomerLabel and

place the insertion point into a text box called OrderTextBox.

3. What will be the effect of each of these Basic statements?

(a) PrintCheckBox.Checked = True
(b) ColorRadioButton.Checked = True
(c) DrawingPictureBox.Visible = False
(d) LocationLabel.BorderStyle = BorderStyle.Fixed3D
(e) CityLabel.Text = CityTextBox.Text
(f) RedRadioButton.Enabled = True

Setting Properties Based on User Actions

Often you need to change the Enabled or Visible property of a control based on

an action of the user. For example, you may have controls that are disabled or

invisible until the user signs in. In the following example, when the user logs in

and clicks the Sign In button, several controls become visible, others become

invisible, and a group box of radio buttons is enabled:

� Feedback 2.2
1. Write the Basic statements to clear the text box called CompanyTextBox

and reset the insertion point into the box.

2. Write the Basic statements to clear the label called CustomerLabel and

place the insertion point into a text box called OrderTextBox.

3. What will be the effect of each of these Basic statements?

(a) PrintCheckBox.Checked = True
(b) ColorRadioButton.Checked = True
(c) DrawingPictureBox.Visible = False
(d) LocationLabel.BorderStyle = BorderStyle.Fixed3D
(e) CityLabel.Text = CityTextBox.Text
(f) RedRadioButton.Enabled = True

Setting Properties Based on User Actions

Often you need to change the Enabled or Visible property of a control based on

an action of the user. For example, you may have controls that are disabled or

invisible until the user signs in. In the following example, when the user logs in

and clicks the Sign In button, several controls become visible, others become

invisible, and a group box of radio buttons is enabled:

Bradley_Walkthru.indd Page 3 11/06/10 4:04 PM user-f501 /Volumes/211/MHRL042_clipuseonly%0/0073530123_Fresh/hiL30123_pagefiles/hiL301...
bra17259_fm_i-xxvi.qxd 6/12/10 8:19 AM Page v

Your Hands-On

Programming Examples

guide students through the process of
planning, writing, and executing Visual Basic
programs.

202 V I S U A L B A S I C Decisions and Conditions

K e y T e r m s

ANSI code 160
Autos window 194
breakpoint 191
Boolean Expression 159
call 181
Case structure 177
comparison operator 159
compound Boolean Expression 163
condition 159
CType function 180
Debug.WriteLine method 190
DialogResult object 173
End If 157

If / Then / Else 157
late binding 180
Locals window 194
logical operator 163
nested If 166
relational operator 159
Select Case 178
short circuit 165
Step Into 193
Step Over 193
ToLower method 162
ToUpper method 162
validation 175

R e v i e w Q u e s t i o n s

1. What is the general format of the statement used to code decisions in an

application?

2. What is a Boolean expression?

3. Explain the purpose of comparison operators and logical operators.

4. How does a comparison performed on numeric data differ from a compari-

son performed on string data?

5. How does Visual Basic compare the Text property of a text box?

6. Why would it be useful to include the ToUpper method in a comparison?

7. Name the types of items that can be used in a comparison.

8. Explain a Boolean variable test for True and False. Give an example.

9. Give an example of a situation where nested Ifs would be appropriate.

10. Define the term validation. When is it appropriate to do validation?

11. Define the term checking a range.

12. When would it be appropriate to use a Case structure? Give an example.

13. Explain the difference between Step Into and Step Over.
14. What steps are necessary to view the current contents of a variable during

program execution?

P r o g r a m m i n g E x e r c i s e s

4.1 Lynette Rifle owns an image consulting shop. Her clients can select from

the following services at the specified regular prices: Makeover $125, Hair

Styling $60, Manicure $35, and Permanent Makeup $200. She has distrib-

uted discount coupons that advertise discounts of 10 percent and 20 per-

cent off the regular price. Create a project that will allow the receptionist to

select a discount rate of 10 percent, 20 percent, or none, and then select a

service. Display the total price for the currently selected service and the to-

tal due for all services. A visit may include several services. Include but-

tons for Calculate, Clear, Print, and Exit.
4.2 Modify Programming Exercise 4.1 to allow for sales to additional patrons.

