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SUPPLEMENT CHAPTER

Variance-Reducing Techniques

B ecause considerable computer time usually is required for simulation runs, it is im-
portant to obtain as much and as precise information as possible from the amount of
simulation that can be done. Unfortunately, there has been a tendency in practice to ap-
ply simulation uncritically without giving adequate thought to the efficiency of the ex-
perimental design. This tendency has occurred despite the fact that considerable progress
has been made in developing special techniques for increasing the precision (i.e., de-
creasing the variance) of sample estimators.

These variance-reducing techniques often are called Monte Carlo techniques (a term
sometimes applied to simulation in general). Because they tend to be rather sophisticated,
it is not possible to explore them deeply here. However, we shall attempt to impart the
flavor of these techniques and the great increase in precision they sometimes provide by
presenting two when applied to the following example.

Consider the exponential distribution whose parameter has a value of 1. Thus, its
probability density function is f(x) = ¢~ *, as shown in Fig. 1, and its cumulative distrib-
ution function is F(x) = 1 — e~ *. It is known that the mean of this distribution is 1. How-
ever, suppose that this mean is not known and that we want to estimate this mean by us-
ing simulation.

To provide a standard of comparison of the two variance-reducing techniques, we con-
sider first the straightforward simulation approach, sometimes called the crude Monte
Carlo technique. This approach involves generating some random observations from the
exponential distribution under consideration and then using the average of these observa-
tions to estimate the mean. As described in Sec. 20.4, these random observations would be

x;=—In( —r), fori=1,2,...,n,

where ry, 15, . . ., r,, are uniform random numbers between 0 and 1. We use the first three
digits in the fifth column of Table 20.3 to obtain 10 such uniform random numbers; the
resulting random observations are shown in Table 1. (These same random numbers also
are used to illustrate the variance-reducing techniques to sharpen the comparison.)
Notice that the sample average in Table 1 is 0.779, as opposed to the true mean of
1.000. However, because the standard deviation of the sample average happens to be 1/ Vn,
or 1/V10 in this case (as could be estimated from the sample), an error of this amount
or larger would occur approximately one-half of the time. Furthermore, because the stan-
dard deviation of a sample average is always inversely proportional to Vn, this sample
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N FIGURE 1

Probability density function
for the example for variance-
reducing techniques, where
the objective is to estimate
the mean of this distribution.

f(x)

TABLE 1 Application of the crude Monte Carlo
technique to the example

Random Random
Number* Observation
i r; xi=—In(1-r)
1 0.495 0.684
2 0.335 0.408
3 0.791 1.568
4 0.469 0.633
5 0.279 0.328
6 0.698 1.199
7 0.013 0.014
8 0.761 1.433
9 0.290 0.343
10 0.693 1.183
Total = 7.793

Estimate of mean = 0.779

*Actually, 0.0005 was added to the indicated value for each of the r;
so that the range of their possible values would be from 0.0005 to
0.9995 rather than from 0.000 to 0.999.

size would need to be quadrupled to reduce this standard deviation by one-half. These
somewhat disheartening facts suggest the need for other techniques that would obtain such
estimates more precisely and more efficiently.

Stratified Sampling

Stratified sampling is a relatively simple Monte Carlo technique for obtaining better esti-
mates. There are two shortcomings of the crude Monte Carlo approach that are rectified
by stratified sampling. First, by the very nature of randomness, a random sample may not
provide a particularly uniform cross section of the distribution. For example, the random
sample given in Table 1 has no observations between 0.014 and 0.328, even though the
probability that a random observation will fall inside this interval is greater than i Second,
certain portions of a distribution may be more critical than others for obtaining a precise
estimate, but random sampling gives no special priority to obtaining observations from
these portions. For example, the tail of an exponential distribution is especially critical in
determining its mean. However, the random sample in Table 1 includes no observations
larger than 1.568, even though there is at least a small probability of much larger values.
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TABLE 2 Formulation of the stratified sampling approach to the example

Portion of Stratum Sample Sampling
Stratum Distribution Random No. Size Weight
. _4/10 _5
1 0= Fx) =< 0.64 ri=0+ 0.64r; 4 Wi=064 "8
,_ _4/10 _5
2 0.64 = F(x) = 0.96 ri=0.64 + 0.32r; 4 Wi=035 =%
3 0.96 = F(x) = 1 ri=0.96 + 0.04r; 2 w; = % =5

This explanation is the basic one for why this particular sample average is far below the
true mean. Stratified sampling circumvents these difficulties by dividing the distribution
into portions called strata, where each stratum would be sampled individually with dis-
proportionately heavy sampling of the more critical strata.

