
C H A P T E R 9

PRACTICE SET
Questions
Q9-1. Fault and performance are areas of management defined by OSI; personnel is

not.

Q9-3. This is related to hardware reconfiguration, which is part of reconfiguration,
which is in turn part of configuration management.

Q9-5. Reactive fault management is responsible for handling faults in a timely man-
ner. Proactive fault management is responsible for preventing some faults
from occurring.

Q9-7. Internal traffic measures the number of packets circulated inside the network;
external traffic measures the number of packets sent to or received from out-
side.

Q9-9. A router or a switch cannot be used as a manager station; only a host can be a
manager station.

Q9-11. The name is encoded as 1.3.6 (see Figure 9.6).

Q9-13.

Q9-15. SMI only sets the rules for naming objects, distinguishes between simple data
types and shows how to combine them to make structured data types, and
specifies how to encode objects and the values to be stored in those objects.
MIB, on the other hand, defines the objects to be managed in SNMP using the
rules set by SMI.

Q9-17. The identifiers of the variables are x.1, x.2, and x.3.

Q9-19. SNMP can only reference an entity which is a leaf in the MIB tree. Non-leaf
entities in the leaf are not variables to be accessed.

Q9-21. We can say that tables in the MIB are column-oriented. This means that each
column in a table is represented by a leaf in the MIB tree. In this case, we have
three leaves related to the table. The rows in a table are not represented as

a. Simple b. Simple c. Simple

d. Sequence of e. Sequence f. Sequence of
1

2

leaves in the MIB tree because the number of rows are not fixed from one
object to another. Consider the case of a forwarding (routing) table. A router
may have a forwarding table with three rows; another table may have a for-
warding table with eight rows.

Q9-23.

a. A GetRequest PDU is sent from a client (manager) to a server (agent).

b. A Response PDU is sent from a server (agent) to a client (manager).

c. A Trap PDU is sent from a server (agent) to a client (manager).

Problems
P9-1. The identifiers are (x.1) and (x.2). The variable identifier of an object does not

have any relation to the type of the variable. Each simple variable of an object
is a leaf on the MIB tree, as shown below:

P9-3. Since MIB considers each column of a tree as a variable, we have four leaves
on the tree. The identifiers for the two variables are (x.1) and (x.2). The identi-
fier for the table is (x.3), which is not a leaf. The identifier for the table entry is
(x.3.1). Each column has an identifier on the leaf. The identifier for the first
column is (x.3.1.1); the identifier for the second column is (x.3.1.2).

P9-5. A simple variable has only one instance, which is not on the MIB tree. The
instance can be referred to by adding a zero to the identifier of the variable. In
this case, the identifiers of the variables are (x.1) and (x.2). The instances can
be referred to as (x.1.0) and (x.2.0).

P9-7. The identifier of the table is (1.3.6.1.2.4.21). The identifier of the table entry is
(1.3.6.1.2.4.21.1). The identifier of the second column is (1.3.6.1.2.4.21.1.2).
Each instance must add the corresponding index, which is the destination IP
addresses:

First instance: column 2, row 1: 1.3.6.1.2.4.21.1.2.201.14.67.0

Second instance: column 2, row 2: 1.3.6.1.2.4.21.1.2.123.16.0.0

Third instance: column 2, row 3: 1.3.6.1.2.4.21.1.2.11.0.0.0

Fourth instance: column 2, row 4: 1.3.6.1.2.4.21.1.2.0.0.0.0

x.1

x.1

x
Object x

x.2

x.2
Variables

MIB tree

3

P9-9. Using TLV (tag, length, and value), we have:

The length of the string (including space and period) is 12 or 0C in hexadeci-
mal. The value of the string is based on ASCII (see Appendix A). The encod-
ing in compact form is 040C48656C6C6F20576F726C642E.

P9-11. Using TLV (tag, length, and value), we have:

Each digit in the identifier is translated into two hexadecimal digits. The
encoding in compact form is 06080103060102010701.

P9-13. First we need to encode the inner sequence and then the outer one, as shown
below:

The total length is (13 + 6 = 19) bytes. The whole data type in compact format
is

P9-15. Since the code starts with the tag 30, it is a sequence. We need to split the code
carefully to find each component.

The first byte is the tag for a sequence and the next byte is the length of the
sequence (12 bytes). The next byte defines a data type (an integer). The next
byte is the length of the integer (4 bytes) and the next four bytes define the
value (2456). The last tag defines an IP address with the value 10.5.3.14. In
summary, the code defines a sequence of an integer and an IP address. The
following shows the whole data type using ASN.1:

 Tag Length Value

04 0C 48 65 6C 6C 6F 20 57 6F 72 6C 64 2E

 Tag Length Value

06 08 01 03 06 01 02 01 07 01

3019020400000083301140041846060E0403553350

T L T L V T L V

30 0C 02 04 00 00 09 98 40 04 0A 05 03 0E

SEQUENCE

{

INTEGER 2456

IP Address 10.5.3.14

}

Sequence
Sequence

30 19 OCTETSTRINGIPAddressInteger

40 04 1864060E02 04 00000083 04 03 55445030 11

4

P9-17. A VarBind is a sequence of two data items: the corresponding object identifier
and the value of the variable.

a. In the GetRequest message the sequence is the instance of the object identi-
fier (the last 00 defines the instance). The last two bytes defines the identi-
fier of the null object (05) and the null value (00).

b. In the Response message the sequence is the instance of the object identi-
fier (the last 00 defines the instance). The last six bytes defines a counter of
length 4 with the value 15.

P9-19. A GetRequest PDU is a structure of five elements, as shown in Figure 9.18. It
can be defined as shown below. Note that VarBindList is itself a structure that
needs to be defined.