Include buttons for Next Patron and Summary. When the receptionist clicks

C H A P T E R 5 247

Modify the case study project from Chapter 4 to use

menus and a function procedure. Refer to Chapter 4

for project specifications.

Write a function procedure to calculate and return

the shipping and handling based on the weight for an

entire order. (Do not calculate shipping and handling

on individual items—wait until the order is complete.)

Apply the user’s font and color changes to the To-

tal Due, or another control of your choice.

Menu:

File Edit Help
Update Summary Add This Item About
Print Clear_________ ________
Exit Font...

Color...

Note: For help in basing a new project on an exist-

ing project, see “Basing a New Project on an Existing

Project” in this chapter.

Case Studies
VB Mail Order

VB Auto Center

Modify the case study project from Chapter 4 to use

menus and a function procedure. Refer to Chapter 4

for project specifications.

Write a function procedure to calculate and return

the sales tax.

Apply the user’s font and color changes to the

Amount Due, or other control of your choice.

Menu:

File Edit Help
Exit Calculate About

Clear_________
Font...
Color...

Consider adding keyboard shortcuts to the menu com-

mands.

Note: For help in basing a new project on an exist-

ing project, see “Basing a New Project on an Existing

Project” in this chapter.

Case Studies

provide continuing-theme exercises that
may be used throughout the course,
providing many opportunities to expand
on previous projects.

Text Features

Programming

Exercises

test students’ understanding of the
specific programming skills covered in
that chapter.

Properties or double-click on the My Project entry in the Solution Explorer.)

• Open the Project Designer and change the Assembly Name entry to match

your new project name.

Warning: Do not try to copy a project that is open using the Save As com-

mand, attempting to place a copy in a new location. It is difficult to actually

copy all of the needed files; in some earlier versions of Visual Studio, doing so

made the project unusable.

Your Hands-On Programming Example

Modify the hands-on programming example from Chapter 4 by replacing some

of the buttons with menus. Write a function procedure to calculate the sales tax

and allow the user to select the font and color of the summary text boxes.

The project for R ’n R—for Reading ’n Refreshment calculates the amount

due for individual orders and maintains accumulated totals for a summary. Use

a check box for takeout items, which are taxable (8 percent); all other orders

are nontaxable. Include radio buttons for the five coffee selections: Cappuc-

cino, Espresso, Latte, Iced Latte, and Iced Cappuccino. The prices for each will

be assigned using these constants:

Cappuccino 2.00

Espresso 2.25

Latte 1.75

Iced (either) 2.50

Bradley_Walkthru.indd Page 4 11/06/10 4:01 PM user-f501 /Volumes/211/MHRL042_clipuseonly%0/0073530123_Fresh/hiL30123_pagefiles/hiL301...
bra17259_fm_i-xxvi.qxd 6/12/10 8:19 AM Page vi

Visit the VISUAL BASIC 2010 Web site at:
http://www.mhhe.com/VB2010/ for
instructor and student resources.

For the Student

Student Data
available on the text

,
s Web

site offers a debugging
project, database files for the
programming exercises and
case studies, graphics, and
sound files.

Bradley_Walkthru.indd Page 5 11/06/10 3:16 PM user-f501 /Volumes/211/MHRL042_clipuseonly%0/0073530123_Fresh/hiL30123_pagefiles/hiL301...
bra17259_fm_i-xxvi.qxd 6/12/10 8:20 AM Page vii

Instructor Web Site
includes: Instructor’s Manual with teaching hints,
outlines, and a matrix of the chapter features
required for each programming exercise;
PowerPoint Slides; Testing Files (using EZ Test
and in Word files); as well as Solutions to End-
of-Chapter Exercises.