To illustrate, suppose that the distribution is divided into three strata in the manner
shown in Table 2. These strata were chosen to correspond to observations approximately
from O to 1, from 1 to 3, and from 3 to o, respectively. To ensure that the random ob-
servations generated for each stratum actually lie in that portion of the distribution, the
uniform random numbers must be converted to the indicated range for F(x), as shown in
the third column of Table 2. The number of observations to be generated from each stra-
tum is given in the fourth column.' The rightmost column then shows the resulting sam-
pling weight for each stratum, i.e., the ratio of the sampling proportion (the fraction of
the total sample to be drawn from the stratum) to the distribution proportion (the prob-
ability of a random observation falling inside the stratum). These sampling weights
roughly reflect the relative importance of the respective strata in determining the mean.

Given the formulation of the stratified sampling approach shown in Table 2, the same
uniform random numbers used in Table 1 yield the observations given in the fifth column
in Table 3. However, it would not be correct to use the unweighted average of these obser-
vations to estimate the mean, because certain portions of the distribution have been sampled
more than others. Therefore, before we take the average, we divide the observations from
each stratum by the sampling weight for that stratum to give proportionate weightings to
the different portions of the distribution, as shown in the rightmost column of Table 3. The
resulting weighted average of 0.948 provides the desired estimate of the mean.

Method of Complementary Random Numbers

The second variance-reducing technique we shall mention is the method of complemen-
tary random numbers.> The motivation for this method is that the “luck of the draw” on
the uniform random numbers generated may cause the average of the resulting random
observations to be substantially on one side of the true mean, whereas the complements
of those uniform random numbers (which are themselves uniform random numbers) would
have tended to yield a nearly opposite result. (For example, the uniform random numbers
in Table 1 average less than 0.5, and none are as large as 0.8, which led to an estimate
substantially below the true mean.) Therefore, using both the original uniform random
numbers and their complements to generate random observations and then calculating the

!These sample sizes are roughly based on a recommended guideline that they be proportional to the product of
the probability of a random observation’s falling inside the corresponding stratum times the standard deviation
within this stratum.

This method is a special case of the method of antithetic variates, which attempts to generate pairs of random
observations having a high negative correlation, so that the combined average will tend to be closer to the mean.
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TABLE 3 Application of stratified sampling to the example

Random Stratum Stratum Random Sampling
Number Random No. Observation Weight
Stratum i ¥; r; xi=—In (1-r) w; x;/w;
1 0.495 0.317 0.381 % 0.610
2 0.335 0.215 0.242 % 0.387
1
3 0.791 0.507 0.707 % 1.131
4 0.469 0.300 0.357 % 0.571
5 0.279 0.729 1.306 % 1.045
6 0.698 0.864 1.995 % 1.596
2
7 0.013 0.644 1.033 % 0.826
8 0.761 0.884 2.154 % 1.723
3 9 0.290 0.9716 3.561 5 0.712
10 0.693 0.9877 4.398 5 0.880
Total = 9.481
Estimate of mean = 0.948
TABLE 4 Application of the method of complementary random numbers to
the example
Random Random Complementary Random
Number Observation Random Number Observation
i r; xi=—In(1-r) ri=1-r; xi=—In(1-r})
1 0.495 0.684 0.505 0.702
2 0.335 0.408 0.665 1.092
3 0.791 1.568 0.209 0.234
4 0.469 0.633 0.531 0.756
5 0.279 0.328 0.721 1.275
6 0.698 1.199 0.302 0.359
7 0.013 0.014 0.987 4.305
8 0.761 1.433 0.239 0.272
9 0.290 0.343 0.710 1.236
10 0.693 1.183 0.307 0.366
Total = 7.793 Total = 10.597

Estimate of mean = 15(0.779 + 1.060) = 0.920

combined sample average should provide a more precise estimator of the mean. This ap-

proach is illustrated in Table 4.3 where the first three columns come from Table 1 and the
two rightmost columns use the complementary uniform random numbers, which results

in a combined sample average of 0.920.

3Note that 20 calculations of a logarithm were required in this case, in contrast to the 10 that were required by
each of the preceding techniques.
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Conclusions

This example has suggested that the variance-reducing techniques provide a much more
precise estimator of the mean than does straightforward simulation (the crude Monte Carlo
technique). These results definitely were not a coincidence, as a derivation of the variance
of the estimators would show. In comparison with straightforward simulation, these
techniques (including several more complicated ones not presented here) do indeed pro-
vide a much more precise estimator with the same amount of computer time, or they
provide an equally precise estimator with much less computer time. Despite the fact that
additional analysis may be required to incorporate one or more of these techniques into
the simulation study, the rewards should not be forgone readily.