P9-21. A VarBindList is a list of VarBinds. Note that VarBind is itself a structure that
needs to be defined.

T L T L V T L

30 0D 06 0B 010306010201070400 05 00

T L T L V T L V

30 11 06 0F 010306010201070400 41 04 0000000F

GetRequest PDU  SEQUENCE

{

PDUType Tag

RequestID Integer32

ErrorStatus INTEGER (0..18)

ErrorIndex INTEGER

VariableBinding VarBindList

}

VarBindList  SEQUENCE OF

{

VarBindList VarBind


}

	PRACTICE SET
	Questions
	Q9 -1. Fault and performance are areas of management defined by OSI; personnel is not.
	Q9 -3. This is related to hardware reconfiguration, which is part of reconfiguration, which is in turn part of configuration management.
	Q9 -5. Reactive fault management is responsible for handling faults in a timely manner. Proactive fault management is responsible for preventing some faults from occurring.
	Q9 -7. Internal traffic measures the number of packets circulated inside the network; external traffic measures the number of packets sent to or received from outside.
	Q9 -9. A router or a switch cannot be used as a manager station; only a host can be a manager station.
	Q9 -11. The name is encoded as 1.3.6 (see Figure 9.6).
	Q9 -13.
	a. Simple
	b. Simple
	c. Simple
	d. Sequence of
	e. Sequence
	f. Sequence of

	Q9 -15. SMI only sets the rules for naming objects, distinguishes between simple data types and shows how to combine them to make structured data types, and specifies how to encode objects and the values to be stored in those objects. MIB, on the oth...
	Q9 -17. The identifiers of the variables are x.1, x.2, and x.3.
	Q9 -19. SNMP can only reference an entity which is a leaf in the MIB tree. Non-leaf entities in the leaf are not variables to be accessed.
	Q9 -21. We can say that tables in the MIB are column-oriented. This means that each column in a table is represented by a leaf in the MIB tree. In this case, we have three leaves related to the table. The rows in a table are not represented as leaves...
	Q9 -23.
	a. A GetRequest PDU is sent from a client (manager) to a server (agent).
	b. A Response PDU is sent from a server (agent) to a client (manager).
	c. A Trap PDU is sent from a server (agent) to a client (manager).

	Problems
	P9 -1. The identifiers are (x.1) and (x.2). The variable identifier of an object does not have any relation to the type of the variable. Each simple variable of an object is a leaf on the MIB tree, as shown below:

	P9 -3. Since MIB considers each column of a tree as a variable, we have four leaves on the tree. The identifiers for the two variables are (x.1) and (x.2). The identifier for the table is (x.3), which is not a leaf. The identifier for the table entry...
	P9 -5. A simple variable has only one instance, which is not on the MIB tree. The instance can be referred to by adding a zero to the identifier of the variable. In this case, the identifiers of the variables are (x.1) and (x.2). The instances can be...
	P9 -7. The identifier of the table is (1.3.6.1.2.4.21). The identifier of the table entry is (1.3.6.1.2.4.21.1). The identifier of the second column is (1.3.6.1.2.4.21.1.2). Each instance must add the corresponding index, which is the destination IP ...
	First instance:
	column 2, row 1:
	1.3.6.1.2.4.21.1.2.201.14.67.0
	Second instance:
	column 2, row 2:
	1.3.6.1.2.4.21.1.2.123.16.0.0
	Third instance:
	column 2, row 3:
	1.3.6.1.2.4.21.1.2.11.0.0.0
	Fourth instance:
	column 2, row 4:
	1.3.6.1.2.4.21.1.2.0.0.0.0

	P9 -9. Using TLV (tag, length, and value), we have:
	Tag
	Length
	Value
	04
	0C
	48 65 6C 6C 6F 20 57 6F 72 6C 64 2E

	P9 -11. Using TLV (tag, length, and value), we have:
	Tag
	Length
	Value
	06
	08
	01 03 06 01 02 01 07 01

	P9 -13. First we need to encode the inner sequence and then the outer one, as shown below:
	3019020400000083301140041846060E0403553350

	P9 -15. Since the code starts with the tag 30, it is a sequence. We need to split the code carefully to find each component. The first byte is the tag for a sequence and the next byte is the length of the sequence (12 bytes). The next byte defines a ...
	T
	L
	T
	L
	V
	T
	L
	V
	30
	0C
	02
	04
	00 00 09 98
	40
	04
	0A 05 03 0E
	SEQUENCE
	{
	INTEGER 2456
	IP Address 10.5.3.14
	}

	P9 -17. A VarBind is a sequence of two data items: the corresponding object identifier and the value of the variable.
	a. In the GetRequest message the sequence is the instance of the object identifier (the last 00 defines the instance). The last two bytes defines the identifier of the null object (05) and the null value (00).
	T
	L
	T
	L
	V
	T
	L
	30
	0D
	06
	0B
	010306010201070400
	05
	00
	b. In the Response message the sequence is the instance of the object identifier (the last 00 defines the instance). The last six bytes defines a counter of length 4 with the value 15.

	T
	L
	T
	L
	V
	T
	L
	V
	30
	11
	06
	0F
	010306010201070400
	41
	04
	0000000F

	P9 -19. A GetRequest PDU is a structure of five elements, as shown in Figure 9.18. It can be defined as shown below. Note that VarBindList is itself a structure that needs to be defined.
	GetRequest PDU ::= SEQUENCE
	{
	PDUType Tag
	RequestID Integer32
	ErrorIndex INTEGER
	}

	P9 -21. A VarBindList is a list of VarBinds. Note that VarBind is itself a structure that needs to be defined.
	VarBindList ::= SEQUENCE OF
	{
	VarBindList VarBind
	¼
	}