For the Instructor

Bradley_Walkthru.indd Page 6 11/06/10 3:30 PM user-f501 /Volumes/211/MHRL042_clipuseonly%0/0073530123_Fresh/hiL30123_pagefiles/hiL301...
bra17259_fm_i-xxvi.qxd 6/12/10 8:20 AM Page viii

PowerPoint Presentations
provide instructors with complete, detailed
presentations that walk students through the
important concepts covered in each chapter.

Visit the VISUAL BASIC 2010 Web site at:
http://www.mhhe.com/VB2010/ for
instructor and student resources.

Bradley_Walkthru.indd Page 7 11/06/10 4:10 PM user-f501 /Volumes/211/MHRL042_clipuseonly%0/0073530123_Fresh/hiL30123_pagefiles/hiL301...
bra17259_fm_i-xxvi.qxd 6/12/10 8:20 AM Page ix

Changes in This Edition

This revision of the text is based on Visual Basic Professional 2010. VB 2010
provides for elimination of the line continuation character under most circum-
stances. The array and object initializers also have been improved.

The narrative, step-by-step exercises, screen captures, and appendices
have all been updated to VB 2010. The screen captures are all based on
Windows 7. A section covering collection objects has been added to the chap-
ter on arrays.

Features of This Text

Each chapter begins with identifiable objectives and a brief overview. Numer-
ous coding examples as well as hands-on projects with guidance for the plan-
ning and coding appear throughout. Thought-provoking feedback questions
give students time to reflect on the current topic and to evaluate their under-
standing of the details. The end-of-chapter items include a chapter review,
questions, programming exercises, and four case studies.

Chapter 1, “Introduction to Visual Basic 2010,” introduces
Microsoft’s Visual Studio integrated development environment (IDE). The
single environment is used for multiple programming languages. A step-
by-step program gets students into programming very quickly (quicker
than most books). The PrintForm control is included to allow students to
easily submit screen captures of the form at run time. The chapter
introduces the OOP concepts of objects, properties, methods, and events.
The elements of debugging and using the Help system are also introduced.

Chapter 2, “User Interface Design,” demonstrates techniques for
good program design, including making the interface easy for users as
well as guidelines for designing maintainable programs. Several controls
are introduced, including text boxes, rich text boxes, masked text boxes,
group boxes, check boxes, radio buttons, picture boxes, and the new
Shape and Line controls.

Chapter 3, “Variables, Constants, and Calculations,” presents the
concepts of using data and declaring the data type. Students learn to
follow standards to indicate the data type and scope of variables and
constants and always to use Option Strict, which forces adherence to
strong data typing.

Error handling is accomplished using structured exception handling.
The Try/Catch/Finally structure is introduced in this chapter along
with calculations. The student learns to display error messages using the
MessageBox class and also learns about the OOP concept of overloaded
constructors.

Chapter 4, “Decisions and Conditions,” introduces taking alternate
actions based on expressions formed with the relational and logical
operators. This chapter uses the If statement to validate input data.
Multiple decisions are handled with both nested If statements and the
Select Case structure.

x P R E F A C E

bra17259_fm_i-xxvi.qxd 6/12/10 8:20 AM Page x

P R E F A C E xi

The debugging features of the IDE are covered, including a step-by-
step exercise that covers stepping through program statements and
checking intermediate values during execution.

Chapter 5, “Menus, Common Dialog Boxes, Sub Procedures,
and Function Procedures,” covers the concepts of writing and calling
general sub procedures and function procedures. Students learn to
include both menus and context menus in projects, display the Windows
common dialog boxes, and use the input provided by the user.

Chapter 6, “Multiform Projects,” adds splash forms and About forms
to a project. Summary data are presented on a separate form. The Friend
keyword is introduced.

Chapter 7, “Lists, Loops, and Printing,” incorporates list boxes and
combo boxes into projects, providing the opportunity to discuss looping
procedures and printing lists of information. Printing is accomplished
in .NET using a graphics object and a callback event. The printing
controls also include a Print Preview, which allows students and
instructors to view output without actually printing it.