Although this example was particularly simple, it is often possible, though more dif-
ficult, to apply these techniques to much more complex problems. For example, suppose
that the objective of the simulation study is to estimate the expected waiting time of cus-
tomers in a queueing system (such as those described in Chap. 17). Because both the prob-
ability distribution of interarrival times and the probability distribution of service times
are involved, and because consecutive waiting times are not statistically independent, this
problem may appear to be beyond the capabilities of the variance-reducing techniques.
However, as has been described in detail elsewhere,* these techniques and others can in-
deed be applied to this type of problem very advantageously. For example, the method of
complementary random numbers can be applied simply by repeating the original simula-
tion run, substituting the complements of the original uniform random numbers to gener-
ate the corresponding random observations.

B PROBLEMS
20S1-1. Consider the probability distribution whose probability =~ 20S1-2. Simulation is being used to study a system whose mea-
density function is sure of performance X will be partially determined by the outcome
1 of a certain external factor. This factor has three possible outcomes
@ ifx=1 (unfavorable, neutral, and favorable) that will occur with equal
fx) = probability (3). Because the favorable outcome would greatly in-
0 otherwise. crease the spread of possible values of X, this outcome is more crit-

ical than the others for estimating the mean and variance of X.
Therefore, a stratified sampling approach has been adopted, with
six random observations of the value of X generated under the fa-
vorable outcome, three generated under the neutral outcome, and
one generated under the unfavorable outcome, as follows:

The problem is to perform a simulated experiment, with the help
of variance-reducing techniques, for estimating the mean of this
distribution. To provide a standard of comparison, also derive the
mean analytically.

For each of the following cases, use the same 10 uniform ran-
dom numbers (obtained as instructed at the beginning of the Prob-
lems section for Chap. 20) to generate random observations, and

calculate the resulting estimate of the mean. Outcome of Simulated

(a) Use the crude Monte Carlo technique. External Factor Values of X

(b) Use stratified sampling with three strata—'O = F(x) = 0.6, Favorable 8,516,3,7
0.6 <_F(x) = 0.9, and 0.9 < F(x) = l—with 3, 3, and 4 0b-  Njeytral 3,5, 2
servations, respectively. Unfavorable 2

(¢) Use the method of complementary random numbers.

4S. Ehrenfeld and S. Ben-Tuvia, “The Efficiency of Statistical Simulation Procedures,” Technometrics, 4 (2):
257-275, 1962. For additional information on variance-reducing techniques, see the November 1989 issue
of Management Science for a special issue on this topic. For a sampling of more recent researchin this area,
see pp. 69-79 in vol. 44 (1997) of Naval Research Logistics; pp.1295—1312 in vol. 44 (1998) and pp. 1214—
1235, 1349-1364 in vol. 46 (2000) of Management Science; pp. 900-912 in vol. 49 (2001) of pp. 946-960
in vol. 29 (2004) and pp. 508-527 in vol. 32 (2007) of Mathematics of Operations Research.

o



2051-6

hil6l1217_ch20_supplementl.gxd 5/14/04 15:47 Page ZOS—$

SUPPLEMENT 1 TO CHAPTER 20 VARIANCE-REDUCING TECHNIQUES

(a) Develop the resulting estimate of E(X).
(b) Develop the resulting estimate of E(X 2,

20S1-3. A random variable X has P{X = 0} = 0.9. Given X # 0,

it has a uniform distribution between 5 and 15. Thus, E(X) = 1. Ob-

taining uniform random numbers as instructed at the beginning of

the Problems section for Chap. 20, use simulation to estimate E(X).

(a) Estimate E(X) by generating five random observations from
the distribution of X and then calculating the sample average.
(This is the crude Monte Carlo technique.)

(b) Estimate E(X) by using stratified sampling with two strata—
0 = F(x) =09 and 0.9 < F(x) = 1—with 1 and 4 observa-
tions, respectively.

20S1-4. Dave’s Bicycle Shop repairs bicycles. Forty percent of

the bicycles require only a minor repair. The repair time for these

bicycles has a uniform distribution between O and 1 hour. Sixty
percent of the bicycles require a major repair. The repair time for

these bicycles has a uniform distribution between 1 hour and 2

hours. You now need to estimate the mean of the overall proba-

bility distribution of the repair times for all bicycles by using the
following alternative methods.

(a) Use the uniform random numbers—0.7256, 0.0817, and
0.4392—to simulate whether each of three bicycles requires mi-
nor repair or major repair. Then use the uniform random num-
bers—0.2243, 0.9503, and 0.6104—to simulate the repair times
of these bicycles. Calculate the average of these repair times to
estimate the mean of the overall distribution of repair times.

(b) Draw the cumulative distribution function (CDF) for the over-
all probability distribution of the repair times for all bicycles.

(¢) Use the inverse transformation method with the latter three uni-
form random numbers given in part (a) to generate three ran-
dom observations from the overall distribution considered in
part (b). Calculate the average of these observations to esti-
mate the mean of this distribution.

(d) Repeat part (¢) with the complements of the uniform random
numbers used there, so the new uniform random numbers are
0.7757, 0.0497, and 0.3896.