Chapter 8, “Arrays and Collections,” introduces arrays, which follow
logically from the lists covered in Chapter 7. Students learn to use single- and
multidimension arrays, table lookups, arrays of structures, and collections.

Chapter 9, “Web Applications,” introduces Web applications using
Web Forms. Students learn to design and develop simple Web
applications that consist of Web pages that execute in a browser
application. Multiple-page Web sites are covered along with validator
controls and an introduction to state management.

Chapter 10, “Database Applications,” introduces ADO.NET, which
is Microsoft’s latest technology for accessing data in a database. This
chapter shows how to create binding sources, table adapters, and
datasets. Programs include accessing data from both Windows Forms and
Web Forms. Students learn to bind data tables to a data grid and bind
individual data fields to controls such as labels and text boxes. LINQ is
used to query system processes.

Chapter 11, “Data Files,” presents the VB object-oriented techniques
for data file handling. Students learn to save and read small amounts of data
using the My object and using streams. The StreamWriter and StreamReader
objects are used to store and reload the contents of a combo box.

Chapter 12, “OOP: Creating Object-Oriented Programs,”
explains more of the theory of object-oriented programming. Although we
have been using OOP concepts since Chapter 1, in this chapter students
learn the terminology and application of OOP. Inheritance is covered for
visual objects (forms) and for extending existing classes. The samples are
kept simple enough for an introductory class.

Chapter 13, “Graphics, Animation, Sound, and Drag-and-
Drop,” covers the classes and methods of GDI+. The chapter covers
graphics objects, pens, and brushes for drawing shapes and lines.
Animation is accomplished using the Timer control and the SetBounds
method for moving controls. My.Computer.Audio.Play is used to provide
sound, and drag-and-drop events are used to transfer the contents of a
text box to a list box and to move images.

bra17259_fm_i-xxvi.qxd 6/12/10 8:20 AM Page xi

Chapter 14, “Additional Topics in Visual Basic,” introduces some
advanced VB topics. This final chapter covers validating user input using
Error Providers and the Validating event of controls. Students learn to
create applications using multiple document interfaces (MDI), create
toolbars and status bars using ToolStrip and StatusStrip controls, and add
Web content to a Windows Form using the WebBrowser control. The code
snippet feature is introduced. Reading and writing XML text files is
covered using the new XML literals and using LINQ.

An introduction to Windows Presentation Foundation (WPF) includes
using WPF interoperability with a standard Windows Form and creating a
WPF Form project.

The appendices offer important additional material. Appendix A holds
the answers to all Feedback questions. Appendix B covers methods and
functions for math, string handling, and date manipulation. In OOP style,
most actions that were formerly done with functions are now accomplished
with methods of the Math class and String class.

Appendix C, on mastering the Visual Studio environment, is based on
the .NET IDE and includes instructions for using snap lines for form
design. Appendix D discusses security issues for both Windows and Web
programming.

Acknowledgments

Many people have worked very hard to design and produce this text. We would
like to thank our editors, Scott Davidson and Alaina Grayson. Our thanks also
to the many people who produced this text, including Marlena Pechan, David
Shapiro, and Betsy Blumenthal.

We greatly appreciate Theresa Berry of Mt. San Antonio College and Peter
van der Goes of Rose State College for their thorough technical reviews, con-
structive criticism, and many valuable suggestions. We would like to thank
Brenda Nielsen of Mesa Community College for her work in creating the
PowerPoint Presentations that accompany this text and to Theresa Berry for the
Instructor’s Manual and Test Bank. And most importantly, we are grateful to
Dennis and Richard for their support and understanding through the long days
and busy phone lines.

The Authors

We have had fun teaching and writing about Visual Basic. We hope that this
feeling is evident as you read this book and that you will enjoy learning or
teaching this outstanding programming language.

Julia Case Bradley
Anita C. Millspaugh

xii P R E F A C E

bra17259_fm_i-xxvi.qxd 6/12/10 8:20 AM Page xii