(e) Use the method of complementary random numbers to esti-
mate the mean of the overall distribution of repair times by
combining the random observations from parts (¢) and (d).

(f) The true mean of the overall probability distribution of repair
times is 1.1. Compare the estimates of this mean obtained in parts
(a), (¢), (d), and (e). For the method that provides the closest es-
timate, give an intuitive explanation for why it performed so well.

(g) Formulate a spreadsheet model to apply the method of com-
plementary random numbers. Use 300 uniform random num-
bers to generate 600 random observations from the distribu-
tion considered in part (b) and calculate the average of these
random observations. Compare this average with the true mean
of the distribution.

(h) The drawbacks of the approach described in part (@) are that (1)
it does not ensure that the repair times for both minor repairs and
major repairs are adequately sampled and (2) it requires two uni-
form random numbers to generate each random observation of a
repair time. To overcome these drawbacks, combine stratified

sampling and the method of complementary random numbers by
using the first three uniform random numbers given in part (a)
to generate six random minor repair times and the other three
uniform random numbers to generate six random major repair
times. Calculate the resulting estimate of the mean of the over-
all distribution of repair times.

20S1-5. The employees of General Manufacturing Corp. receive
health insurance through a group plan issued by Wellnet. During
the past year, 40 percent of the employees did not file any health
insurance claims, 40 percent filed only a small claim, and 20 per-
cent filed a large claim. The small claims were spread uniformly
between 0 and $2,000, whereas the large claims were spread uni-
formly between $2,000 and $20,000.

Based on this experience, Wellnet now is negotiating the cor-
poration’s premium payment per employee for the upcoming year.
You are an OR analyst for the insurance carrier, and you have been
assigned the task of estimating the average cost of insurance cov-
erage for the corporation’s employees.

Follow the instructions of Prob. 20S1-4, where the size of an
employee’s health insurance claim (including O if no claim was
filed) now plays the role that the repair time for a bicycle did in
Prob. 20S1-4. [For part (f), the true mean of the overall probabil-
ity distribution of the size of an employee’s health insurance claim
is $2,600.]

20S1-6. Consider the probability distribution whose probability
density function is

x| if—-1=x=1
otherwise.

=157

Use the method of complementary random numbers with two uni-
form random numbers, 0.096 and 0.569, to estimate the mean of
this distribution.

22S1-7. Consider the probability distribution whose probability
density function is

30 dfoi=x=1
f) =142
0 otherwise.

Use the method of complementary random numbers with two uni-
form random numbers, 0.096 and 0.569, to estimate the mean of
this distribution.

20S1-8. The probability distribution of the number of heads in
3 flips of a fair coin is the binomial distribution with n = 3 and
p =1, so that

P AT A A R B A
PIX =k = (k)(Z) (2) kG- k! (2)
fork=0, 1, 2, 3.

The mean is 1.5.

(a) Obtaining uniform random numbers as instructed at the be-
ginning of the Problems section for Chap. 20, use the inverse
transformation method to generate three random observations
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from this distribution, and then calculate the sample average
to estimate the mean.

(b) Use the method of complementary random numbers [with the
same uniform random numbers as in part (a)] to estimate the
mean.

(c) Obtaining uniform random numbers as instructed at the be-

ginning of the Problems section for Chap. 20, simulate re-

peatedly flipping a coin in order to generate three random ob-
servations from this distribution, and then calculate the sample
average to estimate the mean.

Repeat part (c) with the method of complementary random

numbers [with the same uniform random numbers as in part

()] to estimate the mean.

d

~

20S1-9. Reconsider Prob. 20.6-4. Suppose now that more careful
statistical analysis has provided new estimates of the probability
distributions of the radii of the shafts and bushings. In actuality,
the probability distribution of the radius of a shaft (in inches) has
the probability density function

400e —400(x—1.0000)

1) = {0 if x = 1.0000

otherwise.

Similarly, the probability distribution of the radius of a bushing (in
inches) has the probability density function

100

if 1.0000 = x = 1.0100
folx) = {0 )

otherwise.

Obtaining uniform random numbers as instructed at the be-
ginning of the Problems section for Chap. 20, perform a simu-
lated experiment for estimating the probability of interference.
Notice that almost all cases of interference will occur when the
radius of the bushing is much closer to 1.0000 inch than to
1.0100 inches. Therefore, it appears that an efficient experiment
would generate most of the simulated bushings from this criti-
cal portion of the distribution. Take this observation into ac-
count in part (b). For each of the following cases, use the same
10 pairs of uniform random numbers to generate random ob-
servations, and calculate the resulting estimate of the probabil-
ity of interference.

(a) Use the crude Monte Carlo technique.

(b) Develop and apply a stratified sampling approach to this
problem.

(¢) Use the method of complementary random numbers.





